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of the edge). We all the problem of �nding a minimum ost network supportingthe required ow the deep-disount problem.Alternatively, at eah edge we might be able to pay for and install a ertainapaity seleted from a set of allowable disrete apaity units, and then routeow (up to the installed apaity) for free. The problem of �nding a minimumost network in this senario is alled the buy-at-bulk network design problem[14℄.Both the above problems reet eonomies of sale, in the ost of routingunit ow as the installation ost inreases (the deep-disount problem), and inthe ost per unit apaity as the apaity inreases (the buy-at-bulk problem).1.2 Our resultsThe two problems are in fat equivalent up to a small loss in the value of thesolution. In this paper, we fous on the deep-disount problem. We study thestruture of the optimum solution, and show that an optimal solution existswhih is a tree. We provide a natural IP formulation of the problem, and showthat it has an integrality gap of the order of the number of ables. We also providea polynomial time approximation algorithm by rounding the LP relaxation.1.3 Previous workMansour and Peleg [11℄ gave an O(log n)-approximation for the single sink buy-at-bulk problem with a single able type (only one disrete unit of apaityallowable) for a graph on n nodes. They ahieved this result by using a low-weight, low-streth spanner onstrution [2℄.Designing networks using failities that provide eonomies of sale has at-trated interest in reent years. Salman et al [14℄ gave an O(logD) approxi-mation algorithm for the single sink buy-at-bulk problem in Eulidean metrispaes, where D is the total demand. Awerbuh and Azar [4℄ gave a random-ized O(log2 n) approximation algorithm for the buy-at-bulk problem with manyable types and many soures and sinks, where n is the number of nodes in theinput graph. This improves to O(log n log logn) using the improved tree metrionstrution of Bartal [5℄. For the single sink ase with many able types, anO(log n) approximation was obtained by Meyerson, Munagala and Plotkin [12℄based on their work on the Cost-Distane two metri network design problem.Salman et al also gave a onstant approximation in [14℄ for the single abletype ase using a LAST onstrution [10℄ in plae of the spanner onstrutionused in [11℄. The approximation ratio was further improved by Hassin, Ravi andSalman [9℄.Andrews and Zhang [3℄ studied a speial ase of the single-sink buy-at-bulkproblem whih they all the aess network design problem and gave an O(k2)approximation, where k is the number of able types. As in the deep-disountproblem, they use a ost struture where eah able type has a buying and arouting ost, but they assume that if a able type is used, the routing ost is atleast a onstant times the buying ost.



An improved approximation to the problem we study was obtained simulta-neously but independently by Guha, Meyerson and Munagala [7℄, who designed aonstant-fator approximation algorithm. Their algorithm is ombinatorial andis based on their prior work on the aess network design problem [8℄, as opposedto our fous on the LP relaxation and its integrality gap.1.4 Outline of the paperIn the next setion, we de�ne the deep-disount problem formally and showits relation to the k-able buy-at-bulk problem. In Setions 3 through 6, weintrodue and study our integer program formulation and show that it has lowintegrality gap. We onlude with time omplexity issues and open questions inSetion 7.2 Problem de�nition and inter-redutions2.1 The deep-disount problemLet G = (V;E) be a graph with edge-lengths l : E ! IR+. Let d(u; v) denotethe length of the shortest path between verties u and v. We are given souresfv1; : : : ; vmg = S whih want to transport fdem1; : : : ; demmg units of ow re-spetively to a ommon sink t 2 V . We also have a set of k disount typesf�0; �1; : : : ; �k�1g available for us to purhase and install. Eah able �i has anassoiated �xed ost pi and a variable ost ri. If we install able �i at edge e androute fe ow through it, the ontribution to our ost is le(pi + feri). We maytherefore view the installation of able �i at an edge as paying a �xed ost pilein order to obtain a disounted rate ri of routing along this edge. The problem of�nding an assignment of disount types to the edges and routing all the souredemands to the sink at minimum total ost is the deep disount problem withk disount types (DD for short).Let us order the rates as r0 > r1 > : : : > rk�1. The rate r0 = 1 and the priep0 = 0 orrespond to not using any disount. (It is easy to see that we may saleour ost funtions so that this is true in general.) Observe that if pi � pi+1 forsome i then �i will never be used. Therefore, without loss of generality, we anassume p0 < p1 < : : : < pk�1.2.2 The buy-at-bulk problem with k-able typesIn an edge-weighted undireted graph, suppose we are given a set of souresfv1; : : : ; vmg whih want to transport fdem1; : : : ; demmg units of ow respetivelyto a ommon sink t. We have available to us k di�erent able types, eah havingapaity ui and ost i. We wish to buy ables suh that we have enough apaityto support the simultaneous ow requirements. We are allowed to buy multipleopies of a able type. There is no ow ost; our only ost inurred is the purhaseprie of ables. The problem of �nding a minimum ost feasible network is thebuy-at-bulk problem with k able types (BB for short). It isNP-Hard even whenk = 1 [14℄.



2.3 Approximate equivalene of BB and DDSuppose we are given a BB instane BB = (G; ; u) on a graph G with k abletypes having osts and apaities (1; 1); (1; u1); : : : ; (k�1; uk�1). We transformit into an instane of DD by setting edge osts (�xed and per-unit) (0; 1), (1; 1u1 ),: : :, (k�1; k�1uk�1 ), and all this DD(BB).Conversely, given a DD instane DD = (G; p; r) on a graph G with k dis-ount types having pries and variable osts (0; 1); (p1; r1); : : : ; (pk�1; rk�1), wetransform it into a BB instane BB(DD) with able types having osts andapaities (1; 1), (p1; p1r1 ), : : :, (pk�1; pk�1rk�1 ).It is easy to see that BB(DD(BB)) = BB and DD(BB(DD)) = DD; i.e.,the two transformations are inverses of eah other. For a problem instane X ,we abuse notation to let X also denote the ost of a feasible solution to it. LetX� denote the ost of an optimal (integer) solution to X .Lemma 1. BB � DD�(BB)Proof. Consider an edge e and let the ow on e in DD�(BB) be xe. If thesolution uses disount type 0 on e, then the BB solution does not pay any morethan the routing ost already paid. If it uses a disount type i > 0, we installdxeui e opies of able type i at this edge. Clearly this gives us a feasible solutionto BB. For this edge DD�(BB) has routing ost lexeiui and building ost lei,hene a total ost of lei(1 + xeui ). The BB solution has able ost leidxeui e onedge e, whih is no more than the total ost inurred by edge e in DD�(BB).Lemma 2. DD � 2BB�(DD)Proof. We will initially allow for multiple disount types on eah edge and payfor it all. A pruned solution will satisfy all the desired properties and ost onlyless. Hene let xie be the number of opies of able type i used at edge e. Weonly onsider edges with non-zero ow, that is, where xie > 0. Note that theow on e is at most xiepi=ri. We purhase a disount type i able on edge eand route the ow through it on this disounted able. We pay no more thanpile + xiepiri rile � (xie + 1)pile, whih is no more than two times the ost xiepilealready paid by BB(DD), sine xie � 1.Together, the above two Lemmas imply that BB�(DD) � BB(DD) �DD� � DD � 2BB�(DD), so that a � approximation algorithm for BB gives a2� approximation algorithm for DD. Similarly, a � approximation to DD is a 2�approximation to BB.Given the above relations, we fous on the deep-disount formulation in thispaper. One reason for hoosing to work with this version is presented in Setion 3where we show there are always ayli optimal solutions for the deep-disountproblem, while this is not always the ase for the buy-at-bulk problem (see,e.g., [14℄). However, we ontinue to use the term \able type" to refer to thedisount type used in an edge from time to time, even though a solution to thedeep-disount problem involves hoies of disount types on edges rather thaninstallation of ables.



3 Struture of an optimum solution to the deep-disountproblemLet us look at how an optimal solution alloates the disount types to edges androutes the ow to the sink. Clearly an edge will use only one type of disount.Suppose in an optimum, an edge e uses disount-i. De�ne a new length funtionl0e := rile. Clearly one the �xed ost for the disount is paid, the routing ostis minimized if we route along a shortest path aording to the length funtionl0. Therefore, there is an optimum whih routes along shortest paths aordingto suh a length funtion l0. As a result, we an also assume that the ownever splits. That is, if two ommodities share an edge then they share all thesubsequent edges on their paths to t. This is beause we an hoose a shortestpath tree in the support graph; ow along this tree to the root will never split.The ost of routing f units of ow on an edge e using disount-i is le(pi+rif).So the disount type orresponding to minimum ost depends only on f and isgiven by type(f) := minargifpi + rif j0 � i < kg.Lemma 3. The funtion type(f) de�ned above is non-dereasing in f .Proof. Consider any two disount types, say i and j with i < j. We know thatri > rj and pi < pj . As the ost funtions p + rf are linear, there is a ritialvalue f of ow suh that, pi + rif = pj + rjf . If the ow is smaller than f ,disount-i is better than disount-j. And if the ow is more than f , disount-jis better than disount-i. This proves the lemma.Suppose the optimal ow is along a path P from vj to t. As the ow neversplits, the ow along P is non-dereasing as we go from vj to t. Hene from theabove lemma, the disount type never dereases as we go from vj to t. We allthis property path monotoniity.Summarizing, we have the following.Theorem 1. There exists an optimum solution to the deep-disount problemwhih satis�es the following properties.{ The support graph of the solution is a tree.{ The disount types are non-dereasing along the path from a soure to theroot.Similar results were proved independently (but di�erently) in [3℄ and [7℄.Figure 1 illustrates the struture of an optimum assuming 3 disount types.4 Linear program formulation and rounding4.1 Overview of the algorithmFirst we formulate the deep-disount problem as an integer program. We thentake the linear relaxation of the IP, and solve it to optimality. Clearly an optimalsolution to the LP is a lower bound on the optimal solution to the IP.
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discount 0Fig. 1. Struture of an optimum solution to the deep-disount problem with threedisount types.We now use the LP solution to onstrut our solution. We have already seenthat there is an integer optimal solution whih is a layered tree. We onstrutsuh a tree in a top-down manner, starting from the sink. We iteratively augmentthe tree by adding ables of the next available lower disount type. At eah stagewe use an argument based on the values of the deision variables in an optimalLP solution to harge the ost of our solution to the LP ost. We thus boundthe ost of building our tree. We next bound the routing osts by an argumentwhih essentially relies on the fat that the tree is layered and that distanesobey the triangle inequality.4.2 Integer program formulationWe now present a natural IP formulation of the deep-disount problem. As isusual for ow problems, we replae eah undireted edge by a pair of anti-paralleldireted ars, eah having the same length as the original (undireted) edge. Weintrodue a variable zie for eah e 2 E and for eah 0 � i < k, suh that, zie = 1if we are using disount-i on edge e and 0 otherwise. The variable f je;i is the owof ommodity j on edge e using disount-i. For a vertex set S (or a singletonvertex v), we de�ne Æ+(S) to be the set of ars leaving S. That is, Æ+(S) =f(u; v) 2 E : u 2 S; v =2 Sg. Analogously, Æ�(S) = f(u; v) 2 E : u =2 S; v 2 Sg.The formulation is given in Figure 2.The �rst term in the objetive funtion is the ost of purhasing the variousdisount types at eah edge; we all this the building ost. The seond term isthe total ost (over all verties vj) of sending demj amount of ow from vertex vjto the sink; we all this the routing ost of the solution. These two omponentsof the ost of an optimal solution are referred to as OPTbuild and OPTrouterespetively.



minXe2E k�1Xi=0 piziele +Xvj2SXe2E k�1Xi=0 demjf je;irilesubjet to:(i) Xe2Æ+(vj ) k�1Xi=0 f je;i � 1 8vj 2 S(ii) Xe2Æ�(v) k�1Xi=0 f je;i = Xe2Æ+(v) k�1Xi=0 f je;i 8v 2 V n fvj ; tg; 1 � j � m(iii) Xe2Æ�(v) k�1Xi=q f je;i � Xe2Æ+(v) k�1Xi=q f je;i 0 � q < k; 8v 2 V n fvj ; tg;1 � j � m(iv) f je;i � zie 8e 2 E; 0 � i < k(v) k�1Xi=0 zie � 1 8e 2 E(vi) z; f non-negative integersFig. 2. Integer program formulation of the deep-disount problem.The �rst set of onstraints ensures that every soure has an outow of oneunit whih is routed to the sink. The seond is the standard ow onservationonstraints, treating eah ommodity separately. The third set of onstraints en-fores the path monotoniity disussed in the preeding Setion, and is thereforevalid for the formulation. The fourth simply builds enough apaity, and the�fth ensures that we install at least one able type on eah ar. Note that thisis valid and does not add to our ost sine we have the default able availablefor installation at zero �xed ost.Relaxing the integrality onstraints (vi) to allow the variables to take realnon-negative values, we obtain the LP relaxation. This LP has a polynomialnumber of variables and onstraints, and an be therefore solved in polynomialtime. The LP relaxation gives us a lower bound whih we use in our approxima-tion algorithm.5 The rounding algorithm5.1 Pruning the set of available ablesWe begin by pruning our set of available ables, and we show that this does notinrease the ost by more than a onstant fator. This pruning is useful in theanalysis.



The following lemma shows that the ost of solution does not inrease by alarge fator if we restrit ourselves to rates that are suÆiently di�erent, that is,they derease by a onstant fator.Let OPT be the optimum value with rates r0; r1; : : : ; rk�1 and orrespondingpries p0; p1; : : : ; pk�1. Let � 2 (0; 1) be a real number. Assume that �l�1 �rk�1 > �l. Now, let us reate a new instane as follows. Let the new rates be1; �; : : : ; �l�1. For eah i, let the prie orresponding to �i be pj , where rj is thelargest rate not bigger than �i. Let OPT 0 be the optimum value of this newproblem.Lemma 4. OPT 0route � 1�OPTrouteProof. Consider an edge e whih uses disount-j in OPT . In the solution of thenew problem, hange its disount type to �i suh that �i � rj > �i+1. Thus, forthis edge, the prie does not inrease and the routing ost inreases by a fatorat most 1=�.Sine OPT 0build � OPTbuild, we have as a onsequene that OPT 0 � 1�OPT .Hereafter we assume that the rates r0; r1; : : : ; rk�1 derease by a fator at least� for some 0 < � < 1, thereby inurring an inrease in ost by a fator of at most1=�.5.2 Building the solution: OverviewReall that G is our input graph, and k is the number of able types. We alsohave a set of parameters f�; �; ; Æg, all of whih are �xed onstants and whosee�et will be studied in the analysis in Setion 6.We build our tree in a top-down manner. We begin by de�ning Tk to be thesingleton vertex ftg, the sink. We then suessively augment this tree by addingables of disount type i to obtain Ti, for i going down k� 1; k� 2; : : : ; 1; 0. Our�nal tree T0 is the solution we output. Routing is then trivial { simply routealong the unique path from eah soure to the sink in the tree.Our basi strategy for onstruting the tree Ti from Ti�1 is to �rst identify asubset of demand soures that are not yet inluded in Ti�1 by using informationfrom their ontributions to the routing ost portion of the LP relaxation. Inpartiular, we order these andidate nodes in non-dereasing order of the radiusof a ball that is de�ned based on the routing ost ontribution of the enter ofthe ball. We then hoose a maximal set of non-overlapping balls going forwardin this order. This intuitively ensures that any ball that was not hosen an beharged for their routing via the smaller radius ball that overlapped with it thatis inluded in the urrent level of the tree. After hoosing suh a subset of as yetunonneted nodes, we build an approximately minimum building ost Steinertree with these nodes as terminals and the (ontrated) tree Ti�1 as the root.The balls used to identify this subset now also serve a seond purpose of relatingthe building ost of the Steiner tree to the frational optimum. Finally, in a thirdstep, we onvert the approximate Steiner tree rooted at the ontrated Ti�1 to



a LAST (light approximate shortest-path tree [10℄) whih intuitively ensuresthat all nodes in the tree are within a onstant fator of their distane fromthe root Ti�1 in this LAST without inreasing the total length (and hene thebuilding ost) of the tree by more than a onstant fator. This step is essentialto guarantee that the routing ost via this level of the tree does not involve longpaths and thus an be harged to within a onstant fator of the appropriate LProuting ost bound.5.3 Building the solution: DetailsThe details of the algorithm are presented in Figure 3. Let Cij denote the frationof the routing ost for routing unit ow from vj to t orresponding to disount-i,that is, Cij = Pe f je;irile. Hene P0�i<k Cij is the total routing ost for vertexvj . For a vertex v and a positive number R, let B(v;R) = fu 2 V : d(u; v) � Rgdenote the ball of radius R entered at vertex v.Seleting verties for inlusion in the urrent level. The bulk of the workis done in Step 4. We �rst hoose a ertain set of verties (Si at level i), and thenbuild a Steiner tree onneting the hosen verties to the root omponent (Ti+1).We note that this step is somewhat similar to the \tour ball" onstrution in[13℄.Building the Steiner tree. We build balls B(vj ; ÆRij) around eah seletedvertex vj . We note that we will hoose Æ < , where  is the dilation parame-ter for the radius of the balls used in the vertex seletion step. We then buildan approximately minimum Steiner tree whih onnets these seleted balls toTi+1. More formally, we ontrat eah ball and introdue a new node for it. Wealso ontrat Ti+1 and introdue a node for it. Then we run an approximationalgorithm to �nd a Steiner tree onneting all the seleted nodes that has ost atmost twie the value of a frational Steiner tree, i.e., within twie the ost of anLP relaxation for the Steiner tree problem on these nodes (See, e.g., [1℄). Thenwe un-ontrat the balls and extend the edges of the resulting forest inident onthe boundary of B(vj ; ÆRij) with diret edges to the enter vj . Thus we have atree onneting all the seleted verties vj to Ti+1.Converting the Steiner tree to a LAST. The Steiner tree onstruted sofar may have a very large diameter, sine we have not taken the routing intoonsideration so far. Hene it may lead to very high routing osts in the solution.To get around this, we use a onstrution due to Khuller, Raghavahari andYoung [10℄ whih ahieves short paths from a root node while being light.De�nition 1 (Light approximate shortest-path tree). Let G = (V;E) bea graph with a length funtion l : E ! IR+ and let t 2 V be a root vertex. Let�; � > 1 be real numbers. An (�; �)-LAST rooted at t is a tree T in G suh that



Algorithm Deep-disount(G; K; �; �; ; Æ)G: input graphK: set of ables�; �; ; Æ: parameters (�xed onstants)1. Prune the set of available ables as desribed in 5.1.2. Solve the LP relaxation of the IP desribed in 4.2.3. Tk = ftg.4. For i = k � 1; k � 2; : : : ; 1:De�ne Si := ;8vj =2 Ti+1:Rij = C0j+:::+Ci�1jri�1 .If Ti+1 \B(vj ; Rij) 6= ;;proxyi(vj):= any (arbitrary) vertex in Ti+1 \B(vj ; Rij)Si := Si [ fvjg.Order the remaining verties Li = V n (Ti+1 [ Si) in nondereasingorder of their orresponding ball radii.While Li 6= ;:Let B(vj ; Rij) be the smallest radius ball in L.8u 2 L \B(vj ; Rij):proxyi(u) := vjL := L n fugL := L n fvjgSi := Si [ fvjgComment: Si is the set of soures hosen to be onneted at this level.Contrat Ti+1 to a singleton node ti+1.Build a Steiner tree STi with Si [ fti+1g as terminals (Elaborated inthe text below { the parameter Æ is used here).Use disount type i for these edges.Convert STi into an (�; �)-LAST rooted at ti+1, denoted LASTi.De�ne Ti := Ti+1 [ LASTi.5. For every soure vertex vj =2 T1:Compute a shortest path P from vj to any node in T1.Augment T1 by inluding the edges in P .Use able type 0 on the edges in P .T0 := T1.6. Route along shortest paths in T0. This is the solution we output.Fig. 3. The algorithm



the total length of T is at most � times the length of an MST of G, and for anyvertex v 2 V , the length of the (v; t) path along T is at most � times the lengthof a shortest (v; t) path in G.The Steiner tree onstruted an now be transformed into an (�; �)-LASTrooted at ti+1 (the ontrated version of Ti+1) for some onstants �; � > 1 usingthe algorithm of [10℄. The edges in the LAST will use disount-i. We then un-ontrat the root omponent. This breaks up the LAST into a forest where eahsubtree is rooted at some vertex in the un-ontrated tree Ti+1. De�ne Ti to bethe union of Ti+1 and this forest.In the last stage, we onnet eah soure vj not in T1 to T1 by a shortest path,using disount-0, thereby extending T1 to inlude all remaining soure vertiesin T0.6 AnalysisWe use the LP optimum OPT as a lower bound on the integer optimum. LetOPTbuild =PePi piziele denote the total prie paid for purhasing ables of alldisount types in an LP optimum. Similarly, letOPTroute =PvjPePi demjf je;irilebe the total routing ost paid in that optimum. Thus OPT = OPTbuild +OPTroute is a lower bound on the total ost. In this setion, we prove that,for our algorithm, the total building ost is O(k � OPTbuild) and the total rout-ing ost is O(k � OPTroute). Thus we establish that the integrality gap of theformulation is no more than O(k).6.1 Building ostWe analyze the total prie paid for installing disount-i ables when we augmentthe tree Ti+1 to Ti.Note that in building an (�; �)-LAST from the tree, we inur a fator of atmost � in the building ost. We argue that the ost of building the tree at theurrent stage is O(OPTbuild). Then, summing over all k stages, we get that thetotal building ost is O(k � OPTbuild).For any soure vertex v, the following Lemma proves that there is suÆientfrational z-value rossing a ball around v to allow us to pay for an edge rossingthe ball. Sine the LP optimum pays for this z, we an harge the ost of ouredge to this frational z and hene obtain our approximation guarantee.Lemma 5. Let S � V be a set of verties suh that t 62 S and B(vj ; ÆRij) � S.Then, k�1Xq=i Xe2Æ+(S) zqe � 1� 1Æ :



Proof. Assume for the sake of ontradition that the sum is less than 1�1=Æ. Sothe total ow starting from the soure vj whih rosses S using disount typessmaller than i is more than 1=Æ. As it pays at least ri�1 per unit distane perunit ow, the total routing ost is more thanÆRijri�1Æ = C0j + : : :+ Ci�1jri�1 ri�1 = C0j + : : :+ Ci�1jThis is a ontradition, as the total ost spent in disount types smaller thani is exatly C0j + : : :+ Ci�1j .We built a LAST whih used disount-i. So the building ost of the LASTis pi times the length of the LAST. The following Lemma gives a bound on thisost.Lemma 6. The ost of the LAST built at any stage is O(OPTbuild).Proof. If we sale up the z-values in the optimum by a fator Æ=(Æ� 1), Lemma5 indiates that we have suÆient z-value of types i or higher to build a Steinertree onneting the balls B(vj ; ÆRij) to Ti+1. If we use the primal dual method [1℄,we inur an additional fator of 2 in the ost of the Steiner tree as against theLP solution z-values. Thus, its ost will be at most2 ÆÆ � 1pi k�1Xq=iXe zqe � 2 ÆÆ � 1OPTbuild:After un-ontrating the balls, we extended the forest to enters vl by diretedges between the boundaries of forest edges in B(vl; ÆRil) and vl. We an a-ount for this extension by using the following observation. For a enter vl, theost of extension is at most Æ�Æ times the ost of the forest inside B(vl; Ril).Furthermore, during the seletion of the verties, we ensured that for any twoseleted verties vl and vj , the balls B(vl; Ril) and B(vj ; Rij) are disjoint. Thusthe total ost of the extended tree is at most 1+ Æ�Æ times the ost of the previousforest. Hene ost of the Steiner tree built is at most 2 �Æ ÆÆ�1OPTbuild. Subse-quently, the ost of the LAST built from this tree is at most 2� �Æ ÆÆ�1OPTbuild[10℄. For �xed onstants �; Æ;  with  > Æ, this is O(OPTbuild) and ompletesthe proof.The total building ost is the sum of building osts at eah stage, and wehave k suh stages. Thus, we have the following.Lemma 7. The total building ost is O(k �OPTbuild).6.2 Routing ostAfter onstruting the tree, for eah soure vertex vj , we route the orrespondingommodity along the unique (vj ; t) path on the tree. Let OPTj =Pi Cij denote
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proxy (v)Fig. 4. Analysis for routing ost.the routing ost per unit ow for vj in the optimum. We prove that the routingost for a soure vj is O(k) times OPTj . Thus the total routing ost is O(k �OPTroute).Refer to Figure 4 for the following analysis.Lemma 8. For any soure vertex vj , the ost of routing unit amount of itsorresponding ommodity is O(k � OPTj).Proof. Let the (vj ; t) path along T0 be vj = u0; u1; : : : ; uk = t suh that thesub-path (ui; ui+1) uses disount-i for 0 � i < k. Note that if disount-i is notused, then ui = ui+1. Let dT (ui; ui+1) be the distane between ui and ui+1 inthe tree T0. Then, for vj , the routing ost per unit ow is Pi ridT (ui; ui+1).For 1 � i < k, let proxyi(vj) denote the proxy of vj in stage k� i. Moreover,for all j, de�ne proxyk(vj) = t. We have d(vj ; proxyi+1(vj)) � 2C0j+:::+Cijri �2OPTjri . We also know that ridT (ui; ui+1) � � � rid(ui; proxyi+1(vj)) beausewhen we onstruted the LAST in stage k � i, d(ui; ui+1) was at most � timesthe shortest path onneting ui to Ti+1. Also this shortest path is shorter thand(ui; proxyi+1(vj)), as proxyi+1(vj) was in Ti+1.By indution on i we prove that, ridT (ui; ui+1) �M �OPTj for some onstantM . For the base ase when i = 0, vj was onneted by a shortest path to T1.Hene r0dT (u0; u1) � r0d(vj ; proxy1(vj)) � r0 � 2C0jr0 � 2OPTj � M � OPTjfor suÆiently large M .Now assume rldT (ul; ul+1) �M �OPTj for all l < i. Using triangle inequalityand the indution hypothesis, we getri � dT (ui; ui+1) � � � ri � d(ui; proxyi+1(vj))� � � ri i�1Xq=0 d(uq ; uq+1) + � � ri � d(u0; proxyi+1(vj))= � i�1Xq=0 rirq � rq � d(uq ; uq+1) + � � ri � d(vj ; proxyi+1(vj))



� � i�1Xq=0 �i�q �M �OPTj + � � 2OPTj� ( ��1� �M + 2�)OPTj�M � OPTjfor M � 2�(1��)1��(1+�) . This ompletes the indution. Summing over all edges inthe path from vj to t, we get the statement of the lemma.Summing the routing ost bound over all soure verties vj , we obtain thatthe total routing ost is no more than O(k �OPTroute).7 ConlusionThe exat approximation fator of our algorithm depends on the parameters. Ifwe set (�; �; ; Æ; �) to be (7; 43 ; 3; 2; 15 ) respetively, we obtain an approximationfator of 60k for both omponents of the ost funtion. The running time of ouralgorithm is dominated by the time to solve an LP with O(mnk) onstraints andvariables.7.1 Reent workThe work of Guha et al [7℄ is ombinatorial, and they build their tree in a bottomup manner. Their approah is to gather demand from nodes by means of Steinertrees until it is more pro�table to use the next higher type of able available.They then onnet suh trees using shortest path trees that gather suÆientdemand to use the next able type. They iteratively do this until all nodes areonneted to the sink. Their algorithm being purely ombinatorial has a muhbetter running time. However, their approximation ratio is a large onstant,roughly 2000. We an ontrast this with our approximation fator, whih is 60kwith k being the number of ables after pruning.After learning about their work, we have been able to tighten the ratio of thebuilding ost omponent of our solution to the analogous omponent in the LPrelaxation (OPTbuild) to a onstant. We show how to do this in the extendedversion of our paper [6℄. Essentially, we prune the set of available ables so asto get a suÆient (geometri) inrease in the �xed ost of higher index ables.Subsequently, if our LP has purhased a ertain amount of a ertain able, weallow ourselves to purhase the same amount of all ables of lower index. Giventhe geometri osts, this only results in a onstant fator dilation of the LP lowerbound. We show that this solution is near-optimal, and we ompare ourselvesagainst it. Our algorithm an then harge the building ost of able type i towhat the augmented LP paid for able type i only, instead of the entire buildingost of the LP. This enables us to prove that the integrality gap of the buildingost omponent is low. However, we do not see yet how to improve the routingost omponent of our solution.
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