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mu.eduAbstra
t. We des
ribe GESTALT (GEnomi
 sequen
es STeiner ALign-menT), a publi
{domain suite of programs for generating multiple align-ments of a set of biosequen
es. We allow the use of either of the two popu-lar obje
tives, Tree Alignment or Sum-of-Pairs. The main distinguishingfeature of our method is that the alignment is obtained via a tree inwhi
h the internal nodes (an
estors) are labeled by Steiner sequen
esfor triples of the input sequen
es. Given lists of 
andidate labels for thean
estral sequen
es, we use dynami
 programming to 
hoose an optimallabeling under either obje
tive fun
tion. Finally, the fully labeled tree ofsequen
es is turned into into a multiple alignment. Enhan
ements in ourimplementation in
lude the traditional spa
e-saving ideas of Hirs
hbergas well as new data-pa
king te
hniques. The running-time bottlene
k of
omputing exa
t Steiner sequen
es is handled by a highly e�e
tive butmu
h faster heuristi
 alternative. Finally, other modules in the suite al-low automati
 generation of linear-program input �les that 
an be usedto 
ompute new lower bounds on the optimal values. We also report onsome preliminary 
omputational experiments with GESTALT.1 Introdu
tionComparing genomi
 sequen
es drawn from individuals of the same or dif-ferent spe
ies is one of the fundamental problems in 
omputational mole
-ular biology. These 
omparisons 
an (i) lead to the identi�
ation of highly
onserved (and therefore presumably fun
tionally relevant) genomi
 re-gions, (ii) spot fatal mutations, (iii) suggest evolutionary relationships,(iv) help in 
orre
ting sequen
ing errors et
. Therefore, the mathemati
alformulation and solution of the Multiple Sequen
e Alignment problem hasbeen and remains a fundamental 
hallenge for 
omputational mole
ularbiologists.Aligning a set of sequen
es 
onsists in arranging them in a matrixhaving ea
h sequen
e in a row. This is obtained by possibly insertingspa
es (gaps) in ea
h sequen
e so that they all have the same length. The? Most of this work was done when this author was visiting CMU during Summer '98,under a grant from the CMU Fa
ulty Development Fund.?? Supported in part by an NSF CAREER grant CCR-9625297



following is a simple example of an alignment of the sequen
es ATTCGAC,TTCCGTC and ATCGTC. A T T - C G A - C- T T C C G - T CA - T - C G - T CThere are many popular formulations of the alignment problem. The
hoi
e of the obje
tive fun
tion for multiple alignments depends mainlyon the presen
e or absen
e of extra input information in the form ofa phylogeneti
 tree relating the sequen
es to their unknown an
estors.In fa
t, when su
h tree is given, knowledge of the an
estral sequen
eswould imply the possibility of aligning the given sequen
es by progres-sively aligning ea
h sequen
e to its an
estor in the tree all the way to theroot and 
haining these pairwise alignments together [6℄. Hen
e when aphylogeny is given, the tree alignment (TA) obje
tive 
onsists in �ndingthe best an
estral sequen
es to label this tree and deriving the indu
edalignment. Guided by parsimony, the best labeling is taken to be one min-imizing the total evolutionary 
hange represented in the tree, namely, thetotal distan
e of all the edges in the tree. When the phylogeneti
 tree isnot available, a popular multiple alignment obje
tive is the Sum{of{pairs(SP) obje
tive, whi
h attempts to minimize the average distan
e betweena pair of sequen
es in the multiple alignment. This obje
tive results natu-rally by extending the alignment obje
tive for pairs of sequen
es, namely,that of minimizing the edit-distan
e between the pair, to more than twosequen
es. The SP obje
tive has been popular in the literature and sev-eral heuristi
 implementations addressing it pro
eed by �rst �nding aheuristi
 tree spanning the sequen
es and aligning them progressively asmentioned earlier to obtain the �nal alignment.Histori
ally, the SP obje
tive is the one to whi
h more attention hasbeen devoted by 
omputational biologists, and 
orrespondingly a set ofprograms have been developed whi
h are now widely in use. Among them,the only program that 
omputes optimal SP alignments is MSA by Lip-man, Alts
hul, Ke
e
ioglu, Gupta and S
hae�er [2, 8℄. A variety of othermultiple sequen
e alignment programs impli
itly use the SP obje
tivein guiding heuristi
 
onstru
tion of the multi-alignments: An exampleis CLUSTAL V [11℄ (see also the various methods des
ribed in the sur-veys [16, 5℄ for other examples). As for tree alignment, the only implemen-tation that addresses this problem dire
tly that we are aware of is the re-
ent TAAR by Jiang and Liu [13℄. This program implements some of theideas from the approximation algorithms of Jiang, Lawler and Wang [27℄



to heuristi
ally 
ompute tree alignments, phylogenies and generalized treealignments.In this paper we introdu
e and des
ribe a new publi
{domain suite ofprograms for multiple sequen
e alignment that produ
e heuristi
 align-ments under both the TA and SP alignment obje
tives. Like TAAR, Ourmethods are based on ideas used in an approximation algorithm for treealignment due to Ravi and Ke
e
ioglu [17℄. However, unlike the methodsof Jiang, Lawler and Wang [27℄ on whi
h TAAR is based, whose re�nedheuristi
s require very high running times, the ideas of Ravi and Ke
e-
ioglu are based on mainly 
omputing and using Steiner sequen
es as
andidates for the unlabeled an
estral sequen
es in the tree. Intuitively,a Steiner sequen
e for a given set of sequen
es is a \
entral" sequen
e tothem, one whose sum of distan
es to all these sequen
es is minimized.On
e these Steiner sequen
es for appropriate subsets of the input se-quen
es have been 
omputed, dynami
 programming 
an be used to eÆ-
iently pi
k one su
h sequen
e for ea
h an
estral node so as to minimizethe total resulting distan
e in the tree, as in [27℄. Thus, this method isadaptable for eÆ
ient implementation giving us the freedom to spe
ifythe subsets of sequen
es for whi
h the Steiner sequen
es must be 
om-puted. Further, we 
an e�e
tively adapt this general idea by modifyingthe dynami
 program to provide an eÆ
ient heuristi
 even for the SPobje
tive using the postulated Steiner an
estors.Further re�nements in our implementation in
lude in
orporating thetraditional spa
e-saving ideas of Hirs
hberg [12℄ as well as some newdata-pa
king te
hniques to redu
e the spa
e overhead; The running-timebottlene
k in our method of 
omputing exa
t Steiner sequen
es is e�e
-tively handled by a mu
h faster heuristi
 alternative that has never shownmore than two per
ent degradation in quality in our extensive preliminarytesting. Finally, other programs in the suite allow automati
 generationof linear-programming models as �les that 
an be input to the popular
ommer
ial CPLEX pa
kage. The solution of these programs give lowerbounds on the minimum TA and SP alignment values for the given setof sequen
es, thus providing the deviations from optimality on a 
ase-by-
ase basis.We formally des
ribe the various obje
tives and methods in the re-mainder of this se
tion. In Se
t. 2 we give a high{level des
ription ofthe algorithms in GESTALT, together with an analysis of the individualsteps. In Se
t. 3 we report on some experimental results on real data.



1.1 Edit Distan
eAt the heart of any alignment algorithm lies the pro
edure for optimally
omparing two given sequen
es. This problem is 
alled pairwise align-ment, and is formulated as follows. Given symmetri
 
osts 
(a; b) for re-pla
ing a symbol a with a symbol b and 
osts 
(a;�) for deleting (insert-ing) symbol a, �nd a minimum{
ost set of symbol operations that turna sequen
e S0 into a sequen
e S00. It is well known that this problem 
anbe solved by dynami
 programming in time and spa
e O(l2), where l isthe length of the sequen
es. The value of an optimal solution is 
alled theedit distan
e of S0 and S00 and denoted by d(S0; S00).An alignment A of two (or more) sequen
es is a way of inserting\�" 
hara
ters (gaps) in the sequen
es so that the resulting sequen
eshave the same length. For two sequen
es S0 and S00, the value dA(S0; S00)of their alignment is obtained by adding up the 
osts for the pairs of
hara
ters in 
orresponding positions. It is immediate that d(S0; S00) =minA dA(S0; S00).1.2 The Sum{of{Pairs Alignment ProblemThe SP s
ore is the generalization to many sequen
es of the pairwise align-ment obje
tive, in whi
h the 
ost of the alignment is obtained by addingthe 
osts of the symbols mat
hed up at the same positions. Analogously,in a multiple alignment the 
ost is obtained by adding up the mat
hing
hara
ters, over all the positions and for all the pairs of sequen
es.Minimizing SP is NP-hard [26℄. In [9℄ Gus�eld showed that a tree-based progressive alignment method due to Feng and Doolittle (des
ribedbelow) using the minimum 
ost star gives a 2{approximation. In the pro-gram des
ribed in this paper we push this idea further, by 
onsideringalso trees that are not only stars and also employing alignments withsequen
es whi
h are not in the original set, but are derived from it asSteiner sequen
es of some of the original ones.1.3 The Tree Alignment ProblemIn the tree alignment problem, we are given n sequen
es related by anevolutionary tree T . The sequen
es label the leaves of the tree, while theinternal nodes 
orrespond to the unknown an
estral sequen
es from whi
hthe others have evolved. The problem 
onsists in �nding the sequen
esat the internal nodes whi
h minimize the 
ost of the tree, de�ned asP(Si;Sj)2T d(Si; Sj). When T is a star, the problem is 
alled a Steiner



problem, and the optimal sequen
e for the 
enter is 
alled the Steinersequen
e for the leaves.The �rst exa
t algorithm for tree alignment was proposed by Sanko�in [18℄, and is based on dynami
 programming. Later Alts
hul and Lip-man [1℄ introdu
ed some bounding rules to redu
e the size of the dynami
programming latti
e. Due to the prohibitive worst 
ase 
omplexity of ex-a
t methods, approximation algorithms for this problem were devised,by Jiang, Lawler and Wang [27℄ �rst, and improved by Wang and Gus-�eld [25℄ later. In [27℄ a 2{approximation method is des
ribed, based onwhat are 
alled lifted alignments. In lifted alignments, the internal nodes
an only be labeled by sequen
es o

urring at the leaves. The runningtime of their algorithm is O(n2l2 + n3) for a tree of n leaves of lengthl. For trees of bounded degree d, they also provided the �rst PTAS forthe problem. For any t, their approximation s
heme guarantees a solutionwithin a fa
tor 1 + 3t of optimal, in time O(n2+dt�1 ldt�1�1=d�1).For regular d{ary trees on n sequen
es, Ravi and Ke
e
ioglu gavein [17℄ a d+1d�1{approximation algorithm with running time roughly (O(2kn)d){ the main ideas of their algorithm are brie
y des
ribed in Se
t. 2. Theprogram GESTALT des
ribed in this paper is the �rst implementation ofthe ideas in [17℄.1.4 A Tree-based Progressive Alignment MethodA reasonable requirement on the 
ost fun
tion is that 
(a; a) = 0 8a, andit obeys triangle inequality. In this 
ase, the edit distan
e indu
es a met-ri
 over the spa
e of all sequen
es and, given n sequen
es, we 
an talk ofgraphs having the sequen
es as verti
es and for whi
h an edge is weightedby the edit distan
e between the endpoints. In this setting, graph theoret-i
al 
on
epts su
h as spanning trees, stars and Steiner points, have beenwidely used in the design and analysis of e�e
tive alignment algorithms.In parti
ular, a folklore approa
h to multiple alignments is due to Fengand Doolittle [6℄ and shows how we 
an use any tree to align a set of nsequen
es. The appeal of the approa
h is that for n� 1 out of n(n� 1)=2pairs, the pairwise alignment indu
ed is in fa
t optimal.Proposition 1. For any tree T over a set of sequen
es, there existsa multiple alignment A(T ) of the sequen
es su
h that dA(T )(S0; S00) =d(S0; S00) for all the pairs of sequen
es (S0; S00) 
onne
ted by an edge ofthe tree.Feng and Doolittle's method 
an be used to turn the solution of thetree alignment problem, namely a labeling of the internal nodes of the



given tree, into a multiple alignment of the leaves. Moreover, it is straight-forward to upper bound the distan
e in this alignment of pairs that arenot endpoints of a tree edge. In fa
t, denote by d(S0; S00; T ) the lengthof the path in T between two sequen
es S0 and S00. Then, by triangularinequality we have that dA(T )(S0; S00) � d(S0; S00; T ). This inequality sug-gests that, given a tree with sequen
es at the leaves for whi
h we want tominimize average pairwise distan
e in the resulting multiple alignment,a good labeling for the internal nodes is one whi
h minimizes the totalinter-leaf distan
e in the tree. This strategy is adopted in this work toobtain alignments of small SP value, as des
ribed in 2.3.1.5 GESTALT Program SuiteIn this paper we des
ribe the program GESTALT (GEnomi
 sequen
esSTeiner ALignmenT), whi
h 
an be used for both TA and SP multiplealignments. GESTALT is in fa
t a program suite, in
luding modules for
omputing LP-based lower bounds for TA and SP, and optimal alignmentsof two or three sequen
es.The main program takes as input a set L = fS1; : : : ; Sng of n se-quen
es and possibly a tree T of whi
h L are the leaves. If the phyloge-neti
 tree is not available, the algorithm internally 
omputes one, whi
his then used to �nd an alignment of small SP value. If the tree is given,then the TA obje
tive is optimized1. The output of the algorithm 
onsistsof a multiple alignment of the input sequen
es, plus some extra informa-tion, su
h as the Steiner sequen
es 
omputed at the internal nodes of thephylogeneti
 tree.GESTALT is based on the ideas introdu
ed by Ravi and Ke
e
iogluin [17℄ of using Steiner sequen
es of the leaves to label the internal nodesof the tree. While in their paper Ravi and Ke
e
ioglu show that if the treeis d{ary the method gives a d+1d�1 approximation for TA, in our work wedo not restri
t the degree of ea
h node to a 
onstant. Therefore we do nothave the same approximation guarantee. However, among all the labelings
onsidered is in
luded the best lifted labeling of [27℄ and therefore we stillhave a performan
e guarantee of 2 for the TA obje
tive. As is typi
ally the
ase, this bound turns out to be largely pessimisti
 and our 
omputationalresults show that the algorithm performs mu
h better in pra
ti
e.The 2{approximation guarantee holds also for the SP alignments weoutput. Re
all that we in
lude, among all the labelings 
onsidered, one1 The 
hoi
e of the obje
tive in the presen
e or absen
e of the tree 
an also be user-spe
i�ed



in whi
h the internal nodes of the tree are all labeled with any leaf S. Forthis parti
ular labeling, the resulting tree is equivalent to a star 
enteredat S, and as remarked before [9℄, the best star 
entered at a leaf gives a2{approximation.2 Pro
edure OverviewOur program is largely based on a heuristi
 pro
edure by Ravi and Ke-
e
ioglu ([17℄) for solving the tree alignment problem. Their algorithmrelies on labeling the internal nodes with Steiner sequen
es for subsets ofp leaves, where p is a parameter. The pro
edure is divided in two phases.In the �rst phase a Steiner sequen
e is 
omputed for every subset ofq � p leaves, obtaining a set F of all su
h Steiner sequen
es. In the se
-ond phase, dynami
 programming is used to 
ompute the best labeling ofthe internal nodes among those in whi
h only labels from F are allowed.In this work, we have de
ided to solve the TA problem by employingRavi and Ke
e
ioglu's algorithm, with the following variants: (i) Be
ause
omputing exa
t Steiner sequen
es is expensive, we have limited the size ofthe subsets for whi
h a Steiner problem is solved to p = 3. (ii) In additionto Sanko�'s exa
t algorithm for Steiner sequen
es, with 
omplexity O(l3),we also use a heuristi
 algorithm, with average (empiri
al) 
omplexityO(l2). (iii) We do not ne
essarily 
ompute the Steiner sequen
es for allthe �n3� possible triples of leaves, but provide alternate, heuristi
 methodsof sampling signi�
ant triples. (iv) We also perform a �nal re-optimizationstep, as introdu
ed by Sanko� et al ( [20℄).Our program 
an be used also to optimize SP. In this 
ase, we �rst
ompute a tree having the given sequen
es for leaves and then assigntentative labels to the internal nodes by using Steiner sequen
es, as forthe TA obje
tive. In 
hoosing the best label at ea
h node, however, we usedynami
 programming to minimize the total leaf{to{leaf distan
e in thetree, whi
h is an upper bound on the �nal SP s
ore. A �nal reoptimizationphase 
an be run to improve the alignment.The outline of our multiple alignment heuristi
 pro
edure is givenbelow.1. Tree 
omputation.{ TA: none (the tree is given).{ SP: We 
ompute a phylogeneti
 tree having the given sequen
esas leaves - this is derived from a MST on the sequen
e graph.



2. Solution of Steiner problems. We tentatively assign to ea
h of theinternal nodes of the phylogeneti
 tree a set of labels, given by theSteiner sequen
es of some subsets of the leaves.3. Optimal labeling by Dynami
 Programming. We �nd for ea
h internalnode the best sequen
e among those in its set of possible labels.{ TA: The obje
tive is to minimize the total tree-length.{ SP: The obje
tive is to minimize the total leaf{to-leaf distan
e inthe tree.4. Lo
al re-optimization.{ TA: At ea
h node of degree three we repla
e the 
urrent sequen
eby the Steiner sequen
e of its neighbors. We iterate as long asthere are improvements.{ SP: (after step 5.) We iteratively break up the alignment into twosubalignments that are then realigned optimally. The subalign-ments 
hosen have a large average di�eren
e in the 
urrent valueversus the edit distan
e.5. Final alignment by Feng and Doolittle. We 
ompute a multiple align-ment of all the resulting sequen
es (both leaves and internal nodes)by the progressive alignment method of Feng and Doolittle.We elaborate on some of these steps next.2.1 Tree Computation.In order to derive a phylogeneti
 tree T relating a set of sequen
es whenone is not input, we use a simple greedy approa
h. We start with T beinga minimum 
ost spanning tree of the edit distan
e graph. Let (u; v) bethe largest 
ost edge of T . Break up T by deleting edge (u; v) into twotrees Tu 
ontaining u and Tv 
ontaining v. Re
ursively, apply the samepro
edure to Tu and Tv, obtaining two new trees, Tu0 and Tv0 rooted atnew nodes u0 and v0 respe
tively. Finally, join these two subtrees by meansof edges (u0; w) and (v0; w) to a new root node w, thus obtaining the �nalphylogeneti
 tree.2.2 Solution of Steiner Problems.Choi
e of Steiner Sequen
es Given a set of possible sequen
es (labels)for ea
h internal node of the tree, 
hoosing the best label is done bydynami
 programming (des
ribed in 2.3) and is very fast in pra
ti
e. Onthe other hand, 
omputing the labels is very expensive. Therefore on
esome labels have been 
omputed, it is 
onvenient to store them at every



internal node, i.e. all the nodes will have the same set G of labels. Aspreviously noted, the labels allowed at the internal nodes will only beSteiner sequen
es for some subsets of q � 3 leaves. When q = 1 or 2, aSteiner sequen
e is simply a leaf, so that it will always be G = L [ G0,where G0 is a set of Steiner sequen
es for some triples of leaves. Let usdenote by Y (Si; Sj; Sk) a Steiner sequen
es for the triple (Si; Sj ; Sk). Weallow three possibilities for G0:{ G0 = ;. In this 
ase the internal nodes are labeled with leaves se-quen
es only. This option results in the fastest running time, but mayprodu
e poor �nal alignments, espe
ially when the given sequen
esare very dissimilar. Note that among the alignments based on theselabels are in
luded all lifted alignments [27℄ for TA. Similarly, theselabels 
ontain also all star alignments for SP.{ G0 = fY (Si; Sj ; Sk) : i < j < kg. This is 
omputationally the mostexpensive option, sin
e it requires the solution of �n3� Steiner problems.On the other hand, the larger set of possible labels at the internalnodes guarantees a better value of the �nal alignment.{ Let S1; S2; : : : ; Sn be the sequen
e of leaves as en
ountered by per-forming a depth{�rst visit of the tree. Then, G0 = fY (Sj ; Sk; Sh) :h = k+1 = j+2 or h = k+� = j+2�g where � = �n3 �. The inten-tion is to heuristi
ally obtain a uniform sampling by sele
ting triplesof leaves from di�erent positions in an Euler tour of the tree. Thisoption is qui
k {there are only O(n) su
h triples{ but ensures thatea
h sequen
e is in
luded in some triples, and that all the sequen
esare given the same representation in the samples.Exa
t Steiner Sequen
es Assume we are interested in �nding a Steinersequen
e for three sequen
es U1, U2 and U3. The dynami
 programmingpro
edure 
omputes the optimal alignment of the variable Steiner se-quen
e and U1, U2 and U3. This is done ba
kwards from the �nal 
olumnof the alignment, whi
h will be of the form (x1; x2; x3; y)0, where ea
h xiis either the last letter of the sequen
e Ui or a blank (but at least onexi must be nonblank), and y is any nonblank letter of the alphabet �(representing the metter in the Steiner sequen
e being 
onstru
ted). Forany letter x, de�ne 1 � x = x and 0 � x = �. Let B+ = f0; 1g3 n (0; 0; 0) bethe set of nonnull binary 3{ve
tors and let V (l1; l2; l3) be the 
ost of anoptimal Steiner sequen
e for the the �rst l1, l2 and l3 
hara
ters respe
-tively of U1, U2 and U3. The re
ursive dynami
 programming relation isthen



V (l1; l2; l3) = minb2B+(V (l1 � b1; l2 � b2; l3 � b3) + miny2� 3Xi=1 
(bi � Ui[li℄; y))The Steiner sequen
e is given, as 
ustomary in dynami
 programming,by ba
ktra
king through the values V (l1; l2; l3) along the path for anoptimal solution and listing the letters by = arg minP3i=1 
(bi � Si[li℄; y)whi
h a
hieve the minimum in the above expression. Note that the abovere
urren
e requires time and spa
e 
omplexity of O(7l3), provided thatfor all (x1; x2; x3) 2 �3, the values C(x1; x2; x3) := miny2�P3i=1 
(xi; y)have been 
omputed in a preliminary step and stored in a look-up table.In our implementation we have redu
ed the spa
e 
omplexity to O(l2) forthe matrix V (i; j; k) using ideas from [12℄.Heuristi
 Steiner Sequen
es Computing exa
t Steiner sequen
es isvery time 
onsuming. For instan
e, the solution of a problem on se-quen
es of about 200 letters ea
h takes roughly half minute on a PentiumPC. Considering that for aligning 10 sequen
es we may have to solve�103 � = 120 su
h problems, we see that speeding up the 
omputation ofSteiner sequen
es would be greatly bene�
ial. Therefore, we have devisedan alternative, heuristi
 way of 
omputing Steiner sequen
es whi
h is ex-tremely fast and turns out to be almost{optimal after extensive testing(see Se
t. 3).The idea is to �rst �nd all optimal alignments of two of the threesequen
es, say S1 and S2. They 
orrespond to all the shortest paths from(0; 0) to (jS1j; jS2j) in the jS1j � jS2j dynami
 programming latti
e usedfor the pairwise alignment, and 
an be represented in a 
ompa
t formas the subgraph of the latti
e of all the edges on some optimal path.Note that this subgraph is typi
ally mu
h smaller than the whole latti
e(empiri
ally, O(l) versus O(l2)). Then, we perform a graph{to{sequen
ealignment, i.e. we �nd the best 
ompletion of an optimal alignment of S1and S2 with S3. In this 
ase, \best" is taken with respe
t to the Steinerobje
tive.The value of the �nal solution may depend on the ordering of thesequen
es, sin
e S3 is 
learly used di�erently than S1 and S2. We haveobserved in our experiments that 
hoosing S1 and S2 to be the two 
losestsequen
es results in the best Steiner sequen
es over the three possible
hoi
es. However, sin
e the algorithm is very fast, we 
ompute all threepossibilities of �rst aligning together two sequen
es and then versus thethird, and return the best solution found. We 
on
lude this se
tion by



remarking that the 
omputation of heuristi
 Steiner sequen
es takes onthe average one se
ond for sequen
es of length 200, while returning asolution whose value was never more than 2% larger than the optimumin our extensive testing.2.3 Optimal Labeling by Dynami
 Programming.In this se
tion we 
onsider the problem of optimally assigning a sequen
efrom a given set G to ea
h internal node of the tree. Denote by w1; : : : ; wtthe nodes whi
h are immediate des
endants of a node i. Let V (i; S) bethe optimal value for the subtree rooted at i when node i is labeled with asequen
e S 2 G. We have the following dynami
 programming re
urren
e:V (i; S) = (0 if i is a leafminL1;:::;Lt2GPtj=1 (�(i; wj)d(S;Lj) + V (wj ; Lj)) otherwiseThe 
oeÆ
ients �(i; wj) allow us to distinguish between the two ob-je
tive fun
tions - TA and SP. For the TA obje
tive, V (i; S) representsthe minimum total length of the subtree, among the labelings that as-signs S to i. This is obtained by setting all the � equal to 1. For theSP obje
tive, we want to �nd the labels whi
h minimize the total leaf{to{leaf distan
e. For any edge (u; v) of T , we set �(u; v) to be the num-ber of pairs of leaves whose 
onne
ting path in the tree goes through(u; v). This value, 
alled the load of the edge, is equal to k(n� k), wherek is the number of leaves on one shore of the 
ut identi�ed by (u; v).By using the loads, the total leaf{to{leaf distan
e 
an be rewritten asPSi;Sj d(Si; Sj ; T ) = P(u;v)2T �(u; v)d(L(u); L(v)), where L(u) and L(v)are the sequen
es labeling nodes u and v.Using the above relation, �rst the value of ea
h label at ea
h node is
omputed bottom{up, and later, pro
eeding top{down from the root, itis determined whi
h label to pi
k at ea
h node for obtaining an optimalsolution. The overall 
omplexity is O(njGj2), i.e. a very fast pro
edure.2.4 ReoptimizationThe reoptimization for TA obje
tive is the same as in Sanko� et al [20℄.For SP, however, we use a new approa
h. As in other works (e.g. [7℄)we repeatedly break up the alignment into two pie
es that are then re-aligned optimally via the basi
 dynami
 program for edit distan
e. Thenew idea relies in how these alignments are 
hosen. Sin
e for ea
h pair



of sequen
es in the same subalignment the distan
e remains the same,the only improvement 
an be for sequen
es that are in di�erent subalign-ments. Let Æ(S; S0) = dA(S; S0)� d(S; S0). If A1 and A2 are the subalign-ments, Æ(A1;A2) =PS2A1;S02A2 Æ(S; S0) is the Æ{value of the 
ut (A1;A2)in the graph of all sequen
es, and Æ(A1;A2)=jA1jjA2j is a per{sequen
emeasure of how bad the alignment 
urrently is versus the lower boundgiven by the edit distan
e. Hen
e we want to reoptimize some 
uts of high(per{sequen
e) value, whi
h we �nd through standard greedy heuristi
s.We have di�erent settings on how far the reoptimization phase 
an bepushed. In the most expensive setting, for ea
h pair (S; S0) of sequen
eswe �nd a large{value 
ut separating them and relign it. We iterate as longas there are improvements.3 Computational Experien
esFor our preliminary tests, we used two popular data sets. First, we ob-tained the sets of protein sequen
es of M
 Clure [16℄, used extensively toben
hmark programs guided by the SP obje
tive. For the Tree Alignmentproblem, we have used a famous instan
e by Sanko� et al [20℄, used as aben
hmark in [10, 13℄.As for the 
ost matrix, in our experiments we have used a distan
ematrix due to Taylor [23℄ for amino a
id sequen
es, and the matrix inSanko� [20℄ for DNA sequen
es. Our program also works with all the
ommon s
ore matri
es (e.g. PAM, BLOSUM, et
).1. Lower Bounds. A unique feature of the GESTALT suite is apro
edure to generate linear programming (LP) based lower bounds onthe TA and SP obje
tive values of the given instan
e by using the Steinersequen
es for triples 
omputed so far. We des
ribe the LP for the TAproblem. We use a nonnegative variable for the length of every edge ofthe tree, and the obje
tive is to minimize the sum of lengths of all treeedges. A distan
e of d between a pair of leaves Si and Sj allows us toadd the 
onstraint that the sum of the values of the edge lengths onthe path between Si and Sj in the tree must be at least D. Similarly,given a value of TA(i; j; k) for the minimum sum of the distan
es from anoptimal Steiner sequen
e for the triple (Si; Sj; Sk) to the three sequen
esSi; Sj and Sk, we add the 
onstraint that the sum of the lengths of all theedges in the tree indu
ed by the three leaves Si; Sj and Sk must be at leastTA(i; j; k). The obje
tive fun
tion in the LP is to minimize the sum of thevalues of the edge variables. The set of 
onstraints for distan
es between



Table 1. Heuristi
 vs exa
t Steiner sequen
es. Times in se
onds, Pentium 133Mhztot tot relative time timeinstan
e seqs triples error exa
t heuristi
avg min max min max min maxsank 9 84 0.003 0 0.02 15.8 41.0 0.6 1.9m
582x6 6 20 0.004 0 0.01 52.3 75.6 0.5 3.0m
586x6 6 20 0.007 0 0.017 17.8 42.5 0.6 2.1m
587x6 6 20 0.01 0.003 0.019 29.2 71.9 0.8 2.7pairs of leaves was experimented with in [10℄, while the strengthening totriples gives better bounds as reported below.For the SP obje
tive for multiple alignment, a simple averaging ar-gument using the usage of Steiner triples yields a simple lower bound ofPi;j;k SP (i; j; k)=(n � 2) for n sequen
es, where SP (i; j; k) denotes theoptimal sum-of-pair value for the triple Si; Sj and Sk. This may be fur-ther extended to a LP lower bound with one nonnegative variable forthe distan
e between every pair of sequen
es in the multiple alignment.The 
onstraints now require that for every triple Si; Sj ; Sk of distin
t se-quen
es, the sum of the values of the three variables involving the threepairs from this triple must be at least SP (i; j; k). The obje
tive is tominimize the sum of all the variables over all pairs of sequen
es.2. Steiner Sequen
es. First, we determined the quality of heuristi
vs exa
t Steiner sequen
es. The results are reported in Table 1. For thesetests, we used four data sets, i.e. the sequen
es from Sanko� and three setsof sequen
es from M
Clure. These sequen
es have between one hundredand two hundred letters ea
h. For ea
h set, we have 
omputed for ea
htriple the exa
t and heuristi
 Steiner sequen
es, and 
ompared the relativeerrors. It should be noted that on these sequen
es, the heuristi
 is roughlythirty times faster than the exa
t pro
edure, while the average error isless than one per
ent. A striking result was that in 41 out of 84 triplesfor the sank instan
e, the heuristi
 solution was in fa
t optimal.3. Tree Alignment. A se
ond experiment was performed to a

essthe quality of the solution to the Tree Alignment problem, and the rel-ative performan
e with di�erent settings of the program. We have runGESTALT on Sanko�'s problem with all possible 
ombinations of user
hoi
es. The results are reported in Table 2. Again, it should be notedthat using heuristi
 Steiner sequen
es is greatly bene�
ial to the 
omput-ing time, and, sin
e the whole pro
edure is heuristi
 in nature, 
an even



lead to better solutions than the exa
t option. This is indeed the 
asehere.In order to evaluate the quality of the results, we have 
omputed thelower bound on the problem by using our LP module. The LP lowerbound based on all the Steiner sequen
es of triples for the TA obje
tiveis 266.375 improving over the best bound of 253.5 previously known [10℄.The optimal lifted alignment �nds a value of 364, as also reported in [10℄.Using heuristi
 Steiner sequen
es, we �nd a solution of value about 302in about 7 minutes. Contrast this with the best upper bound of 295.5by Sanko� et al. [20℄. Our improved lower bound shows that Sanko�'ssolution is within 11% of optimal.4. Sum of Pairs. For the SP obje
tive, we report some results forthe M
Clure data sets (Table 3). For ea
h problem, we have 
omputedthe trivial lower bound given by the sum of edit distan
es, and two lowerbounds based on the optimal SP alignment of triples of sequen
es - oneuses a simple averaging argument (LB triples) and the other the solutionto an LP relaxation (LB lp). We ran GESTALT with heuristi
 Steinersequen
es, sampling all triples. Our solutions are in an interval of 2 to 9per
ent from the lower bound. The table shows also the e�e
tiveness oflo
al reoptimization. For 
omparison, we also report the SP value of thestar alignment (Gus�eld, [9℄).Table 2. TA results on the instan
e sank. Times in se
onds, Pentium PCTriples Steiner Reopt Value TimeALL HEUR EXACT 302 592ALL HEUR HEUR 302.25 424ALL EXACT EXACT 303.25 2802SOME EXACT EXACT 304 493ALL EXACT HEUR 304.25 2599SOME EXACT HEUR 304.5 267SOME HEUR EXACT 314 201SOME HEUR HEUR 315.75 23NONE - EXACT 320 152NONE - HEUR 320.5 6ALL HEUR NONE 322.25 298ALL EXACT NONE 322.5 2387SOME EXACT NONE 333.5 258SOME HEUR NONE 333.75 15NONE - NONE 364 1



Table 3. SP lower and upper bounds for M
Clure data setsInstan
e LB pairs LB triples LB lp Star align. GESTALT Err % GESTALT+reop Err %m
582x6 25411 26056 26100 28444 27647 0.06 26963 0.03m
586x6 25191 25979 26029 29307 28605 0.10 27498 0.05m
587x6 29914 30802 30864 34085 34152 0.11 32664 0.05m
582x10 70718 72274 72757 82011 77676 0.07 75131 0.03m
586x10 81745 84211 84662 99140 97725 0.15 91754 0.08m
587x10 95002 97889 98349 115918 110463 0.12 105806 0.07m
582x12 98810 100720 101464 113328 105674 0.04 103803 0.02m
586x12 116889 120409 121130 143792 139398 0.15 131980 0.08m
587x12 140679 145043 145804 174270 164883 0.13 160256 0.09Referen
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