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a b s t r a c t

We consider a stochastic knapsack problemwhere each item has a known profit but a random size that is
normally distributed independent of other items. The goal is to select a profitmaximizing set of items such
that the probability of the total size exceeding the knapsack bound is atmost a given threshold.Wepresent
a Polynomial Time Approximation Scheme (PTAS) for the problem via a parametric LP reformulation that
efficiently computes a solution satisfying the chance constraint strictly and achieving near-optimal profit.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

We consider the following stochastic variant of the clas-
sical knapsack problem. We are given n items with profits
p1, p2, . . . , pn, a knapsack size B and a reliability level 0.5 < ρ < 1.
Item i has a random size Si distributed according to a known distri-
bution and independent of the sizes of other items. The goal is to
select a subset S of items such that,

Pr

(∑
i∈S

Si ≤ B

)
≥ ρ, (1.1)

and the profit is maximized. We refer to (1.1) as the chance
constraint and the problem as the chance-constrained knapsack
problem. Our model finds applications in problems where there is
only one stage of decision making under uncertainty. For instance,
consider a typical capital investment problem where a central
planner needs to select a set of projects to invest the available
capital from a universe of projects where each project has an
uncertain investment requirement and becomes known only after
the project has been selected and started. The central planner
would ideally like to invest in the set of projects that have a high
profit or return while not exceeding the budget constraint. The
solutionmight be highly conservative if we require that the budget
is not exceeded in any possible realization of the investment
requirements of selected projects. A chance-constrained model
overcomes this drawback by allowing constraint violation for a
small fraction of the unlikely realizations.
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We present a PTAS for the chance-constrained knapsack prob-
lem when item sizes are normally distributed and independent of
other items. It is known [1] that in the case of normally distributed
item sizes the chance constraint can be formulated as a 0–1 conic
program. However, we show that the integrality gap of the conic
formulation is large. We reformulate the problem as a parametric
LP and give a rounding algorithm that rounds any fractional solu-
tion to a (1 + ε)-approximate integral solution for any constant
ε > 0 in time polynomial in the input size and 1

ε
.

Several stochastic variants of the classical knapsack problem
have been studied in the literature. Henig [5] andCarraway et al. [2]
consider the stochastic variant where item sizes are known but
the profit of each item is distributed normally and independent
of others and the goal is to maximize the probability that the
profit is at least a given threshold. The authors present dynamic
programming and branch and bound heuristics to solve this
problem to optimality. Papastavrou et al. [9] and Kleywegt et al. [8]
consider a variant called the stochastic and dynamic knapsack
problem where items arrive online according to some stochastic
process—the size and profit of each item is known only after the
item arrives and you are required to decide whether to select the
item or not when it arrives. Dean, Goemans and Vondrak [3] study
the benefit of adaptivity in the online stochastic knapsack problem
and give a polynomial time non-adaptive policy that is within a
factor 4 of the optimal adaptive policy. Note that an adaptive policy
depends on the remaining knapsack capacity while a non-adaptive
policy does not.
Kleinberg et al. [7] and Goel and Indyk [4] consider a chance-

constrained stochastic knapsack problem similar to the one
considered in this paper. Kleinberg et al. [7] consider the case
where item sizes have a Bernoulli-type distribution (with only
two possible sizes for each item), and provide an O(log 1

1−ρ )-
approximation algorithm where ρ is the threshold probability.
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Goel and Indyk [4] provide a PTAS for the casewhen item sizes have
Poisson or exponential distribution. However, the algorithm in [4]
violates the chance constraint by a factor of (1 + ε). In contrast,
we present a PTAS for the case when item sizes are normally
distributed while satisfying the chance constraint strictly.

2. Conic integer formulation

We consider the case when each item j has a normally dis-
tributed size with mean aj and standard deviation σj independent
of the other items. Let xj denote whether item j has been selected
or not. Then the stochastic knapsack problem can be formulated as
follows:

max

{
n∑
j=1

pjxj

∣∣∣∣∣Pr
(∑

j

Sjxj ≤ B

)
≥ ρ, x ∈ {0, 1}n

}
. (2.1)

We simplify the probabilistic constraint as follows:

Pr

(∑
j

Sjxj ≤ B

)
= Pr


∑
j

(
Sjxj − ajxj

)
√∑

j
σ 2j x

2
j

≤

B−
∑
j
ajxj√∑

j
σ 2j x

2
j



= Pr

Z ≤
B−

∑
j
ajxj√∑

j
σ 2j x

2
j

 ,

where Z =

(∑
j(Sjxj−ajxj)√∑

j σ
2
j x
2
j

)
. Since the item sizes are normally

distributed and independent of other items, Z is a standard normal
variable with mean 0 and standard deviation 1. Let φ denote the
cumulative distribution function of the standard normal variate.
Therefore, the probabilistic constraint can be rewritten as follows.

Pr

Z ≤
B−

∑
j
ajxj√∑

j
σ 2j x

2
j

 ≥ ρ ⇒
B−

∑
j
ajxj√∑

j
σ 2j x

2
j

≥ φ−1(ρ).

Therefore, we can reformulate (2.1) as:

max

 n∑
j=1

pj · xj

∣∣∣∣∣∣φ−1(ρ)
√∑

j

σ 2j x
2
j

+

∑
j

ajxj ≤ B, x ∈ {0, 1}n

 . (2.2)

If we relax the 0–1 constraints on xj to 0 ≤ xj ≤ 1 for all
j = 1, . . . , n, the formulation in (2.2) is a second order conic
program and can be solved in polynomial time since φ−1(ρ) ≥ 0
for ρ ≥ 0.5. Note that we assume that ρ > 0.5 since for ρ = 0.5,
φ−1(ρ) = 0 and the conic constraint in (2.2) reduces to a linear
constraint which implies that the chance-constrained knapsack
problem with normally distributed item sizes is equivalent to the
deterministic knapsack problemwhere each item size is fixed at its
expected size. Furthermore, we also require that ρ is strictly less
than 1 as φ−1(1) is unbounded and the trivial solution x = 0 is the
only feasible solution (assuming σj > 0 for all j = 1, . . . , n). We
show in the following example that the integrality gap of the conic
relaxation isΩ(

√
n).

Large integrality gap example. Consider the following instance:
pj = σj = 1, aj = 1/

√
n for all j = 1, . . . , n. Also, let the knapsack

bound, B = 3, and the probability threshold, ρ = 0.95. Note that
φ−1(0.95) ' 1.645. It is easy to observe that any integral solution
includes at most three items. Consider the conic constraint for any
solution that contains four items.

4 ·
1
√
n
+ φ−1(0.95) ·

√
4 =

4
√
n
+ 3.29 > 3,

which implies that any solution containing four items does not
satisfy the conic constraint. Therefore, the integral optimal profit
is at most 3. Now, consider the fractional solution xj = 1

√
n . Then,

n∑
j=1

ajxj + φ−1(ρ)

√√√√ n∑
j=1

σ 2j x
2
j = 1+ φ

−1(ρ) < 3.

Therefore, the fractional solution is feasible and the optimal
fractional profit is at least

√
nwhich shows that the integrality gap

of the conic formulation isΩ(
√
n).

3. Parametric LP reformulation

Wereformulate the second order conic programas a parametric
LP and obtain a PTAS for the chance-constrained knapsack
problem. Supposewe know that the sumofmean sizes of the items
selected in an optimal solution is µ∗. Then, the conic constraint
in (2.2) can be expressed as,∑
j

ajxj ≤ µ∗

(
φ−1(ρ)

)2 (∑
j

σ 2j x
2
j

)
≤ (B− µ∗)2 (3.1)

Since x2j = xj for xj ∈ {0, 1}, we can simplify (3.1) to:(
φ−1(ρ)

)2 (∑
j σ
2
j xj
)
≤ (B − µ∗)2. Therefore, we can formulate

the chance-constrained knapsack problem as a parametric two-
dimensional knapsack problem where µ is the parameter corre-
sponding to the total mean size of the selected items. We consider
powers of (1+ ε), i.e., (1+ ε)j, j = 0, . . . , log(1+ε) B for some con-
stant ε > 0, as different choices of the parameterµ. Therefore, the
number of different choices ofµ is O

( log B
ε

)
which is polynomial in

the input size.
We also guess the value of optimal profit OPT by considering

powers of (1+ ε). Let P =
∑n
j=1 pj; we consider O

( log P
ε

)
different

choices of OPT. At most 1
ε
items can have profit greater than εOPT.

Therefore, for each guess ofOPT = (1+ε)j we consider all subsets
of cardinality at most 1

ε
of the items that have profit more than

εOPT to include in the solution. For each guess O of OPT and each
choice of subset of items of individual profit more than εOPT, we
solve a subproblemΠ(S1, S2,O)where S2 is the set of itemswhose
profit is more than ε · O and are included in the final solution and
we are required to choose a subset of items from S1 ⊂ [n] that
maximizes the total profit. LetΠ(S1, S2,O, µ) denote the problem
where the total mean size of all items selected from S1 is at mostµ.
Therefore, we can formulateΠ(S1, S2,O, µ) as the following two-
dimensional knapsack problem:

max
∑
j∈S1

pjxj +
∑
j∈S2

pj∑
j∈S1

ajxj ≤ µ (3.2)

(
φ−1(ρ)

)2 (∑
j∈S1

σ 2j xj

)

≤

(
B− µ−

∑
j∈S2

aj

)2
−
(
φ−1(ρ)

)2 (∑
j∈S2

σ 2j

)
(3.3)

xj ∈ {0, 1}
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Fig. 1. AlgorithmA for chance-constrained Knapsack problem.
Fig. 2. AlgorithmA(Π) for (S1, S2,O).
Algorithm A for the Chance-constrained Knapsack Problem is
described in Fig. 1 and Algorithm A(Π) for Π(S1, S2,O, µ) is
described in Fig. 2.
In the following lemma, we show that we can find a good

integral solution to the problemΠ(S1, S2,O, µ).

Lemma 3.1. Consider the problem Π(S1, S2,O, µ) such that pj ≤
ε · O for all j ∈ S1. If P∗ is the optimal profit for Π(S1, S2,O, µ),
then there is a polynomial time algorithm to find a feasible set of items
whose profit is at least (P∗ − 2ε · O).

Proof. Consider the two-dimensional knapsack formulation of
Π(S1, S2,O, µ) and consider a basic optimal solution x̃ of the LP
relaxation. Since there are only two constraints other than the
bound constraints, at least (|S1| − 2) bound constraints must be
tight for x̃. Therefore, at least (|S1|−2) variables out of |S1| variables
are integral in any basic optimal solution. Let j1, j2 ∈ S such that
x̃j1 , x̃j2 are fractional. We know that pj ≤ ε · O for all j ∈ S1.
Consider the following solution, x̂ where for any j ∈ S, x̂j = 0 if
j = j1, j2 and x̂j = x̃j otherwise. Clearly, x̂ is an integral solution and∑
j∈S1
pjx̂j ≥

∑
j∈S1
pjx̃j − 2ε · O. Therefore, we obtain an integral

solution such that
∑
j∈S1
pjx̂j +

∑
j∈S2
pj ≥ P∗ − 2ε · O. �

In the following lemma we show that for an appropriately
chosen value of O and µ and subsets S1, S2 ⊂ [n], the problem
Π(S1, S2,O, µ) has optimal profit at least OPT/(1+ ε).

Lemma 3.2. Let S∗ be the set of items selected by an optimal solution
and let OPT =

∑
i∈S∗ pi. Consider l, such that (1 + ε)

l−1
≤ OPT <
(1 + ε)l. Let O = (1 + ε)l and let, Sε = {i ∈ [n]|pi ≥ ε · O},
S1 = [n] \ Sε , and S2 = Sε ∩ S∗. Then the optimal profit for the
problemΠ(S1, S2,O) is at least OPT/(1+ ε).

Proof. Let µ∗ =
∑
j∈S∗ aj, µ

1
=
∑
j∈S1∩S∗

aj, µ2 =
∑
j∈S2
aj and

let kbe such that (1+ε)k−1 ≤ µ1 < (1+ε)k. Letβ = (1+ε)k−1 and
we consider the problem Π(S1, S2,O, β). Consider the following
fractional solution, x̃ for Π(S1, S2,O, β) where x̃j = 1

1+ε for all
j ∈ S1 ∩ S∗ and 0 otherwise. We first show that x̃ is a feasible
fractional solution forΠ(S1, S2,O, (1+ε)k−1). It is easy to observe
that x̃ satisfies (3.2) as

∑
j∈S1
ajx̃j =

∑
j∈S1∩S∗

aj · 1
1+ε =

µ1

1+ε ≤ β .
Also,(
φ−1(ρ)

)2
·

(∑
j∈S1

σ 2j x̃j

)
=
(
φ−1(ρ)

)2
·

( ∑
j∈S1∩S∗

σ 2j ·
1
1+ ε

)

≤

(B− µ∗)2 −
(
φ−1(ρ)

)2
·

(∑
j∈S2

σ 2j

)
1+ ε

(3.4)

=

(B− µ1 − µ2)2 −
(
φ−1(ρ)

)2
·

(∑
j∈S2

σ 2j

)
1+ ε

≤

(B− β − µ2)2 −
(
φ−1(ρ)

)2
·

(∑
j∈S2

σ 2j

)
1+ ε

(3.5)
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< (B− β − µ2)2 −
(
φ−1(ρ)

)2
·

(∑
j∈S2

σ 2j

)
,

where (3.4) follows as S∗ = (S1∩S∗)∪S2 is an optimal solution and
thus satisfies

(
φ−1(ρ)

)2
·
(∑

j∈S∗ σ
2
j

)
≤ (B−µ∗)2. Inequality (3.5)

follows asβ ≤ µ1. This implies that x̃ satisfies (3.3) and is a feasible
solution for Π(S1, S2,O, β). The profit achieved by the fractional
solution x̃ is:∑
j∈S1

pjx̃j +
∑
j∈S2

pj =
∑
j∈S1∩S∗

pj
1+ ε

+

∑
j∈S2

pj >
OPT

1+ ε
,

where the last equality follows because S∗ = (S1 ∩ S∗) ∪ S2. �

Theorem 3.3. Given ε > 0, there is a polynomial time algorithm that
gives a (1− 3ε)-approximation for the chance-constrained knapsack
problem with reliability, (0.5 + δ) ≤ ρ ≤ (1 − δ) for some fixed
δ > 0. Furthermore, the running time of A is

O

(
log (B/µm) · log (P/pm) · n

1
ε

ε2
· n3.5 · L

)
,

where P =
∑n
j=1 pj, pm = min{pj| j = 1, . . . , n}, µm = min{aj| j =

1, . . . , n} and L is the input size of the problem.

Proof. Let OPT denote the profit value of an optimal solution and
let S∗ be the set of items selected in OPT. Consider l, such that,
(1 + ε)l−1 ≤ OPT < (1 + ε)l and let O = (1 + ε)l. Let Sε = {i ∈
[n]|pi ≥ ε ·O}, S1 = [n]\Sε and S2 = S∩S∗. Note that AlgorithmA
considers the guessO for the optimal value. Also, since |S2| < 1

ε
the

subproblem Π(S1, S2,O) is considered as one of the subproblems
in the algorithm A. Let µ(1) =

∑
j∈S1∩S∗

aj. Consider k such that
(1+ ε)k−1 ≤ µ(1) < (1+ ε)k and let β = (1+ ε)k−1. Clearly, the
subproblem Π(S1, S2,O, β) is considered in the algorithm A(Π)
while solving Π(S1, S2,O). From Lemma 3.2, we know that the
optimal profit for the subproblem Π(S1, S2,O, β) is at least OPT

1+ε .
Furthermore, using Lemma 3.1 we can find a set of items Ŝ for
the problem Π(S1, S2,O, β) such that

∑
j∈Ŝ pj ≥

OPT
1+ε − 2ε · O ≥( 1

1+ε − 2ε
)
· OPT ≥ (1 − 3ε) · OPT. Therefore, AlgorithmA finds

an integral solution that has profit at least (1−3ε) ·OPT. To bound
the running time of A, note that we consider O (log (P/pm) /ε)
different choices of the optimal profit value O. Also, we consider
O
(
n1/ε

)
choices of the set of items S for the subproblem Π for
each choice of O. Furthermore, in the subroutine A(Π), we solve
O (log (B/µm) /ε) different subproblems for solving Π(S1, S2,O)
for given subsets S1, S2 ⊂ [n] and a choice for optimal profit O.
Therefore, AlgorithmA solves and rounds

O

(
log (B/µm) · log (P/pm) · n

1
ε

ε2

)
,

linear programs. Each LP has at most n variables and it is easy
to observe that the input size of each LP is O(L) since δ ≤
φ−1(ρ) ≤ φ−1(1 − δ) which implies that φ−1(ρ) is bounded
between constants for a fixed δ > 0. Therefore, each LP can
be solved in O(n3.5L) time [6] and can be rounded in O(n) time
by scanning each variable and setting the fractional ones to zero
(following the proof of Lemma 3.2), which completes the proof of
the running time of the algorithm. �
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