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Abstract. Given an undirected-node graph and a sétof m cuts, theminimum
crossing treds a spanning tree which minimizes the maximum crossing gf an
cut in C, where the crossing of a cut is the number of edges in thesitéon

of this cut and the tree. This problem finds applications ildéies diverse as
Computational Biology and IP Routing Table Minimization.

We show that a greedy algorithm gives@(v log n) approximation for the prob-
lem where any edge occurs in at mestuts. We then demonstrate that the prob-
lem remains NP-hard even wheéhnis complete. For the latter case, we design
a randomized algorithm that gives a tr€ewith crossingO((logm + logn) -
(OPT+ logn)) w.h.p., where OPT is the minimum crossing of any tree.

Our greedy analysis extends the traditional one used fares&tr. The random-
ized algorithm rounds a LP relaxation of a correspondinggaltiiem in stages.

1 Introduction

Given a grapiG = (V, E) with n nodes and a family of cus = {C1,...,C,,}, the
minimum crossing treis a spanning tre@, which minimizes the maximum crossing of
any cut, where the crossing of a ctitis defined a$E£(7")NC;|. If the family of cuts isC
={(v,V\v) : v € V}, thenthe MCST problem reduces to finding the minimum degree
spanning tree problem which has been widely studied [8].ddeNP-completeness of
the minimum degree spanning tree problem [7] shows that M@8iblem is NP-hard.

In this paper, we show approximation guarantees for thedgraggorithm for the
MCST problem.

Theorem 1. Given a graphG = (V, E) and a family ofm cutsC={C4,...,C,,}, a
greedy algorithm for MCST problem gives a spanning ffeehich crosses any cut in
C O(r - logn) times the maximum crossing of an optimal tree.

Although the minimum degree spanning tree problem is fratlecomplete graphs,
surprisingly, the MCST problem remains difficult even foistBpecial case. We show
that the decision version of even this version of the MCSbfam is NP-complete.

Theorem 2. Given a complete graplr, set of cutsC and a positive integek, the
problem of determining whether there exists a spanningdfééwhich crosses any cut
in C at mostk times is NP-complete.
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A proof of the above theorem appears in the Appendix. Théquéat case of com-
plete graphs finds application in fields as varied as IP rgutimd computational bi-
ology. We give improved algorithm for the MCST problem on qete graph which
gives better performance guarantees.

Theorem 3. There is a randomized LP rounding based algorithm, whicleigia& com-
plete graphG and a family of cut€={C, ..., C,,} gives a spanning tre€ such that
crossing for any cu€; € Cis O((logm + logn) - (OPT+ logn)), where OPT is the
maximum crossing of an optimal tree.

1.1 Motivation: Chimerism in Physical Mapping

The MCST problem finds important applications in computadidiology. Thephysi-
cal mappingproblem of the human genome project is to reconstruct tlagivelposition

of fragments of DNA along the genome from information ontip@irwise overlap. One
has a collection of clones and a set of short genomic inseatie(lprobeg. A probe
defines a single location where a given subset of clones idan€or each probe/clone
pair, it can be determined whether the clone contains thieepas a subsequence using
biological techniques. The problem is to construct the pievhich the probes would
occur along the original chromosome that is consistent thighgiven the probe/clone
incidence matrix. This can be done efficiently if there ihonerism Chimerismis the
result of concatenating two or more clone from differentgaf the genome, produc-
ing a chimeric clone -one that is no longer a simple subswifrige chromosome. More
formally, the problem is as follows: Given a probe-clonddienice matrixA, with rows
indexed by probes and columns by clones, and the enjris 1 iff probe ¢ occurs in
clonej. If there is no chimerism, then the problem is reduced to figdi permutation
of rows so that ones in each column are consecutive (call&d@KP) and this can be
solved efficiently in polynomial time [1]. However, in thegsence of chimerism, the
problem is more difficult. Then, we need to find a permutatioof rows, such that
each column has at moktblocks of consecutive ones (called as k-consecutive ones
property or k-C1P), if the chimeric clones are a concatenaidf at most k clones. The
decision version of this problem i’®oes a given 0-1 matrix have the k-consecutive
ones property?’has been proved to be NP-complete in [5].

1.2 k-C1P and Vector TSPs

A classical way to solve the k-C1P problem is to reduce it t@digular multidimen-
sional TSP problem called the Vector TSP (vTSP). This pmokikdefined on a com-
plete graphG = (V, E), where each edge € F is assigned am-dimensional cost
¢ : E — {0,1}™. The cost of a toufl" in G is the m-dimensional vectan7') =
> eccr(r) ¢(e) and the objective is to minimize:(7") | .

The reduction fromk-C1P to VTSP is straightforward. Each row 4fbecomes a
node inG and the cost assigned to edge: (i, j) is set to the XOR-vector between the
two rowsa; anda;. Now, letr be the permutation induced by a solutibrof vTSP, and
letb(A™) be the maximum number of blocks of consecutive one$inThen, we have

thatb(A™) = % Solving the VTSP problem is NP-hard by this reduction from



the2-C1P problem. However, since the hamming distance obeyts#ngle inequality,

it is possible to use the standard Euler Tour shortcuttiogrtejue in order to compute
a 2r-approximate solution once given amapproximation to the related Vector MST
problem (VMST).

The vMST can be formulated as thenimum crossing spanning tre@eoblem on a
complete grapli=. Any columnj of A can be seenas aatit = (V;, V'\V;) defined on
G by settingV; = {v; € Vl]a;; = 0}. The cost of edge = (4, j) is as before the XOR-
vector betweem; anda; i.e. c(e) is a 0-1 vector, where thé" entry corresponding to
a cutC is 1 iff the edgeg(, j) crosses”;. Here, the terminology that an edgerosses
acutC is used interchangeably withe C. For any tre€l’, letc(T") = }_  gr) c(e).

The i*" entry of the vector(T) is exactly the number of edges ®fcrossing the cut
C;. Thus, theminimum crossing spanning treeinimizes||c¢(T") || co-

1.3 Motivation: IP Routing

Another useful application of the MCST problem can be founf2] where it is shown
that the an efficient solution for the min-C1P can be used to obtain an good approx-
imation for the Interval Routing problem: given a set of IRiting tables sharing the
same host space, the problem is to reassign the IP addreses losts in order to
minimize the maximum size of any IP routing table.

This IP routing table minimization problemiiN-1P for short, can be formalized as
follows. We are givenasdt = {ry,...,r,} of nroutersand aséf = {h1,..., h,,}
of m destination hosts. Each router € R has a degreé;, that isd; outedges, and a
routing table specifying which of the outedges to take fargwhost. The problem is
to choose the IP addresses of thénosts and construct thelP routing tables so as to
minimize the maximum size of a table, that is the maximum nemna used entries in
atable.

In [2] it is shown that, given any-approximation algorithm for the problem of
determining a row permutation that minimizes the maximumbaer of blocks (of ones)
in a boolean matrix, an efficien2r log m-approximation algorithm exists fofiN -1P,
which exploits a matrix representation of the instancesiefiroblem.

Similar applications can be found also in designing intereating schemes as
proposed in [3, 4].

1.4 Related Work

As observed earlier, the minimum degree spanning tree @mold a special case of the
MCST problem. The best result for the minimum degree spaytnge problem are due
to Furer and Raghavachari [8]. They construct a spannimgviith maximum degree
at mostA* + 1 where A* is the maximum degree of the optimal tree. The/ ST
problem has been considered by Greenberg and Istrail [@y Give solution of cost
O(s(A) - OPT + logn). Heres(A) = mazi<i<n y_;—, a;;. Note thatr in Theorem
1 is different froms(A) in [6]: r is the maximum number of cuts a given edgean
cross, where the cuts are defined by columnslpg(A) is the sparsity ofd i.e. the
maximum number of 1's in any row id. Observe that < 2-s(A), buts(A) can be as



bad asn. Hence, our algorithm gives comparable or better perfotraguarantee than
the algorithm in [6].

The paper is organized as follows. In Section 2, we descridreedy algorithm for
the MCST problem and prove Theorem 1. In Section 3, we giva@aaized algorithm
for the special case and prove the guarantees of Theorenitg kppendix, we show
that the MCST problem is NP-hard even for complete graphs.

2 Greedy Algorithm for the General Case

In this section, we show that the greedy algorithm givesJdn - logn) approxima-
tion for the MCST problem where is defined asnax.c¢ |[{C € C: e € C}|. Given

any subgraplf, the maximum number of time crosses any cut i@ is denoted by
Cross(H,C).

Greedy Algorithm:
F—¢
while F'is not a tree
do
Lete’ be an edge which minimiz&sross(F Ue,C)
over all edges € G which join two components of'.

F—FuU¢e

od

Let the solution returned by the greedy algorithniyeand letl = Cross(Ty,C).
We can divide the running of the greedy algorithmi iphases. Thé!" phase of the
algorithmis the period whefiross(F,C) = i. Letk; denote the number of components
in F when thei*” phase ends. Lel/; be the cuts which are crossed bgdges at the
end of;i*" phase andn; = |M;|. We now give a lower bound for the MCST problem.

Lemma 1. GivenanyS C C, letk be the number of components formed after removing
the edges frond7 of all cuts inS. Then
opt > E
s
Proof. Any spanning tree aff must choose at least-1 edges to join thé components
formed after removing the edges of cutsSinEach of thesé — 1 edges crosses at least
one of the cuts irt. Hence, the average crossing of such a cuft ia at Ieast’“‘%‘l.

Now, we prove Theorem 1.

The proof of Theorem 1Consider the running of the algorithm in tié phase. Cross-
ing number of at least:; cuts increases by 1 in th&" phase. Each edge can increase
the crossing number of at mastuts. Hence, in th&”" phase we must include at least
[74] edges inF'. Every edge, when included i, reduces the number of components
in F' by exactly one. Therefore, we have the following inequality

ki < kg — 2 (1)
r



When thei?” phase ends, every edge joining two component8 afust cross at least
one of the cuts in/;, else the greedy algorithm would choose such an edge iit'the
phase. Applying Lemma 2, we get the for edch

ki—1
opt > (2)
m;
Using (1) and (2), we have that for eagh
ki —1
kiog —k; > 3)
T * opt
Usingk; > 2 for eachi <1 — 1 andk;_; > k;, we have for each,
ki_l - ki Z QTI:gpt
= k'i—l > k‘l(l + 2r+opt)
l
j k() 2 kl(l + 27“+opt)
As, kg = n andk; = 1, we get that
e
= logn > llog(1 + 27,*;0“)
Using,log(l +z) > x — ””2—2 andr x opt > 1 we get
logn 2 l(2r*1opt(]‘ - 4r*10pt)) Z l4r*1opt
= | <d4rlognxopt
Hence, the greedy algorithm iS¥r logn) approximation. O

3 A Randomized Algorithm for the Case of Complete Graphs

In this section, we describe a randomized algorithm for M&BTomplete graphs and
prove that it gives a tree with maximum crossifg(log m + logn) - (OPT+ logn))
with high probability, where: is the number of vertices it¥ andm is the number of
cuts inC.

The idea is the following : Start with each vertex as a diffémmponentand merge
components in phases until a connected subgraph is obtdimaghase, each compo-
nent is represented by an arbitrarily chosen vertex of tineppment. We carefully se-
lect some edges between the representative vertices bpgalvmulticommodity flow
problem in each phase, so that the cut§ are not crossed “too much”. We ensure that
at least one edge is chosen out of each representative iy @vase. Hence, the num-
ber of components reduces by at least a factor of two and tbasrected subgraph is
obtained in at mosbg, n phases.

In phasep, we solve the following multicommodity flow problem on a gha@’
constructed from a complete graph, (on the representative vertices in this phase) as
follows. LetV(G)) = {v1,v2,...,Un, }.



— For each undirected edge= (u,v), add two directed edgess = (u,v) and
er = (v,u) in G,

— For each vertex; € V(G,) introduce a new vertex,, in V(G’) and

- Ywv; € V(Gp),j # i, add the directed edde;, s,,) in G-

Now, the flow problem oz’ is the following. Each vertex; € V(G) is required
to send a unit flow of commodityto s,,. Let fi, f2, ..., f, be the flows associated
with each of the: commodities. Letf;(v) denote the net flow of* commodity into
the vertexv. The following integer program accomplishes our goal.

min =z
st z > ZeeE(G)ﬂC Xe vC eC
Vi=1,...,ny
filtv) =0 VYoeV(G)\{vi, s}
fitvi)  =-1
fi(s q‘) =
(

) €{0,1) Yee B(G)

We now describe the algorithm for the MCST problem. We wilhswuct a con-
nected subgrapl with a low maximum crossing

1. InitializeV(H) — V(G), E(H) «— ¢, Gy «— G, Ry — V(G),p < 0.
2. While H is not connected
(a) Construct’ from G,,. Solve the LP-relaxation of the corresponding integer
program for phasg and obtain an integral solutioki by randomized rounding
of the optimum LP solution [10].
(b) LetE = {ec Gp: X.>0}. E(H) — E(H)UE'.
(c) p — p+ 1. Let R, be the set of representative vertices(chosen arbitramiéy o
for each connected component/dj, G, is the complete graph on the vertices
of R,,.

LetT* be a optimal tree for the MCST problem and let OPT be the maxironoss-
ing of any cut inT™.

Proposition 1. Let z; be the optimum to the LP-relaxation in phaseThenz; <
20PT.

Proof. We can construct a feasible solution of the LP from the optnttee 7™ of
value at mosROPT. LetR; = {v1,...,v,,} be the set of representatives in phase
From the Tree Pairing Lemma [9], there exists a matchihdpetween vertices oR;

such that the paths i* between the matched pairs of vertices are edge disjoint. We
can use this matching to construct a feasible solution ta_theSend a unit flow of
commodityi on the directed pat#®,, ,, U (vj, s,,) and of commodityj on the path
Py, v, U (vi,50;), WhereP(u,v) is the unique path in treéB* between matched paits
andv. The above flow is a feasible flow as it satisfies all the flow tansts of the LP.
Every edge off* carries at most two units of flow. Hence, the objective valfier this
feasible flow, is at mostOPT. Therefore;,; < 20PT.



Proposition 2. If an edgee = (u,v) crosses a cu€’, then any other path between
andwv also crosses the cut at least once.

Proof. If we remove all the edges i@ from G, thenu andv would be disconnected.
Thus, every path from to v contains an edge @f.

We will use Observation 2, to obtain a special kind of optimswiution such that
each flow path uses only two edges. Consider the flow decotiggo$dr commod-
ity 4 in the optimum solution of the LP-relaxation and consideroavfpath P =<
Viy Uiy Vigs « -+, Uiy, So; > We can replacé by the pathP’ =< v;, v;, , s, > without
increasing the maximum crossing. From Observation 2, waevkhat any cut that the
edge(v;, v;, ) crosses will be crossed at least once by the patfherefore,P’ only
reduces the number of crossings for the cuts and so we can replade by P’. Thus,
we can obtain a fractional optimum solutiéti such that each flow path uses only two
edges.

3.1 RoundingS* to an integral solution

Let us describe the rounding of the fractional multicomntypfiow obtained by solving
the LP relaxation corresponding to phasé&he flow corresponding to each commaodity
is rounded independently of others. For each commadityi, . . ., n,,, choose an edge
e = (v;,v;) with probability f;(v;, v;). The corresponding flow is routed through the
path< v;,v;, s, > and the edgév;, v;) isincluded in the subgrapH. This is repeated
for every commodity independently.

In phasep, let the fractional optimum flow bg* and the optimum LP solution be
z*. Let z(C') denote the number of edges crossing aCug C. ConsiderY;, a 0-1
variable associated with th¢" commaodity, where

v { 1 if the integral flow crosses C
=

0 otherwise
Therefore, )
Pr(Vi=1)= > fie)
ecE(Gp)NC
20)=>Y;
j=1

E[Z(C)] = Z;h:1 ZeEE(Gi)ﬂC f:j(e)
= ZeeE(Gi)ﬁC Zj;l fi(e)
= 2uecE(G;)NC Xe

<z < 2.0PT

z(C) is the sum of independent Bernoulli trials. Thus, we can user@ff bounds
to bound the tail probability

k262

Pr((C) = BEON > k8) - < eap(—5p o

)



Let 8 = E[2(C)] + logn andk = log,, m + 23. Therefore,

Pr(|2(C) — E[2(C)]] > kB) < eap(—ZEE )l +ogn

2
(2log,, m+4)logn
<erp(— =)

T mn?

SinceE|[z(C)] < 20PT, we have thaPr(z(C) > (2(k+1)OPT+klogn)) < -

mn?

or Pr(z(C) > O((log, m + 3) - OPT + (log, m + 2) - logn)) < —L, for any

cutC' € C in any phasen. We say that a “bad” event occurs in a Sﬁ%sé some
cut C' € C has a high crossing in that phase. Thus, from the union bowntave

Pr(bad event occurs in phasg g ;. The algorithm has at mokig, n phases. Thus,

n

' I
Pr(’bad” event occurs in any phase (;gzn *)

Thus, we have shown that in every phase the crossing of euerg ©((log,, m +
3)OPT + (log,, m + 2) - logn) with high probability. Hence, we obtain a solution of
maximum crossing)((log, m + log, n) - (OPT + log, n)) with probability at least
(1 — logny 0

n2

4  Future Work

We believe that better performance ratios can be obtaingdtplary for the MCST
problem on complete graphs. Furthermore, more sophistiaaethods than a simple
greedy approach should be able to remove the factoeiirothe general case.
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Appendix: MCST for Complete Graphs is NP-Hard

In this section, we consider the MCST problem for completgbs. We show that the
problem is NP-hard even for this special case. In fact, wavghat the decision version
of the problem is NP-complete.

Clearly, the decision problem is in NP. We reduce the 2-coutsee ones problem,
2-C1P, to MCST. Given a x m matrix A, 2-C1P is the problem of determining whether
there exists a permutation of rows such that in each colufranak occur in at most 2
consecutive blocks. This problem has been shown to be Niplebanin [6].

Given any arbitrary: x m matrix A, make a complete gragh overn + 1 vertices, with
one vertex corresponding to each row and a new dummy verfer each column i,
include a cut irC naturally defined by the column: vertices with rows witform one
side of the cut. The dummy vertexs always on th@-side of each cut. Also include in
C singleton cuts(, = ({v},V \ {v}) for every vertex inG. For each pair of vertices
uw andv, include inC the cutC,,,, = ({u, v}, V' \ {u,v}). Finally, letk = 4.

We first show that if there exists a permutation of rowssuch that it hag-C1
property, then there exists a spanning tree which crossgs @4 inC at most four
times. Consider the Hamiltonian pathwhich starts at and then traverses the vertices
in the order corresponding to permutatisnEach cut corresponding to a column is
crossed by the Hamiltonian path exactly when the row permutationswitches from
a row with0 with a row with1 or vice versa. As all the ones are in 2 consecutive blocks,
each cut can be crossed at most four times. Introducing therdunode corresponds
to introducing a row with all zeros as the first row which clgaloes not change-C1
property. Also, a Hamiltonian path crosses each singletirat most two times and
cutCy,, at most two times for any, v € V. Hence, there exists a spanning tree which
crosses every cut il at most four times.

Now, for the other direction we show that if there exists ansyiag treeT” which
cuts every cut irC at most4 times then there exists that a permutatiowhich has
the2-C1P property. We claim that any such tree must be a Hamdltopath. As each
singleton vertex is a cut i, hence degree of each vertex is at most four. Suppose there
exists a vertexu with degree four. Fon > 5, there exists a vertex which is not a
neighbor ofu. But, then the cuC,, is crossed at least five times. Hence, all vertices
have degree at most three. Suppose, for the sake of conitbadicere exists a vertex
u such thatdegr(u) = 3. Consider any vertex which is not a neighbor ofi. As T’
crosse’,,, at most four times, sdegr(v) = 1. This implies that the total sum of



degrees of nodesin Tis at mast4 + (n — 3). Hence2n — 2 < n+ 9 or equivalently,
n < 11 which is a contradiction assuming larger Hence, every vertex must have
degree at most two i’ showing thatl" is a Hamiltonian path.

Let the hamiltonian path bévy, ..., v, s, vk+1, v,). Consider the following per-
mutation of rowgrg41,...,7n, 1, .., %) Wherev; corresponds to row; in the trans-
formation. We claim that in each column, there cannot be rti@ne two blocks of ones.
Suppose for the sake of contradiction, there exists a colymich has three blocks
of ones. Thus, the cut corresponding to the Hamiltonianecy@tmed by joiningv,,
andwv; must cross the cut corresponding to columiat least five times. But any cycle
crosses any cut even number of times. Hence, it must crossitla least six times, but
then the hamiltonian path must cross the cut at least fivestimeontradiction. Hence,
there exists a permutation which satisfies2h@1 property. This reduction shows that
decision version of MCST problem for complete graphs is Ryglete. O



