
GESTALT: Genomi Steiner AlignmentsGiuseppe Lania?1 and R. Ravi??21 Dipartimento Elettronia ed Informatia, University of Padova, lania�dei.unipd.it2 GSIA, Carnegie Mellon University, ravi�mu.eduAbstrat. We desribe GESTALT (GEnomi sequenes STeiner ALign-menT), a publi{domain suite of programs for generating multiple align-ments of a set of biosequenes. We allow the use of either of the two popu-lar objetives, Tree Alignment or Sum-of-Pairs. The main distinguishingfeature of our method is that the alignment is obtained via a tree inwhih the internal nodes (anestors) are labeled by Steiner sequenesfor triples of the input sequenes. Given lists of andidate labels for theanestral sequenes, we use dynami programming to hoose an optimallabeling under either objetive funtion. Finally, the fully labeled tree ofsequenes is turned into into a multiple alignment. Enhanements in ourimplementation inlude the traditional spae-saving ideas of Hirshbergas well as new data-paking tehniques. The running-time bottlenek ofomputing exat Steiner sequenes is handled by a highly e�etive butmuh faster heuristi alternative. Finally, other modules in the suite al-low automati generation of linear-program input �les that an be usedto ompute new lower bounds on the optimal values. We also report onsome preliminary omputational experiments with GESTALT.1 IntrodutionComparing genomi sequenes drawn from individuals of the same or dif-ferent speies is one of the fundamental problems in omputational mole-ular biology. These omparisons an (i) lead to the identi�ation of highlyonserved (and therefore presumably funtionally relevant) genomi re-gions, (ii) spot fatal mutations, (iii) suggest evolutionary relationships,(iv) help in orreting sequening errors et. Therefore, the mathematialformulation and solution of the Multiple Sequene Alignment problem hasbeen and remains a fundamental hallenge for omputational moleularbiologists.Aligning a set of sequenes onsists in arranging them in a matrixhaving eah sequene in a row. This is obtained by possibly insertingspaes (gaps) in eah sequene so that they all have the same length. The? Most of this work was done when this author was visiting CMU during Summer '98,under a grant from the CMU Faulty Development Fund.?? Supported in part by an NSF CAREER grant CCR-9625297



following is a simple example of an alignment of the sequenes ATTCGAC,TTCCGTC and ATCGTC. A T T - C G A - C- T T C C G - T CA - T - C G - T CThere are many popular formulations of the alignment problem. Thehoie of the objetive funtion for multiple alignments depends mainlyon the presene or absene of extra input information in the form ofa phylogeneti tree relating the sequenes to their unknown anestors.In fat, when suh tree is given, knowledge of the anestral sequeneswould imply the possibility of aligning the given sequenes by progres-sively aligning eah sequene to its anestor in the tree all the way to theroot and haining these pairwise alignments together [6℄. Hene when aphylogeny is given, the tree alignment (TA) objetive onsists in �ndingthe best anestral sequenes to label this tree and deriving the induedalignment. Guided by parsimony, the best labeling is taken to be one min-imizing the total evolutionary hange represented in the tree, namely, thetotal distane of all the edges in the tree. When the phylogeneti tree isnot available, a popular multiple alignment objetive is the Sum{of{pairs(SP) objetive, whih attempts to minimize the average distane betweena pair of sequenes in the multiple alignment. This objetive results natu-rally by extending the alignment objetive for pairs of sequenes, namely,that of minimizing the edit-distane between the pair, to more than twosequenes. The SP objetive has been popular in the literature and sev-eral heuristi implementations addressing it proeed by �rst �nding aheuristi tree spanning the sequenes and aligning them progressively asmentioned earlier to obtain the �nal alignment.Historially, the SP objetive is the one to whih more attention hasbeen devoted by omputational biologists, and orrespondingly a set ofprograms have been developed whih are now widely in use. Among them,the only program that omputes optimal SP alignments is MSA by Lip-man, Altshul, Keeioglu, Gupta and Shae�er [2, 8℄. A variety of othermultiple sequene alignment programs impliitly use the SP objetivein guiding heuristi onstrution of the multi-alignments: An exampleis CLUSTAL V [11℄ (see also the various methods desribed in the sur-veys [16, 5℄ for other examples). As for tree alignment, the only implemen-tation that addresses this problem diretly that we are aware of is the re-ent TAAR by Jiang and Liu [13℄. This program implements some of theideas from the approximation algorithms of Jiang, Lawler and Wang [27℄



to heuristially ompute tree alignments, phylogenies and generalized treealignments.In this paper we introdue and desribe a new publi{domain suite ofprograms for multiple sequene alignment that produe heuristi align-ments under both the TA and SP alignment objetives. Like TAAR, Ourmethods are based on ideas used in an approximation algorithm for treealignment due to Ravi and Keeioglu [17℄. However, unlike the methodsof Jiang, Lawler and Wang [27℄ on whih TAAR is based, whose re�nedheuristis require very high running times, the ideas of Ravi and Kee-ioglu are based on mainly omputing and using Steiner sequenes asandidates for the unlabeled anestral sequenes in the tree. Intuitively,a Steiner sequene for a given set of sequenes is a \entral" sequene tothem, one whose sum of distanes to all these sequenes is minimized.One these Steiner sequenes for appropriate subsets of the input se-quenes have been omputed, dynami programming an be used to eÆ-iently pik one suh sequene for eah anestral node so as to minimizethe total resulting distane in the tree, as in [27℄. Thus, this method isadaptable for eÆient implementation giving us the freedom to speifythe subsets of sequenes for whih the Steiner sequenes must be om-puted. Further, we an e�etively adapt this general idea by modifyingthe dynami program to provide an eÆient heuristi even for the SPobjetive using the postulated Steiner anestors.Further re�nements in our implementation inlude inorporating thetraditional spae-saving ideas of Hirshberg [12℄ as well as some newdata-paking tehniques to redue the spae overhead; The running-timebottlenek in our method of omputing exat Steiner sequenes is e�e-tively handled by a muh faster heuristi alternative that has never shownmore than two perent degradation in quality in our extensive preliminarytesting. Finally, other programs in the suite allow automati generationof linear-programming models as �les that an be input to the popularommerial CPLEX pakage. The solution of these programs give lowerbounds on the minimum TA and SP alignment values for the given setof sequenes, thus providing the deviations from optimality on a ase-by-ase basis.We formally desribe the various objetives and methods in the re-mainder of this setion. In Set. 2 we give a high{level desription ofthe algorithms in GESTALT, together with an analysis of the individualsteps. In Set. 3 we report on some experimental results on real data.



1.1 Edit DistaneAt the heart of any alignment algorithm lies the proedure for optimallyomparing two given sequenes. This problem is alled pairwise align-ment, and is formulated as follows. Given symmetri osts (a; b) for re-plaing a symbol a with a symbol b and osts (a;�) for deleting (insert-ing) symbol a, �nd a minimum{ost set of symbol operations that turna sequene S0 into a sequene S00. It is well known that this problem anbe solved by dynami programming in time and spae O(l2), where l isthe length of the sequenes. The value of an optimal solution is alled theedit distane of S0 and S00 and denoted by d(S0; S00).An alignment A of two (or more) sequenes is a way of inserting\�" haraters (gaps) in the sequenes so that the resulting sequeneshave the same length. For two sequenes S0 and S00, the value dA(S0; S00)of their alignment is obtained by adding up the osts for the pairs ofharaters in orresponding positions. It is immediate that d(S0; S00) =minA dA(S0; S00).1.2 The Sum{of{Pairs Alignment ProblemThe SP sore is the generalization to many sequenes of the pairwise align-ment objetive, in whih the ost of the alignment is obtained by addingthe osts of the symbols mathed up at the same positions. Analogously,in a multiple alignment the ost is obtained by adding up the mathingharaters, over all the positions and for all the pairs of sequenes.Minimizing SP is NP-hard [26℄. In [9℄ Gus�eld showed that a tree-based progressive alignment method due to Feng and Doolittle (desribedbelow) using the minimum ost star gives a 2{approximation. In the pro-gram desribed in this paper we push this idea further, by onsideringalso trees that are not only stars and also employing alignments withsequenes whih are not in the original set, but are derived from it asSteiner sequenes of some of the original ones.1.3 The Tree Alignment ProblemIn the tree alignment problem, we are given n sequenes related by anevolutionary tree T . The sequenes label the leaves of the tree, while theinternal nodes orrespond to the unknown anestral sequenes from whihthe others have evolved. The problem onsists in �nding the sequenesat the internal nodes whih minimize the ost of the tree, de�ned asP(Si;Sj)2T d(Si; Sj). When T is a star, the problem is alled a Steiner



problem, and the optimal sequene for the enter is alled the Steinersequene for the leaves.The �rst exat algorithm for tree alignment was proposed by Sanko�in [18℄, and is based on dynami programming. Later Altshul and Lip-man [1℄ introdued some bounding rules to redue the size of the dynamiprogramming lattie. Due to the prohibitive worst ase omplexity of ex-at methods, approximation algorithms for this problem were devised,by Jiang, Lawler and Wang [27℄ �rst, and improved by Wang and Gus-�eld [25℄ later. In [27℄ a 2{approximation method is desribed, based onwhat are alled lifted alignments. In lifted alignments, the internal nodesan only be labeled by sequenes ourring at the leaves. The runningtime of their algorithm is O(n2l2 + n3) for a tree of n leaves of lengthl. For trees of bounded degree d, they also provided the �rst PTAS forthe problem. For any t, their approximation sheme guarantees a solutionwithin a fator 1 + 3t of optimal, in time O(n2+dt�1 ldt�1�1=d�1).For regular d{ary trees on n sequenes, Ravi and Keeioglu gavein [17℄ a d+1d�1{approximation algorithm with running time roughly (O(2kn)d){ the main ideas of their algorithm are briey desribed in Set. 2. Theprogram GESTALT desribed in this paper is the �rst implementation ofthe ideas in [17℄.1.4 A Tree-based Progressive Alignment MethodA reasonable requirement on the ost funtion is that (a; a) = 0 8a, andit obeys triangle inequality. In this ase, the edit distane indues a met-ri over the spae of all sequenes and, given n sequenes, we an talk ofgraphs having the sequenes as verties and for whih an edge is weightedby the edit distane between the endpoints. In this setting, graph theoret-ial onepts suh as spanning trees, stars and Steiner points, have beenwidely used in the design and analysis of e�etive alignment algorithms.In partiular, a folklore approah to multiple alignments is due to Fengand Doolittle [6℄ and shows how we an use any tree to align a set of nsequenes. The appeal of the approah is that for n� 1 out of n(n� 1)=2pairs, the pairwise alignment indued is in fat optimal.Proposition 1. For any tree T over a set of sequenes, there existsa multiple alignment A(T ) of the sequenes suh that dA(T )(S0; S00) =d(S0; S00) for all the pairs of sequenes (S0; S00) onneted by an edge ofthe tree.Feng and Doolittle's method an be used to turn the solution of thetree alignment problem, namely a labeling of the internal nodes of the



given tree, into a multiple alignment of the leaves. Moreover, it is straight-forward to upper bound the distane in this alignment of pairs that arenot endpoints of a tree edge. In fat, denote by d(S0; S00; T ) the lengthof the path in T between two sequenes S0 and S00. Then, by triangularinequality we have that dA(T )(S0; S00) � d(S0; S00; T ). This inequality sug-gests that, given a tree with sequenes at the leaves for whih we want tominimize average pairwise distane in the resulting multiple alignment,a good labeling for the internal nodes is one whih minimizes the totalinter-leaf distane in the tree. This strategy is adopted in this work toobtain alignments of small SP value, as desribed in 2.3.1.5 GESTALT Program SuiteIn this paper we desribe the program GESTALT (GEnomi sequenesSTeiner ALignmenT), whih an be used for both TA and SP multiplealignments. GESTALT is in fat a program suite, inluding modules foromputing LP-based lower bounds for TA and SP, and optimal alignmentsof two or three sequenes.The main program takes as input a set L = fS1; : : : ; Sng of n se-quenes and possibly a tree T of whih L are the leaves. If the phyloge-neti tree is not available, the algorithm internally omputes one, whihis then used to �nd an alignment of small SP value. If the tree is given,then the TA objetive is optimized1. The output of the algorithm onsistsof a multiple alignment of the input sequenes, plus some extra informa-tion, suh as the Steiner sequenes omputed at the internal nodes of thephylogeneti tree.GESTALT is based on the ideas introdued by Ravi and Keeiogluin [17℄ of using Steiner sequenes of the leaves to label the internal nodesof the tree. While in their paper Ravi and Keeioglu show that if the treeis d{ary the method gives a d+1d�1 approximation for TA, in our work wedo not restrit the degree of eah node to a onstant. Therefore we do nothave the same approximation guarantee. However, among all the labelingsonsidered is inluded the best lifted labeling of [27℄ and therefore we stillhave a performane guarantee of 2 for the TA objetive. As is typially thease, this bound turns out to be largely pessimisti and our omputationalresults show that the algorithm performs muh better in pratie.The 2{approximation guarantee holds also for the SP alignments weoutput. Reall that we inlude, among all the labelings onsidered, one1 The hoie of the objetive in the presene or absene of the tree an also be user-spei�ed



in whih the internal nodes of the tree are all labeled with any leaf S. Forthis partiular labeling, the resulting tree is equivalent to a star enteredat S, and as remarked before [9℄, the best star entered at a leaf gives a2{approximation.2 Proedure OverviewOur program is largely based on a heuristi proedure by Ravi and Ke-eioglu ([17℄) for solving the tree alignment problem. Their algorithmrelies on labeling the internal nodes with Steiner sequenes for subsets ofp leaves, where p is a parameter. The proedure is divided in two phases.In the �rst phase a Steiner sequene is omputed for every subset ofq � p leaves, obtaining a set F of all suh Steiner sequenes. In the se-ond phase, dynami programming is used to ompute the best labeling ofthe internal nodes among those in whih only labels from F are allowed.In this work, we have deided to solve the TA problem by employingRavi and Keeioglu's algorithm, with the following variants: (i) Beauseomputing exat Steiner sequenes is expensive, we have limited the size ofthe subsets for whih a Steiner problem is solved to p = 3. (ii) In additionto Sanko�'s exat algorithm for Steiner sequenes, with omplexity O(l3),we also use a heuristi algorithm, with average (empirial) omplexityO(l2). (iii) We do not neessarily ompute the Steiner sequenes for allthe �n3� possible triples of leaves, but provide alternate, heuristi methodsof sampling signi�ant triples. (iv) We also perform a �nal re-optimizationstep, as introdued by Sanko� et al ( [20℄).Our program an be used also to optimize SP. In this ase, we �rstompute a tree having the given sequenes for leaves and then assigntentative labels to the internal nodes by using Steiner sequenes, as forthe TA objetive. In hoosing the best label at eah node, however, we usedynami programming to minimize the total leaf{to{leaf distane in thetree, whih is an upper bound on the �nal SP sore. A �nal reoptimizationphase an be run to improve the alignment.The outline of our multiple alignment heuristi proedure is givenbelow.1. Tree omputation.{ TA: none (the tree is given).{ SP: We ompute a phylogeneti tree having the given sequenesas leaves - this is derived from a MST on the sequene graph.



2. Solution of Steiner problems. We tentatively assign to eah of theinternal nodes of the phylogeneti tree a set of labels, given by theSteiner sequenes of some subsets of the leaves.3. Optimal labeling by Dynami Programming. We �nd for eah internalnode the best sequene among those in its set of possible labels.{ TA: The objetive is to minimize the total tree-length.{ SP: The objetive is to minimize the total leaf{to-leaf distane inthe tree.4. Loal re-optimization.{ TA: At eah node of degree three we replae the urrent sequeneby the Steiner sequene of its neighbors. We iterate as long asthere are improvements.{ SP: (after step 5.) We iteratively break up the alignment into twosubalignments that are then realigned optimally. The subalign-ments hosen have a large average di�erene in the urrent valueversus the edit distane.5. Final alignment by Feng and Doolittle. We ompute a multiple align-ment of all the resulting sequenes (both leaves and internal nodes)by the progressive alignment method of Feng and Doolittle.We elaborate on some of these steps next.2.1 Tree Computation.In order to derive a phylogeneti tree T relating a set of sequenes whenone is not input, we use a simple greedy approah. We start with T beinga minimum ost spanning tree of the edit distane graph. Let (u; v) bethe largest ost edge of T . Break up T by deleting edge (u; v) into twotrees Tu ontaining u and Tv ontaining v. Reursively, apply the sameproedure to Tu and Tv, obtaining two new trees, Tu0 and Tv0 rooted atnew nodes u0 and v0 respetively. Finally, join these two subtrees by meansof edges (u0; w) and (v0; w) to a new root node w, thus obtaining the �nalphylogeneti tree.2.2 Solution of Steiner Problems.Choie of Steiner Sequenes Given a set of possible sequenes (labels)for eah internal node of the tree, hoosing the best label is done bydynami programming (desribed in 2.3) and is very fast in pratie. Onthe other hand, omputing the labels is very expensive. Therefore onesome labels have been omputed, it is onvenient to store them at every



internal node, i.e. all the nodes will have the same set G of labels. Aspreviously noted, the labels allowed at the internal nodes will only beSteiner sequenes for some subsets of q � 3 leaves. When q = 1 or 2, aSteiner sequene is simply a leaf, so that it will always be G = L [ G0,where G0 is a set of Steiner sequenes for some triples of leaves. Let usdenote by Y (Si; Sj; Sk) a Steiner sequenes for the triple (Si; Sj ; Sk). Weallow three possibilities for G0:{ G0 = ;. In this ase the internal nodes are labeled with leaves se-quenes only. This option results in the fastest running time, but mayprodue poor �nal alignments, espeially when the given sequenesare very dissimilar. Note that among the alignments based on theselabels are inluded all lifted alignments [27℄ for TA. Similarly, theselabels ontain also all star alignments for SP.{ G0 = fY (Si; Sj ; Sk) : i < j < kg. This is omputationally the mostexpensive option, sine it requires the solution of �n3� Steiner problems.On the other hand, the larger set of possible labels at the internalnodes guarantees a better value of the �nal alignment.{ Let S1; S2; : : : ; Sn be the sequene of leaves as enountered by per-forming a depth{�rst visit of the tree. Then, G0 = fY (Sj ; Sk; Sh) :h = k+1 = j+2 or h = k+� = j+2�g where � = �n3 �. The inten-tion is to heuristially obtain a uniform sampling by seleting triplesof leaves from di�erent positions in an Euler tour of the tree. Thisoption is quik {there are only O(n) suh triples{ but ensures thateah sequene is inluded in some triples, and that all the sequenesare given the same representation in the samples.Exat Steiner Sequenes Assume we are interested in �nding a Steinersequene for three sequenes U1, U2 and U3. The dynami programmingproedure omputes the optimal alignment of the variable Steiner se-quene and U1, U2 and U3. This is done bakwards from the �nal olumnof the alignment, whih will be of the form (x1; x2; x3; y)0, where eah xiis either the last letter of the sequene Ui or a blank (but at least onexi must be nonblank), and y is any nonblank letter of the alphabet �(representing the metter in the Steiner sequene being onstruted). Forany letter x, de�ne 1 � x = x and 0 � x = �. Let B+ = f0; 1g3 n (0; 0; 0) bethe set of nonnull binary 3{vetors and let V (l1; l2; l3) be the ost of anoptimal Steiner sequene for the the �rst l1, l2 and l3 haraters respe-tively of U1, U2 and U3. The reursive dynami programming relation isthen



V (l1; l2; l3) = minb2B+(V (l1 � b1; l2 � b2; l3 � b3) + miny2� 3Xi=1 (bi � Ui[li℄; y))The Steiner sequene is given, as ustomary in dynami programming,by baktraking through the values V (l1; l2; l3) along the path for anoptimal solution and listing the letters by = arg minP3i=1 (bi � Si[li℄; y)whih ahieve the minimum in the above expression. Note that the abovereurrene requires time and spae omplexity of O(7l3), provided thatfor all (x1; x2; x3) 2 �3, the values C(x1; x2; x3) := miny2�P3i=1 (xi; y)have been omputed in a preliminary step and stored in a look-up table.In our implementation we have redued the spae omplexity to O(l2) forthe matrix V (i; j; k) using ideas from [12℄.Heuristi Steiner Sequenes Computing exat Steiner sequenes isvery time onsuming. For instane, the solution of a problem on se-quenes of about 200 letters eah takes roughly half minute on a PentiumPC. Considering that for aligning 10 sequenes we may have to solve�103 � = 120 suh problems, we see that speeding up the omputation ofSteiner sequenes would be greatly bene�ial. Therefore, we have devisedan alternative, heuristi way of omputing Steiner sequenes whih is ex-tremely fast and turns out to be almost{optimal after extensive testing(see Set. 3).The idea is to �rst �nd all optimal alignments of two of the threesequenes, say S1 and S2. They orrespond to all the shortest paths from(0; 0) to (jS1j; jS2j) in the jS1j � jS2j dynami programming lattie usedfor the pairwise alignment, and an be represented in a ompat formas the subgraph of the lattie of all the edges on some optimal path.Note that this subgraph is typially muh smaller than the whole lattie(empirially, O(l) versus O(l2)). Then, we perform a graph{to{sequenealignment, i.e. we �nd the best ompletion of an optimal alignment of S1and S2 with S3. In this ase, \best" is taken with respet to the Steinerobjetive.The value of the �nal solution may depend on the ordering of thesequenes, sine S3 is learly used di�erently than S1 and S2. We haveobserved in our experiments that hoosing S1 and S2 to be the two losestsequenes results in the best Steiner sequenes over the three possiblehoies. However, sine the algorithm is very fast, we ompute all threepossibilities of �rst aligning together two sequenes and then versus thethird, and return the best solution found. We onlude this setion by



remarking that the omputation of heuristi Steiner sequenes takes onthe average one seond for sequenes of length 200, while returning asolution whose value was never more than 2% larger than the optimumin our extensive testing.2.3 Optimal Labeling by Dynami Programming.In this setion we onsider the problem of optimally assigning a sequenefrom a given set G to eah internal node of the tree. Denote by w1; : : : ; wtthe nodes whih are immediate desendants of a node i. Let V (i; S) bethe optimal value for the subtree rooted at i when node i is labeled with asequene S 2 G. We have the following dynami programming reurrene:V (i; S) = (0 if i is a leafminL1;:::;Lt2GPtj=1 (�(i; wj)d(S;Lj) + V (wj ; Lj)) otherwiseThe oeÆients �(i; wj) allow us to distinguish between the two ob-jetive funtions - TA and SP. For the TA objetive, V (i; S) representsthe minimum total length of the subtree, among the labelings that as-signs S to i. This is obtained by setting all the � equal to 1. For theSP objetive, we want to �nd the labels whih minimize the total leaf{to{leaf distane. For any edge (u; v) of T , we set �(u; v) to be the num-ber of pairs of leaves whose onneting path in the tree goes through(u; v). This value, alled the load of the edge, is equal to k(n� k), wherek is the number of leaves on one shore of the ut identi�ed by (u; v).By using the loads, the total leaf{to{leaf distane an be rewritten asPSi;Sj d(Si; Sj ; T ) = P(u;v)2T �(u; v)d(L(u); L(v)), where L(u) and L(v)are the sequenes labeling nodes u and v.Using the above relation, �rst the value of eah label at eah node isomputed bottom{up, and later, proeeding top{down from the root, itis determined whih label to pik at eah node for obtaining an optimalsolution. The overall omplexity is O(njGj2), i.e. a very fast proedure.2.4 ReoptimizationThe reoptimization for TA objetive is the same as in Sanko� et al [20℄.For SP, however, we use a new approah. As in other works (e.g. [7℄)we repeatedly break up the alignment into two piees that are then re-aligned optimally via the basi dynami program for edit distane. Thenew idea relies in how these alignments are hosen. Sine for eah pair



of sequenes in the same subalignment the distane remains the same,the only improvement an be for sequenes that are in di�erent subalign-ments. Let Æ(S; S0) = dA(S; S0)� d(S; S0). If A1 and A2 are the subalign-ments, Æ(A1;A2) =PS2A1;S02A2 Æ(S; S0) is the Æ{value of the ut (A1;A2)in the graph of all sequenes, and Æ(A1;A2)=jA1jjA2j is a per{sequenemeasure of how bad the alignment urrently is versus the lower boundgiven by the edit distane. Hene we want to reoptimize some uts of high(per{sequene) value, whih we �nd through standard greedy heuristis.We have di�erent settings on how far the reoptimization phase an bepushed. In the most expensive setting, for eah pair (S; S0) of sequeneswe �nd a large{value ut separating them and relign it. We iterate as longas there are improvements.3 Computational ExperienesFor our preliminary tests, we used two popular data sets. First, we ob-tained the sets of protein sequenes of M Clure [16℄, used extensively tobenhmark programs guided by the SP objetive. For the Tree Alignmentproblem, we have used a famous instane by Sanko� et al [20℄, used as abenhmark in [10, 13℄.As for the ost matrix, in our experiments we have used a distanematrix due to Taylor [23℄ for amino aid sequenes, and the matrix inSanko� [20℄ for DNA sequenes. Our program also works with all theommon sore matries (e.g. PAM, BLOSUM, et).1. Lower Bounds. A unique feature of the GESTALT suite is aproedure to generate linear programming (LP) based lower bounds onthe TA and SP objetive values of the given instane by using the Steinersequenes for triples omputed so far. We desribe the LP for the TAproblem. We use a nonnegative variable for the length of every edge ofthe tree, and the objetive is to minimize the sum of lengths of all treeedges. A distane of d between a pair of leaves Si and Sj allows us toadd the onstraint that the sum of the values of the edge lengths onthe path between Si and Sj in the tree must be at least D. Similarly,given a value of TA(i; j; k) for the minimum sum of the distanes from anoptimal Steiner sequene for the triple (Si; Sj; Sk) to the three sequenesSi; Sj and Sk, we add the onstraint that the sum of the lengths of all theedges in the tree indued by the three leaves Si; Sj and Sk must be at leastTA(i; j; k). The objetive funtion in the LP is to minimize the sum of thevalues of the edge variables. The set of onstraints for distanes between



Table 1. Heuristi vs exat Steiner sequenes. Times in seonds, Pentium 133Mhztot tot relative time timeinstane seqs triples error exat heuristiavg min max min max min maxsank 9 84 0.003 0 0.02 15.8 41.0 0.6 1.9m582x6 6 20 0.004 0 0.01 52.3 75.6 0.5 3.0m586x6 6 20 0.007 0 0.017 17.8 42.5 0.6 2.1m587x6 6 20 0.01 0.003 0.019 29.2 71.9 0.8 2.7pairs of leaves was experimented with in [10℄, while the strengthening totriples gives better bounds as reported below.For the SP objetive for multiple alignment, a simple averaging ar-gument using the usage of Steiner triples yields a simple lower bound ofPi;j;k SP (i; j; k)=(n � 2) for n sequenes, where SP (i; j; k) denotes theoptimal sum-of-pair value for the triple Si; Sj and Sk. This may be fur-ther extended to a LP lower bound with one nonnegative variable forthe distane between every pair of sequenes in the multiple alignment.The onstraints now require that for every triple Si; Sj ; Sk of distint se-quenes, the sum of the values of the three variables involving the threepairs from this triple must be at least SP (i; j; k). The objetive is tominimize the sum of all the variables over all pairs of sequenes.2. Steiner Sequenes. First, we determined the quality of heuristivs exat Steiner sequenes. The results are reported in Table 1. For thesetests, we used four data sets, i.e. the sequenes from Sanko� and three setsof sequenes from MClure. These sequenes have between one hundredand two hundred letters eah. For eah set, we have omputed for eahtriple the exat and heuristi Steiner sequenes, and ompared the relativeerrors. It should be noted that on these sequenes, the heuristi is roughlythirty times faster than the exat proedure, while the average error isless than one perent. A striking result was that in 41 out of 84 triplesfor the sank instane, the heuristi solution was in fat optimal.3. Tree Alignment. A seond experiment was performed to aessthe quality of the solution to the Tree Alignment problem, and the rel-ative performane with di�erent settings of the program. We have runGESTALT on Sanko�'s problem with all possible ombinations of userhoies. The results are reported in Table 2. Again, it should be notedthat using heuristi Steiner sequenes is greatly bene�ial to the omput-ing time, and, sine the whole proedure is heuristi in nature, an even



lead to better solutions than the exat option. This is indeed the asehere.In order to evaluate the quality of the results, we have omputed thelower bound on the problem by using our LP module. The LP lowerbound based on all the Steiner sequenes of triples for the TA objetiveis 266.375 improving over the best bound of 253.5 previously known [10℄.The optimal lifted alignment �nds a value of 364, as also reported in [10℄.Using heuristi Steiner sequenes, we �nd a solution of value about 302in about 7 minutes. Contrast this with the best upper bound of 295.5by Sanko� et al. [20℄. Our improved lower bound shows that Sanko�'ssolution is within 11% of optimal.4. Sum of Pairs. For the SP objetive, we report some results forthe MClure data sets (Table 3). For eah problem, we have omputedthe trivial lower bound given by the sum of edit distanes, and two lowerbounds based on the optimal SP alignment of triples of sequenes - oneuses a simple averaging argument (LB triples) and the other the solutionto an LP relaxation (LB lp). We ran GESTALT with heuristi Steinersequenes, sampling all triples. Our solutions are in an interval of 2 to 9perent from the lower bound. The table shows also the e�etiveness ofloal reoptimization. For omparison, we also report the SP value of thestar alignment (Gus�eld, [9℄).Table 2. TA results on the instane sank. Times in seonds, Pentium PCTriples Steiner Reopt Value TimeALL HEUR EXACT 302 592ALL HEUR HEUR 302.25 424ALL EXACT EXACT 303.25 2802SOME EXACT EXACT 304 493ALL EXACT HEUR 304.25 2599SOME EXACT HEUR 304.5 267SOME HEUR EXACT 314 201SOME HEUR HEUR 315.75 23NONE - EXACT 320 152NONE - HEUR 320.5 6ALL HEUR NONE 322.25 298ALL EXACT NONE 322.5 2387SOME EXACT NONE 333.5 258SOME HEUR NONE 333.75 15NONE - NONE 364 1
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