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We study the distance constrained vehicle routing prob-
lem (DVRP) (Laporte et al., Networks 14 (1984), 47–61, Li
et al., Oper Res 40 (1992), 790–799): given a set of ver-
tices in a metric space, a specified depot, and a distance
bound D , find a minimum cardinality set of tours orig-
inating at the depot that covers all vertices, such that
each tour has length at most D . This problem is NP-
complete, even when the underlying metric is induced
by a weighted star. Our main result is a 2-approximation
algorithm for DVRP on tree metrics; we also show that no
approximation factor better than 1.5 is possible unless
P = NP. For the problem on general metrics, we present
a (O(log 1

ε
), 1+ε)-bicriteria approximation algorithm: i.e.,

for any ε > 0, it obtains a solution violating the length
bound by a 1+ε factor while using at most O(log 1

ε
) times

the optimal number of vehicles. © 2011 Wiley Periodicals,
Inc. NETWORKS, Vol. 59(2), 209–214 2012

Keywords: vehicle routing; traveling salesman problem; approx-
imation algorithms

1. INTRODUCTION

1.1. Motivation

At the core of logistics operations facing modern firms is
the problem of routing materials to and from manufacturing
or consolidating depots at minimum cost [3, 23]. The most
common constraints on such problems involves the capacity
of the vehicles and deadlines on delivery/pickup of materi-
als. Typical cost objectives are the total mileage of all the
routes or more coarsely, the number of vehicles deployed to
satisfy the demands. In this article, we study the problem
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with distance constraints on each route where the objective
is to minimize the number of vehicles, called the distance
constrained vehicle routing problem (DVRP) in Refs. [3,20]
and [21].

A bound on the distance traveled by any vehicle arises
commonly, e.g., in scheduling daily routes for courier carri-
ers or milkruns from manufacturing facilities. The distance
bound translates to a quality of service guarantee for all
customers to be served on the day they are scheduled. Min-
imizing the number of vehicles over a period of typical
demands also allows for better fleet and driver planning
and management. However, these problems generalize the
classical TSP and are NP-complete.

In this article, we obtain approximation algorithms for
distance constrained vehicle routing problems. We use the
well studied notion of approximation guarantees [14, 24]
to measure the performance of heuristics. An approxima-
tion algorithm for a minimization problem is said to achieve
an approximation ratio α (which may be a function of the
input instance), if on every instance, the cost of the solution
obtained by the algorithm is at most α times the cost of an
optimal solution. Such an algorithm is also referred to as an
α-approximation algorithm.

1.2. Problem Formulation

We modeled demand locations as vertices in a finite
metric space (V , d), with |V | = n. The distance function
d : V × V → N is symmetric and satisfies the triangle
inequality. Throughout this article we assume that all dis-
tances are integral: this can be ensured by a suitable scaling.
The input to the distance constrained vehicle routing prob-
lem (DVRP) is specified by a metric space (V , d), a depot
r ∈ V , and a distance constraint D. The objective is to find a
minimum cardinality set of tours originating from r (corre-
sponding to routes for vehicles), that covers all the vertices
in V . Each tour is required to have length at most D (the dis-
tance constraint). Tours originating from r are referred to as
r-tours. The maximum distance of any vertex from the depot
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is denoted by �. We assume that � ≤ D
2 , as otherwise there

is no feasible solution.
The unrooted DVRP [1] is defined as follows: given a met-

ric space (V , d) and a distance constraint D, find a minimum
cardinality set of paths (each of length at most D) that covers
all the vertices. Note that in this version, the vehicle routes are
paths that are allowed to start and end at any two vertices. The
unrooted version can be reduced to DVRP by adding a root
vertex that is located at some large distance L � diameter(V)

from all vertices in V , and setting the distance constraint to
D + 2L.

1.3. Our Results

Our main result is for the DVRP on metrics induced by
an underlying edge-weighted tree (Section 2). In this case,
we obtain a 2-approximation algorithm. This algorithm can
be implemented in a single depth first search of the tree and
runs in linear time. We note that even DVRP on star metrics
is equivalent to the bin packing problem [12], which is NP-
complete. Moreover, we show that DVRP on trees is hard to
approximate to better than a factor of 1.5 (unless P = NP).
We note that DVRP on trees possesses the “scaling property,”
i.e., inputs with optimal value T can be scaled to inputs of
optimal value k · T (for any k). In contrast, the bin packing
problem does not have the scaling property, and in fact admits
an asymptotic polynomial time approximation scheme [9,
16].

For DVRP on general metrics, we obtain an (O(log 1
ε
), 1+

ε) bicriteria approximation. That is, for any ε > 0, if the
vehicles are allowed to exceed the distance constraint by a
small multiplicative factor ε, then we obtain a solution using
at most O(log 1

ε
) times the optimal number of vehicles (that

do not violate the distance constraint). As shown in Jothi
and Raghavachari [15] the tour-partitioning algorithm of Li
et al. [21] gives an (O( 1

ε
), 1 + ε) bi-criteria approximation

for DVRP. We improve upon the approximation ratio on the
number of vehicles significantly.

1.4. Related Work

Vehicle routing problems (VRPs) are surveyed in [3, 23].
Practical applications of DVRP can be found in Assad [3]
and Laporte et al. [20]. Exact approaches for the objective of
minimizing total distance were studied in Laporte et al. [20].
They gave two algorithms using an integer programming for-
mulation: one based on Gomory cuts and the other using
branch-and-bound.

Li et al. [21] studied DVRP under the objective func-
tions of total distance and number of vehicles. They showed
that the optimal solutions under both objectives are closely
related, and any approximation guarantee for one objective
implies a guarantee with an additional loss of factor 2, for the
other objective. They also studied a tour-partitioning heuris-
tic for this problem, which was shown to achieve a worst case
performance guarantee of D.

A closely related problem is orienteering: given a met-
ric (V , d), depot r ∈ V and length bound D, find an r-tour
of length at most D that contains the maximum number

of vertices. Improving on work by Blum et al. [7] and
Bansal et al. [5], Chekuri et al. [8] presented a 2 + ε

approximation algorithm (for any constant ε > 0) for the ori-
enteering problem. Using this as a greedy subroutine within
a set-covering framework, it is straightforward to design an
O(log n) approximation for DVRP.

The distance constrained VRP was also studied by Bazgan
et al. [6], where the authors gave a constant-factor differential
approximation algorithm. However, bounds in the differential
measure do not imply any bounds in the standard (multi-
plicative) approximation measure, which we consider in this
article.

Related to the tree metric version we study, Labbe
et al. [19] and Karuno et al. [17] discuss some practical
situations where tree shaped networks are encountered in
VRPs. In the case of capacitated VRP (only capacity con-
straints), Labbe et al. [19] gave a 2-approximation algorithm
on trees when demands are unsplittable. When demands are
splittable, Hagamochi and Katoh [13], and Asano et al. [2]
gave improved approximation algorithms; the currently best
known guarantee is ≈1.35. Many other vehicle routing
problems on trees have been studied in Refs. [4,11], and [17].

2. DVRP ON TREE METRICS

In this section, we consider the special case of DVRP when
the metric space is induced by a weighted tree T = (V , d).
Even in the special case of a star, the problem remains NP-
complete (by a reduction from bin-packing). Here we present
a 2-approximation for DVRP on trees, and also show that the
problem is 1.5-hard to approximate unless P = NP.

We first present the algorithm for DVRP on trees. The
main ingredient in this is proving a lower bound on the opti-
mal number of vehicles, which is based on forming clusters of
vertices that can not be covered by a single r-tour (Lemma 2).
For ease of description, we assume (without loss of general-
ity) that the tree T is binary, and rooted at the depot r. This
can be ensured by splitting high degree vertices, and adding
zero-length edges. Algorithm minTVR for DVRP on trees is
as follows:

1. Initialize T ′ = T .
2. While (T ′ �= {r}) do

a. Pick a deepest vertex v ∈ T ′ s.t. the subtree T ′
v

below v can not be covered by just one r-tour,
of length at most D. If no such v exists, add an
r-tour covering T ′, and END.

b. Let w1 and w2 be the two children of v. For
i = 1, 2, set Wi to be the minimum length r-tour
traversing the subtree below wi.

c. Add r-tours W1 and W2 to the solution.
d. T ′ = T ′ \ T ′

v.

Note that the minimum length r-tour covering all the ver-
tices of a subtree is just an Euler tour of the subtree (including
the path from r), traversing each edge twice. This property
can also be derived as a special case of the “master tour”
property of Kalmanson matrices [10]. Thus the condition in
step 2a can be checked efficiently.
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FIG. 1. DVRP on trees.

Theorem 1. Algorithm minTVR obtains a 2-approximation
to DVRP on trees.

Proof. It is not hard to see that algorithm minTVR can
be implemented in a single depth-first search of the tree; so
the time complexity is linear in the input size, O(n log2 D).
From the choice of vertex v in step 2a, each r-tour added
in step 2c (corresponding to the children of v), has length at
most D. So algorithm minTVR indeed produces a feasible
solution.

A heavy cluster is defined to be a set of vertices C ⊆
V such that the subgraph T [C] induced by C on tree T is
connected, and the vertices in C can not all be covered by a
single r-tour of length at most D. Note that all the subtrees
T ′

v seen in step 2a of algorithm minTVR are heavy clusters in
tree T . Suppose, in its entire execution, the algorithm finds k
heavy clusters C1, . . . Ck (these vertex sets will be disjoint).
Then algorithm minTVR produces a solution using at most
2k +1 r-tours. The key lemma is the following, which shows
that the optimal solution requires at least k + 1 vehicles, and
thus proves Theorem 1. ■

Lemma 2. If there are k disjoint heavy clusters C1, . . . Ck ⊆
V in the tree T, the minimum number of r-tours (of length at
most D) required to cover

⋃k
i=1 Ci is more than k.

Proof. The proof of this lemma is by induction on k. For
k = 1, the lemma is trivially true. Suppose k > 1, and assume
that the lemma holds for all values up to k − 1. Suppose, for
contradiction, that the minimum number of r-tours required
to cover all these clusters, OPT ≤ k. Note that OPT can not
be smaller than k: taking any k − 1 of these k clusters, we
would get a contradiction to the induction hypothesis with
k −1 clusters. So we may assume OPT = k. In the rest of the
proof, fix an optimal solution consisting of r-tours t1, . . . , tk .

From the definition of a heavy cluster, each Ci forms a
connected subtree in T . It will be convenient to think of the

lengths associated with Ci in the following parts (see Fig. 1a):
the path from r to the highest vertex in Ci (external part); and
the induced subgraph T [Ci] (internal part). The length of the
external part of a cluster Ci is denoted d(r, Ci). We now define
a bipartite graph H = (�, C, E) where � = {t1, . . . , tk} is the
set of r-tours in the optimal solution, and C = {C1, . . . , Ck}
is the set of the k heavy clusters (see Figure 1b). There
is an edge (tj, Ci) ∈ E iff r-tour tj visits some vertex of
cluster Ci.

We claim that H must have a perfect matching between C
and �. Suppose not - then by Hall’s Theorem, we get a set
S ⊆ C such that S has fewer than |S| neighbors in �. Note
that S �= C, as C has OPT = |C| neighbors. This implies
that the clusters in S are visited completely by fewer than |S|
r-tours, which contradicts the induction hypothesis with the
set of heavy clusters S (as |S| < k). Thus H has a perfect
matching π : C → �.

Let l1, l2, . . . , lk denote the lengths of the r-tours in �;
clearly each li ≤ D. We assign a capacity to each edge e ∈ T :
cape = 2

∑k
j=1 Ie(tj), where Ie(tj) = 1 iff edge e is traversed

in r-tour tj, and 0 otherwise. Note that if an edge is traversed
in an r-tour, it is traversed at least 2 times; so each edge in
T has capacity at least 2 (as each vertex is visited). Now, the
total weighted capacity over all edges is exactly

∑
e∈T de ·

(2
∑k

j=1 Ie(tj)) ≤ ∑k
i=1 li ≤ kD.

We will now charge each edge an amount at most its
capacity, and show that the total weighted charge over all
edges is larger than kD, which would be a contradiction.
Corresponding to every cluster Ci, charge each edge in its
external part (the path from r to Ci) two units against the
capacity on that edge attributed to r-tour π(Ci); note that
tour π(Ci) visits Ci and hence traverses all the edges from
r to Ci. Since π is a perfect matching, no edge has a charge
more than its capacity. The total weighted charge after this
step is exactly 2

∑k
i=1 d(r, Ci). Now we will further assign

a charge of 2 units to each edge in the internal part of every
cluster C1, . . . , Ck .
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Consider any edge e on the internal part of some cluster
Ci. Let m denote the number of clusters that appear below
e in tree T (this does not include Ci). If m = 0, this edge
has never been charged so far, and thus has at least 2 units of
residual capacity. If 0 < m ≤ k − 1, then applying induction
on the set of m clusters below e, there are at least m+1 r-tours
that traverse e. So e has a capacity of at least 2m + 2. But we
have charged e exactly 2m units so far, 2 units corresponding
to each cluster below it. So again we have at least 2 units
of residual capacity, and we can charge this edge an extra 2
units. The total weighted charge over all edges can now be
written as follows:

k∑
i=1

[2d(r, Ci) + 2 · d(internal part of Ci)]

The i-th term above corresponds to an r-tour covering Ci.
Since each Ci is a heavy cluster, this is more than D. So the
total weighted charge is more than kD ≥ the total capacity,
which is a contradiction. Thus OPT > k, and the lemma is
proved. ■

We now prove the hardness of approximation for DVRP
on trees. The scaling property mentioned in the introduction
also follows from this proof.

Theorem 3. Unless P = NP, there is no 1.5-approximation
algorithm for DVRP on trees.

Proof. We reduce from the subset sum problem [12].
Given a collection {a1, . . . , am} of m non-negative integers
with

∑m
i=1 ai even and B := 1

2

∑m
i=1 ai, the goal is to

determine whether there exists a subset S ⊆ [m] such that∑
i∈S ai = B. This problem is known to be NP-complete;

note that the input size is at least m + log2 B. Let I denote an
arbitrary instance of the subset sum problem, as earlier.

Fix a parameter k that is polynomial in the size of I. We
construct an instance of DVRP on trees as follows. The root
r has k children {c1, . . . , ck} and each of the edges {(r, ci)}k

i=1
has length 2B. Each vertex ci (for i ∈ [k]), has m children
{li,j}m

j=1 where for each j ∈ [m], edge (ci, lij) has length aj.
The length bound D := 6B. Note that the size of the DVRP
instance is polynomial in the size of I, and the construction
runs in polynomial time.

Suppose I is a yes-instance, i.e. there is some subset
S ⊆ [m] with

∑
j∈S aj = B. Consider the following solu-

tion for the DVRP instance: for each i ∈ [k], there are two
r-tours, visiting vertices {lij | j ∈ S} and {lij | j ∈ [m] \ S},
respectively. It is clear that each vertex is covered in some
tour. Note that the length of the tour covering {lij | j ∈ S}
(for any i ∈ [k]) equals 2 · (2B + ∑

j∈S aj) = 6B. Simi-
larly, the length of the tour covering {lij | j ∈ S} (for each
i ∈ [k]) equals 6B. Thus the above solution satisfies the dis-
tance constraint, and the optimal value of the DVRP instance
is at most 2k.

Suppose I is a no-instance, then we claim that the optimal
value of the DVRP instance is at least 3k. Observe that any

tour of length at most 6B can visit at most one of the subtrees
rooted at {ci}k

i=1. Thus any feasible solution to the DVRP

instance is a disjoint union
⋃k

i=1 Ci, where for each i ∈ [k],
Ci is a collection of r-tours (each of length ≤ 6B) that covers
{li,j}m

j=1. We claim that |Ci| ≥ 3 for any i ∈ [k]: for otherwise,
the two tours covering {li,j}m

j=1 would yield a subset S ⊆
[m] with

∑
j∈S aj = B, which is impossible since I is a

no-instance.
As the subset sum problem is NP-complete, it follows that

it is NP-hard to approximate DVRP on trees to better than a
factor of 1.5. ■

As this reduction is from the subset-sum problem, it does
not rule out better pseudo-polynomial time approximation
algorithms for DVRP on trees, i.e. where the running time
is polynomial in n and D (rather than polynomial in n and
log2 D).

3. BICRITERIA APPROXIMATION FOR DVRP ON
GENERAL METRICS

In this section, we study DVRP on general metrics, and
present a bicriteria approximation algorithm. Our algorithm
uses as a subroutine, the unrooted DVRP (Section 1.2), and
the 3-approximation algorithm for this problem from Arkin
et al. [1]. The basic idea of the algorithm for DVRP is the
following: if an r-tour visits some vertices a “large” distance
from the root, it resembles an unrooted path (with smaller
length) when restricted to just those vertices. So we parti-
tion the vertices of the graph into parts, according to their
distance from the root, and solve the unrooted DVRP (with
appropriate distance bounds) in each part. Algorithm minVR
for DVRP on general metrics is described later. The algo-
rithm also takes as input a parameter ε ∈ (0, 1) that denotes
the allowed violation of the distance constraint.

1. Define vertex sets V0, V1, . . . , Vt as follows (where t =

log2(1/ε)�):

Vj =




{
v : (1 − ε) · D

2
< d(r, v) ≤ D

2

}

if j = 0{
v : (1 − 2j ε) · D

2
< d(r, v) ≤ (1 − 2j−1 ε) · D

2

}

if 1 ≤ j ≤ t − 1{
v : 0 < d(r, v) ≤ (1 − 2t−1 ε) · D

2

}

if j = t

2. For j = 0, . . . , t do:
a. Run the algorithm for unrooted DVRP [1], for the

vertex set Vj , with distance constraint 2j−1 ε · D.
Let �j denote the set of paths obtained.

b. For every path in �j , append both its end points
with edges from the depot r, to obtain the r-tours
{r · π · r | π ∈ �j}.

3. Return all r-tours obtained above.
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Theorem 4. For every 0 < ε < 1, algorithm minVR is
an (O(log 1

ε
), 1 + ε) bicriteria approximation algorithm for

DVRP.

Proof. We first show that each r-tour produced by algo-
rithm minVR has length at most (1 + ε) D. For j = 0, each
r-tour added in step 2 consists of two direct edges from r
to V0 and a path of length at most ε

2 D; so such a tour has
length at most 2 · D

2 + ε D
2 ≤ (1 + ε) D. Now consider the

r-tours corresponding to vertex sets Vj (1 ≤ j ≤ t). Each
path π ∈ �j has length at most 2j−1 ε D, and every vertex
of Vj (and hence the end points of π ) is at distance at most
(1 − 2j−1 ε) · D

2 from r. So each r-tour (r ·π · r) added in this
step has length at most 2j−1 ε D + (1 − 2j−1 ε) · D = D.

We now prove the performance guarantee of this algo-
rithm. Below OPT denotes the optimal number of r-tours
(each of length at most D) for the DVRP instance.

Claim 5. For each j = 0, . . . , t, the optimal value of the
unrooted DVRP instance defined in step 2a is at most 2 ·OPT.

Proof. Fix any j ∈ {0, . . . , t}. Let � denote an optimal
solution to the original DVRP instance. Consider any r-tour
σ ∈ �, and let σj denote the path induced by σ on the vertices
in Vj. The length of σj is at most D−2 · D

2 (1−2j ε) = 2jε D.
This is because every vertex in Vj (hence the end points of
σj) is located at distance at least (1 − 2j ε) D

2 from r. So the
path σj can be split into two (unrooted) paths, each of length
at most 2j−1ε D. Splitting each tour in � in this manner gives
us a set � of at most 2|�| = 2 · OPT unrooted paths over
Vj, that together cover all vertices of Vj. So � is a feasible
solution to the unrooted DVRP instance on Vj with length
bound 2j−1ε D. Thus we have the claim. ■

Using Claim 5 and the 3-approximation to unrooted
DVRP [1], we get |�j| ≤ 6 · OPT, for all j = 0, . . . , t.
Thus the total number of r-tours in the solution is at most
6(t + 1) · OPT, giving the theorem. ■

We note that the above bicriteria approximation was
obtained independently in the preliminary version of this
paper [22] and in Khuller et al. [18]. It remains an interesting
open question to obtain a constant factor approximation for
DVRP on general metrics.
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