
Reonstruting edge-disjoint pathsM. Conforti� R. Hassiny R. RavizAbstratFor an undireted graph G = (V;E), the edge onnetivity values between everypair of nodes of G an be suintly reorded in a ow-equivalent tree that ontainsthe edge onnetivity value for a linear number of pairs of nodes. We generalizethis result to show how we an eÆiently reover a maximum set of disjoint pathsbetween any pair of nodes of G by storing suh sets for a linear number of pairs ofnodes. At the heart of our result is an observation that ombining two ow solutionsof the same value, one between nodes s and r and the seond between nodes r and t,into a feasible ow solution of value f between nodes s and t, is equivalent to solvinga stable mathing problem on a bipartite multigraph.Our observation, ombined with an observation of Chazelle, leads to a datastruture, whih takes O(n3:5) time to generate, that an onstrut the maximumnumber �(u; v) of edge-disjoint paths between any pair (u; v) of nodes in timeO(�(n; n)�(u; v)n) time.1 IntrodutionGiven an undireted graph G = (V;E) with jV j = n, let �(s; t) be the st-edge onnetivityof G, i.e., the maximum number of edge-disjoint st-paths. Gomory and Hu [5℄ showed thatthe edge onnetivity funtion � = f�(s; t) : s; t 2 V g has a ompat tree representation,i.e., there exists a weighted spanning tree on V suh that for every pair of nodes s; t 2 V�(s; t) is the minimum weight of an edge on the (unique) st-path in this tree. This tree isknown as a ow-equivalent tree of G.Suppose that a set of �(s; t) edge disjoint st-paths are given for every edge (s; t) ofthe jV j � 1 edges of the ow equivalent tree: Can we eÆiently onstrut �(u; v) edgedisjoint uv-paths for an arbitrary pair u; v 2 V ? Suh a question may potentially arise inappliations that need to ompute the maximum ow, or alternately the maximum numberof edge-disjoint paths, between arbitrary pairs of verties at several points in the ourse ofits exeution.�Dipartimento di Matematia Pura ed Appliata, Universit�a di Padova, Via Belzoni 7, 35131 Padova,Italy. (onforti�math.unipd.it)yDepartment of Statistis and Operations Researh, Tel-Aviv University, Tel Aviv 69978, Israel. (has-sin�post.tau.a.il) This paper was written while the author visited GSIA, Carnegie Mellon University.zGSIA, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. (ravi�mu.edu) Supported inpart by an NSF CAREER Award CCR 96-25297. Ravi also aknowledges support from IBM SRC, NewDelhi, for hosting a visit during January-February '99 when this paper was ompleted.1



In this paper we desribe a ompat representation of the sets of the �(u; v) edgedisjoint paths for every pair u; v 2 V . This representation onsists of a graph with nodeset V and O(n) edges, where n = jV j. Eah edge (s; t) in this graph is assoiated with�(s; t) edge disjoint st-paths. This data struture an be omputed in a preproessing stepthat takes time O(n3:5) and O(n3) spae. We then show how to onstrut �(u; v) edgedisjoint uv-paths for an arbitrary pair u; v 2 V in O(�(n; n)�(u; v)n) time, where �(n; n)is the inverse Akermann funtion.2 Stable MathingsLet G = (P;Q;E), jP j = jQj, be a bipartite multigraph whih is omplete, i.e. every pairof nodes in P and Q are adjaent. Assume further that every node p 2 P ranks the edgeshaving p as end node aording to its preferene and every node q 2 Q also ranks theedges having q as end node, so that every edge is ranked twie, at both end nodes. Aperfet mathing M of G is stable if for every edge e in E nM with end nodes p and q,either in the p-ranking, e is less desirable than the edge ep 2M that saturates p, or in theq-ranking, e is less desirable than the edge eq 2 M that saturates q. Gale and Shapleyin their seminal paper [3℄ (see also [4℄), show that every omplete bipartite simple graphhas a stable mathing. Their proof is algorithmi and we give below a straightforwardadaptation to the multigraph ase.StableMath(bipartite multigraph)1. Start withM = ;. Initially, all nodes in P are exposed and all edges are unexplored.2. While a node p 2 P is exposed, explore the unexplored edge e that has highestp-ranking. Let q be the other end node of e.If q is exposed,Then set M =M [ feg.Else if the edge eq 2 M that saturates q is less preferable than e in the q-ranking,set M = M [ feg n feqg.The mathing M is stable upon termination of the algorithm. At the end, M is aperfet mathing. For, assume not: then all the edges inident to p are explored, for someexposed node p. Note that when an edge is explored, its end node in Q is saturated andremains saturated throughout the algorithm. So when the least desirable edge in the p-ranking is explored and its end node in Q is saturated, all nodes in Q are saturated. Thisis impossible sine jP j = jQj and p is exposed.Finally, an edge is explored at most one in the algorithm, so its omplexity is O(jEj).We remark that the above problem an be interpreted as a multi ethni marriageproblem, in whih P represents the set of suitors, Q the set of brides, and the edges withend nodes p and q represent the set of possible marriage eremonies that an unite p andq. A perfet mathing that is stable orresponds to a set of eremonies C that unites all2



the suitors to all the brides so that no suitor p and bride q would both prefer a eremonynot in C (possibly with other partners).3 Composing ow solutionsLet P = fp1; : : : ; pfg be a set of f edge disjoint sr-paths and Q = fq1; : : : ; qfg be a set off edge disjoint rt-paths. Sine eah ow path has at most n edges, it is straightforwardto �nd a set of f edge-disjoint st-paths in the graph formed by the union of the sr- andrt-paths having O(fn) edges. Using a lassial ow-augmenting algorithm to �nd suh adeomposition takes O(f 2n) time [1℄. Using a method of Karger and Levine [6℄, this anbe aomplished in time O(f 32n).Theorem 3.1 Let P = fp1; : : : ; pfg be a set of f edge disjoint sr-paths andQ = fq1; : : : ; qfg,a set of f edge disjoint rt-paths where eah ow path has at most n edges. Then, there exists aset of f edge disjoint st-paths suh that eah path in this set is the onatenation of a \pre�x"of a path in P and a \suÆx" of a path in Q. Moreover, this set an be omputed in O(fn)time.Proof: Construt the following omplete bipartite multigraph B = (P;Q;E): The nodesets P and Q represent the paths in P = fp1; : : : ; pfg and Q = fq1; : : : ; qfg. For everyedge g that is ommon to paths pi and qj, B ontains an edge e with end nodes pi and qj.If, after adding all these edges the resulting bipartite multigraph is not omplete, add a\dummy" edge between eah pair of nonadjaent nodes in P and Q, to make it omplete.The priority (from most desirable to least desirable) of the edges of B having pi as endnode, is given by the order in whih the edges are enountered when traversing path pifrom s to r. The \dummy" edges reeive the lowest possible priority (the ranking amongthem is immaterial). The priority of the edges of B having qj as end node is given by theorder in whih the edges are enountered when traversing path qj from t to r. Again, the\dummy" edges reeive the lowest possible priority.From a stable perfet mathing M of B one an onstrut the desired st-paths asfollows: For every edge e in M with end nodes pi and qj whih is not a dummy edge,traverse path pi starting from s until e is met and then ontinue on qj to t. (Edge e mayor may not belong to the path thus onstruted.) For every edge e in M with end nodespi and qj whih is a dummy edge, traverse path pi starting from s to r and then traverseqj from r to t.The fat that the mathing M is stable on B insures that the f st-paths thus on-struted are edge disjoint. Indeed, suppose for a ontradition that an edge g is used intwo of these onatenated paths, whih are represented by two edges in the stable math-ing, say (p1; q1) and (p2; q2). These edges are witnessed by the fat that there are edgesg1 ommon to p1 and q1 and g2 ommon to p2 and q2. Sine p1 and p2 are disjoint, theedge g must our in only one of them, so assume that g ours in p1 and q2. Sine g isin the onatenated path from p1 and q1, it must be the ase that g ours before g1 in p1going from s to r: This means that an edge between p1 and q2 in the auxiliary bipartitemultigraph has higher priority than the edge (p1; q1) witnessed by g1 in the P -ranking.3



Similarly, sine the edge g ours in the onatenated path from p2 and q2, it must be thease that g ours before g2 in q2 going from t to r: This means that the edge between p1and q2 in the auxiliary bipartite multigraph has higher priority than (p2; q2) witnessed byg2 in the Q-ranking. Thus, this unmathed edge (p1; q2) violates the de�nition of stabilityof the mathing found, a ontradition.Notie however, that the onatenated paths onstruted as above, while being edgedisjoint, may not be simple, in whih ase we an delete yles without destroying the`pre�x-suÆx' property. This lean-up step takes time proportional to the size of the paths.We �nally remark that every stable mathing problem in a omplete bipartite multi-graph an be onverted into a path-pairing problem of the above type between f edgedisjoint sr-paths and f edge disjoint rt-paths.4 Augmenting ow-equivalent treesGiven the above method for omposing a pair of edge-disjoint path solutions, we nowshow how we an maintain the maximum edge-disjoint paths solution for O(n) pairs ofnodes in an n-node undireted graph, so that the maximum edge-disjoint paths solutionfor any arbitrary pair of nodes s and t, an be reovered by applying the stable mathingproedure O(�(n; n)) times. We exploit the natural onnetion that the maximum numberof edge-disjoint paths in unit apaity undireted graph between a pair of nodes is equalto the value of the maximum ow between them [1℄, and use the ow-equivalent tree asour starting point.Consider a pair of nodes s and t separated by k edges in a given ow-equivalent tree.To ompute the maximum ow between them using the above proedure, we must use kappliations of the proedure. The key to speeding this up is to add O(n) additional owsolutions in suh a way that for any pair of nodes, there always exists a small number ofpairs of nodes onneting them from whih we an ompose the required ow. Notie thatfor any pair of nodes, the ow deomposition of a maximum ow (say f) solution an beomputed as mentioned above in time O(f 1:5n) = O(n2:5) time. This will lead to a totaltime omplexity of O(n3:5) for this preproessing step sine we need to do this for O(n)pairs. In the unit apaity ase, every pair of nodes an have O(n) paths in their max-owdeomposition leading to a spae requirement of O(n3) for this data struture. Next, wedesribe how to speify these pairs.To do this, we use a method due to Chazelle [2℄: Given a n-node edge-weighted tree,he provides an algorithm to hoose O(n) shortut edges with weights on them suh thatfor any path in the given tree, it is possible to ompute the partial sum of the weightsin the path using O(�(n; n)) summations involving the original and added edges (seeTheorem 2 in [2℄). More formally, Chazelle proved the following under the RAM model ofomputation.Theorem 4.1 [2℄ Let T be a free tree with n weighted edges. There exists a onstant  > 1suh that, for any integer m > n, it is possible to sum up weights along an arbitrary query4



path of T in time O(�(m;n)). The data struture is of size at most m and an be onstrutedin time O(m).Chazelle's result is framed in a more general setting where the weight funtion mapsthe edges to a semigroup, and the partial sum in the above theorem an be replaedwith the semigroup operation. We use this generalization and observe that (Z+;min) is asemigroup, and hene Chazelle's onstrution applies to deriving the minimum-weight edgealong a tree path (rather than the sum) using shortut edges. In fat, this is aomplishedby weighting every shortut edge with the minimum weight of an edge along the tree-pathbetween its endpoints. We also maintain a maximum ow deomposition between pairs ofnodes onneted by shortut edges. This enables us to reonstrut the maximum ow forany pair of nodes using O(�(n; n)) ow ompositions. Eah ow omposition was arguedearlier to take timeO(fn) for a ow of value f giving the laimed time ofO(�(n; n)�(u; v)n)time to reonstrut the maximum number of ow paths �(u; v) between any pair of nodes(u; v). We thus have our main theorem.Theorem 4.2 Given an undireted unit apaity graph on n nodes, in time O(n3:5), a datastruture using spae O(n3) an be onstruted that, given any pair of nodes, an ompute themaximum number f of edge-disjoint paths between them in time O(�(n; n)fn) where �(n; n)is the inverse Akermann funtion.Referenes[1℄ R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network ows: Theory, Algorithms andAppliations, Prentie Hall, Englewood Cli�s, NJ, 1993.[2℄ B. Chazelle, \Computing on free trees via omplexity-preserving mappings," Algo-rithmia, 2, 337-361, 1987.[3℄ D. Gale and L. S. Shapley, \College admissions and the stability of marriage", Amer-ian Mathematial Monthly, 69, 9-15, 1962.[4℄ D. Gus�eld and R. W. Irving, The Stable Marriage Problem: Struture and Algo-rithms. The MIT Press, Cambridge, MA, 1989.[5℄ R. E. Gomory and T. C. Hu, "Multi-terminal network ows," SIAM J. on Appl.Math., 9, 551-556, 1961.[6℄ David R. Karger and Matthew S. Levine, \Finding maximum ows in undiretedgraphs seems easier than bipartite mathing," Pro. 30th Annual ACM Symp. onTheory of Computing, 69-78, 1998.
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