
Erratum: An Approximation Algorithm for

Minimum-Cost Vertex-Connectivity Problems

R. Ravi
∗

GSIA, Carnegie Mellon University

David P. Williamson
†

IBM Almaden

July 2001

Abstract

There is an error in our paper “An Approximation Algorithm for Minimum-Cost Vertex-
Connectivity Problems,” (Algorithmica (1997) 18:21-43). In that paper we consider the fol-
lowing problem: given an undirected graph and values rij for each pair of vertices i and j,
find a minimum-cost set of edges such that there are rij vertex-disjoint paths between ver-
tices i and j. We gave approximation algorithms for two special cases of this problem. Our
algorithms rely on a primal-dual approach which has led to approximation algorithms for
many edge-connectivity problems. The algorithms work in a series of stages; in each stage an
augmentation subroutine augments the connectivity of the current solution. The error is in a
lemma for the proof of the performance guarantee of the augmentation subroutine.

In the case rij = k for all i, j, we described a polynomial-time algorithm that claimed to
output a solution of cost no more than 2H(k) times optimal, where H(n) = 1+ 1

2
+· · ·+ 1

n
. This

result is erroneous. We describe an example where our primal-dual augmentation subroutine,
when augmenting k-vertex connected graph to a k+1-vertex connected graph, gives solutions
that are a factor Ω(k) away from the minimum.

In the case rij ∈ {0, 1, 2} for all i, j, we gave a polynomial-time algorithm which outputs
a solution of cost no more than 3 times the optimal. In this case, we prove that the erroneous
statement in the lemma does not apply, and that the algorithm performs as claimed.

1 Background

Let G = (V, E) be an undirected graph with non-negative costs ce ≥ 0 on all edges e ∈ E. In

the survivable network design problem, one is given a non-negative integer rij for each pair of
vertices i, j, and must find a minimum-cost set of edges E ′ ⊆ E such that for every i, j pair there

are at least rij vertex-disjoint paths between i and j in the graph (V, E ′). The minimum-cost

k-vertex-connectivity problem is a special case of the survivable network design problem in which

rij = k for all pairs of vertices i, j.

In Ravi and Williamson [10], we gave polynomial-time approximation algorithms for the

minimum-cost k-vertex connectivity problem, and the survivable network design problem when
rij ∈ {0, 1, 2} for all i, j. We abbreviate the former problem as k-VC and the latter as {0, 1, 2}-
SNDP. We claimed that the algorithms returned solutions of cost within 2H(k) of optimal, and
3 times optimal, respectively, where H(n) = 1 + 1

2 + · · ·+ 1
n . The first claim is erroneous, and
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in this note we describe the error and give an example showing that our algorithm can be quite

far from optimal for k-VC. However, our 3-approximation algorithm for {0, 1, 2}-SNDP is still
correct, and in this note we show why the error that causes problems in the previous case does

not affect this algorithm.

In what follows, we assume that the reader is familiar with the notation, algorithms, and

proofs of [10]. Our paper flowed out of a line of research on designing approximation algorithms
for edge-connectivity problems [1, 5, 6, 8, 11]. The algorithms of our paper followed the general

approach of these algorithms. The algorithms break down the problem into a number of phases.
In each phase, we specify certain vertex sets S, S ′ that must be augmented; that is, we must

select an additional edge from δ(S : S ′) for each specified S, S ′, where δ(S : S ′) is the set of edges
with one endpoint in S and one in S ′. This augmentation problem is formulated as an integer
programming problem, and the problem is solved by using a variant of the primal-dual method.

The error in [10] is contained in the proof of the performance guarantee of the primal-dual

algorithm for the augmentation problem. Specifically, there is an erroneous statement in Lemma
4.7. We describe the error in Section 2 of this note. We had claimed that the performance guar-

antee for each phase of the algorithm would hold if three conditions held on a function h encoding
the vertex sets S, S ′ that needed to be augmented. These three conditions are summarized in
page 36 (just before Corollary 4.8) in [10]. Because of the error in Lemma 4.7, Corollary 4.8 as

stated is wrong. We elaborate on the consequences for the two main results in [10] below.

In the case of k-VC, we do not have a 2H(k)-approximation algorithm as claimed because
Lemma 4.7 does not hold when applied to the algorithm for the augmentation problems arising
in phases of the k-vertex-connectivity algorithm. In Section 3 of this note, we describe a counter-

example to the claimed performance guarantee. The example shows that the algorithm used for
augmenting a p-vertex-connected graph to a (p + 1)-vertex-connected graph can give a solution

of cost a factor of Ω(p) more than the optimum cost. Thus Theorem 4.1 is wrong for this case,
as are Theorem 4.2 and Corollary 4.3.

However, for {0, 1, 2}-SNDP, the statement that is incorrect in Lemma 4.7 in general can be
shown to hold. In Section 4 of this note, we provide a complete proof. This also shows that

Theorem 4.1 is true for the {0, 1, 2}-SNDP, and consequently shows that Theorem 4.4 is correct.

2 The Error in the Proof of Lemma 4.7

The strategy used in [10] to prove Theorem 4.1 and Corollary 4.8 follows that in Section 5 of
Williamson et al. [11]. The idea is to use induction over the iterations of the primal-dual algorithm

and show that in any iteration,
∑

C∈C

|δF ′(C : ζI(C))| ≤ 2|C|. (1)

Here C is the collection of active sets in this iteration, F ′ is a minimal set of edges needed to solve

the augmentation problem, and I is a set of preexisting edges from previous phases. A proof of
this inequality in every iteration implies the performance guarantee given in Theorem 4.1.

Consider the set of edges Y defined as Y =
⋃

C∈C δF ′(C : ζ(C)). These edges must have been
added during or after the current iteration. We show in Lemma 4.5 the existence of a witness

set for each edge. For each edge e ∈ Y there exists a witness set Se ⊂ V such that

1. δF ′(Se : ζ(Se)) = {e},

2. Se is violated in the current iteration,
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3. For each C ∈ C either C ⊆ Se or C ∩ Se = ∅.

This lemma continues to hold. We then considered a collection S of sets Se satisfying the

conditions of Lemma 4.5, taken over all the edges e in Y . We called S a witness family and
required that there exists a laminar witness family for the function h defined in the augmentation

problem. Lemmas 4.12 and 4.13 are also correct; these lemmas show the existence of laminar
witness families for the augmentation problems arising from the k-VC and {0, 1, 2}-SNDP.

For the remaining proof of the inequality, we essentially followed the proof of Williamson et
al. in [11]. We first added the set V to the witness family. The family can then be viewed as

defining a tree H with a vertex vS for each S ∈ S and edge (vS, vT ) if T is the smallest element
of S properly containing S. To each active set C ∈ C we associated the smallest set S ∈ S that

contains it. We colored the vertices of the tree H : a vertex vS is colored red if S is associated
with some active set C and colored blue otherwise. Let L(vS) be the collection of active sets

associated with a red vertex vS.

In Lemma 4.6, we showed the simple fact that the tree H has at most one blue leaf.

In Lemma 4.7, we claimed that for any red vertex vS in H , the degree of vS in the tree H is at
least

∑
C∈L(vS ) |δF ′(C : ζ(C))|. The lemma is used in a charging scheme that implies inequality

(1). This lemma is wrong. The proof went as follows:

Note that the one-to-one mapping between the edges of Y and the witness sets implies
a one-to-one mapping between the edges of Y and the edges of H : each witness set

S defines a unique edge (vS , vT ) of H , where T contains S. Consider any edge
e ∈ δF ′(C : ζ(C)) for some C ∈ C. Let (vSe , vT ) be the edge defined by the witness

set Se. The active set C must be associated with either vSe or vT .

The error in the proof is in this last statement. Since C is a minimal violated set and Se is a
violated set, we know that either C ⊆ Se or C ∩ Se = ∅. We prove below (in Claim 4.1) that if

C ⊆ Se then C is associated with Se. However, it is not in general the case that if C ∩ Se = ∅
then C is associated with T .

In the case of edge connectivity, the proofs in Williamson et al. [11] consider edges Y =⋃
C∈C δF ′(C), and e ∈ Y . It is not hard to see that the problematic statement of Lemma 4.7 is

true in this case. Suppose not. If C ∩ Se = ∅, then C is associated with some witness set X , and
either X ⊃ T ⊃ Se or X ∩ Se = ∅. In the former case, e has one endpoint in Se ⊂ T and one in

C ⊆ X − T . Thus e ∈ δF ′(T ), which either contradicts property (1) of the witness set T , or the
property that there is exactly one set in S that is a witness set for e. In the latter case, e has an
endpoint in Se ⊂ V −X and another in C ⊆ X , so that e ∈ δF ′(X). This leads to a contradiction

as above.

However, as we will show in the next section, this proof breaks down in the case of vertex
connectivity, since it can be the case that e ∈ δF ′(T ) but e /∈ δF ′(T : ζ(T )). Thus this does not

contradict the property of T as a witness set or S as a witness family.

This renders Lemma 4.7, and consequently Theorem 4.1 and Corollary 4.8 incorrect. In

the next section, we show a counterexample to these three claims for the k-vertex-connectivity
augmentation problem. In the following section, however, we “salvage” our result for the {0,1,2}-
SNDP in [10] and show why the counterparts of these claims (the part of Theorem 4.1 for
{0,1,2}-SNDP, and consequently Theorem 4.4) continue to hold.
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3 The Error in the Algorithm for k-VC

We recall the high-level structure of the algorithm for k-VC. The algorithm consists of k phases,
and each phase adds edges to the current solution, starting initially with the empty set of edges

at the beginning of phase 1. The idea is that at the end of phase p, our set of edges should form
a p-vertex-connected graph on the set of vertices of the input graph. We denote our set of edges

at the end of phase p as Fp. In phase p we must augment the (p− 1)-vertex-connected edge set
Fp−1 to the p-vertex-connected Fp.

Figure 1 shows an example where the inequality (1) fails to hold, in the case of augmenting
from a k-vertex connected graph to a (k +1)-vertex connected graph. The example is structured

as follows. The dashed edges are those added in the augmentation; all other edges are present
from previous phases. Let F ′ be the set of augmentation edges and I be the set of all other edges.

Each rectangle with a number x in it denotes a complete graph on x vertices. Pairs of rectangles
connected by two lines means that there is a complete bipartite graph between the nodes of the

two cliques. Similarly, the nodes vi connected to the rectangles labeled k at the bottom of the
figure have edges to all k vertices in those cliques. (The thick and dashed edges incident to the

wj nodes are single edges). We define some sets of nodes. Let set Si,j be the set of vertices
containing vi and the first j cliques above it (that is, those labeled k, k − 1, . . . , k − j + 1). By
definition, Si,0 = {vi}.

In the case of this example, the active sets C consist of the singleton sets of the vertices

v1, . . . , vk and w1, . . . , wk/2, since each of these has exactly k node neighbors. In the augmentation,
edges are added from w1 to each of v1, v2, . . . , vk, w2 to some node in each of the k-cliques, w3

to each of the (k − 1)-cliques, and so on. We claim that this is a minimal augmentation. In
particular, we claim that the sets Si,j are witness sets for the augmentation edges for i = 1, . . . , k,
j = 0, . . . , k/2 + 2. Observe that each of these sets has only k node neighbors without the

augmentation edges, and that the augmenting edges add exactly one node neighbor (one of the
wi) to each of these sets.

Hence for this example we have that |δF ′(vi : ζI(vi))| = 1, |δF ′(wi : ζI(wi))| = k, and
|C| = 3k/2, yielding that

∑

C∈C

|δF ′(C : ζi(C))| = k + k2/2 6≤ 3k = 2|C|,

contradicting inequality (1) for k > 4.

By adding appropriate edge costs, and modifying the example slightly, one can give an ex-

ample in which the optimal augmentation costs are 7
2k, and the primal-dual algorithm finds an

augmentation of cost k + k(k − 1)/2.

Even in the case of augmenting a 2-vertex connected graph to be 3-vertex connected, we can

construct examples where the number of active sets is p while the “active degree” (the left-hand-
side term in the inequality above) is 3(p− 2) for any p ≥ 4. This shows that our augmentation
algorithm does not provide the claimed 2-approximation guarantee even in this case. However, we

show in the next section that our claimed guarantee holds for smaller values of vertex connectivity,
i.e., for the {0, 1, 2}-Survivable Network Design Problem.

4 Corrected Proof for the {0, 1, 2}-Survivable Network Design

Problem

In this section we show that Lemma 4.7 holds in the case of {0, 1, 2}-SNDP.
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Figure 1: Bad example for inequality (1) for the k-VC problem.
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First, we recall the high-level algorithm for solving the survivable network design problem

when rij ∈ {0, 1, 2}. The algorithm here will have two phases. In the first phase, we find a
solution for the network design problem with requirements r′ij = max(rij − 1, 0). In the second

phase, we augment this solution to find a feasible solution for the original problem. Essentially
the first phase finds a set of edges to connect all pairs of vertices i, j for which rij = 2, and the

second phase finds a second vertex-disjoint path for these pairs of vertices, as well as edges to
connect all pairs i, j for which rij = 1.

Notice that when finding a set of edges to solve the problem of the first phase, there is no
difference between edge-connectivity and vertex-connectivity. Hence we can use an approximation

algorithm for the edge-connectivity survivable network design problem in which r′ij ∈ {0, 1}. The
first such algorithm for this problem is due to Agrawal, Klein, and Ravi [1]. For the sake of our
analysis, we use the algorithm of Goemans and Williamson [5]. Let F1 denote the set of edges

returned by this algorithm.

To find an augmenting set of edges in the second phase, we once again use the augmenting
subroutine Augment. We call Augment on a modified graph G′ = (V ′, E ′). For every edge

(i, j) ∈ F1 such that rij = 2, we create a new vertex u that subdivides the edge (i, j). That is,
for each such edge (i, j), we add u to V , remove (i, j) from E, and add edges (i, u) and (u, j).
We split the cost of the edge (i, j) equally between the two new edges; i.e., we set ciu = cuj =

cij

2 .

Our reason for doing this subdivision is so that i and j are no longer adjacent in the modified
graph, and so that we will be able to apply Menger’s Theorem. Note that there is a solution F ′

1

in G′ corresponding to F1 in G.

To use Augment, we set h(S) = 1 exactly when there exist i ∈ S, j ∈ ζF ′
1

(S) (in the modified

graph G′) such that |ΓF ′
1

(S)| < rij. This can happen in one of two ways. If rij = 2, then i and j
need to be 2-vertex-connected but are separated by a cutvertex. If rij = 1 then i and j need to

be connected, but are in different connected components. Augment will return a set of edges
F ′ ⊆ E ′ − F ′

1 such that |δF ′(S : ζF ′
1

(S))| ≥ 1 whenever h(S) = 1. By the definition of h and F ′
1,

for any two i, j such that rij = 2, the set of edges F ′
1 ∪ F ′ will contain no cutvertex separating i

and j in the modified graph. Similarly, for any two i, j such that rij = 1, there will exist a path

in F ′
1 ∪ F ′ from i to j in the modified graph. Notice that since there are no edges in E ′ − F ′

1

involving the new vertices of the modified graph, the set of edges F ′ is a subset of edges of the

original graph. Thus F2 ← F1 ∪ F ′ is a feasible solution to the original problem in the original
graph: the non-existence of a cutvertex separating any i, j with rij = 2 in the modified graph
implies that there are two vertex-disjoint paths between i and j in the edge set F2, and similarly

that i and j are connected in F2 if rij = 1.

For the first (Edge-SNDP) phase, the performance guarantee correctly follows from Agrawal,
Klein, and Ravi [1], or Goemans and Williamson [5]. For the proof of performance guarantee of

the Augment procedure in the second phase, recall that in Lemma 4.7, we made the following
key claim that was erroneous for the k-VC.

Claim 4.1 Consider an edge e ∈ δF ′(C : ζ(C)) for some C ∈ C. Let (vSe , vT ) be the edge defined

by the witness set Se. The active set C must be associated with either vSe or vT .

We now give a detailed proof of the above claim in this case.

Proof : We consider two cases: C ⊆ Se or C ∩ Se = ∅. These are exhaustive since an active set

such as C cannot cross a violated witness set such as Se.

Case 1: C ⊆ Se.

First, note that if Se is a witness set for edge e, then δF ′(Se : ζ(Se)) = {e}. Suppose for a

contradiction that C is not associated with Se in this case. Then, there must be a S ′ such that
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Figure 2: Case 1 of Claim 4.1.

C ⊆ S ′ ⊆ Se and S ′ is in the laminar witness family. We claim this implies that δF ′(S ′ : ζ(S ′)) ∋ e.

We know C ⊆ S ′ which contains one endpoint of e. Also, since Γ(S ′) ⊆ Se∪Γ(Se), ζ(Se) ⊆ ζ(S ′).
Thus the other endpoint of e, which is in ζ(Se), must also be in ζ(S ′), and e ∈ δF ′(S ′ : ζ(S ′)).
However, S ′ cannot be a witness set for otherwise there would be two witnesses in the family for

e, a contradiction. See Figure 2 for an illustration of this case.

We note that the proof of this case does not use the restricted setting of the {0,1,2}-vertex-
connectivity problem.

Case 2: C ∩ Se = ∅.

Let e = (u, v) where u ∈ Se and v ∈ C. Let the parent of Se in the laminar witness family be

T , and suppose for a contradiction that C is not associated with T . This implies that C 6⊆ T or
that T ∩ C = ∅.

In this case we first note that v must belong to Γ(T ), the node-neighborhood of T . For
otherwise, e would be in δF ′(T : ζ(T )) and there would be two sets in the family (Se and T )

witnessing e.

This implies that T must be a witness set of type (2), i.e., there is a pair i, j of nodes with
i ∈ T and j ∈ ζ(T ) with rij = 2 but i and j are separated by the cutvertex v in the current graph
F1∪F (when C was active; see Figure 3). Note that v must be this cutvertex since ΓF1∪F = {v}.
By the property of phase 1 of the algorithm, there is a path already between i and j in the
current graph and v is a cutvertex separating them lying on this path.

The key observation then is that j ∈ C since otherwise C, which contains v on the path from

i to j, will have at least two node neighbors in the current graph along this path, one in T and
the other in V − T − {v}, contradicting that C is active (See Figure 3).

Now, since T is violated of type (2), we infer that ζ(T ) is also violated (since Γ(ζ(T )) ⊂ Γ(T ))
and this is not empty since it contains j and not i, which means Γ(ζ(T )) = {v}.

But then we see that ζ(T ) and C cross in this case (since v is in C and not in ζ(T ) and also
ζ(T ) 6⊆ C since C is minimally violated), a contradiction.

This shows that the 3-approximation guarantee of our two-stage algorithm correctly holds for
the {0,1,2}-Vertex-Connectivity problem.
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Figure 3: Case 2 of Claim 4.1.

5 Concluding Remarks

We remark that the structural lemmas (Lemmas 4.9-12) in our paper [10] are correct and may

be useful in other contexts.

Recently, Fleischer [3] has presented an algorithm with an improved 2-approximation guaran-
tee for the minimum-cost {0, 1, 2}-Survivable Network Design Problem, by adapting a technique
of Jain [7]. She also describes the limitation of this LP rounding technique for solving the k-VC

problem by exhibiting a family of examples where the largest fractional values are very small ( 1
k ).

Even more recently. Cheriyan, Vempala and Vetta [2] have presented a 6H(k)-approximation
algorithm for k-VC for graphs with at least 6k2 vertices, by combining some results on critically

connected graphs by Mader [9] with a minimum-cost k-outconnected subdigraph algorithm of
Frank and Tardos [4].
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