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2 Robert Carr and R. Raviedge of this graph whose endpoints are i 2 V and j 2 V by ij. For each vertexv 2 V , let �(v) � E denote the set of edges incident to v. For each subset ofvertices S � V , let �(S) � E denote the set of edges in the cut which has S asone of the shores, i.e. the set of edges having exactly one endpoint in S. Denotethe edge variable for e 2 E by xe, which is 0,1, or 2 depending on whether e isabsent, occurs singly or doubly in the 2-edge connected subgraph. For A � E,let x(A) denote the sumPe2A xe. Let ce denote the cost of edge e. We have thefollowing integer programming formulation.minimize c � xsubject to x(�(v)) � 2 for all v 2 V;x(�(S)) � 2 for all S � V;xe � 0 for all e 2 E;xe integral. (1)The LP relaxation is obtained by dropping the integrality constraint in thisformulation. This LP relaxation is almost the same as the subtour relaxationfor the Traveling Salesman Problem (TSP). The Traveling Salesman Problemconsists in �nding the minimum cost Hamilton cycle in a graph (a Hamiltoncycle is a cycle which goes through all the vertices). The subtour relaxation forthe TSP is as follows.minimize c � xsubject to x(�(v)) = 2 for all v 2 V;x(�(S)) � 2 for all S � V;xe � 0 for all e 2 E: (2)The constraints of the subtour relaxation are called the degree constraints, thesubtour elimination constraints, and the non-negativity constraints respectively.If one has the relationship cij � cik + cjk for all distinct i; j; k 2 V , thenc is said to satisfy the triangle inequality. An interesting known result is thatif the costs satisfy the triangle inequality, then there is an optimal solution to(1) which is also feasible and hence optimal for (2). This follows from a resultof Cunningham [11] (A more general result called the Parsimonious Property isshown by Goemans and Bertsimas in [7]). We can show that this equivalenceholds even when the costs do not satisfy the triangle inequality. In the lattercase, we replace the given graph by its metric completion, namely, for everyedge ij such that cij is greater than the cost of the shortest path between i andj in the given graph, we reset the cost to that of this shortest path. The intentis that if this edge is chosen in the solution of (1), we may replace it by theshortest cost path connecting i and j. Since multiedges are allowed in the 2-edgeconnected graph this transformation is valid. Hence without loss of generality,we can assume that the costs satisfy the triangle inequality.1.2 Our result and its signi�canceOur main result is the following.



A New Bound for the 2-Edge Connected Subgraph Problem 3Theorem 1. The minimum cost of a 2-edge connected subgraph is within 43times the cost of the optimal half-integral subtour solution for the TSP.This result is a �rst step towards proving the following conjecture we o�er.Conjecture 1. The minimum cost of a 2-edge connected subgraph is within 43times the cost of the optimal subtour solution for the TSP.By our remarks in the end of Section 1.1, it would follow from Conjecture 1that the minimum cost of a 2-edge connected subgraph is also within 43 timesthe cost of an optimal solution to the linear programming relaxation (1).We formulated Conjecture 1 as an intermediate step in proving the followingstronger \four-thirds conjecture" on the subtour relaxation for the TSP, whichwould directly imply Conjecture 1.Conjecture 2. If the costs satisfy the triangle inequality, then the minimum costof a Hamilton cycle is within 43 times the cost of the optimal subtour solutionfor the TSP.Note that Theorem 1 and Conjecture 1 imply similar relations between thefractional optimum of the subtour relaxation and a minimum-cost 2-vertex con-nected subgraph when the costs obey the triangle inequality. In particular, The-orem 1 implies that when the costs satisfy the triangle inequality, the minimumcost 2-vertex connected spanning subgraph is within 43 times the cost of theoptimal half-integral subtour solution for the TSP. This follows from the simpleobservation that from the minimum-cost 2-edge connected graph, we can short-cut \over" any cut vertices without increasing the cost by using the triangleinequality [5, 11].1.3 Related workA heuristic for �nding a low cost Hamilton cycle was developed by Christo�desin 1976 [4]. An analysis of this heuristic shows that the ratio is no worse than32 in both Conjecture 1 and Conjecture 2. This analysis was done by Wolsey in[16] and by Shmoys and Williamson in [15]. A modi�cation of the Christo�desheuristic to �nd a low cost 2-vertex connected subgraph when the costs obeythe triangle inequality was done by Fredrickson and Ja Ja in [5]. The perfor-mance guarantee for this heuristic to �nd a 2-vertex connected subgraph is 32 .There has also been a spate of work on approximation algorithms for survivablenetwork design problems generalizing the 2-edge connected subgraph problem[7{10, 13, 17]; however, the performance guarantee for the 2-edge connected sub-graph problem from these methods is at best 32 when the costs obey the triangleinequality (shown in [5, 7]) and at best 2 when they do not (shown in [9]).Both Conjecture 2 and Conjecture 1 have remained open since Christo�desdeveloped his heuristic. In this paper, we suggest a line of attack for provingConjecture 1.



4 Robert Carr and R. Ravi2 MotivationIn this section we discuss two distinct motivations that led us to focus on half-integral extreme points and prove a version of Conjecture 1 for this special case.One follows from a particular strategy to prove Conjecture 1 and the otherfrom examining subclasses of subtour extreme points that are su�cient to proveConjectures 1 and 2.2.1 A Strategy for Proving Conjecture 1Let an arbitrary point x� of the subtour polytope for Kn be given. Multiply thisby 43 to obtain the vector 43x�. Denote the edge incidence vector for a given 2-edgeconnected subgraph H in Kn by �H . Note that edge variables could be 0,1, or 2in this incidence vector. Suppose we could express 43x� as a convex combinationof incidence vectors of 2-edge connected subgraphs Hi for i = 1; 2; : : : ; k. Thatis, suppose that 43x� = kXi=1 �i�Hi ; (3)where �i � 0 for i = 1; 2; : : : ; k and kXi=1 �i = 1:Then, taking dot products on both sides of (3) with the cost vector c yields43c � x� = kXi=1 �ic � �Hi : (4)Since the right hand side of (4) is a weighted average of the numbers c � �Hi , itfollows that there exists a j 2 f1; 2; : : : ; kg such thatc � �Hj � 43c � x�: (5)If we could establish (5) for any subtour point x�, then it would in particularbe valid for the optimal subtour point, which would prove Conjecture 1.In an attempt at proving Conjecture 1, we aim at contradicting the idea of aminimal counterexample, that is, a subtour point x� having the fewest number ofvertices n0 such that (3) can not hold for any set of 2-edge connected subgraphs.First we have the following observation.Theorem 2. At least one of the minimal counterexamples x� to (3) holding(for some set of 2-edge connected subgraphs) is an extreme point of the subtourpolytope.



A New Bound for the 2-Edge Connected Subgraph Problem 5Proof. Suppose x� = Pl �lxl, where each xl is an extreme point which is nota minimal counterexample, and the �l's satisfy the usual constraints for a setof convex multipliers. Thus, for each l, we can �nd a set of 2-edge connectedsubgraphs H li such that 43xl =Xi �li�Hli ;where the �li's satisfy the usual constraints for a set of convex multipliers. Then43x� =Xl 43�lxl =Xl �lXi �li�Hli : (6)Since we have that Xl �l � (Xi �li) =Xl �l � (1) = 1;Equation (6) shows that 43x� can be expressed as a convex combination of 2-edgeconnected subgraphs as well, from which this theorem follows.Thus we need to focus only on minimal counterexamples x� in Kn0 which areextreme points. To carry out the proof, we wish to �nd a substantial tight cut�(H) for x�, i.e. an H � V such that 3 � jH j � n0 � 3 andx�(�(H)) = 2:We can then split x� into 2 smaller subtour solutions x1 and x2 in the followingway. Take the vertices of V n H in x� and contract them to a single vertex toobtain x1. Likewise, take the vertices of H in x� and contract them to a singlevertex to obtain x2. An example of this is shown in Figure 1.Since x1 and x2 are not counterexamples to our conjecture, we would be ableto decompose 43x1 and 43x2 into combinations of 2-edge connected subgraphs,which we may then attempt to glue together to form a similar combination for43x�, thereby showing that x� is not a counterexample (We show how this can beaccomplished for the case of half-integral extreme points in Case 1 in the Proofof Theorem 6).What if there are no tight substantial cuts however? The following proposi-tion which is shown in [1] shows us what we need to do.Proposition 1. If x� is an extreme point of the subtour polytope and has nosubstantial tight cuts, then x� is a 1/2-integer solution.This led us to focus on 1/2-integral solutions x�, and we were able to completethe proof for this special case. In the next section, we show our main result thatif x� is a 1/2-integer subtour solution, then (3) can always be satis�ed.
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2/3Fig. 1. An idea for splitting a minimal counterexample into two smaller instances.Note that H de�nes a substantial tight cut, i.e., both H and V nH have at least threevertices and x(�(H)) = 2.2.2 The Important Extreme PointsConsider any extreme point x�. We wish to express 43x� as a convex combinationof 2-edge connected graphs for Conjecture 1 or a convex combination of Euleriangraphs for Conjecture 2. An important question is what features of x� make itdi�cult to do this? In an e�ort to answer this question, we try to transformx� into another extreme point x� on a larger graph so that x� belongs to asubclass of the extreme points, but 43x� is at least as hard to express as a convexcombination of 2-edge connected graphs (or Eulerian graphs) as 43x� is. The ideathen is that we only have to be able to express 43x as a convex combination of2-edge connected graphs (or Eulerian graphs) for all extreme points x belongingto this particular subclass in order to prove Conjecture 1 (or Conjecture 2). Ifwe have a subclass S of extreme points x such that being able to express 43xas a convex combination of 2-edge connected graphs for all extreme points xbelonging to this particular subclass is su�cient to prove Conjecture 1, then wesay that S is su�cient to prove Conjecture 1. Likewise, a subclass S can besu�cient to prove Conjecture 2.We have found two di�erent subclasses of extreme points which are su�cientto prove both Conjecture 1 and Conjecture 2. In some sense, the extreme pointsin such a subclass are the hardest extreme points to deal with when provingConjecture 1 or Conjecture 2. One class, termed fundamental extreme points,can be found in [2].De�nition 1. A fundamental extreme point is an extreme point for the subtourrelaxation satisfying the following conditions.(i) The support graph is 3-regular,



A New Bound for the 2-Edge Connected Subgraph Problem 7(ii) There is a 1-edge incident to each vertex,(iii) The fractional edges form disjoint cycles of length 4.A second class of such su�cient extreme points is described below. We willrestrict our attention to showing that the subclass described below is su�cient toprove Conjecture 1, although showing that it is also su�cient to prove Conjecture2 requires only minor modi�cations in our arguments.Consider any extreme point x�. Pick the smallest integer k such that x�e is amultiple of 1k for every edge e 2 E. Then form a 2k-regular 2k-edge connectedmultigraph Gk = (V;Ek) as follows. For every edge e = uv 2 E, put l edgesbetween u and v, where l := kx�e . Then showing that 43Ek can be expressedas a convex combination of 2-edge connected graphs is equivalent to showingthat 43x� can be so expressed. But suppose every vertex in Gk is replaced bya circle of 2k nodes, each node with one edge from Ek, and 2k � 1 new edgeslinking this node to its two neighboring nodes in the circle, all in such a waythat the resulting graph Gk = (V ;Ek) is still 2k-regular and 2k-edge connected.Note that loosely speaking, we have Ek � Ek. We seek to then show that ifwe can express 43Ek as a convex combination of 2-edge connected graphs, thenwe can do so for 43Ek as well. The graph Gk will turn out to corresponds to asubtour extreme point x� (in the same way that Gk corresponds to x�). It ismore convenient to de�ne this subtour extreme point x� than to de�ne Gk.Let us now de�ne x�.De�nition 2. Expand each vertex in V into a circle of 2k nodes, with an edgeof Ek leaving each such node, as described in the previous paragraph. Take theequivalent of an Eulerian tour through all the edges of Ek by alternately travers-ing these edges and jumping from one node to another node in the same circleuntil you have traversed all of the edges in Ek and have come back to the edge inEk you started with. When you jump from node u to node v in the same circlein this Eulerian tour, de�ne x�uv := k�1k . For every edge e 2 Ek, we naturallyde�ne x�e := 1k . For each circle Cv of nodes corresponding to the vertex v 2 V ,we pick an arbitrary perfect matching Mv on the nodes in Cv, including in Mvonly edges e which have not yet been used in the de�nition of x�. We then de�nex�e := 1 for all e 2Mv.We have the following:Theorem 3. x� in De�nition 2 is a subtour extreme point.Proof. The support graph of x� is 3-regular, with the fractional edges in x�forming a Hamilton cycle on the vertices V . Call the edges in x�'s support graphEk.We �rst show that x� is a feasible subtour point. If it were not, there wouldhave to be a cut in the graph Gk = (V ;Ek) of value less than 2. Clearly, sucha cut C would have to go through some circle Cv of nodes since Gk is 2k-edgeconnected. But the contribution of the edges from the circle Cv to any cutcrossing it is at least 1 since the edges in the circle Cv each have a value greaterthan or equal to 1/2. Hence, the contribution from the non-circle edges in the



8 Robert Carr and R. Ravicut C is less than 1. But this is not possible because when v is ripped out of x�,the minimum cut in the remaining solution is greater than or equal to 1. Hence,x� is a feasible subtour point.We show that x� is an extreme point by showing that it can not be expressedas 12x1 + 12x2, where x1 and x2 are distinct subtour points. Suppose x� couldbe so expressed. Then the support graphs of x1 and x2 would coincide with orbe subgraphs of the support graph Ek of x�. Because of the structure of thesupport graph, setting the value of just one fractional edge determines the entiresolution due to the degree constraints. Hence, all the edges e 2 Ek such thatxe = 1k would have to say be smaller than 1k in x1 and larger than 1k in x2. But,then a cut separating any circle of nodes Cv from the rest of the vertices in x1would have a value less than 2, which contradicts x1 being a subtour point.We now have the following:Theorem 4. If 43x� can be expressed as a convex combination of 2-edge con-nected graphs spanning V , then 43x� can be expressed as a convex combinationof 2-edge connected graphs spanning V .Proof. Suppose 43x� can be expressed as a convex combination43x� =Xi �i�Hi ; (7)where the H i's are 2-edge connected graphs spanning V . For each i, contracteach circle of nodes Cv back to the vertex v 2 V in H i. Call the resulting graphHi. Since contraction preserves edge connectivity,Hi is a 2-edge connected graphspanning V . When one performs this contraction on x�, one gets x�. As a result,we obtain that 43x� =Xi �i�Hi ; (8)which proves our theorem.We can now de�ne the subclass of important extreme points.De�nition 3. An important extreme point is an extreme point for the subtourrelaxation satisfying the following conditions.(i) The support graph is 3-regular,(ii) There is a 1-edge incident to each vertex,(iii) The fractional edges form a Hamilton cycle.We are now ready for the culminating theorem of this section.Theorem 5. The subclass of important extreme points is su�cient to proveConjecture 1.



A New Bound for the 2-Edge Connected Subgraph Problem 9Proof. If there is an extreme point x� such that 43x� cannot be expressed as aconvex combination of 2-edge connected graphs, then by Theorem 4, the impor-tant extreme point 43x� cannot be expressed as a convex combination of 2-edgeconnected graphs either. Hence, our theorem follows.The analogous theorem for the class of fundamental extreme points can be foundin [2].3 The Proof of Theorem 1Let x� be a 1/2-integer subtour solution on Kn = (V;E). Denote the edges ofthe support graph of x� (the set of edges e 2 E such that x�e > 0) by Ê(x�).Construct the multigraph G(x�) = (V;E(x�)), where E(x�) � Ê(x�) and di�ersfrom Ê(x�) only in that there are two copies in E(x�) of every edge e 2 Ê(x�)for which x�e = 1. Note that the parsimonious property [7] implies that there areno edges e with xe > 1 in the optimal fractional solution.Because of the constraints of the subtour relaxation, it follows that G(x�)is a 4-regular 4-edge connected multigraph. Similarly, corresponding to every 4-regular 4-edge connected multigraph is a 1/2-integer subtour solution, althoughthis solution may not be an extreme point.Showing (3) for some choice of 2-edge connected subgraphs Hi for every1/2-integer subtour solution x� would prove Conjecture 1 whenever the optimalsubtour solution was 1/2-integer, as was discussed in the last section. So, equiva-lently to showing (3) for some choice of 2-edge connected subgraphs Hi for every1/2-integer subtour solution x�, we could show23�E(G) =Xi �i�Hi ; (9)where this expression is a convex combination of some chosen set of 2-edgeconnected subgraphs Hi, for every 4-regular 4-edge connected multigraph G =(V;E(G)). These are equivalent because of the remarks in the previous paragraphand the observation that G(x�) behaves like 2x�.It turns out that (9) is very di�cult to show directly, but the followingslight strengthening of it makes the task easier. Consider any 4-regular 4-edgeconnected multigraph G = (V;E(G)) and any edge e 2 E(G). Then, we proveinstead that 23�E(G)nfeg =Xi �i�Hi (10)where this expression is a convex combination of some chosen set of 2-edgeconnected subgraphs Hi.For technical reasons, we will prove (10) with the additional restriction thatnone of the Hi's may use more than one copy of any edge in E(G). Note howeverthat G may itself have multiedges so H may also have multiedges. In the lattercase, we think of two parallel multiedges in H as being copies of two distinctmultiedges in G.



10 Robert Carr and R. RaviFor any 4-regular 4-edge connected graph G and any edge e 2 E(G), wede�ne P (G; e) to be the following statement.Statement 1 P (G; e), For some �nite set of 2-edge connected subgraphs Hi,we have (10), where �i � 0 for all i and Pi �i = 1, and none of the Hi's mayuse more than one copy of any edge in E(G).As noted above, Statement 1 does not rule out the possibility of doublededges in the Hi's because there may be doubled edges in G.We de�ne a tight cut for a 4-edge connected graph G to be a cut which hasexactly 4-edges in it. We de�ne a non-trivial cut for such a graph to be a cutwhere both shores have at least 2 vertices each. We have the following lemma.Lemma 1. Let G = (V;E) be a 4-regular 4-edge connected graph which has notight non-trivial cut which includes an edge e = uv 2 E. Let the other 3 (notnecessarily distinct) neighbors of v be x; y; and z. Then either ux or yz is a loopor G0 = G� v + ux+ yz is 4-regular and 4-edge connected, and likewise for theother combinations.Proof. Let G = (V;E) and e = uv 2 E be given, where the neighbors of v areas stated. First, note that any cut in G containing all four edges incident on vhas size at least 8, since the cut formed by moving v to the opposite side of thecut must have size at least 4 since G is 4-edge connected.Suppose neither ux or yz is a loop. Then clearly, G0 is a 4-regular connectedgraph. Since it is 4-regular, every cut has an even number of edges in it. By ourearlier observation, there can be no cuts �(H) in G0 of cardinality zero. SupposeG0 has a non-trivial cut �(H) with only 2 edges in it. Consider Ĝ = G+ux+ yzwith vertex v back in. The two non-trivial cuts �(H [fvg) and �((V nH)[fvg)can each have at most 3 more edges each (for a total of 5 edges each) since asobserved earlier, these cuts could not have all 4 edges incident to v in them. But,G = Ĝ � ux � yz has only cuts with an even number of edges in them since itis 4-regular. Hence the cuts �(H [ fvg) and �((V nH)[ fvg) in G have at most4 edges in them. One of these two cuts is a tight non-trivial cut which containse, which yields the lemma.We are now ready for our main theorem.Theorem 6. Let x� be a minimum cost 1/2-integer subtour solution. Then thereexists a 2-edge connected subgraph H such that c � �H � 43c � x�.Proof. As remarked in the discussion before this theorem, it is su�cient to proveP (G; e) for all 4-regular 4-edge connected multigraphsG and for all e 2 E(G). Toprove this, we show that a minimal counterexample to P (G; e) can not happen.Let G = (V;E(G)) be a 4-regular 4-edge connected multigraph and e 2 E(G)which has the minimum number of vertices such that P (G; e) does not hold.Since by inspection, we can verify that P (G; e) holds when G has 3 vertices,we can assume that jV j > 3. We now consider the cases where G has a tightnon-trivial cut which includes edge e and where G has no tight non-trivial cutwhich includes e.



A New Bound for the 2-Edge Connected Subgraph Problem 11Case 1: G has a tight non-trivial cut which includes edge e.Choose such a tight non-trivial cut and denote the edges other than e in thiscut by a; b; and c. As before, consider contracting one of the shores of this cut toa single vertex v1. Denote the edges incident to v1, which corresponded to e; a; b;and c, by e1; a1; b1; and c1 respectively. This resulting graph G1 = (V1; E1) canbe seen to be 4-regular and 4-edge connected. (To see this, suppose there was acut of cardinality less than four in G1 and let H1 be the shore of this cut notcontaining v1. Then the cut �(H1) in G shows that G is not 4-edge-connected,a contradiction.) Since (G; e) was a minimal counterexample to P (G; e), wehave P (G1; e1). By contracting the other shore, we can get a 4-regular 4-edgeconnected graph G2, and we know that P (G2; e2) also holds.By P (G1; e1) we have 23�E(G1)nfe1g =Xi �i�H1i ; (11)and by P (G2; e2) we have 23�E(G2)nfe2g =Xi �i�H2i : (12)In (11), consider the edges incident to v1 in each of the H1i 's. There are clearlyat least 2 such edges for every H1i . The values of edges a1; b1; c1; and e1 in23�E(G1)nfe1g are 23 ; 23 ; 23 ; and 0 respectively. This adds up to 2. Hence, since weare dealing with convex combinations, which are weighted averages, when theweights are taken into account, the H1i 's have on average 2 edges incident to v1each. But since every H1i has at least 2 such edges, it follows that every H1i hasexactly 2 edges incident to v1 in it.For each 2-edge connected subgraph H1i which has edges a1 and b1, denotethe corresponding convex multiplier by �abi . De�ne �aci and �bci similarly. Onecan see that the only way for the variable values of edges a1; b1; and c1 to endup all being 23 in 23�E(G1)nfe1g is for the following to hold:Xi �abi =Xi �aci =Xi �bci = 13 : (13)Similarly, we must haveXi �abi =Xi �aci =Xi �bci = 13 : (14)Call the three types of 2-edge connected graphs Hji as ab-graphs, ac-graphs,and bc-graphs. Our strategy is to combine say each ab-graph H1i of G1 with anab-graph H2j of G2 to form an ab-graph Habij of G which is also 2-edge connected.So, we de�ne Habij := (H1i � v1) + (H2j � v2) + a+ b; (15)



12 Robert Carr and R. Raviwhere H1i and H2j are ab-graphs. Since H1i �v1 and H2j �v2 are both connected,it follows that Habij is 2-edge connected. Similarly de�ne Hacij and Hbcij .Now consider the following expression:Xi;j 3�abi �abj Habij +Xi;j 3�aci �acj Hacij +Xi;j 3�bci �bcj Hbcij : (16)One can verify that this is in fact a convex combination. Any edge f in sayG1 � v1 occurs in (16) with a weight ofXfi j f2H1i g(�abi � (3 �Xj �abj ) + �aci � (3 �Xj �acj ) + �bci � (3 �Xj �bcj )): (17)In light of (14) we have that (17) evaluates toXfi j f2H1i g�i = 23 : (18)We have a similar identity when f is in G2�v2 and we also have that edges a; b;and c each occur in (16) with a weight of 23 as well. Therefore we haveXi;j 3�abi �abj Habij +Xi;j 3�aci �acj Hacij +Xi;j 3�bci �bcj Hbcij = 23�E(G)nfeg; (19)which contradicts (G; e) being a minimal counterexample.Case 2: G has no tight non-trivial cut which includes edge e.Denote the endpoints of e by u 2 V and v 2 V , and denote the other 3 notnecessarily distinct neighbors of v in G by x; y; z 2 V . Because e is in no tightnon-trivial cut, we have that x 6= y 6= z. (If any two of the neighbors x; y and zare the same, say x = y, then the cut �(fv; xg) will be a tight non-trivial cut).Thus, without loss of generality, if any two neighbors are the same vertex, wecan assume that they are u and z. Hence, u 6= x and u 6= y.De�ne the graph G1 = (V1; E1) byG1 = G� v + ux+ yz; (20)and de�ne e1 = ux. We know by Lemma 1 that G1 is 4-regular and 4-edgeconnected. Since (G; e) is a minimal counterexample, we therefore know thatP (G1; e1) holds. Similarly, de�ne the graph G2 = (V2; E2) byG2 = G� v + uy + xz; (21)and de�ne e2 = uy. As before, we know that P (G2; e2) holds as well.So, we can form the following convex combinations of 2-edge connectedgraphs: 23�E1nfe1g =Xi �i�H1i ; (22)



A New Bound for the 2-Edge Connected Subgraph Problem 13and 23�E2nfe2g =Xi �i�H2i : (23)De�ne Ĥ1i by Ĥ1i = �H1i � yz + yv + zv for yz 2 H1i ;H1i + yv + xv for yz 62 H1i : (24)Likewise, de�ne Ĥ2i byĤ2i = �H2i � xz + xv + zv for xz 2 H2i ;H2i + yv + xv for xz 62 H2i : (25)Consider the convex combination of 2-edge connected subgraphs12Xi �i�Ĥ1i + 12Xi �i�Ĥ2i : (26)Every edge in f 2 E n�(v) occurs with a total weight of 23 in (26) since f occuredwith that weight in both (22) and (23). Since yz occurs with a total weight of 23in (22) and xz occurs with a total weight of 23 in (23), one can verify that xv; yv;and zv each occur with a total weight of 23 in (26) as well. Therefore, we have23�Enfeg = 12Xi �i�Ĥ1i + 12Xi �i�Ĥ2i ; (27)which contradicts G; e being a minimal counterexample.4 Concluding RemarksAn obvious open problem arising from our work is to extend our strategy andsettle Conjecture 1. In another direction, it would be interesting to apply ourideas to design a 43 -approximation algorithm for the minimum cost 2-edge- and2-vertex-connected subgraph problems.Another interesting question is the tightness of the bound proven in Theo-rem 1. The examples we have been able to construct seem to demonstrate anasymptotic ratio of 65 between the cost of a minimum cost 2-edge connected sub-graph and that of an optimal half-integral subtour solution. Finding instanceswith a worse ratio or improving our bound in Theorem 1 are open problems.References1. M. Balinski, On recent developments in integer programming, in: H.W. Kuhn, ed.,Proceedings of the Princeton Symposium on Mathematical Programming (PrincetonUniversity Press, N.J., 1970, 267-302).2. S. Boyd and R. Carr, \Finding low cost TSP and 2-matching solutions using certainhalf-integer subtour vertices," Manuscript, March 1998.
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