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Abstract

Thek-forest problems a common generalization of both theMSTand thedensek-subgraphproblems.
Formally, given a metric space enverticesV, with m demand pairs V' x V and a “target’s < m,
the goal is to find a minimum cost subgraph that connatigastk demand pairs. In this paper, we
give anO(min{,/n, vk })-approximation algorithm fok-forest, improving on the previous best ratio
of O(min{n?/?,\/m} logn) by Segev and Segev [SS06].

We then apply our algorithm fok-forest to obtain approximation algorithms for sevelédl-a-Ride
problems. The basic Dial-a-Ride problem is the following: givemgmint metric space with objects

each with its own source and destination, and a vehicle capable of caatyimgstk objects at any time,

find the minimum length tour that uses this vehicle to move each object from its source to destination.
We want that the tour baon-preemptivei.e., each object, once picked up at its source, is dropped
only at its destination. We prove that anapproximation algorithm for thé-forest problem implies
anO(a - log? n)-approximation algorithm for Dial-a-Ride. Using our results feforest, we get an
O(min{\/n, Vk} - log? n)-approximation algorithm for Dial-a-Ride. The only previous result known

for Dial-a-Ride was aD(v/k log n)-approximation by Charikar and Raghavachari [CR98]; our results
give a different proof of a similar approximation guarantee—in fact, when the vehicle capésigrge,

we give a slight improvement on their results. The reduction from Dial-a-Ride tb-fbeest problem

is fairly robust, and allows us to obtain approximation algorithms (with the same guarantee) for some
interesting generalizations of Dial-a-Ride. This reduction is essential, as it is unclear how to extend the
techniques of [CR98] to these generalizations.

We also consider the effect pfeemptionsn the Dial-a-Ride problem, and show that the real increase

in tour length occurs between allowing one and zero preemptions per object: there is always a tour that
preempts each object at most once, and has leBgihg” n) times an optimal preemptive tour (that may
preempt each object several times). On the other hand, there are instances of Dial-a-Ride [CR98] where
the optimal non-preemptive tour has lengtfn'/?) times an optimal preemptive tour.

1 Introduction

In the Steiner forest problem, we are given a set of vertex-pairs, and the goal is to find a forest such that
each vertex pair lies in the same tree in the forest. This is a generalization of the Steiner tree problem,
where all the pairs contain a common vertex called the root; both the tree and forest versions are well-
understood fundamental problems in network design, and constant factor approximation algorithms are
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known [RZ05, AKR91, GW92]. An important extension of the Steiner tree problem studied in the late
1990s was thé&-MST problem, where one sought the least-cost tree that connectell ahthe termi-

nals: several approximations algorithms were given for the problem, culminating 2aapperoximation of

Garg [Gar05]; thé-MST problem proved crucial in many subsequent developments in network design and
vehicle routing [CGRT03, FHR03, BCKD3, BBCMO04]. One can analogously define théorest problem
where one needs to connamtly £ of the pairsin some Steiner forest instance: surprisingly, very little is
known about this problem, which was first studied formally only recently [HJ06, SS06]. In this paper, we
give a simpler and improved approximation algorithm for khirest problem.

Moreover, just like thé-MST variant, the:-forest problem seems to be useful in applications to network
design and vehicle routing. In the second half of the paper, we show a (somewhat surprising) reduction of
a well-studied vehicle routing problem called the Dial-a-Ride problem téifazest problem. In the Dial-
a-Ride problem, we are given a metric space with people having sources and destinations, and a bus of
some capacity:; the goal is to find a route for this bus so that each person can be taken from her source
to destination without exceeding the capacity of the bus at any point, such that the length of the bus route
is minimized. We show how the results for thdorest problem slightly improve upon existing results for
the Dial-a-Ride problem; in fact, they give the first approximation algorithms for some generalizations of
Dial-a-Ride which do not seem amenable to previous techniques.

1.1 The k-Forest Problem

Our starting point is thé&-forest problem, which generalizes both théST and the densg-subgraph
problems.

Definition 1 (The k-Forest Problem) Given ann-vertex metric spacéV, d), anddemands(s;, t;}7>, C
V x V, find the least-cost subgraph that connects at Iéatmand-pairs.

Note that the:-forest problem is a generalization of the (minimization version of the) well-studied dense-
subgraph problem, for which nothing better tharm!/3~?) approximation is known. Thi-forest prob-

lem was first defined in [HJ06], and the first non-trivial approximation was given by Segev and Segev [SS06],
who gave an algorithm with an approximation guarante® @hin{n?/3, \/m} logn). We improve the ap-
proximation guarantee of thie-forest problem toO(min{+/n, V’k}); formally, we prove the following
theorem in Section 2.

Theorem 2 (Approximating k-forest) There is anO(min{+/n - }ggﬁ, V'k})-approximation algorithm for
the k-forest problem. For the case whénis less than a polynomial in, the approximation guarantee
improves ta0 (min{y/n, Vk}).

Apart from giving an improved approximation guarantee, our algorithm forktfigrest problem is
arguably simpler and more direct than that of [SS06] (which is based on Lagrangian relaxations for the
problem, and combining solutions to this relaxation). Indeed, we give two algorithms, both reducing the
forest problem to th&-MST problem in different ways and achieving different approximation guarantees—
we then return the better of the two answers. The first algorithm (giving an approximatidn/af)) uses
the k-MST algorithm to find good solutions on the sources and the sinks independently, and then uses the
Erdds-Szekeres theorem on monotone subsequences to find a “good” subset of these sources and sinks to
connect cheaply; details are given in Section 2.1. The second algorithm starts off with a single vertex as
the initial solution, and uses theMST algorithm to repeatedly find a low-cost tree that satisfies a large
number of demands which have one endpoint in the current solution and the other endpoint outside; this tree
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is then used to greedily augment the current solution and proceed. Choosing the parameters (as described in
Section 2.2) gives us afi(y/n) approximation.

1.2 The Dial-a-Ride Problem

In this paper, we use theforest problem to give approximation algorithms for the following vehicle routing
problem.

Definition 3 (The Dial-a-Ride Problem) Given ann-vertex metric spac@/, d), a starting vertex (oroof) r,
aset ofim demandd(s;, t;) }/*,, and a vehicle of capacity, find a minimum length tour of the vehicle start-
ing (and ending) at that moves each objec¢tfrom its sources; to its destinatiort; such that the vehicle
carries at mosk objects at any point on the tour.

We say that an object freemptedf, after being picked up from its source, it can be left at some intermediate
vertices before being delivered to its destination. In this paper, we will not allow this, and will mainly be
concerned with theon-preemptiv®ial-a-Ride problent.

The approximability of the Dial-a-Ride problem is not very well understood: the previous best upper
bound is anO(v/k log n)-approximation algorithm due to Charikar and Raghavachari [CR98], whereas
the best lower bound that we are aware of is APX-hardness (from TSP, say). We establish the following
(somewhat surprising) connection between the Dial-a-Ridekafiodest problems in Section 3.

Theorem 4 (Reducing Dial-a-Ride tok-forest) Given anx-approximation algorithm fok-forest, there is
an O(« - log? n)-approximation algorithm for the Dial-a-Ride problem.

In particular, combining Theorems 2 and 4 gives u®dmin{v'k, /n} - log? n)-approximation guarantee
for Dial-a-Ride. Of course, improving the approximation guaranteé:ffmrest would improve the result
for Dial-a-Ride as well.

Note that our results match the results of [CR98] up to a logarithmic term, and even give a slight im-
provement when the vehicle capacktys n, the number of nodes. Much more interestingly, our algorithm
for Dial-a-Ride easily extends to generalizations of the Dial-a-Ride problem. In particular, we consider a
substantially more general vehicle routing problem where the vehicle haspriori capacity, and instead
the cost of traversing each edgés an arbitrary non-decreasing functiof(!) of the number of objects
in the vehicle; setting. (/) to the edge-lengthl, whenl < k, andc.(l) = oo for I > k gives us back the
classical Dial-a-Ride setting. In Section 3.2, we show that this generaluniform Dial-a-Ridegroblem
admits an approximation guarantee that matches the best known for the classical Dial-a-Ride problem. An-
other extension we consider is tiveighted Dial-a-Rideproblem. In this, each object may have a different
size, and total size of the items in the vehicle must be bounded by the vehicle capacity; this has been earlier
studied as theickup and deliverproblem [SS95]. We show in Section 3.3 that this problem can be reduced
to the (unweighted) Dial-a-Ride problem at the loss of only a constant factor in the approximation guarantee.

As an aside, we consider the effect of preemptions in the Dial-a-Ride problem (Section 4). It was shown
in Charikar and Raghavachari [CR98] that the gap between the optimal preemptive and non-preemptive tours
could be as large 6(§(n1/3). We show that the real difference arises betweermandone preemptions:
allowing multiple preemptions does not give us much added power. In particular, we show in Section 16
that for any instance of the Dial-a-Ride problem, there is a tour that preempts eachabbjest onceind

A note on the parameters: a feasible non-preemptive tour can be short-cut over vertices that do not participate in any demand,
and we can assume that every vertex is an end point of some demand ad:. We may also assume, by preprocessing some
demands, that, < n? - k. However in general, the number of demandsind the vehicle capacity may be much larger than the
number of vertices.



has length at mogP(log? n) times an optimal preemptive tour (which may preempt each object an arbitrary
number of times). Motivated by obtaining a better guarantee for Dial-a-Ride on the Euclidean plane, we
also study the preemption gap in such instances. We show that even in this case, there are instances having
a polynomial gap of)(n!/®) between optimal preemptive and non-preemptive tours.

1.3 Related Work

The k-forest problem: Thek-forest problem is relatively new: it was defined by Hajiaghayi and Jain [HJO6].
An O(k?/?)-approximation algorithm for even the directiedorest problem can be inferred from [CCy@8].
Recently, Segev and Segev [SS06] gav®dmin{n?/3, \/m} logn) approximation algorithm fok-forest.

Densek-subgraph: The k-forestproblem is a generalization of the derflssubgraph problem [FPKO01], as
shown in [HJO6]. The best known approximation guarantee for the dessségraph problem i@(n1/3‘5)

whered > 0 is some constant, due to Feige et al. [FPK01], and obtaining an improved guarantee has been a
long standing open problem. Strictly speaking, Feige et al. [FPKO01] study a potentially harder problem: the
maximizationversion of densé~subgraph, where one wants to pickertices to maximize the number of
edges in the induced graph. However, nothing better is known even forittimizationversion of densé-
subgraph (where one wants to pick the minimum number of vertices that ikdeages), which is a special

case ofk-forest. Thek-forest problem is also a generalization’/eMST, for which a 2-approximation is

known (Garg [Gar05]).

Dial-a-Ride: While the Dial-a-Ride problem has been studied extensively in the operations research litera-
ture, relatively little is known about its approximability. The currently best known approximation ratio for
Dial-a-Ride isO(vk logn) due to Charikar and Raghavachari [CR98]. We note that their algorithm as-
sumes instances with unweighted demands. Krumke et al. [KRWO0O] give a 3-approximation algorithm for
the Dial-a-Ride problem onlae metrig in fact, their algorithm finds a non-preemptive tour that has length

at most 3 times the preemptive lower bound. (Clearly, the cost of an optimal preemptive tour is at most
that of an optimal non-preemptive tour.) 225-approximation algorithm fosingle sourcesersion of Dial-
a-Ride (also called the “capacitated vehicle routing” problem) was given by Haimovich and Kan [HK85];
again, their algorithm output a non-preemptive tour with length at most 2.5 times the preemptive lower
bound. The: = 1 special case of Dial-a-Ride is also known asdteeker-crangroblem, for which a 1.8-
approximation is known [FHK78]. For thereemptiveDial-a-Ride problem, [CR98] gave the current-best
O(logn) approximation algorithm, and Ggrtz [rtz06] showed that it is hard to approximate this problem to
better tharﬂ(logl/ 4=¢n). Recall that no super-constant hardness results are known for the non-preemptive
Dial-a-Ride problem.

2 The k-forest problem

In this section, we study the-forest problem, and give an approximation guarante® @fiin{/n, vV'k}).

This result improves upon the previous b@$h2/3 log n)-approximation guarantee [SS06] for this problem.

The algorithm in Segev and Segev [SS06] is based on a Lagrangian relaxation for this problem, and suitably
combining solutions to this relaxation. In contrast, our algorithm uses a more direct approach and is much
simpler in description. Our approach is based on approximating the following “density” variasfioodst.

Definition 5 (Minimum-ratio k-forest) Given amn-vertex metric spacg/, d), m pairs of verticegs;, t;}7~ ;,
and a targetk, find a tre€l” that connectst mostk pairs, and minimizes the ratio of the lengthioto the
number of pairs connected if.?

2Even if we relax the solution to be any forest, we may assume (by averaging) thugtimal ratiosolution is a tree.

4



We present two different algorithms foninimum-ratiok-forest obtaining approximation guarantees of
O(Vk) (Section 2.1) and(,/n) (Section 2.2); these are then combined to give the claimed result for the
k-forest problem. Both our algorithms are based on subtle reductions ieNt&T problem, albeit in very
different ways.

As is usual, when we say that our algoritlyguesses parameter in the following discussion, it means
that the algorithm is run for each possible value of that parameter, and the best solution found over all the
runs is returned. As long as only a constant number of parameters are being guessed and the number of
possibilities for each of these parameters is polynomial, the algorithm is repeated only a polynomial number
of times.

2.1 An O(Vk) approximation algorithm

In this section, we give a®(+/k) approximation algorithm for minimum ratik-forest, which is based on
a simple reduction to thé-MST problem. The basic intuition is to look at the solutiSrto minimum-
ratio k-forest and consider an Euler tour of this trée-a theorem of Erds and Szekeres on increasing
subsequences implies that there must be at lgﬂ sources which are visited in the same order as the
corresponding sinks. We use this existence result to combine the source-sink pairs to create an instance of
\/@-MST from which we can obtain a good-ratio tree; the details follow.

Let .S denote an optimal ratio tree, that coverdemands and has lengih and letD denote the largest
distance between any demand pair that is coveregi(imote D < B). We define a new metricon the set
{1,---,m} of demands as follows. The distance between demaawd;, /; ; = d(s;, s;)+d(t;,t;), where
(V, d) is the original metric. The(v/k) approximation algorithm first guesses the number of demands
and the largest demand-pair distariean the optimal treeS (there are at most: choices for each of
& D). The algorithm discards all demand pafrs, t;) such thatd(s;,t;) > D (all the pairs covered in
the optimal solutiorS still remain). Then the algorithm runs the unroofetST algorithm [Gar05] with
targetL\/Z]j, in the metricl, to obtain a tred” on the demand pair®. FromT', we easily obtain trees;
(on all sources inP) andT: (on all sinks inP) in metricd such thatd(T}) + d(T») = I(T). Finally the
algorithm outputs the treéE’ = T} UT»U{e}, wheree is any edge joining a source T to its corresponding
sink in Ty. Due to the pruning on demand pairs that have large distatie,< D and the length of”,
dT") <UT)+ D <IT)+ B.

We now argue that the cost of the soluti6rfound by thek-MST algorithmi(7") < 8 B. Consider the
optimal ratio treeS (in metricd) that hasy demandq{(s1,t1),-- - , (sq, tq)}, and letr denote an Euler tour
of S. Suppose that in a traversal ofthesourcesof demands ir' are seen in the ordey, - - - , s,. Thenin
the same traversal, tisinksof demands irt will be seen in the ordeft,q), - - - , (), for some permutation
m. The following fact is well known (see, e.qg., [Ste95]).

Theorem 6 (Erd 6s and SzekereslEvery permutation of1, - - - , ¢} has either an increasing subsequence
of length[,/q] or a decreasing subsequence of lengihy |.

Using Theorem 6, we obtain a skt of p = [,/g| demands such that (1) the sourceddrappear in increas-
ing order in a traversal of the Euler togrand (2) the sinks i/ appear in increasing order in a traversal of
eitherr or 71t (the reverse traversal ). Let jo < j; < --- < j,—1 denote the demands i in increasing
order. From statement (1) abo@f;ol d(s(ji), s(4i+1)) < d(7), where the indices in the summation are
modulop. Similarly, statement (2) implies th@f;ol d(t(j:),t(jix1)) < max{d(r),d(r?)} = d(7). Thus

we obtain:
p—1

D ld(s(a), sGin)) + d(t(ji), t(Gin))] < 2d(7) < 4B
=0



But this sum is precisely the length of the tgurji, - - - , jp—1, jo in metricl. In other words, there is a tree
of length4 B in metric!, that containg ,/q| vertices. So, the cost of the soluti@hfound by thek-MST
approximation algorithm is at mo8B.

Now the final solutiori7” has length at mos{T') + B < 9B, and ratio that at most, /g2 < 9vkZ.
Thus we have a®(v/k) approximation algorithm for minimum ratib-forest.

2.2 An O(y/n) approximation algorithm

In this section, we show af!(/n) approximation algorithm for the minimum ratieforest problem. The
approach is again to reduce to théVIST problem; the intuition is rather different: either we find a vertex

v such that a large number of demand-pairs of the farn) can be satisfied using a small tree (the “high-
degree” case); if no such vertex exists, we show that a repeated greedy procedure would cover most vertices
without paying too much (and since we are in the “low-degree” case, covering most vertices implies covering
most demands too). The details follow.

Let S denote an optimal solution to minimum ratieforest, and; < k the number of demand pairs
covered inS. We define thelegreeA of S to be the maximum number of demands (among those covered in
S) that are incident at any vertex $1 The algorithm first guesses the following parameters of the optimal
solution S: its length B (within a factor 2), the number of pairs covergdthe degree)\, and the vertex
w € S that hasA demands incident at it. Although, there may be an exponential number of choices for
the optimal length, a polynomial number of guesses within a binary-search suffice toysteh that
B < d(S) < 2- B. The algorithm then returns the better of the two procedures described below.

Procedure 1 (high-degree case)Since the degree of vertexin the optimal solutiorS is A, there is tree
rooted atw of lengthd(S) < 2B, that contains at leagk demands having one end pointiat We assign
a weight to each vertex, equal to the number of demands that have one end point at this veated the
other end point atv. Then we run thé&-MST algorithm [Gar05] with rootv and a target weight cA. By
the preceding argument, this problem has a feasible solution of l&idgjtlso we obtain a solutiol/ of
length at mosttB (since the algorithm of [GarQ5] is a 2-approximation). The ratio of solutiors thus at
mostdB/A = {ZE.

Procedure 2 (low-degree caseSett = 5% ; note thaiy < % and sof < n/4. We maintain a current tree
T (initially just vertexw), which is updated in iterations as follows: shrifiko a supernode, and run the
k-MST algorithm with roots and a target of new vertices. If the resulting-tree has length at mogi3,
include this tree in the current trdeand continue. If the resultingritree has length more tharB, or if all
the vertices have been included, the procedure ends. Simee vertices are added in each iteration, the
number of iterations is at mo$t so the length of " is at most‘%B. We now show thaf” contains at least

4 demands. Consider the sgt\ T" (recall, S is the optimal solution). It is clear tha¥' (S) \ V(T)| < t;
otherwise the:-MST instance in the last iteration (with the currdijtwould haveS as a feasible solution
of length at mos2 B (and hence would find one of length at ma#t). So the number of demands covered
in S that have at least one end point$h\ 7" is at most|V'(S) \ V(T)| - A < t-A = ¢q/2 (asA is the
degree of solutiory). Thus there are at leagt2 demandsontainedn S N T, in particular inT". ThusT is

i H H 2 _ 8B
a solution having ratio at moéfB L=

The better ratio solution amorg and7" from the two procedures has ratio at mogh{ 3, &} . % =

min{8¢, &} . % <8yn- % <8yn- @. So this algorithm is a®(y/n) approximation to the minimum
ratio k-forest problem.



2.3 Approximation algorithm for k-forest

Given the two algorithms for minimum ratik-forest, we can use them in a standard greedy fashion (i.e.,
keep picking approximately minimum-ratio solutions until we obtain a forest connecting aklpasts);

the standard set cover analysis can be used to sha(ain{./n, vk} - log k)-approximation guarantee
for k-forest. A tighter analysis of the greedy algorithm (as done, e.g., in Charikar et al. [@B}xan be
used to remove the logarithmic terms and obtain the guarantee stated in Theorem 2.

3 Applications to Dial-a-Ride problems

In this section, we study applications of thdorest problem to the Dial-a-Ride problem (Definition 3), and
some generalizations. A natural solution-structure for Dial-a-Ride involves servicing demands in batches
of at mostk each, where a batch consisting of a Sedf demands is served as follows: the vehicle starts
out being empty, picks up each of the&| < k objects from their sources, then drops off each object at its
destination, and is again empty at the end. If we knew that the optimal solution has this structure, we could
obtain a greedy framework for Dial-a-Ride by repeatedly finding the best ‘batdhtdeinands. However,

the optimal solution may involve carrying almdsbbjects at every point in the tour, in which case it can

not be decomposed to be of the above structure. In Theorem 7, we show that there is always a near optimal
solution having this ‘pick-drop in batches’ structure. Building on Theorem 7, we obtain approximation
algorithms for the classical Dial-a-Ride problem (Section 3.1), and two interesting extensions: non-uniform
Dial-a-Ride (Section 3.2) and weighted Dial-a-Ride (Section 3.3).

Theorem 7 (Structure Theorem) Given any instance of Dial-a-Ride, there exists a feasible tosmtisfy-
ing the following conditions:

1. 7 can be split into a set of segments,,--- , S;} (i.e.,7 = Sy - S2---S;) where each segmeny
services a seD; of at mostk demands such tha; is a path that first picks up each demandim
and then drops each of them.

2. The length of- is at mostO(log m) times the length of an optimal tour.

Proof: Consider an optimal non-preemptive taurlet ¢c(o) denote its length, anfd| denote the number

of edge traversals in. Note that if in some visit to a vertex in o there is no pick-up or drop-off, then

the tour can be short-cut over vertexand it still remains feasible. Further, due to triangle inequality, the
lengthc(o) does not increase by this operation. So we may assume that each vertex igitolves a
pick-up or drop-off of some object. Since there is exactly one pick-up & drop-off for each object, we have
lo| < 2m + 1. Define thestretchof a demand to be the number of edge traversalsdirbetween the
pick-up and drop-off of object The demands are partitioned as follows: for each 1, - - - |, [log(2m)],
groupG; consists of all the demands whose stretch lie in the inté®vaf', 27). We consider each group

G separately.

Claim 8 Foreachj =1,---, [log(2m)], there is a tourr; that serves all the demands in groGp, satisfies
condition 1 of Theorem 7, and has length at nfost(o).

Proof: Consider touts as a lineL, with every edge traversal in represented by a distinct edge 4h
Number the vertices i from O toh, whereh = || is the number of edge traversalsdn Note that each
vertex inV may be represented multiple times4dn Each demand is associated with the numbers of the
vertices (inf) where it is picked up and dropped off.
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Letr = 2/-1, and partitionG; as follows: forl = 1,--- , [2], setO, ; consists of all demands i@;
that are picked up at a vertex numbered betwgen1)r andir — 1. Since every demand ifi; has stretch
in the intervalr, 2r], every demand i), ; is dropped off at a vertex numbered betwéeand(l 4 2)r — 1.
Note that|O; ;| equals the number of demandsGi) carried over edgélr — 1,1r) by touro, which is at
mostk. We define segmerfi; ; to start at vertex numbef — 1) and traverse all edges i) until vertex
number({+2)r —1 (servicing all demands i@, ; by first picking up each demand between vertiges1)r
& Ir — 1; then dropping off each demand between vertice& (I + 2)r — 1), and then return (with the
vehicle being empty) to vertdx. Clearly, the number of objects carried over any edg$ inis at most the
number carried over the corresponding edge traversal iAlso, each edge if participates in at most 3
segmentsy; ;, and each edge is traversed at most twice in any segment. So the total length of all segments
Sy, is at most6 - (o). We define tourr; to be the concatenatio$h ; - - - Spy,/,,;- Itis clear that this tour
satisfies condition 1 of Theoremil¥.

Applying this claim to each grou@';, and concatenating the resulting tours, we obtain thetmatis-
fying condition 1 and having length at mdslog(2m) - ¢(o) = O(logm) - ¢(c).M

Remark: The ratioO(log m) in Theorem 7 is almost best possible. There are instances of Dial-a-Ride (even
on an unweighted line), where every solution satisfying condition 1 of Theorem 7 has length at least
Q(max{ loglgog‘m, lo’;k }) times the optimal non-preemptive tour. So, if we only use solutions of this structure,
then it is not possible to obtain an approximation factor (just in terms of capicityr Dial-a-Ride that

is better tharQ2(k/log k). The solutions found by the algorithm for Dial-a-Ride in [CR98] also satisfy
condition 1 of Theorem 7. It is interesting to note that when the underlying metric is a hierarchically well-
separated tree, [CR98] obtain a solution of such structure having I€rgtl) times the optimum, whereas

there is a lower bound dt(ﬁ) even for the simple case of an unweighted line.

3.1 Classical Dial-a-Ride

Theorem 7 suggests a greedy strategy for Dial-a-Ride, based on repeatedly finding the best batch of
demands to service. This greedy subproblem turns out to be the minimuni+fatiest problem (Defini-

tion 5), for which we already have an approximation algorithm. The next theorem sets up the reduction from
k-forest to Dial-a-Ride.

Theorem 9 (Reducing Dial-a-Ride to minimum ratio k-forest) A p-approximation algorithm for mini-
mum ratiok-forest implies arO(plog® m)-approximation algorithm for Dial-a-Ride.

Proof: The algorithm for Dial-a-Ride is as follows.
1. C = ¢.
2. Until there are no uncovered demands, do:

(a) Solve the minimum rati@-forest problem, to obtain a tr&e coveringk- < k£ new demands.
(b) SetC —CuC.

3. For eachtre€’ < C, obtain an Euler tour o6’ to locally service all demands (pick up &l objects in the first
traversal, and drop them all in the second traversal). Then use a 1.5-approximate TSP tour on the sources, to
connect all the local tours, and obtain a feasible non-preemptive tour.

Consider the tour and its segments as in Theorem 7. If the number of uncovered demands in some

iteration ism’, one of the segments inis a solution to the minimum ratié-forest problem of value at
most?”) . Since we have a-approximation algorithm for this problem, we would find a segment of ratio

m
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at mostO(p) - %. Now a standard set cover type argument shows that the total length of tréds in

at mostO(plogm) - d(r) < O(plog?m) - OPT, whereOPT is the optimal value of the Dial-a-Ride
instance. Further, the TSP tour on all sources is a lower bound@h, and we use a 1.5-approximate
solution [Chr77]. So the final non-preemptive tour output in step 5 above has length aDgpdsg? m) -
orrT.m

This theorem is in fact stronger than Theorem 4 claimed earlier: it is easy to see that any approximation
algorithm fork-forest implies an algorithm with the same guarantee for minimum katarest. Note that,
m andk may be super-polynomial in. However, we show in Section 3.3 that with the loss of a constant
factor, even the weighted Dial-a-Ride problem can be reduced to classical Dial-a-Ride where the humber
of demandsn < n?. Based on this and Theorem 9papproximation algorithm for minimum ratib-
forest actually implies a®(plog? n) approximation algorithm for Dial-a-Ride. Using the approximation
algorithm for minimum ratick-forest (Section 2), we obtain ad(min{/n, vk} - log? n) approximation
algorithm for the Dial-a-Ride problem.
Remark: If we use theO(\/k) approximation fork-forest, the resulting non-preemptive tour is in fact
feasible even for a/k capacity vehicle! As noted in [CR98], this property is also true of their algorithm,
which is based on an entirely different approach.

3.2 Non-uniform Dial-a-Ride

The greedy framework for Dial-a-Ride described above is actually more generally applicable than to just the
classical Dial-a-Ride problem. In this section, we consider the Dial-a-Ride problem under a substantially
more general class of cost functions, and show howstf@rest problem can be used to obtain an approx-
imation algorithm for this generalization as well. In fact, the approximation guarantee we obtain by this
approach matches the best known for the classical Dial-a-Ride problem. Our framework for Dial-a-Ride is
well suited for such a generalization since it is a ‘primal’ approach, based on directly approximating a near-
optimal solution; this approach is not too sensitive to the cost function. On the other hand, the algorithm
in [CR98]is a ‘dual’ approach, based on obtaining a good lower bound, which depends heavily on the cost
function. Thus it is unclear whether their techniques can be extended to handle such a generalization.

Definition 10 (Non-uniform Dial-a-Ride) Given ann vertex undirected grapty = (V, E), a root vertex
r, a set ofm demandq(s;, t;) }'™, and a non-decreasing cost functien: {0,1,--- ,m} — R* on each
edgee € E (wherec.(l) is the cost incurred by the vehicle in traversing edgehile carryingl objects),
find a non-preemptive tour (starting & endinggtof minimumtotal costthat moves each objecfrom s;
tot;.

Note that the classical Dial-a-Ride problem is a special case when the edge costs are givéh by:d.

if | < k& ce(l) = o otherwise, wherel. is the edge length in the underlying metric. We may assume
(without loss in generality) that for any fixed valies [0, m], the edge costs.(/) induce a metric orV.
Similar to Theorem 7, we have a near optimal solution with a ‘batch’ structure for the non-uniform Dial-a-
Ride problem as well, which implies the algorithm in Theorem 12. The proof of the following corollary is
almost identical to that of Theorem 7, and is omitted.

Corollary 11 (Non-uniform Structure Theorem) Given any instance of non-uniform Dial-a-Ride, there
exists a feasible tour satisfying the following conditions:

1. 7 can be split into a set of segmentsSy,---,S;} (i.e., 7 = Sy - S2---S;) where each segmess
services a seD; of demands such th&t; is a path that first picks up each demand(rn and then
drops each of them.



2. The cost ofr is at mostO(log m) times the cost of an optimal tour.

Theorem 12 (Approximating non-uniform Dial-a-Ride) A p-approximation algorithm for minimum ra-
tio k-forest implies arO(plog? m)-approximation algorithm for non-uniform Dial-a-Ride. In particular,
there is anO(y/n log? m)-approximation algorithm.

Proof: Corollary 11 again suggests a greedy algorithm for non-uniform Dial-a-Ride based on the following
greedy subproblemfind a setl” of uncovered demands and a paghthat first picks up each object ifi

and then drops off each of them, such that the ratio of the cost t@f |T'| is minimized. However, unlike

in the classical Dial-a-Ride problem, in this case the cost of patioes not come from a single metric.
Nevertheless, the minimum ratieforest problem can be used to solve this subproblem as follows.

1. Foreveryk =1,--- ,m:

(a) Define length functioralék) = c.(k) on the edges.

(b) Solve the minimum ratid-forest problem on metri¢V, d*)) with targetk, to obtain treel’, covering
n; < k demands.

(c) Obtain an Euler touf, of T}, that services these, demands, by picking up all demands in one traversal
and then dropping them all in a second traversal.
2. Return the toufl}, having the smallest ratié(nTT"') (overalll < k < m).

Assuming gp-approximation algorithm for minimum ratik-forest (for all values ofk), we now show
that the above algorithm obtaind ép-approximate solution to the greedy subproblem. The cost offpur
in step 3 isc(T) < 4 - d*)(T}), sinceT, involves traversing a tour on trég twice and the vehicle carries

at mostn; < k objects at every point ifi,. So the ratio of toufl}, is C(nTk) < 4d(k;(kT‘;) = 4 - ratio(T}).
Let 7 denote the optimal path for the greedy subprobléithe set of demands that it services, and |T'|.
Let 77 denote the Ias%t demands that are picked up, afgldenote the firsﬁt demands that are dropped
off. Itis clear thatl” = T} N T» has at least/2 demands; lef” C T’ be any subset withil”’| = ¢/4.
Let 7/ denote the portion of between thefi-th pick up and thei—t-th drop off. Note that when path

is traversed, there are at Ie%s‘objects in the vehicle while traversing each edge’inSo the cost of-,
c(t) = > .cr ce(t/4). Sincer’ contains the end points of all demandsliho T, it is a feasible solution
(covering the demandE”) to minimum ratiok-forest with target: = t/4 in the metricd(*/%), having ratio

(Yeerce(t/4)) /Lt < 47) 30 the ratio of touf; ,, (obtained from the-approximate treé’t’/4) is at most

t

4-ratio(T}) < 4p407(7) = 1(5pr. Thus we have &6p-approximation algorithm for the greedy subproblem.
Based on Corollary 11, it can now be shown (as in Theorem 9) thlahpproximation algorithm for the

greedy subproblem implies @ o’ - log® m)-approximation algorithm for non-uniform Dial-a-Ride. Using

the abovel 6p-approximation for the greedy subproblem, we have the thedliEm.
3.3 Weighted Dial-a-Ride

So far we worked with the unweighted version of Dial-a-Ride, where each object has the same weight. In

this section, we extend our greedy framework for Dial-a-Ride to the case when objects have different sizes,
and the total size of objects in the vehicle must be bounded by the vehicle capacity. Here we only extend the
classical Dial-a-Ride problem and not the generalization of Section 3.2. The problem studied in this section

has been studied earlier as thiekup and deliverproblem [SS95].

Definition 13 (Weighted Dial-a-Ride) Given a vehicle of capacity € N, ann-vertex metric spacéV, d),
a root vertexr, and a set ofn objects{(s;, t;, w;) }I"; (with object: having sources;, destination; & an
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integer sizel < w; < Q), find a minimum length (non-preemptive) tour of the vehicle starting (and ending)
at r that moves each objectfrom its source to its destination such that the total size of objects carried by
the vehicle is at mosp at any point on the tour.

The classical Dial-a-Ride problem is a special case whgen= 1 for all demands and the vehicle
capacity) = k. The following are two lower bounds for weighted Dial-a-Ride: a TSP tour on the set of
all sources & destinations (Steiner lower bound); and , % (flow lower bound). In fact, as can be
seen easily, these two lower bounds are valid even for the preemptive version of weighted Dial-a-Ride; so
they are termegreemptive lower bounds

The main result of this section (Theorem 15) reduces weighted Dial-a-Ride to the classical Dial-a-
Ride problem with the additional property that the number of demandsig small (polynomial in the
number of verticew). This shows that in order to approximate weighted Dial-a-Ride, it suffices to consider
instances of the classical Dial-a-Ride problem with a small number of demands. The next lemma shows
that even if the vehicle is allowed to split each object over multiple deliveries, the resulting toat is
much shorter than the tour where each object is required to be served in a single delivery (as is the case in
weighted Dial-a-Ride). This lemma is the main ingredient in the proof of Theorem 15. In the following, for
any instance of weighted Dial-a-Ride, we define tineveighted instanceorresponding to it as a classical
Dial-a-Ride instance with vehicle capaciy, andw; (unweighted) demands each having sowceand
destinatiort; (for eachl < i < m).

Lemma 14 Given any instanc& of weighted Dial-a-Ride, and a solutionto the unweighted instance
corresponding td, there is a polynomial time computable solutiorZtbaving length at mosb(1) - d(7).

Proof: Let 7 denote the unweighted instance correspondirig. tBefine line.# as in the proof of Theo-
rem 7 by traversing from r: for every edge traversal in, add a new edge of the same length at the end of
£ . For each unweighted object ifi corresponding to demaridn Z, there is a segment in(correspond-
ingly in .Z) where it is moved frons; to ¢;. So each demande Z corresponds ta; segments in- (each
being a path frons; to ¢;). For each demandin Z, we assign to one of itsw; segments picked uniformly

at random: call this segmeht For an edge € -, let N. = >, ;. w; denote the random variable which
equals theotal weightof demands whose assigned segments coatdiote that the expected value bt

is exactly the number of unweighted objects carried lhen traversing the edge corresponding.t8ince

7 is a feasible tour fof7, E[N.] < @ foralle € .Z.

Consider a random instand@ of Dial-a-Ride on line.Z with vehicle capacity)) and demands as
follows: for each demandin Z, an object of weighty; is to be moved along segmépnt{chosen randomly as
above). Clearly, any feasible tour f& corresponds to a feasible tour fbof the same length. Note that the
flow lower bound for instanc® is F' = ), d. (%1, and the Steiner lower bound}s ., d. = d(7).

Using linearity of expectation[F] < Y . de(E[N‘”‘] + 1) < 2-d(7). Let R* denote the instance (on
line .¥) obtained by assigning each demand 7 to its shortest length segment (among thesegments
corresponding to it). Clearly this assignment minimizes the flow lower bound (over all assignments of
demands to segments). & has flow bound E[F| < 2-d(r), and Steiner lower bound().

Finally, we note that the 3-approximation algorithm for Dial-a-Ride on a line [KRWO0O0] extends to
a constant factor approximation algorithm for the case with weighted demands as well (this can be seen
directly from [KRWOQ]). Additionally, this approximation guarantee is relative to the preemptive lower
bounds. Thus, using this algorithm &1, we obtain a feasible solution ®of length at mosO(1) - d(7).W
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Theorem 15 (Weighted Dial-a-Ride to unweighted)Suppose there is@approximation algorithm for in-
stances of classical Dial-a-Ride with at m@3tn*) demands. Then there is @) p)-approximation algo-
rithm for weighted Dial-a-Ride (with any number of demands). In particular, there i©&yn log? n)
approximation for weighted Dial-a-Ride.

Proof: LetZ denote an instance of weighted Dial-a-Ride with objé¢ts;, s;, ;) : 1 < ¢ < m}, andr* an
optimal tour forZ. LetP = {(s1,t1), -, (s1,t;)} be the distinct pairs of vertices that have some demand
between them, and I6f; denote the total size @l objects having sourcg and destinatior;. Note that
L<n(n—1). LetPhgn ={i € P:T; > L}, Prow = {i € P: T < 9}, andP’ = P\ (Phigh U Prow)-

We now show how to separately service object®ig,, Phiqn andP’.

Servicing Py, The total size irPy,,, is at mostQ); so we can service all these pairs by traversing a
single 1.5-approximate tour [Chr77] on the sources and destinations. Note that the length of this tour is at
most 1.5 times the Steiner lower bound, hence at méstd(7*).

Servicing Pp;q,: Let C' be a 1.5-approximate minimum tour on all the sources. The paif,ip),
are serviced by a tour; as follows. Traverse along’, and when a source in Py, is visited, traverse
the direct edge to the corresponding destinaticemd back, as few times as possible so as to move all the
objects betweenr; andt;, as described next. Note that every object to be moved betweandt; has
size (the originaly; size) at most), and the total size of such objeds > @ /2. So these objects can be
partitioned such that the size of each part (except possibly the last) is in the ir[@;@il So the number of

times edgds;, t;) is traversed to service the demands between them is afiglsf < 2(%5 +1) <83.

Now, the length of tour; is at mostd(C) + Z(sz-,ti)ePhigh 8d(si, ti)% <d(C)+83 ", % Note
thatd(C') is at most 1.5 times the minimum tour on all sources (Steiner lower bound), and the second term
above is the flow lower bound. So totirhas length at mos? (1) times the preemptive lower bounds by
which is at mosO(1) - d(7%).

Servicing P’: We know that the total siz€&; of each pair in P’ lies in the interval@Q/l, Q/2). LetZ’
denote the instance of weighted Dial-a-Ride with demaids ¢;,7;) : ¢ € P’} and vehicle capacityp;
note that the number of demandsZihis at mostl. The tourr* restricted to the objects corresponding to
pairs inP’ is a feasible solution to thenweighted instanceorresponding t@’ (but it may not feasible for
7' itself). However Lemma 14 implies that the optimal valu&fopt(Z) < O(1) - d(7*).

Next we reduce instanc€ to an instance/ of weighted Dial-a-Ride satisfying the following conditions:
() J has at mostdemands(ii) each object T has size at mo&t, (iii) any feasible solution t¢ is feasible
for 7, and(iv) the optimal valuept(7) < O(1) - opt(Z'). If Q < 21, J = T’ itself satisfies the required
conditions. Suppos€ > 2I, then defingp = L%; notethat)) >1-p > Q —1 > %. Round up each
sizeT; to the smallest integral multipl&/ of p, and round down the capaci€y to @' = [ - p. Since each
sizeT; € (% %), all sizesI} € {p,2p,--- ,Ip}. Now letZ” denote the weighted Dial-a-Ride instance with
demandd{(s;,t;,T}) : i € P'} and vehicle capacit$)’ = Ip. One can obtain a feasible solution fbf
from any feasible solution for Z’ by traversings a constant number of times: this follows fra@i > %
andT! < max{27;,Q'}.® So the optimal value af” is at mostO(1) - opt(Z’). Now note that all sizes and
the vehicle capacity if” are multiples of; scaling down each of these quantitiesghyve get an instance
J equivalentto Z” where the vehicle capacity is(and every demand size is at mékt This instance7

satisfies all the four conditions claimed above.

3In particular, consider simulating a traversal alengf a capacityQ vehicle (I) by 8 capacityQ’ vehiclesTy, - -- , T3, each
running in parallel along. Whenever vehicldy picks-up an object, one of the vehicle§7} }5_, picks-upi: if w; < % any
vehicle{T, 3:1 that has free capacity picks-upif w; > % any vehicle{T;}f',:5 that is empty picks-up. It is easy to see that
if at some point none of the vehiclé?é}fj:l picks-up an object, there must be a capacity violatiofipin
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Now observe that the instancgé can be solved using-approximation algorithm assumed in the the-
orem. Since7 has at most demands (each of sizé 2[), the unweighted instance corresponding/to
has at mosp/? < 2n* demands. Thus, this unweighted instance can be solved usingaperoximation
algorithm for such instances, assumed in the theorem. Then using the algorithm in Lemma 14, we obtain a
solution to7, of length at mosO(p) - opt(J) < O(p) -opt(Z') < O(p) - d(7*). Since any feasible solution
to J corresponds to one fa@’, we have a tour servicing’ of length at mosO(p) - d(7).

Finally, combining the tours servicinB,,,, Prign & P’, We obtain a feasible tour f&f having length
O(p) - d(7*), which gives us the desired approximation algoritiiin.

Theorem 15 also justifies the assumptiogm = O(logn) made at the end of Section 3. This is important
because in general may be super-polynomial in.

4 The Effect of Preemptions

In this section, we study the effect of the number of preemptions in the Dial-a-Ride problem. We mentioned
two versions of the Dial-a-Ride problem (Definition 3): in the preemptive version, an object may be pre-
empted any number of times, and in the non-preemptive version objects are not allowed to be preempted
even once. Clearly the preemptive version is least restrictive and the non-preemptive version is most restric-
tive. One may consider other versions of the Dial-a-Ride problem, where there is a specified uppd? bound
on the number of times an object can be preempted. Note that th&cadgeis the non-preemptive version,

and the casé&”® = n is the preemptive version. We show that for any instance of the Dial-a-Ride prob-
lem, there is a tour that preempts each object at most onceRi.,1) and has length at mog(log? n)

times an optimal preemptive tour (i.e?, = n). This implies that the real gap between preemptive and
non-preemptive tours is between zero and one preemption per object. A tour that preempts each object at
most once is called &-preemptive tour

Theorem 16 (Many preemptions to one preemption)Given any instance of the Dial-a-Ride problem, there
is a 1-preemptive tour of length at mas{log? n) - OPTymt, WhereOPT,,,; is the length of an optimal
preemptive tour. Such a tour can be found in randomized polynomial time.

Proof: Using the results on probabilistic tree embedding [FRT03], we may assume that the given metric is
a hierarchically well-separatetteeT’. This only increases the expected length of the optimal solution by

a factor ofO(logn). Further, treel’ hasO(log ‘égj) levels, whered, ., andd,,;, denote the maximum

and minimum distances in the original metric. We first observe that using standard scaling arguments, it
suffices to assume th%ﬁ?m is polynomial inn. Without loss of generality, any preemptive tour involves at
most2m - n edge traversals: each object is picked or dropped at taoiimes (once at each vertex), and
every visit to a vertex involves picking or dropping at least one object (otherwise the tour can be shortcut
over this vertex at no increase in length). By retaining only vertices within dist@d¢g,,,; /2 from the

rootr, we preserve the optimal preemptive tour and ensurefthat < OPT),,,. Now consider modifying

the original metric by setting all edges of length smaller theP(T},,,.; /2mn? to length 0; the new distances

are shortest paths under the modified edge lengths. So any pairwise distance decreases b%aﬁ%gﬁost
Clearly the length of the optimal preemptive tour only decreases under this modification. Since there are at
most2mn edge traversals in any preemptive tour, the increase in tour length in going from the new metric to
the original metric is at motmn - QPTZg?t < OPZ””“ . Thus at the loss of a constant factor, we may assume
thatd,,ae /dmin < 2mn3. Further, the reduction in Theorem 14 also holds for preemptive Dial-a-Ride; so
we may assume (at the loss of an additional constant factor) that the number of demandin*). So

we haved, .. /dmin < O(n”) and hence treg hasO(logn) levels.
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The tre€l” resulting from the probabilistic embedding has several Steiner vertices that are not present in
the original metric; so the tour that we find @hmay actually preempt objects at Steiner vertices, in which
case it is not feasible in the original metric. However as shown by Gupta [Gup01], these Steiner vertices
can be simulated by vertices in the original metric (at the loss of a constant factor). Based on the preceding
observations, we assume that the metric is a Trem the original vertex set having= O(logn) levels,
such that the expected length of the optimal preemptive talisg 1) - O PT)p,;.

We now partition the demands i into [ sets withD; (for ¢ = 1,--- 1) consisting of all demands
having their least common ancestor (Ica) in leielWe service eaclD; separately using a tour of length
O(OP1T,,:). Then concatenating the tours for each leyele obtain the theorem.

Servicing D;: For each vertex at leveli in T, let L, denote the demands iP; that havev as their
Ica. Consider an optimglreemptivetour that services the demandy. Since the subtrees under any
two different leveli vertices are disjoint and there is no demandinacross such subtrees, we may as-
sume that this optimal tour is a concatenation of disjoint preemptive tours servicind.eaeparately. If
OPT,,+(v) denotes the length of an optimal preemptive tour servidipgvith v as the starting vertex,
Zv OPTpmt(U) § OPTpmt.

Now consider an optimal preemptive tatrservicingL,,. Since thes; —t; path of each demande L,
crosses vertex, at some point in tour, the vehicle is ab with object; in it. Consider the tous, obtained
by modifying 7, so that it drops each objegtat v when the vehicle is at with object; in it. Clearly
d(oy) = d(my) = OPTy(v). Note thato, is a feasible preemptive tour for tiséngle source Dial-a-
Rideproblem with sinkv and all sources iti,,. Thus the algorithm of [HK85] gives a non-preemptive tour
0., that moves all objects ifi,, from their sources to, having length at mot.5d(o,) = 2.50 PT . (v).
Similarly, we can obtain a non-preemptive tetjfthat moves all objects if,, from v to their destinations,
having length at mos2.50 PT),,,:(v). Now o, - o, is a 1-preemptive tour servicing, of length at most
5 - OPTpmt(’U).

We now run a DFS orf’ to visit all vertices in leveli, and use the algorithm described above for
servicing demandg£,, whenw is visited in the DFS. This results in a tour servicihg, having length at
most2d(T) + 53, OPTpm:(v). Here2d(T') is the Steiner lower bound, and, O PT},,:(v) < OPTpps.

Thus the tour servicin@; has length at mogt- O PT,,.

Finally concatenating the tours for each levek 1,--- [, we obtain a 1-preemptive tour ¢h of
lengthO(log n) - OPT,,,:, which translates to a 1-preemptive tour on the original metric having length
O(log?n) - OPTpy. B

Motivated by obtaining an improved approximation for Dial-a-Ride on the Euclidean plane, we next
consider the worst case gap between an optimal non-preemptive tour and the preemptive lower bounds. As
mentioned earlier, [CR98] showed that there are instances of Dial-a-Ride where the ratio of the optimal non-
preemptive tour to the optimal preemptive touié:'/?). However, the metric involved in this example
was the uniform metric om points, which can not be embedded in the Euclidean plane. The following
theorem shows that even in this special case, there can be a polynomial gap between non-preemptive and
preemptive tours, and implies that just preemptive lower bounds do not suffice to obtain a poly-logarithmic
approximation guarantee.

Theorem 17 (Preemption gap in Euclidean plane)There are instances of Dial-a-Ride on the Euclidean
plane where the optimal non-preemptive tour has Ierﬁg{tﬂ‘%) times the optimal preemptive tour.

Proof: Consider a square of side 1 in the Euclidean plane, in which a setlemand pairs are distributed
uniformly at random (each demand point is generated independently and is distributed uniformly at random
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in the square). The vehicle capacity is sekte- \/n. Let R denote a random instance of Dial-a-Ride ob-
tained as above. We show that in this case, the optimal non-preemptive tour has(léntth with high
probability. We first show the following claim.

nl/8

Claim 18 The minimum length of a tree containikgairs in R is Q(@), w.h.p.

Proof: Take any set of k = \/n demand pairs. Note that the number of such Seits(’;). This setS has

2k points each of them generated uniformly at random. It is known that thegg atelifferent labeled trees

onp vertices (see e.g. [VLW92], Ch.2). The telabeledemphasizes that we are not identifying isomorphic
graphs, i.e., two trees are counted as the same if and only if exactly the same pairs of vertices are adjacent.
Thus there are at mog2k)%*~2 such trees just on sét Consider any tre& among these trees and root it

at the source point with minimum label. Here we assumeZthiads been generated using the “Principle of
Deferred Decisions”, i.e., nodes will be generated one by one according to some breadth-first ordéring of
We say that an edge &hortif its length is at most. (c anda € (0, %) will be fixed later).

If T"has length at most it is clear that at most am fraction of its edges anmeotshort. SaPr[length(T) <
¢ < >y Prledges in H are short], where H in the summation ranges over all edge-subset§’in
with |[H| > (1 — «)2k. For a fixedH, we boundPr[edges in H are short] as follows. For any edge
(v, parentv)) (note pareriv) is well-defined sincé is rooted), assuming that parén is fixed, the prob-
ability that this edge is short js = w(a—ck)2. So we can upper bound the probability that edfeare short
by pll < p(1=2)2k S0 we havePr(length(T) < ¢] < 2%F . p(1=2)2k a5 the number of different edge sets
H is at most2?*.

By a union bound over all such labeled trdéshe probability that the length of the minimum spanning
tree onS is less tham is at most(2k)2* - 22+ . p(1=*)2k  Now taking a union bound over dltsetsS, the prob-
ability that the minimum length of a tree containihgpairs is less than is at most(}}) (2k)2<22kp{1 -2k,
Sincek = /n, this term can be bounded as follows:

1

(1—a)dk kp.3k € \(1-a)dk _ C(Eya-da Zyl-dak < 9—k
A=k < 5008 k() 500 - (£t ()t <

C

k(g 2k (1—a)2k
(e (4k) 1 =02 (-

The last inequality above holds where g - k'/4~3/(1742), Settinga = 11, we get

1/4
Pr[3 ———— length tree containing pairs inR] < 2%
"B 5500 Tog s " ining pairs in] <
So, with probability at least — 2-V™, the minimum length of a tree containirigpairs inR is at least
QL) m
gn

From Theorem 7, we obtain that there is a near optimal non-preemptive tour servicing all the demands
in segments, where each segment (except possibly the last) involves servicing égetoii k demands.
Although the lower bound of/2 is not stated in Theorem 7, it is easy to extend the statement to include it.
This implies that any solution of this structure has at Igast £ segments. Since each segment covers at
leastk /2 pairs, Claim 18 implies that each of these segments has I@ﬂ{@ﬂ?@/ logn). So the best solution

of the structure given in Theorem 7 has Ien@tﬁfg—/z}c). But since there is a near-optimal solution of this

structure, the optimal non-preemptive tourBrhas IengtM(lggéik).
On the other hand, the flow lower bound f8ris at most% = k, and the Steiner lower bound is at most
O(y/n) = O(k) (anO(y/n) length tree on thén points can be constructed using/@n x /2n gridding).

So the preemptive lower bounds are boktk); now using the algorithm of [CR98], we see that the optimal
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preemptive tour has length(k log n). Combined with the lower bound for non-preemptive tours, we obtain
the Theorenll

Acknowledgements:We thank Alan Frieze for his help in proving Theorem 17.
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