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(overing Steiner Tree) on G is the problem of �nding a minimum-ost onneted sub-graph of G that ontains at least ki verties of group gi for all i 2 f1; : : :mg. We denotethe size of the largest group by N , and the largest requirement of a group by K. Weall the group verties terminals.1.2 (Non)standard notation and terminologyIf S � V is a set of verties of G, we write �S for the set of edges with exatly oneendpoint in S. If y : E ! Q is a funtion de�ned on a set E, we write y(E0) forPe2E0 y(e) for any set E0 � E. In the sequel, we use two words|ost and weight|tomean one and the same thing.1.3 AssumptionsIn order to simplify the exposition we make a number of other assumptions. For laritywe �rst list all of them and then explain why eah may be made with almost no loss ofgenerality.(1) The graph G is a weighted tree.(2) The groups are disjoint.(3) We know one vertex spanned by the optimal solution (we give this vertex a speialrole and all it the root).(4) Every vertex belonging to a group has degree 1.(5) Every vertex of degree 1 belongs to some group.All our algorithms assume that the given graph G is a weighted tree. Unfortunatelywe do not know how to generalize our algorithms (or, for that matter, the linear relax-ations on whih the algorithms are based) to general graphs. However, the results ofBartal [3, 4℄ and Charikar et al. [6, 7℄, give a way to redue any one from a very broadlass of ombinatorial optimization problems de�ned on a general weighted graph tothe same problem on a tree. We desribe this in slightly greater detail in Setion 5.Briey, this assumption osts us an extra fator O(log n log logn) in the approximationguarantee, where n is the number of nodes in the input graph, i.e. n = jV (G)j.In some arguments, it will be onvenient to assume that the groups are pairwisedisjoint. There is no loss of generality: if a vertex v ours in p groups, p � 1, attahp new verties to v using newly reated zero-ost edges. Assign eah leaf of this starto one of the groups and remove v from all groups. In this new graph, the groups aredisjoint sets of verties, and there is a ost-preserving bijetion between overing Steinertrees in the two graphs.Another useful assumption is that one vertex, alled the root, of the optimal solu-tion is known in advane. This assumption is neessary in order to run our roundingalgorithms beause they are \entralized": they grow the solution subtree from a singlevertex. There is no loss of generality (only loss of eÆieny), beause we an run thealgorithm for the rooted overing Steiner problem � N times, one for every possiblehoie of the root vertex from say the smallest group.Finally, we assume that every vertex belonging to a group has degree 1 in G. Thismay be ahieved by adding a new vertex for eah group-vertex of degree greater than 1,onneting it to its original vertex by an edge of weight 0 and then removing the original2



vertex from the group. Also, it is easy to hek that the problem remains unhanged ifany vertex of degree 1 that does not belong to any group is removed.1.4 Speial asesThe overing Steiner problem generalizes two di�erent NP-hard network design problemsthat have been studied reently. The �rst is the k-MST problem (see Ravi et al. [18℄,Fishetti et al. [9℄, Blum, Ravi and Vempala [5℄, and Garg [10℄). The seond is thegroup Steiner problem (see Reih and Widmayer [19℄, Garg, Konjevod and Ravi [12℄and Charikar et al. [6℄).The k-MST problem is that of �nding a minimum-ost onneted subgraph thatontains at least k nodes in an undireted graph with nonnegative edge-osts. Theovering Steiner problem redues to the k-MST problem when there is only one groupand when all the verties in V belong to this group. The best-known approximation ratiois 2, ahieved by an algorithm of Garg [11℄ as a ulmination of the series of improvementson his original 3-approximation [10℄; see the papers by Arya and Ramesh [2℄ (givinga 2:5-approximation) and Arora and Karakostas [1℄ (a (2 + �)-approximation for any�xed � > 0). This problem an be solved in polynomial time on trees using dynamiprogramming.The group Steiner problem is the restrition of the overing Steiner problem tounit-valued group requirements. This problem is at least as hard to approximate asthe set over problem, beause even the speial ase where the underlying graph is astar generalizes the lassial set over problem (Klein and Ravi [15℄). Garg, Konjevodand Ravi [12℄ and Charikar et al. [6℄ give randomized and deterministi approximationalgorithms for the group Steiner problem with (asymptotially equal) polylogarithmiapproximation ratios.Subsequent to our work, Even et al. [8℄ use an edge-ost-ow formulation for theovering Steiner problem and derive approximation algorithms with the same guaranteesas those presented in this paper.1.5 ResultsWe �rst desribe two linear relaxations of the overing Steiner problem on a tree. Weshow that they are equivalent and exhibit a graph for whih they have a large integralitygap (arbitrarily lose to K). However, as shown in the preliminary version of thiswork [16℄, even this does not prelude using either of these relaxations as a basis fora rounding algorithm with a polylogarithmi approximation guarantee. In partiular,the main result in [16℄ is an O(logN logm logK) randomized approximation algorithmfor the overing Steiner problem on trees. Reall that N denotes the maximum sizeof a group (whih is at most n, the number of nodes in G), K denotes the maximumrequirement of a group (whih in turn is at mostN) andm denotes the number of groups.In this paper, building on this previous paper, we present an improved approximationguarantee by using the stronger relaxation and a more involved analysis. Our algorithmgives a randomized approximation for the overing Steiner problem on a tree withguarantee O(logN log(mK)). As de�ned earlier, N denotes the maximum size of a group(whih is at most n, the number of nodes in G), K denotes the maximum requirement3



of a group (whih in turn is at most N) and m denotes the number of groups. For thegroup Steiner problem with K = 1, this approximation ratio mathes the best-knownratio. The basi idea is that we grow a overing Steiner tree in several phases; we arguethat the expeted de�it (whih is related to the yet-remaining overage required) goesdown fast enough, to establish the algorithm's performane.We then present a seond algorithm whih is a re�nement of the �rst, and whihgives a better approximation guarantee when the maximum requirement of a group islarge ompared to the number of groups. This is ahieved via a more areful roundingproedure at every phase. Randomization is a key ingredient in the rounding proess ofall our algorithms, and a tail bound of Janson [14℄ helps muh in our analyses.We do not make a omplete attempt at optimizing the onstants in our results.2 Linear relaxations2.1 The �rst relaxationWe present an integer programming formulation of the overing Steiner problem on atree. Let the indiator variable xe denote whether the edge e is ontained in the solution,xe = 1 if e 2 T � (the overing Steiner tree), and xe = 0 otherwise. The ost of thesolution x then equalsPe2E exe, and we use this quantity as the objetive funtion tominimize.In addition to x we use variables yi for i 2 f1; : : :;Kg on the edges E. We think of y1as supporting a unit ow from the root to one vertex of every group (whose requirementis at least 1). Similarly, y2 supports a unit ow from the root to one vertex of everygroup whose requirement is at least 2. For a general i � K, we require yi to support aunit of ow to every group whose requirement is at least i. That is,yi(�S) � 1for all S � V suh that r 2 S andfor all i suh that for some group g,S \ g = ; and kg � i: (2.1)Of ourse, x must support yi for all i:xe � yie for all i. (2.2)We refer to the yi as \ommodities" to undersore the similarity of our problem'sformulation to multiommodity ow problems. We are asked to build a tree that on-nets ki verties of group gi to the root vertex r. This an be thought of as installingenough apaity on the edges of G to send a unit of ow to ki di�erent verties of groupgi. The similarity ends here, however, beause the apaity may be shared between theommodities, unlike the ase in standard multiommodity ow.Consider a group g with requirement k. If there is no repetition among the k vertiesof group g reahed by y1; : : : ; yk, then the edges given value 1 by at least one of theseommodities span at least k verties of g. However, in general, there may be verties4



ounted by more than one ommodity y1; : : : ; yk. In order to prevent this, we strengthenthe \support" onstraints (2.2) and enforexe =Xi yie; for every edge e inident on a terminal. (2.3)The above onstraints along with the integrality upper bound of one unit on thex-variables ensure that no vertex is ounted in more than one ommodity (to satisfymore than one unit of requirement) for its group.The onstraints (2.1), (2.2) and (2.3) together with integrality onstraintsxe; yie 2 f0; 1g for all e and all igive an integer programming formulation of the overing Steiner tree.We relax this integer program by allowing the variables y (and onsequently x) totake on frational values between 0 and 1. However, unnatural frational solutions arestill possible and to prevent them, we add \monotoniity" onstraints:xe � xf for all (e; f) where e is the parent edge of f . (2.4)A drawbak to using these onstraints is that our linear relaxation is now only validif G is a tree. This is not a problem as we have already made this assumption. Theomplete linear programming relaxation is summarized below.minXe2E exeyi(�S) � 1for all S � V suh that r 2 S andfor all i suh that for some group g,S \ g = ; and kg � ixe � yiefor all non-pendant edges exe =Xi yiefor all pendant edges exe � xffor all (e; f) where e is the parent edge of f0 � xe; yie � 1 8(e; i):
(2.5)

Despite its exponential size, the above linear program an be solved in one of twoways: One an reformulate the minimum ut onstraints using the max-ow min-uttheorem more ompatly using ow variables. Alternately, one an employ the ellipsoidmethod [13℄ by supplying a polynomial-time separation orale for the onstraints, therux of whih is easily worked out to be a set of minimum ut problems. At any rate,sine we will introdue and employ an alternate ompat formulation later in Setion 2.3,the solution of the above linear program is not ritial to ahieving our results.5



2.2 Integrality gapEven for the version of the problem with a single group (the k-MST problem), thisrelaxation is not tight. For instane, let G be the tree in Fig. 1, a star with k� 1 leaveswhose enter is onneted to another star with k leaves by a single edge. Let the rootvertex be the enter of the �rst star. Denote the �rst star by A, the seond by B, andthe edge joining them by e0. The single group onsists of all the leaves of G and itsrequirement is k.Consider the solution to the linear program where eah of the k ommodities sends1=k of ow from the root to eah of the k � 1 leaves of A and where eah ommoditysends 1=k of ow to a distint leaf of B. The paking onstraints fore xe = 1 for alledges e in A, but sine only one ommodity is served by every edge of B, xf = 1=k forall edges f of B and for the edge e0.
A B12 ... ...k � 1

k 21C� �r Figure 1.Let the ost of the edges belonging to the stars A and B be �, and the ost of edge e0be C. Clearly, the ost of the optimal tree that ontains the root and overs k terminalsis at least C + k�, sine at least one of the leaves of B must be inluded. However,the relaxed solution desribed above osts only C=k + k�. Thus, the ratio between theoptimal integral and frational solutions of the relaxation (2.5) an be arbitrarily loseto k.2.3 Another relaxationWe now propose a relaxation whih is simpler but equivalent to (2.5). In the integerprogramming formulation, there is an indiator variable xe for eah edge e of G, to saywhether e is hosen or not and thus the objetive is again to minimizePe exe.For any non-root node u, let pe(u) denote the edge onneting u to its parent.Similarly, for any edge e not inident on the root, let pe(e) denote the parent edge of e.Also, given an edge e = uv where u is the parent of v, both T (v) and T (e) denote thesubtree of G rooted at v. Let kg denote the requirement of group g.To reah suÆiently many verties we require thatXj2g xpe(j) = kg for every group g. (2.6)Consider an edge e and the subtree T (e) below this edge. If e is inluded in theovering Steiner tree then up to kg verties of g may be reahed in T (e); if e is notinluded in the solution then no vertex of g will be reahed in T (e). Thus the onstraintXj2(T (e)\gi) xpe(j) � kgxe (2.7)6



is valid for any edge e and any group g. This onstraint will be ruial later in boundingthe parameter in Janson's inequality.Finally, we still impose the monotoniity onstraints (2.4):xpe(e) � xe for all edges e not inident on the root. (2.8)By allowing eah xe to lie in [0; 1℄, we get our seond LP relaxation of the overingSteiner problem. minXe2E exeXj2g xpe(j) = kgfor every group g,Xj2(T (e)\gi) xpe(j) � kgxe;for every edge e and every group gxpe(e) � xefor every edge e not inident on r,0 � xe � 1for every edge e.
(2.9)

We now show that relaxations (2.9) and (2.5) are equivalent.Theorem 2.1. Let x be a feasible solution to LP (2.9). Then there exist y1; : : : yKsuh that (x; y) is a feasible solution to LP (2.5). Conversely, given a solution (x; y) toLP (2.5), it is also feasible for LP (2.9).Proof. First we show that LP (2.9) is at least as strong as LP (2.5). Let g be a groupwith requirement kg. Let v1; : : : vj 2 g be all verties of g spanned by the support treeof x. De�ne w(g)e = xe=kg (2.10)for every edge of the form e = pe(vi), andw(g)e = 0 (2.11)for every other edge e inident on a terminal.De�ne w(g) for the other edges working bottom-up from the leaves along the tree G:if w(g) has been de�ned for all hildren of e, let w(g)e =Pf w(g)f , where the sum is takenover all the hildren of e.Our �rst laim is that w(g)e � xe7



for all e 2 E. In fat, we provew(g)e = 1kg Xj2(T (e)\g) xpe(j);and the laim then follows from the subtree onstraint (2.7) for edge e.The proof is by indution on the number of edges in the longest path \desending"from e to a leaf of G.By (2.10) and (2.11), the laim holds for the edges inident on terminals.Consider an edge e 2 E. By the indution hypothesis, the laim is true for allhildren edges of e: if e = pe(f) then w(g)f = 1kg Pj2(T (f)\g) xpe(j). Noww(g)e =Xf w(g)f = 1kg Xj2(T (e)\g) xpe(j);proving the laim.After de�ning w(g) for every group g, we set yie = maxg: kg�iw(g)e for all i and e.Sine xe � w(g)e for all g and e, the pair (x; y) satis�es the support onstraints (2.2).By de�nition of w for terminal edges, all strengthened support onstraints (2.3) aresatis�ed. Constraints (2.4) and (2.8) are idential. Finally, note that by the de�nitionof w, w(g) supports a unit ow from r to the terminals of the group g. Therefore, theapaity (as de�ned by w(g)) of a minimum ut separating the root from the verties ofg is at least 1. Thus the pair (x; y) satis�es ut-overing onstraints (2.1), and is thusa feasible frational solution for LP (2.5).Now, onsider a feasible solution (x; y) to LP (2.5). Let g be a group with require-ment k and let e be an edge in the tree. Then y1e ; : : : yke denote the \ow" values on theedge e of ommodities supporting group g. Now we haveXj2T (e)\g xpe(j) = Xj2T (e)\g kXi=1 yipe(j) � kXi=1 yie � kxe;that is, onstraints (2.7) are satis�ed by x. The justi�ation is as follows. The equalityfollows from (2.3). The �rst inequality follows beause: (1) all verties of g are leavesof the tree, and so no two edges of the form pe(j), where j 2 T \ g, are ontainedin any single path from the root to a terminal of g, and (2) the values yi form a oworiginating from the root. The seond inequality follows from onstraints (2.2). Allother onstraints of LP (2.9) are obviously satis�ed by (x; y) and so x is a feasiblesolution to LP (2.9).3 The main algorithmWe will proeed in phases, with eah phase satisfying a part of the overage require-ments. Suppose a subset Si of gi has already been hosen (initially, Si = ;). We willwork with g0i = gi�Si, and the remaining requirement of the ith group is ri = ki� jSij.8



The onstraints of the linear program for the residual problem in this more generalnotation beome Xj2g0i xpe(j) = ri for every group g0i, (3.12)xpe(e) � xe for every edge e not inident on the root (3.13)Xj2(T (e)\g0i)xpe(j) � rixe for every edge e and every group g0i. (3.14)Suppose we are given an optimal solution (xe : e 2 E) for this LP. We use therounding proedure desribed in [12℄. For every edge e inident on the root, inlude ein the set of edges to be added to the solution with probability xe. For every other edgee with its parent denoted f , \round up" e with probability xe=xf . This experiment isperformed for eah edge of G independently. Let H denote the subgraph of G induedby the edges that were \rounded up". Disard all onneted omponents of H exeptthe one ontaining the root, and denote the resulting tree by T . We hoose all edgesof T in our solution. This onstitutes one phase of \relax-and-round". We repeat suhphases until all groups have their overage satis�ed. Also, after eah phase, we resetthe osts of all hosen edges to zero, so as to not ount their osts in future phases.Consider the generi phase desribed above. It is not diÆult to see that the expetedost of T is equal to the ost of the initial linear programming solution (whih in turnis at most the optimal objetive funtion value of the original integer programmingproblem). This an be seen as follows: An edge e is inluded in T if and only if all theedges in the path from r to e, say e1; : : : ; ep; e are piked in their respetive independentrandom experiments, the probability of whih isxe11 � xe2xe1 � � � xexep = xe: (3.15)To analyze our random proess and to show that we do not need too many phases, westate and use a probabilisti inequality. Let 
 be a universal set, and R � 
 determinedby the experiment in whih eah element r 2 
 is independently inluded in R withprobability pr. Let fAi j i 2 Ig be a family of subsets of 
, and denote by Bi the eventthat Ai � R. Write i � j if i 6= j and Ai \ Aj 6= ;. De�ne � =Pi�j Pr[Bi \ Bj℄ (thesum is over ordered pairs). Let X = PiXi, where Xi is an indiator variable for theevent Bi, let �i = E[Xi℄ = Pr[Bi℄ and � = E[X℄ =Pi �i. Finally, let e denote the baseof the natural logarithm.Theorem 3.1. (Janson's inequality [14℄.) With the notation as above and with 0 � Æ �1, Pr�X � (1� Æ)�� � e�Æ2�=(2+�� ):We will use Theorem 3.1 to show that we get a guaranteed amount of overagefrom any �xed group, with non-neglibile probability. Let us �x a group gi. Then, inthe setting of Theorem 3.1, we have 
 = E(G) and pe = xe=xpe(e), where pe(e) is theparent edge of e. Eah subset Aj is the edge-set of a path from r to a leaf belongingto gi. Thus, X is the random variable denoting the amount of gi's residual requirement9



ri that a generi phase overs. The argument underlying (3.15) easily helps show that�i = ri. Thus, the key issue is to upper-bound the parameter �i = � of Theorem 3.1.Suppose j; j0 2 g0i (reall that g0i = gi�Si, where Si is the set of elements of gi that havebeen overed in previous phases). We will say that j � j0 if and only if (i) j 6= j0 and(ii) the least ommon anestor of j and j0 in G is not the root r. If j � j0, let la(j; j0)denote the least ommon anestral edge of j and j0 in T 0. A little reetion shows that�i = Xj;j02g0i: j�j0;xla(j;j0)>0 xpe(j)xpe(j0)xla(j;j0) :We aim to showTheorem 3.2. �i � ri(ri�1+ri ln(jg0ij=ri)). In partiular, �i � ki(ki�1+ki ln(jgij)).The proof of this useful theorem is shown next in Setion 3.1.3.1 Proof of Theorem 3.2We use a tehnial result.Lemma 3.3. If xpe(j) > 0, thenxpe(j) � Xj02g0i: j�j0 xpe(j0)xla(j;j0) � xpe(j)(ri � 1 + ri ln(1=xpe(j))):Lemma 3.3 suÆes to prove Theorem 3.2. To see this, �rst note that the funtionz 7! z(ri�1+ri ln(1=z)) is onave for z > 0, sine its seond derivative is non-positive.Thus, sine Pj2g0i xpe(j) = ri, Lemma 3.3 shows that�i � jg0ij � (ri=jg0ij) � (ri � 1 + ri ln(jg0ij=ri));as required.We now prove Lemma 3.3. Suppose xpe(j) = z 2 h0; 1℄. We need some extranotation. Let e0; e1; : : : ; et be the sequene of edges that we enounter as we walk upthe tree starting from j; let y` = xe` . Thus we have z = y0 � y1 � y2 � � � � � yt � 1.Next, for ` = 0; 1; : : : ; `, let S` =Pj02(T (e`)\g0i) xpe(j0). Then, it is not hard to see thatthe left-hand side in the statement of the lemma equalsz � tX̀=1 S` � S`�1y` : (3.16)The sum in (3.16) is learly bounded by the maximum of the following optimizationproblem, whose variables are the y` and S`. (The optimization problem has a maximumsine the domain is a polytope and sine the objetive funtion is ontinuous in thedomain.) OPT (z; t): maximize Pt̀=1 S`�S`�1y` subjet to10



S0 = z;y0 = z;yt � 1;S` � S`+1; ` = 0; 1; : : : ; t� 1;y` � y`+1; ` = 0; 1; : : : ; t� 1;S` � riy`; ` = 0; 1; : : : ; t: (3.17)Constraint (3.17) holds sine (3.14) is a valid onstraint in our problem formulation andin the LP relaxation.Let fy`; S` : ` � 0g be any feasible solution to the above optimization problem. Wenow bound the objetive funtion value v of this solution. We havev = St=yt � S0=y1 + t�1X̀=1 S` � (1=y` � 1=y`+1)� ri � z=y1 + t�1X̀=1 S` � (1=y` � 1=y`+1)� ri � z=y1 + t�1X̀=1 riy` � (1=y` � 1=y`+1)= ri � z=y1 + ri t�1X̀=1(1� y`=y`+1): (3.18)Note the use of onstraints (3.14) in the seond inequality above.Take any `, 2 � ` � t � 1. If we keep all variables but y` �xed, we see that (3.18)is maximized when y` = py`�1y`+1, i.e., when y`�1=y` = y`=y`+1. Thus, for any �xedhoie of y1 and yt, (3.18) is maximized when y1; y2; : : : ; yt are in geometri progression.Therefore, if we �x y1 and yt and let  = (y1=yt)1=(t�1), we havev � ri � z=y1 + ri(t� 1)(1 �  ): (3.19)Now,  � y1=(t�1)1 = e(ln y1)=(t�1) � 1 + (ln y1)=(t� 1). Thus,v � ri � z=y1 + ri ln(1=y1): (3.20)Subjet to y1 2 [z; 1℄ and ri � 1, the r.h.s. of (3.20) is maximized when y1 = z. Thus,v � ri � 1 + ri ln(1=z), onluding the proof.Remark. In the preliminary version of this work [16℄, a bound on �i that is weaker bya onstant fator is shown using a di�erent approah. That approah has the propertyof letting us assume that the tree has \small" depth, whih is useful in some otherontexts [20℄.
11



3.2 AnalysisSuppose some ` iterations of \relax-and-round" have been run, with remaining groupsg0i and residual requirements ri. Run the (` + 1)st iteration. For eah i, let Xi be thenumber of elements of g0i overed in the above randomized rounding of the (` + 1)stiteration; the de�it Di is maxfri � Xi; 0g. Sine �i = ri and �i=�i � ri(1 + ln(gi)),Theorem 3.1 gives for any Æ 2 [0; 1℄ thatPr[Di � riÆ℄ = Pr[Xi � (1� Æ)�i℄ � e�Æ2ri=(2+ri(1+ln(gi))):Now, if y 2 [0; 1℄, e�y � 1� (1� 1=e)y. Thus,Pr[Di � riÆ℄ � 1� Æ2; (3.21)where  = �(1= logN): (3.22)So, sine Di is an integer taking values in [0; ri℄,E[Di℄ = riXj=1 Pr[Di � j℄ � riXj=1(1� j2=r2i ) � ri(1� =3);Linearity of expetation yieldsE[Xi Di℄ � (1� =3)Xi ri: (3.23)Now let Y` be the total residual requirement after ` iterations; Y0 is deterministi, andhas value Pi ki. We see from (3.23) that for any y > 0,E[Y`+1j(Y` = y)℄ � (1� =3)y:Hene, E[Y`+1℄ � (1 � =3)E[Y`℄. Indution gives E[Y`℄ � (1 � =3)`Pi ki. Choosing` = `0 := d(3=) � ln(2Pi ki)e, we get E[Y`0 ℄ � 1=2. Thus, by Markov's inequality,Pr[Y`0 � 1℄ � 1=2: (3.24)Also, as argued just before (3.15), the expeted total ost C` of the edges roundedin eah iteration ` is at most OPT . Thus, E[P`0`=1C`℄ � `0 �OPT . Markov's inequalityimplies, e.g., that Pr[ `0X̀=1 C` � 2:1`0 � OPT ℄ � 1=(2:1): (3.25)So, by (3.24) and (3.25), there is a probability of at least 1=2 � 1=(2:1) that after`0 iterations, all requirements have been satis�ed, and that the total ost of the treeprodued is at most 2:1`0 � OPT . Note from (3.22) that `0 = O((logN) � (log(Km))).Thus we getTheorem 3.4. There is a randomized polynomial-time approximation algorithm for theovering Steiner problem on trees, whih with onstant probability produes a solutionof value at most O((logN) � (log(Km))) times optimal.12



4 Large requirements|the seond algorithmIn this setion, we present an approximation algorithm with approximation guaranteeO� (logN) � log2mlog(2(logN) � (logm)= logK)� : (4.26)This bound is better than that of Theorem 3.4 if, e.g., K � 2a(logm)2 where a > 0 isa ertain absolute onstant. The main idea behind the re�nement in this algorithm isto partition the terminals from a group more arefully based on the support values ontheir parent edges: the part with the largest support values are rounded (as are theother edges on the path to the root) without muh inrease in ost sine these edgeshave suÆient support value to begin with. When the rounding does not ahieve rapidprogress with this part, the remaining support edges are boosted in their frational valueand rounded; when the number of groups is small, this boosted rounding also ensuresrapid progress leading to an overall smaller number of rounding steps.As in Setion 3, suppose we have run ` iterations of \relax-and-round", and thatthe residual version of gi is g0i, with remaining requirement ri. Call i ative i� ri 6= 0.As desribed in Setion 3, we solve the LP relaxation for the residual instane to get avetor (xe : e 2 E). Let � > 1 be a parameter that is �((logN) � (logm)); its atualvalue is de�ned by (4.31). For ertain positive onstants a0; a1 suh that a0 + a1 < 1and a1 � ��1, we de�ne the following. For eah ative i, partition g0i into three sets:Si;1 = fj 2 g0i : xpe(j) � a1g;Si;2 = fj 2 g0i : xpe(j) 2 (��1; a1)g andSi;3 = fj 2 g0i : xpe(j) � ��1g:Also, for any vetor w = (we : e 2 E) and for t = 1; 2; 3, de�ne Fi;t(w) =Pj2Si;t wpe(j).Let i be any ative index. We will say that i is Type A i� Fi;1(x) � a0ri; otherwisewe say that i is Type B. Also let 0 < z < 1 be a parameter to be de�ned later. We arenow ready to desribe our rounding in the urrent, i.e., (` + 1)st, iteration. There aretwo ases:Case I: At least a z fration of the urrently ative groups are of Type A. In this ase,our rounding is the following simple deterministi sheme: hoose an edge e i� xe � a1.Case II: This is the omplement of Case I. In this ase, we set x0e = xe �minf�; 1=xeg,and run the randomized rounding sheme of Setion 3 using these new values x0. (Morepreisely, we repeat this randomized rounding algorithm independently a suÆient|O(log n)|number of times so that a ertain property holds whp; see Setion 4.1.) Notethat 8i 8j 2 (Si;1 [ Si;2); x0pe(j) = 1: (4.27)As desribed above, the main idea behind this improved algorithm is to argue thatin Case II, the boosted probabilities used in rounding allow us to use fewer roundingiterations overall than in the previous ase. In this analysis, the seond of the three13



sets of support edges for a group is used to dispose of an easy ase - intuitively, whenFi;2(x) is a onstant fration of the requirement ri, the boosting immediately ensures(as in Case I) that we are making rapid progress in overage. In the remaining ase,a diret appliation of Janson's inequality (Theorem 3.1) with the boosted probabilityshows that few repetitions of rounding are suÆient to �nish overing all ative indiesin suh iterations.4.1 Analysis of the roundingLet us �rst upper-bound the total ost inurred by the iterations in whih Case I held.It is easily seen that in eah suh iteration, the total ost of the edges hosen is at mostOPT=a1.We next bound the number of iterations in whih Case I ould have been true. Theidea is roughly as follows: In every iteration in whih Case I held, a z-fration of ativegroups all have an a0 fration of their terminal support values in the �rst partition(with support value at least a1). Total de�it thus redues roughly by a fration of za0in every Case I iteration. Sine we start with total de�it at most mK, the numberof iterations is roughly O( lnmKln(1=za0) ) and the ost inurred per iteration by rounding upedges with original support values at least a1 is a 1a1 fator. We do this more formallybelow.Let s be an integer with 0 � s � dlnme. Let Is be the sequene of iterations(arranged in inreasing order) in whih the number of ative indies was in the range(es�1; es℄, and in whih Case I was true; we will now bound jIsj. Consider any i thatwas ative at the beginning of Is. Equation (4.27) shows that for every iteration in Isin whih i was Type A, at least an a0 fration of gi's requirement is satis�ed; so i ouldhave been Type A in at most d(lnK)=(ln(1=a0))e iterations in Is. Sine eah iterationin Is had at least es�1 ative indies, at least zes�1 ative indies are of Type A in eahiteration in Is. So, sine there were at most es ative indies at the beginning of Is, wean hek that jIsj � ez � � lnKln(1=a0)� :Summing over the (1 + dlnme) possible values of s and realling that eah \Case I"iteration inurs a ost of at most OPT=a1, we getThe total ost from \Case I" iterations is at most ea1z �� lnKln(1=a0)� � (1+ dlnme) �OPT:(4.28)We now analyze Case II. Fix an iteration in whih Case II held; As before, let ri bethe residual demand of group gi. The terms \Ative", \Type B" et. below, refer tothese prediates at the beginning of this iteration.We aim to show that if � is hosen large enough, then the residual demands ofall ative Type B indies will be satis�ed by this iteration whp. We �rst dispose ofan easy ase. Reall that a0 + a1 < 1. Consider any ative i of Type B, for whihFi;3(x) � (1 � a0 � a1)ri. Sine i was Type B, we have Fi;1(x) < a0ri. However,Fi;1(x) + Fi;2(x) + Fi;3(x) = ri. So, we must have Fi;2(x) � a1ri. Now, we an hek14



that for eah j 2 Si;2, x0pe(j) = 1 � xpe(j)=a1. Therefore, sine Fi;2(x) � a1ri, all ofgroup gi's residual demand will get satis�ed with probability 1, by this iteration.So, we an just fous on those Type B indies that are not overed by the above easyase. De�ne i to be relevant if it is ative, Type B, and has Fi;3(x) > (1 � a0 � a1)ri.We will now show that if � is hosen large enough, then the residual demands of allrelevant indies will be satis�ed by this iteration whp. To do this, we will atually provethe following. For eah edge e, let Ye be the indiator random variable for whether eis hosen by this iteration or not. We will show that whp, Fi;3(Y ) � ri for all relevantindies i.Fix a relevant i. To prove that Pr[Fi;3(Y ) � ri℄ is suÆiently high, we will useJanson's inequality (Theorem (3.1)). To do so, we now modify the de�nition of therelation �, and also rede�ne �i and �i. Suppose j and j0 belong to Si;3. We will saythat j � j0 i�: (i) j 6= j0 and (ii) x0la(j;j0) < 1. [Note that this requirement (ii) isdi�erent from before; this is ruial for our bound (4.30) on �0i.℄ De�ne�0i = E[Fi;3(Y )℄ = Fi;3(x0) = �Fi;3(x) > �(1� a0 � a1)ri; and (4.29)�0i = Xj;j02Si;3: j�j0 x0pe(j)x0pe(j0)x0la(j;j0) :For eah j; j0 2 Si;3, we have x0pe(j) = �xpe(j) and x0pe(j0) = �xpe(j0) by de�nition ofSi;3. The de�nition of � also implies that if j � j0, then x0la(j;j0) = �xla(j;j0). So,Theorem 3.2 yields �0i � ri�0i logN (4.30)for some onstant . Let exp(y) denote ey. Theorem 3.1 gives, for any Æ 2 [0; 1℄, thatPr[Fi;3(Y ) � �0i(1� Æ)℄ � exp(�Æ2�0i=(2 + �0i=�0i)):Then, using (4.29) and (4.30), we derive the boundPr[Fi;3(Y ) < ri℄ � Pr�Fi;3(Y ) < �0i�(1� a0 � a1)�� exp ��(1� a0 � a1)2(1 +  logN) ��1� 1�(1� a0 � a1)�2! :Choosing � = 31� a0 � a1 � (1 +  logN) � ln(2m); (4.31)we get Pr[Fi;3(Y ) < ri℄ � 1=(2m). Thus,Pr[there is some Type B index that is not ompletely overed℄ � 1=2: (4.32)It is also easy to see that the expeted total ost of the edges hosen is at most � �OPT ;Markov's inequality shows that the probability of this ost being more than, e.g., 2:1 �� � OPT is at most 1=(2:1). So, we have from (4.32) that with at least the onstantprobability of 1=2 � 1=(2:1), the hosen edges over all the Type B indies, and have a15



total ost of at most 2:1 � � � OPT . This probability an be ampli�ed to, say, 1� 1=n2by repeating this proess O(log n) times. Thus, sine eah \Case II" iteration overs atleast an (1� z) fration of the urrently ative indies, at most l lnmln(1=z)m suh iterationsneed to be run, whp. Therefore,Whp, the total ost from \Case II" iterations is at most 2:1 � � lnmln(1=z)� � � �OPT:(4.33)Thus, the total ost is whp at most the sum of the quantities from (4.28) and (4.33).We hoose a0 = a1 = 1=3 andz = min�(logK) � log(2(logN) � (logm)= logK)(logN) � logm ; 12� ;though again a more areful hoie of the onstants is possible. This ompletes theanalysis and gives the following theorem.Theorem 4.1. There is a randomized polynomial-time approximation algorithm for theovering Steiner problem on trees, whih with onstant probability produes a solutionof value at most O( (logN)�log2mlog(2(logN)�(logm)= logK)) times optimal.5 Extensions5.1 General metrisDe�nition 5.1. A set of metri spaes S over V is said to �-probabilistially approxi-mate a metri spae M over V , if (1) for all x; y 2 V and S 2 S, dS(x; y) � dM (x; y),and (2) there exists a probability distribution D over metri spaes in S suh that forall x; y 2 V , E[dD(x; y)℄ � �dM (x; y).Bartal [3, 4℄ proved the following theorem.Theorem 5.2. Every weighted onneted graph G on n verties an be �-probabilistiallyapproximated by a set of weighted trees, where � = O(log n log log n). Moreover, we ansample from the probability distribution in polynomial time.The trees that we get from Bartal's algorithm are not subtrees of the original graph.Only their leaves are the original verties of G. To solve the overing Steiner treeproblem on a general graph G, �rst �nd a set of trees and the distribution on them thatO(log n log log n)-approximates G. Then pik a tree from the distribution and solvethe overing Steiner tree problem approximately on it. Now this solution subtree mustbe transformed into a subgraph of G, and this an be done by simply taking the tourthat visits all the leaves of the solution tree, as in the lassial 2-approximation for themetri TSP. The distanes in the tree are greater than those in the original graph, sothis tour will at most double the ost of the solution tree. The expeted ost of thistour is O(� log n log log n) times the optimum, where � is the approximation ratio of theovering Steiner approximation algorithm on trees. By using Markov's inequality, we�nally get the following theorem. 16
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