
Combinatorics, Probability and Computing (2009) 18, 145–163. c© 2008 Cambridge University Press
doi:10.1017/S0963548308009334 Printed in the United Kingdom

Line-of-Sight Networks

ALAN FRIEZE1,† JON KLEINBERG2,‡

R. RAVI3§ and WARREN DEBANY4 ¶

1Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213, USA
(e-mail: alan@random.math.cmu.edu)

2Department of Computer Science, Cornell University, Ithaca NY 14853, USA
(e-mail: kleinber@cs.cornell.edu)

3Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213, USA
(e-mail: ravi+@andrew.cmu.edu)

4Information Grid Division, Air Force Research Laboratory / RIG,
525 Brooks Road, Rome, NY 13441-4505, USA

(e-mail: warren.debany@rl.af.mil)

Received 25 February 2007; revised 28 January 2008; first published online 12 August 2008

Random geometric graphs have been one of the fundamental models for reasoning about wireless
networks: one places n points at random in a region of the plane (typically a square or circle),
and then connects pairs of points by an edge if they are within a fixed distance of one another. In
addition to giving rise to a range of basic theoretical questions, this class of random graphs has
been a central analytical tool in the wireless networking community.

For many of the primary applications of wireless networks, however, the underlying envir-
onment has a large number of obstacles, and communication can only take place among nodes
when they are close in space and when they have line-of-sight access to one another – consider,
for example, urban settings or large indoor environments. In such domains, the standard model
of random geometric graphs is not a good approximation of the true constraints, since it is not
designed to capture the line-of-sight restrictions.

Here we propose a random-graph model incorporating both range limitations and line-of-sight
constraints, and we prove asymptotically tight results for k-connectivity. Specifically, we consider
points placed randomly on a grid (or torus), such that each node can see up to a fixed distance along
the row and column it belongs to. (We think of the rows and columns as ‘streets’ and ‘avenues’
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among a regularly spaced array of obstructions.) Further, we show that when the probability of
node placement is a constant factor larger than the threshold for connectivity, near-shortest paths
between pairs of nodes can be found, with high probability, by an algorithm using only local
information. In addition to analysing connectivity and k-connectivity, we also study the emergence
of a giant component, as well an approximation question, in which we seek to connect a set of
given nodes in such an environment by adding a small set of additional ‘relay’ nodes.

1. Introduction

Most of today’s approaches to wireless computing and communications are built on architectures
where base stations connect the wireless devices to a supporting infrastructure. However, since
the overwhelming trend is to transmit information in packets, over standard protocols, a dominant
focus in the wireless research community is on more decentralized approaches where nodes
cooperate to relay packets on behalf of other nodes. This focus is at the heart of current work on
mobile ad hoc networks (MANETs) [19, 20].

Such networks can be viewed as consisting of a collection of nodes, representing wireless
devices, positioned at various points in some physical region. The (wireless) ‘links’ of the net-
work, joining pairs of nodes that can directly communicate with one another, are predominantly
short-range and constrained by line of sight; this is an inevitable result of the scarcity of radio
frequency (RF) spectrum and physical constraints on the propagation of RF and optical signals.
The ways in which these physical limits on direct communication affect the overall performance
of the network is a fundamental issue that motivates much of the theoretical work in this area.

Random geometric graphs. Given this framework, random geometric graphs have emerged
as a dominant model for theoretical analysis of distributed wireless networks. One places n

points uniformly at random in a geometric region (typically a disc or a square), and then, for
a range parameter r, one connects each pair of nodes that are within distance r of one another.
This model is the subject of a recent book by Penrose [22], and we refer the reader there for
extensive background; we also note that the enormously influential work of Gupta and Kumar on
the capacity of wireless networks is framed in this model as well [15, 16].

One of the most basic questions is to determine how the probability of connectivity of a random
geometric graph depends on the number of nodes n and the range parameter r. A canonical result
here is the following theorem of Penrose [21]. If we place n points uniformly at random in a unit
square, and then continuously increase the range parameter r, with high probability the resulting
geometric graph becomes k-connected at the smallest value of r for which there are no nodes
of degree < k. In other words, the graph becomes k-connected at the moment that all trivial
obstacles to k-connectivity (i.e., low-degree nodes) disappear. An analogous type of result is
familiar from the theory of classical Erdős–Rényi random-graph models, e.g., Bollobás [4]. (For
further results and discussion concerning thresholds for properties in random geometric graphs,
see Goel, Rai and Krishnamachari [13].)

For modelling distributed wireless networks, the assumption of random node placement has
proved to be a reasonable abstraction for the lack of structure in node locations, given that most
frameworks for ad hoc networks assume some arbitrary initial ‘scattering’ of nodes, or that nodes
reach their positions as a result of arbitrary mobility. More problematic is the fact that the analysis
takes place in regions with no obstructions – in other words, that a node can communicate with all
other nodes within distance r. This is at odds with the underlying constraints in many applications
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of distributed wireless networks, where there can generally be a large number of obstructions
limiting communication between nearby nodes due to a lack of direct line-of-sight contact.

In other words, while random geometric graphs model wireless networks in open spaces, we
lack a corresponding model for wireless networks in some of their most common domains: urban
settings, large indoor environments, or any other context in which there are obstacles limiting
visibility. With such a model would come the ability to address a range of basic theoretical
problems. In particular, we are guided by the following genre of question:

How do connectivity and other structural properties of random geometric graphs change once we introduce
line-of-sight constraints?

An understanding of such issues could help provide a framework for reasoning more generally
about the performance of distributed wireless networks in obstructed environments.

The present work: Connectivity in line-of-sight networks. In this paper, we propose a
random-graph model incorporating both range limitations and line-of-sight constraints, and we
prove asymptotically tight results for k-connectivity. We also consider related structural ques-
tions, including the emergence of a giant component, as well as some of the algorithmic issues
raised by the model.

To motivate the model, consider a stylized abstraction of limited-range wireless communic-
ation in an urban environment: there are n streets running east-west, n avenues running north-
south, and wireless nodes can be placed at intersections of streets and avenues. Each node has
range ω – it can see up to ω blocks north and south along the avenue it lies on, and up to ω

blocks east and west along the street it lies on.
More concretely, we have an underlying set T of lattice points {(x, y) : x, y ∈ {1, 2, . . . , n}}.

We measure distance using the �1 metric, though to prevent complications arising from boundary
effects in this presentation, we define the distance between points as though they form a torus:

d((x, y), (x′, y′)) = min(|x − x′|, n − |x − x′|) + min(|y − y′|, n − |y − y′|).

For a specified range parameter ω, we say that two points are mutually visible if they are in the
same row or the same column of the torus, and if they are within distance at most ω from one
another. We view the range ω as implicitly being a function of n, and in this paper we will make
the assumption that ω is asymptotically bounded below by ln n and above by some polynomial
in n; specifically, we assume ln n = o(ω) and that ω = O(nδ) for a value of δ < 1 to be specified
below.

We now study the random graph G that results if, for some placement probability p > 0, we
locate a node at each point of T independently with probability p, and then connect those pairs
of nodes that are mutually visible. As p increases, the torus becomes more crowded with nodes,
and the resulting graph G is more likely to be connected. Our main result states, roughly, that the
smallest value of p at which G becomes k-connected with high probability is asymptotically the
same as the smallest value of p at which the minimum degree in G is k with high probability.

More concretely, for a critical value of the placement probability p∗ = O( ln n
ω

), we find that
in an interval of width O( 1

ω
) around p∗, the random graph G goes from being k-connected

with arbitrarily small probability to being k-connected with probability arbitrarily close to 1.
Moreover, the probability that G has no nodes of degree < k undergoes a comparable transition
in a corresponding interval around p∗. We state this theorem about k-connectivity as follows.
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First, we write ω = nδ where we assume that ω � ln n and δ < 4
8k+7

. Note that we do not
preclude the case where δ = o(1).

Theorem 1.1. Let k � 1 be a fixed positive integer and let p =
(1 − 1

2 δ) ln n+ k
2 ln ln n+ cn

2ω
. Then

lim
n→∞

Pr(G is k-connected) =

⎧⎪⎪⎨
⎪⎪⎩

0 cn → −∞,

e−λk cn → c,

1 cn → ∞,

where

λk =
2k−2

(
1 − 1

2
δ
)k
e−2c

(k − 1)!
.

The proof of this result, which occupies Section 2 of the paper, requires techniques quite differ-
ent from the analysis of standard geometric random graphs, due to the line-of-sight constraints.
One way to appreciate why this appears necessary is to consider that, as we vary ω, the resulting
model interpolates between two well-known but qualitatively different random-graph models.
When ω = 1, so that a node can only see neighbouring points, we have site percolation on a
lattice, a well-studied problem that is still not completely well understood. At the other extreme,
when ω = n and nodes can see all points in their row and column, it is easy to see that the
model is equivalent to a purely graph-theoretic one in which we start with the complete bipartite
graph Kn,n and keep each edge with probability p. Note that our bounds on ω preclude either
of these exact extremes, but our analysis for the ‘middle region’ of ω that we consider involves
ingredients from both extremes, combining techniques from ‘classical’ random-graph analysis
with the combinatorics of the underlying grid of points.

Remarks. (a) The reader might wonder if the constraint ω � ln n is really necessary. Suppose
for example that ω = o(ln n). The expected number of isolated vertices X0 = n2p(1 − p)4ω . If
p = o(1) then X0 → 0 only when n2p → 0. If p is bounded from below, then unless p = 1 − o(1),
X0 = n2−o(1) and one can show that w.h.p. X0 	= 0. Thus the threshold for connectivity is very
close to one when ω = o(ln n) and perhaps therefore somewhat less interesting.

(b) Theorem 1.1 could be strengthened to give a hitting time version where we add random
vertices one at a time. Then w.h.p. the first vertex that makes the graph have minimum degree k

will also make the graph k-connected. We will make some remarks on this version at the end of
the proof of Theorem 1.1.

The present work: Further results. We consider the emergence of a giant component in our
model. Note here that since G itself has O(n2p) vertices, a giant component is one with Ω(n2p)

vertices.
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Theorem 1.2.

(a) If p = c
ω

where c > 1 and ω → ∞ then w.h.p. G contains a component with at least (2ρc −
ρ2
c − o(1))cn2/ω vertices, where ρc is the unique solution in (0, 1) of 1 − x = e−cx.

(b) If p = c
ω

where c < 1/(4e) and ω → ∞ then w.h.p. the largest component in G has size
O(ln n).

We also consider the problem of how nodes in such a random graph can construct paths
between each other, possessing knowledge of their own coordinates but otherwise having only
local information. We show that when p exceeds the threshold for connectivity by a fixed (relat-
ively small) constant factor – i.e., p = C ln n/ω – then a simple decentralized algorithm allows a
given pair of nodes at �1-distance d to construct, with high probability, a path of O(d/ω + ln n)

edges while involving only O(d/ω + ω ln n) nodes in the computation. This is nearly optimal,
even with global information, since Ω(d/ω) is a simple lower bound on the length of any path
between nodes at �1-distance d (and hence also a lower bound on the number of nodes who need
to participate in the construction of the path).

Theorem 1.3. Let p = C ln n/ω for a sufficiently large constant C and ω � C ln n. There is
a decentralized algorithm that, given s and t, with high probability constructs an s–t path with
O(d(s, t)/ω + ln n) edges while involving O(d(s, t)/ω + ω ln n) nodes in the computation.

Finally, we consider a basic algorithmic problem in a non-random version of the line-of-sight
model: given an input set of nodes, we would like to add a small set of additional nodes so that
the full set becomes connected. More concretely, suppose we are given a set of nodes at points
X ⊂ T , such that the graph on X (defined by visibility with respect to the range parameter ω) is
not connected. We would like to add further nodes, at a set Y ⊂ T , where Y should be as small
as possible subject to the constraint that the graph on X ∪ Y should be connected. We think
of the additional nodes Y as ‘relays’ that connect the original nodes in X under line-of-sight
constraints; as a result, we refer to this as the relay placement problem.

By considering the graph of mutual visibility, and viewing the nodes in Y as Steiner nodes, an
instance of relay placement can be easily cast as an instance of the node-weighted Steiner tree
problem. The general node-weighted Steiner tree problem is inapproximable to within a factor
of Ω(ln n) (Klein and Ravi [18]). For the class of line-of-sight networks that we study here,
however, we show how to exploit the underlying visibility structure to obtain a constant-factor
approximation. In particular, we make use of a graph-theoretic notion that we call cohesiveness,
which suggests some combinatorial questions of independent interest.

Theorem 1.4. There is a polynomial-time algorithm that produces a Steiner set whose total
cost is within a factor of 6.2 of optimal.

Relay placement is clearly related to certain algorithmic art gallery problems (see, e.g., Efrat
and Har-Peled [8] and Efrat, Har-Peled and Mitchell [9], and the VC-dimension results in Kalai
and Matousek [17] and Valtr [25]), since there too one is placing nodes in a region subject to
visibility constraints. However, the problems considered in the literature on art gallery problems
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have a different focus, as they are concerned with placing nodes so as to see the entire region, as
opposed to adding Steiner nodes so as to create a connected visibility graph, as we do here.

A preliminary version of this paper appeared in [11]. Also, since the appearance of the prelim-
inary version, Bollobás, Janson and Riordan [5] have tightened Theorem 1.2 and shown that the
threshold for the appearance of a giant component is at p = log(3/2)

ω
.

2. Connectivity

This section is devoted to the proof of Theorem 1.1. We will concentrate first on the case where
cn → c and to avoid trivialities we will assume that cn = c. Thus, until further notice, we will
assume that

p =
(1 − 1

2
δ) ln n + k

2
ln ln n + c

2ω
.

The overall outline of the proof is as follows. We start by first studying the distribution of the
minimum degree of G. We then imagine adding nodes in two stages – most of the nodes in the
first stage, and a few final nodes in the second stage. Now, suppose the graph H formed by nodes
added in the first stage can be disconnected by the deletion of some set S of fewer than k nodes.
We argue that, with high probability, any two components J and K of H − S come ‘close’ to one
another at many disjoint locations on the torus T – in particular, at each of these locations, there
is some point of the torus that sees nodes in both J and K. When we then add nodes in the second
stage, it is enough that a node is placed at one of these points that can see both components; and
we argue that there are enough such points that this happens with high probability. We also check
that w.h.p. the new vertices do not create any small cuts.

2.1. Minimum degree computation

Proposition 2.1. limn→∞ Pr(G contains a vertex of degree < k) = 1 − e−λk .

Proof. Let Xl denote the number of vertices of degree 0 � l < k. Then observe first that

E[Xl] = n2p

(
4ω

l

)
pl(1 − p)4ω−l

∼ n2pl+1 4lωl

l!
e−4ωp

∼ n2

((
1 − 1

2
δ
)
ln n

2ω

)l+1
4lωl

l!

nδe−2c

n2(ln n)k

∼
{

0 l � k − 2,

λk l = k − 1.

Thus the expected number of vertices of degree less than k is asymptotically λk. The rest of the
proof is quite standard: see, for example, Bollobás [4]. Let Sk denote the set of vertices of degree
less than k in G and let X = |Sk|. Let X ′′ denote the number of pairs of vertices v, w ∈ Sk such
that v, w are within �1 distance 2ω of each other. Let X ′ denote the number of vertices in Sk
which are at �1 distance greater than 2ω from any other vertex in Sk. Then

X ′ � X � X ′ + X ′′.
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Now

E[X ′′] � 16ω2n2p2

(
8ω

2k

)
(1 − p)6ω−2k = o(1),

using our upper bound on δ. Thus X = X ′ with high probability.
Now fix a positive integer t. Then, where (a)t = a(a − 1) · · · (a − t + 1), we compute

(
(n2 − 16tω2)p

k−1∑
i=0

pi(1 − p)4ω−i

)t

� E[(X ′)t] �
(
n2p

k−1∑
i=0

pi(1 − p)4ω−i

)t

,

which implies that

lim
n→∞

E[(X ′)t] = λtk,

and so X ′ is asymptotically Poisson with mean λk, which implies the lemma.

2.2. Probabilistic part of proof

We imagine placing nodes at random according to the following two-stage process. We place a
node at each point with probability p1 in the first stage. We then independently place a node at
each point with probability p2 in the second stage. We choose

p1 =
(1 − 1

2
δ) ln n + k

2
ln ln n + c − (ln n)−1

2ω
� ln n

3ω

and p2 so that this is equivalent to the original placement process with probability p, in which
case

p2 ∼ 1

2ω ln n
.

For ease of terminology, we say that a node is red if it was placed in the first stage, and we say
that it is blue if it is placed in the second stage at a point not hit by the first stage. Let H denote
the subgraph of G consisting only of red nodes.

For each point in T , we define its four arms to be the four sets of ω points that are visible
from it in a single direction (north, south, east and west). We further partition each arm α of point
x into 10 consecutive segments α1, α2, . . . , α10 of length ω/10. A segment is said to be weak if
it contains fewer than 1

50
ln n red nodes. Otherwise we say that is strong. An arm is said to be

mighty if all its segments are strong.
Let E1 be the event that there exists a red vertex which has an arm α on which we can find

1000 red vertices, each having an arm orthogonal to α which is not mighty.

Lemma 2.2. Pr(E1) = o(1).

Proof. For a fixed vertex x and arm α, the probability that the arm contains a weak segment can
be bounded by

10 Pr

(
Bin(ω/10, p1) � 1

50
ln n

)
� e−(ln n)/400 = n−1/400.
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So the probability that there is a red node giving rise to E1 is bounded by

8n2

(
ω

1000

)
p1000

1 n−1000/400 = o(1).

Now let E2 be the event that there exists a red vertex v of degree less than ln ln n that has a red
neighbour w such that w has an arm orthogonal to vw which is not mighty.

Lemma 2.3. Pr(E2) = o(1).

Proof. The probability that H contains such a pair v, w is bounded by

n2p1

ln ln n∑
t=1

(
4ω

t

)
pt1(1 − p1)

4ω−t(2n−1/400)

� 2n−1/400
ln ln n∑
t=1

(
(4 + o(1))e ln n

t

)t

e−2c+o(1)

= o(1).

Now let E3 be the event that there exists a red vertex with at most k − 1 red neighbours and at
least one blue neighbour.

Lemma 2.4. Pr(E3) = o(1).

Proof. The probability that H contains such a vertex v is bounded by

n2p1

k−1∑
t=0

(
4ω

t

)
pt(1 − p1)

4ω−t(4ωp2) ∼ 4λkωp2 = o(1).

Now let E4 be the event that there exists a blue vertex with fewer than k red neighbours.

Lemma 2.5. Pr(E4) = o(1).

Proof. The probability that G contains such a vertex v is bounded by

n2p2

k−1∑
t=0

(
4ω

t

)
pt1(1 − p1)

4ω−t ∼ λkp2

p1
= o(1).

For the non-probabilistic part of this argument, we will assume that none of E1, E2, E3, E4 hold.

2.3. Non-probabilistic part of proof

For the next part, we assume that δ(G) � k.
Recall that H is the subgraph of G consisting only of the red nodes. Let S be an arbitrary set

of k − 1 red vertices, and let HS = H − S . Our main goal is to show that if HS has multiple
connected components, then with high probability they will all be linked up by the addition of
the blue nodes.
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Let L be the set of points in T with coordinates (i, j), where each of i and j is a multiple of
3ω. For each connected component K of HS , and for each point x ∈ L, let vKx denote the node
in K that is closest to x in �1 distance. We make the following claim.

Lemma 2.6. vKx lies within the ω × ω box Bx centred at x.

Proof. Let a red node be pink if it is not in S . Assume without loss of generality that the point
x is located at the origin of the torus, which we denote x = 0. Suppose that v = vK0 = (a, b) is
NE of 0 and that it does not lie in B0. Then v has at least one arm containing a pink node w. This
follows from the non-occurrence of E3. If the degree of v is less than ln ln n then we can use the
non-occurrence of E2 to argue that the two arms of w orthogonal to vw are mighty. If the degree
of v is greater than ln ln n then we can use the non-occurrence of E1 to argue that there is a choice
of ln ln n − 2000 ws such that the two arms of w orthogonal to vw are mighty. Let α denote the
arm of v containing a w with mighty arms. Note that every segment of a mighty arm contains at
least 1

51
ln n pink nodes.

Case 1: α is the south arm of v.
If a � ω/2 then any pink node on α is either in B0 or closer to 0 than vK0. Similarly, if b > ω/2

then any pink node on α is closer to 0 than vK0. So we can assume that a > ω/2 � b. Also, if
(a, b′) ∈ α then we must have 0 > b′ = −b′′ where we can assume that b � b′′ � ω − b.

Choose such a pink node (a,−b′′) with a mighty west arm β. Now choose a pink node w =

(a′,−b′′) ∈ β such that (i) a − a′ ∈ [0.4ω, 0.5ω] and (ii) the north arm γ of w is mighty. Now
choose a pink node (a′, c) ∈ γ such that |c − b| � 0.1ω. We can make these choices because of
the non-occurrence of E1 and the fact that 1

51
ln n > 1000 + k. It follows that |a′| + |c| � a + b +

0.1ω − 0.4ω, a contradiction.

Case 2a: α is the north arm of v and a � ω/2.
Choose a pink node (a, b′) ∈ α with a mighty west arm β. Then choose a pink node w = (a′, b′) ∈
β such that (i) a − a′ ∈ [0.4ω, 0.5ω] and (ii) the south arm γ of w is mighty. Now choose a pink
node (a′, b′′) ∈ γ such that |b′′ − b| � 0.1ω. It follows that |a′| + |b′′| � a + b + 0.1ω − 0.4ω, a
contradiction.

Case 2b: α is the north arm of v and a < ω/2.
We must have b > ω/2, else vK0 ∈ B0. Choose a pink node (a, b′) ∈ α with a mighty west arm
β. Then choose a pink node w = (a′, b′) ∈ β such that (i) |a − a′| � 0.1ω and (ii) the south arm
γ of w is mighty.

If |b − b′| � 0.7ω then choose a pink node (a′, b′′) ∈ γ such that |b′′ − b| ∈ [0.9ω,ω]. It fol-
lows that |a′| + |b′′| � a + b + 0.1ω + 0.7ω − 0.9ω, a contradiction. Otherwise, |b − b′| >
0.7ω. We can choose a pink node y = (a′, b′′) ∈ γ such that the west arm δ of y is mighty
and |b′ − b′′| � 0.9ω. Choose a pink node z = (a′′, b′′) ∈ δ such that |a′′ − a′| � 0.1ω and its
south arm ε is mighty. Finally, we note that there exists a pink node w = (a′′, b′′′) ∈ ε such
that |b′′ − b′′′| ∈ [0.5ω, 0.6ω]. Then we have |a′′| + |b′′′| � a + b + ω + 0.1ω − 0.9ω + 0.1ω −
0.5ω, a contradiction.

The case where α is the west arm is dealt with as in Case 1 and the case where α is the east
arm is dealt with as in Case 2.
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Now, let J and K be two distinct components of HS . Since vJx and vKx both lie in the ω × ω

box around x, there is some point z(J,K, x) that is visible from both of them. We make the
following observation.

Lemma 2.7. The points z(J,K, x) and z(J,K, y) are distinct, for distinct points x, y ∈ L.

Proof. z(J,K, x) lies in the ω × ω box around x, and z(J,K, y) lies in the ω × ω box around
y, and these boxes are disjoint, since x and y are at least 3ω apart.

2.4. Finishing the proof

Note that if a node is placed at z(J,K, x), then it will be a neighbour both of a point in J and
K, and hence J and K will belong to the same component in G. In the second stage of node
placement, a blue node will be placed at each point z(J,K, x) with probability p2. We should
not, however, forget that we have conditioned on the events E1, E2, E3, E4 not occurring and that
δ(G) � k. This accounts for the (eλk + o(1)) factor in (2.1) below. By Lemma 2.7, there are n2

9ω2

such points for a fixed pair of components J,K, and so the conditional probability that no blue
point is placed at any of them is bounded by

(eλk + o(1))(1 − p2)
n2/(9ω2) � e−n2/(20ω3 ln n) � e−n2−3δ/(20 ln n). (2.1)

There are at most ω2 components, since for any fixed point x ∈ L, each component has a node
in the ω × ω box around x. Thus, the probability that there exists a set S of size at most
k − 1 and components J,K of HS , which are not connected in G by a blue vertex, is at most
ω4e−n2−3δ/(20 ln n)n2k−2 = o(1). Thus, conditional on there being no vertices of degree k − 1 or
less, if we remove any set S of k − 1 red vertices, then w.h.p. the graph HS is connected. Deleting
blue vertices does not affect HS , and so if we remove any set S of k − 1 vertices, then w.h.p. the
graph HS . It follows from the non-occurrence of E4 that G − S will also be connected.

This finishes the case cn → c. If cn → −∞ then one uses the Chebyshev inequality to show
that with high probability there are vertices of degree less than k. If cn → ∞ then with high
probability there are no vertices of degree less than k (the expected number tends to zero), and
the argument for cn → c implies that G will be k-connected with high probability.

This completes the proof of Theorem 1.1.

Remark. One can prove a hitting time version by modifying the proof as follows.

(1) Let m± = n2
( (1 − 1

2 δ) ln n+ k
2 ln ln n± ln ln ln n

2ω

)
. If we put in m− random vertices, then w.h.p. the

resulting graph G0 has minimum degree k − 1 and O((ln ln n)2) vertices of degree k − 1.
(2) The vertices of degree k − 1 are all more than 10ω apart in G0.
(3) The graph G1 obtained by deleting the vertices of k − 1 will be k-connected. This follows

from a minor change to the proof of Theorem 1.1.
(4) Adding m+ − m− random vertices results in a graph G2 which is k-connected and none of

the new vertices have degree less than k + 1 when they are added.

These four properties imply that the graph is k-connected at the time the graph has minimum
degree k.
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3. The existence of a giant component: Proof of Theorem 1.2

We now consider the existence of a giant component in our model of line-of-sight networks.

(a) To prove this part of the theorem, we first require a lemma about the existence of a giant
component in the random graph H = Bm,m,q where q = d/m. Here we create H by including
each edge of the complete bipartite graph Km,m independently with probability q.

Lemma 3.1. If d > 1 then w.h.p. H contains a component Cg with (1 − o(1))ρdm vertices on
each side of the partition, where ρd is the unique solution in (0, 1) of 1 − x = e−dx. Furthermore
Cg contains (1 − o(1))(2ρd − ρ2

d − o(1))dm edges.

Proof. We follow the proof of the existence of a giant component via branching processes as
elaborated in Chapters 10.4 and 10.5 of Alon and Spencer [1]. Note that the degree of a vertex
of H has a distribution which is asymptotically Poisson with mean d and the proof in [1] can
easily be adapted to H . This will show that Cg has ∼ (1 − xd)m vertices on each side. To get
the number of edges, imagine the model where we fix the number of edges as μ ∼ dm. Suppose
now we put in μ − 1 random edges and obtain a giant component C ′

g with (1 − o(1))(1 − xd)m

vertices on each side. Now put in the μth random edge. We see that the probability it is not part of
the giant component Cg is ∼ x2

d. This shows that |E(Cg)| ∼ (1 − x2
d)m in expectation. By adding

two random edges we can estimate the variance and then use the Chebyshev inequality.

Now divide the torus T into N = n2/ω2 sub-squares S1, S2, . . . , SN of size ω × ω. Fix a
particular sub-square Si, and consider the bipartite graph Hi with ω + ω vertices Ri ∪ Ci (rows/
columns) where there is an edge (x, y) ∈ Ri × Ci if the gridpoint of T corresponding to (x, y)

is occupied by a node of G. Applying Lemma 3.1 with m = ω and d = c, we see that, with
probability (1 − o(1)), Hi contains a giant component Γi with (1 − o(1))(1 − xc)ω vertices on
each side and (1 − o(1))(1 − x2

c)ω
2 edges. When translated into a subgraph of G, we see that Γi

induces a connected subgraph Gi with (1 − o(1))(1 − x2
c)ω

2 vertices. This is because each edge
of Hi corresponds to a vertex of G.

We divide each sub-square Si further into 16 ω/4 × ω/4 sub-squares. We choose 4 special
sub-squares Si,1, . . . , Si,4. These will either be at (1, 2), (2, 1), (3, 4), (4, 3) or at (1, 3), (2, 4), (3, 1),
(4, 2), where (i, j) denotes the sub-square in row i, column j, 1 � i, j � 4. We then have these
two sorts of sub-square alternate along the rows and columns of T as in Figure 1.

Each special sub-square is associated with a direction. If i = 1 then the direction is north. If
i = 4 then the direction is south. If j = 1 then the direction is west and if j = 4 then the direction
is east.

Now w.h.p. each of the 4 special sub-squares will contain ∼(1 − xc)ω/4 useable columns
(north or south sub-squares) or rows (east or west sub-squares) that correspond to vertices of a
giant component of the corresponding Hi. We say that a square Si is good if Hi contains a giant
component with ∼(1 − x2

c)ω
2 edges and each special sub-square has ∼(1 − xc)ω/4 useable rows

or columns, depending on its direction.
If Si is good then we choose (1 − xc)ω/5 random rows or columns from the useable rows or

columns of each of the four special sub-squares. Suppose that Xi,j is the set of rows or columns
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Figure 1.

chosen from Si,j . We observe that conditional on Si being good, the sets Xi,j are uniformly random
and independent of each other.

We are now in a position to use mixed percolation. Let L denote the N × N, N = n/ω lattice
L with site percolation pV = 1 − o(1) and bond percolation pE = 1 − o(1). Here we place a
vertex at site i if the square Si is good. If two adjacent sites Hi,Hi+1, say, are good then we join
them by an edge in the lattice if the following holds. Let the adjacent special squares be Si,r
and Si+1,s. We add the edge if Xi,r ∩ Xi+1,s 	= ∅. If this occurs then there is a pair of nodes of
G, u ∈ Gi, v ∈ Gi+1 such that u, v are in the same row or column and are at distance � ω apart.
Hence Gi and Gi+1 will form part of the same component in G.

In this model of percolation the giant cluster will contain almost all of the points: see the
argument below. We had the good fortune to get outline proofs, for the case of an n × n grid,
from two experts on percolation.† ,‡

For completeness, we include an elementary proof of this fact.

† Agoston Pisztora: That there is a cluster of this size follows from a simple generalization of Theorem 1.1 of Deuschel
and Pisztora [7].

‡ Geoffrey Grimmett: Let the density p ∈ (0, 1) of open sites be fixed. Let In be the set of vertices of Bn (the n × n

box containing the origin) that lie in infinite open paths. With probability 1 − o(1) , the largest open cluster Cn of
Bn satisfies Cn ⊕ In ⊆ Bn \ Bn−m where m = (ln n)2. See the proof of Lemma 2 of [10], particularly (3.5)–(3.6).
Therefore, the density of the largest cluster of Bn is very close to the percolation probability θ(p). The claim then
follows once we have that θ(p) → 1 as p → 1. This holds by (1.18) of Grimmett [14].
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Size of the giant. We now argue that if, in the N × N toroidal lattice LN , we have pV = pE =

p = 1 − 1/γ where γ = γ(N) → ∞ as N → ∞, then w.h.p. the size of the giant cluster in the
associated random sub-graph Lp is (1 − o(1))N2. We can assume that γ � N2 lnN, for otherwise
Lp = LN , w.h.p.

Let λ = γ1/3 and partition LN into N2/λ2 sub-squares of side λ. Fix such a sub-square S and
consider the λ − 2 vertex-disjoint paths that cross S in the E–W direction and are not part of the
perimeter of S . Each such path occurs in Lp with probability p2λ−1 � 1 − 2λ/γ. Thus the number
Z of E–W paths that do not appear in Lp is dominated by the binomial B(λ, 2λ/γ). Thus

Pr(Z � λ1/2) �
(

2eλ3/2

γ

)λ1/2

� 1

2
e−λ1/2

.

Now consider mixed percolation on an (N/λ) × (N/λ) lattice where each site corresponds to a
λ × λ sub-square and each site and bond are open with probability p1 = 1 − e−γ1/6

. We denote
this random graph by L′. We go from Lp to L′ by having a site open for each sub-square in which
there are at least λ − 2λ1/2 − 2 complete paths in both the E–W and N–S directions. We open
a bond between 2 sites in L′ if there is an open bond in Lp which connects 2 completely open
paths. So if both of the two ends of a bond in L′ are open, the bond itself is open with probability
� 1 − (1 − p)λ−2λ1/2−4 � p1. Observe also that if L′ contains a component with M sites, then Lp

has a component with � Mλ(λ − 2λ1/2 − 2) sites.
By repeating this argument, we obtain a sequence of mixed percolation models Mi on an

Ni × Ni, Ni = N
∏i−1

j=0 λ
−1
j , i = 0, 1, . . . , lattice with bond and site probabilities pi, where p0 =

p and 1 − pi+1 = exp{−(1 − pi)
−1/6} and λi = min{Ni, (1 − pi)

−1/3}. Furthermore, the models
are coupled so that if Mi+1 has a component with Mi+1 sites then Mi has a component with
Mi+1λi(λi − 2λ

1/2
i − 2) sites.

Let i0 = min{i : N2
i pi � 1/γ}. We see that with probability 1 − O(1/γ) the final model Mi0+1

has all its sites and bonds open. Hence, with this probability, Lp has a component with at least

N2

i0∏
i=0

(
1 − 2λ

1/2
i + 2

λi

)
� N2

(
1 −

i0∑
i=0

3

λ
1/2
i

)
= N2(1 − O(γ−1/6))

sites.
It follows that w.h.p. almost all of the giants Gi will be part of the same component of G. This

completes the proof of part (a) of Theorem 1.2.

(b) We first note that an r-regular, N-vertex graph contains at most N(er)k−1 trees with k vertices.
This is proved, for example, in Claim 1 of [12]. Thus the expected number of k-vertex trees in G

is bounded by

n2(4eωp)k−1 = n2(4ec)k−1 = o(1)

if k � A ln n and A is sufficiently large.

Remark. Examining the above proof, we see that if ω is a sufficiently large constant, then there
will w.h.p. be a component of size Ω(n2), although it will not be so straightforward to put a lower
bound on its size.
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4. Finding paths between nodes: Proof of Theorem 1.3

Thus far, we have considered the existence of paths between nodes in random line-of-sight
networks. In terms of the motivating applications, it is also interesting to consider the algorithmic
problem faced by a pair of nodes s and t trying to construct a path between them in such a
network. We consider a decentralized model in which each node knows only its own coordinates
and those of its neighbours in G; given the coordinates of t, the node s must pass a message to
t by forwarding it through a sequence of intermediate nodes. We consider the standard goal in
wireless ad hoc routing: we wish to construct an s–t path with a small number of edges, while
consulting a small number of intermediate nodes [24].

To begin the proof of Theorem 1.3, let N = n2 and let S1, S2, . . . , SN be the collection of all ω ×
ω sub-squares obtained by choosing ω consecutive rows and columns. Let Gi,Hi, i = 1, 2, . . . , N

be defined as in Section 3. We first make the following observation.

Lemma 4.1.

(a) With high probability, G1, G2, . . . , GN are all connected.
(b) With high probability the diameter of Gi is at most D ln n, i = 1, 2, . . . , N, where D is some

absolute constant.

Proof. (a) G1 is connected if and only if H1 is connected. If H1 is not connected then then there
exist non-empty subsets K ⊆ R1, L ⊆ C1, |K| + |L| � ω such that K ∪ L induces a connected
component of H1. The probability that such a pair exists is at most

∑
2�k+��ω

(
ω

k

)(
ω

�

)(
k�

k + � − 1

)
pk+�−1(1 − p)k(ω−�)+�(ω−k)

� 1

p

∑
2�k+��ω

(
ωe

k

)k(
ωe

�

)�(
k�e

k + �

)k+�

pk+�e−((k+�)ω−2k�)p

� 1

p

∑
2�k+��ω

(
e2C ln n

exp{C ln n
(
1 − 2k�

ω(k+�)

)
}

)k+�

� 1

p

∑
2�k+��ω

(
e2C ln n

nC/2

)k+�

= O((ln n)2n−C ).

So if C � 3 we can inflate this latter estimate by n2/ω to account for all of G1, G2, . . . , GN .

(b) We concentrate on H1. Fix x ∈ R1 and y ∈ C1.

Case 1: C ln n � ω1/100.
Let Sk, k = 0, 1, . . . , t0 = � 2

3
logωp ω� be the set of vertices at distance k from x in H1. Given

S0, S1, . . . , S2k−1, the size of S2k is distributed as the Binomial B(ω − |S0| − |S2| − · · · − |S2k−2|,
1 − (1 − p)|S2k−1|). Given S0, S1, . . . , S2k the size of S2k+1 is distributed as the Binomial B(ω −
|S1| − |S3| − · · · − |S2k−1|, 1 − (1 − p)|S2k |). Suppose we define the events

Ei = {|Si| ∈ [(ωp/2)i, (2ωp)i]}, 1 � i � t0.
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Note that Ei implies that

|Si| = (Ceo(1) ln n)i � ω7/10.

Then the Chernoff bounds imply that Pr(¬E1) � n−C/10, and for i > 1,

Pr(¬Ei | Ej , j < i) � e−C|Si−1| ln n/10.

It now follows easily that

Pr(∃i � t0 : ¬Ei) = O(n−C/11).

Thus, with probability 1 − O(n−C/11), we have that

|St0 | = ω2/3+o(1).

Defining Tk, k = 0, 1, . . . , t0 = � 2
3
logωp ω� to be the set of vertices at distance k from y in H1,

we see that with probability 1 − O(n−C/11) we have

|Tt0 | = ω2/3+o(1).

After the construction of St0 , Tt0 , edges between St0 \
⋃

i<t0
Si and Tt0 \

⋃
i<t0

Ti are uncondi-
tioned. Thus,

Pr( 	 ∃ an edge (u, v) ∈ St0 × Tt0 ) = O(n−C/11) + (1 − p)ω
4/3+o(1)

= O(n−C/11).

Thus, with probability 1 − O(n−C/11), the distance from x to y in H1 is o(ln n). For C > 44 we
can inflate the failure probability by n4 to deal with all pairs of vertices in all Hi.

Case 2: C ln n = ωα for constant 1/100 < α � 1/2.
The same argument as above with t0 = �2/(3α)�.

Case 3: C ln n = ωα for constant 1/2 < α � 1.
The same argument as above with t0 = 1.

The next thing we observe is that we can now assume that all arms of all vertices are mighty.
This is again a simple calculation, similar to that given for the proof of (2.2). This also allows us to
specify the value of C in the expression p = C ln n/ω: it should be large enough for Lemma 4.1
to hold and for all arms of all nodes to be mighty. (In fact, as will be clear from the subsequent
discussion, we will need only a weak variant of mightiness in the analysis.)

We now describe the decentralized algorithm to pass a message from a node s to a node t

(thereby constructing an s–t path). The algorithm consists of two stages. First, starting at s, the
message is passed between nodes on the row of s, moving the ‘short way’ around the torus toward
the column of t. Each node passes the message to its farthest neighbour on the arm in the correct
direction; since all arms are mighty, the message travels an �1-distance of at least ω/2 in each
step. This process stops, at a node u, when the message is about to ‘overshoot’ the column of
t. At this point, the message is then passed between nodes in the column of u, according to the
same rule. This process stops when the message is about to overshoot the row of t.

The second stage now begins, with the message at a node v that belongs to a subset B of
size ω × ω, such that B also contains t. The message is now propagated by breadth-first search
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to all nodes within D ln n steps, but only including nodes that belong to the set B. Here D is
the constant from Lemma 4.1. (Note that by our assumption that nodes know the coordinates
of themselves and their neighbours, a node can determine which subset of its neighbours lies in
B and hence should be included in the breadth-first search.) By Lemma 4.1, the node t will be
reached by this breadth-first search, since the subgraph of G restricted to B is connected and with
appropriately short paths.

The bound on the number of edges in the resulting s–t path follows directly from the definition
of the two stages. To bound the number of nodes involved in the computation, we observe that
O(d(s, t)/ω) nodes are involved in the first stage, and the second stage involves at most the total
number of nodes in B, which is O(pω2) = O(ω ln n) with high probability.

5. Relay placement: an approximation algorithm; Proof of Theorem 1.4

Finally, we discuss an approximation result for the relay placement problem: given a set of nodes
on a grid, we would like to add a small number of additional nodes so that the full set becomes
connected. As before, we are given an n × n torus of points T . Let K = (T ,E) be the graph
defined on the points of T , in which we join two points by an edge if they can see one another.
Also, we are given a cost cx for each point x ∈ T , and for a set X ⊆ T we define c(X) =∑

x∈X cx.
Let X = {x1, x2, . . . , xk} be a given set of points in T . We consider the problem of choosing a

set of additional points Y = {y1, . . . , ys} such that K[X ∪ Y ] is a connected. We call Y a Steiner
set for X; nodes placed at Y can act as ‘relays’ for an initial set of terminal nodes placed at X.
Our goal is to find a Steiner set whose total cost is as small as possible.

This is an instance of the node-weighted Steiner tree problem in the graph K, with X as the
set of given terminals and Y as the set of additional Steiner nodes whose total cost we want
to minimize. In general, there is an Ω(ln n) hardness of approximation for this problem [18]
(and this is matched in [18] by a corresponding upper bound). However, the special structure of
the graph K allows us to efficiently find a Steiner set whose cost is within a constant factor of
minimum. This is the content of the following theorem, which we prove in the remainder of the
section.

The crucial combinatorial property of K that we use is captured by the following definition.
We say that a graph H is d-cohesive if every connected subset of H has a spanning tree of
maximum degree d. That is, given any connected subset S of V (H), we can choose a set F of
edges, each with both ends in S , such that (S, F) is a tree of maximum degree at most d.

We note that it is easy to construct graphs that are not d-cohesive for any specified d; for
example, any graph containing an induced K1,d+1 is not d-cohesive. In fact, although it is not
crucial for our purposes here, we note that cohesiveness is a combinatorial property of G that
is almost entirely characterized by this particular type of obstruction; if we let κ(G) denote the
minimum d for which G is d-cohesive and we let ϕ(G) denote the maximum t for which G

contains an induced K1,t, then we can prove the following.

Proposition 5.1. ϕ(G) � κ(G) � ϕ(G) + 1.
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Proof. The proof is a direct generalization of a result of Chrobak, Naor and Novick [6],
who proved the special case that every claw-free graph contains a spanning tree of maximum
degree three.

The simple argument for the lower bound was observed above: if S is a set of nodes for which
G[S] is isomorphic to K1,t, then S is clearly a connected subset of G with no spanning tree of
maximum degree � t − 1.

For the upper bound, let us suppose that G does not contain an induced K1,t+1; we show
how to construct a spanning tree of maximum degree t + 1 for the subgraph induced on any
connected subset S of G. To do this, we choose an arbitrary root node v ∈ S , and let Λ = (S, F)

be a spanning tree of S . We claim that Λ has maximum degree t + 1. Indeed, suppose that some
node w ∈ S has degree greater than t + 1 in Λ; we will suppose w 	= v, as the case in which
w = v is strictly analogous. Now, if we consider w in the depth-first traversal of Λ rooted at v,
then this means that w has a parent and at least t + 1 children. By the properties of depth-first
search traversal, there can be no edges among the children of w; hence w together with (t + 1 of)
its children form an induced K1,t+1 in G, a contradiction. It follows that Λ has maximum degree
t + 1, as desired.

Returning to the line-of-sight graph K, a direct application of Proposition 5.1 implies that K
is 5-cohesive. With somewhat more care, we can show the following.

Lemma 5.2. The graph K is 4-cohesive.

Proof. A direct application of Proposition 5.1 implies that K is 5-cohesive, but we can do
better via the following argument. For each edge of K, define its length to be the number of rows
or columns of T that separate its ends. Now, consider an arbitrary connected subset S of K, and
let (S, F) be a spanning tree of S whose total edge length is minimum.

We claim that the maximum degree of (S, F) is four. For suppose not; then some node u ∈ S

has degree at least five, and hence there are two nodes v, w ∈ S that lie on the same arm of u,
and for which (u, v) and (u, w) are both edges in F . In other words, u, v, w lie in the same row
or column of T , in this order, and u and w are close enough to see one another. It follows that
(v, w) is also an edge of K. But now (S, F ∪ {(v, w)} − {(u, w)} is a spanning tree of S whose
total length is strictly less than that of (S, F), a contradiction.

We now describe the approximation algorithm and its analysis. We first define weights on the
edges of K as follows. First, we say that the X-reduced cost cXv of a node v is equal to 0 if
v ∈ X, and equal to cv otherwise. We define cX(Y ) =

∑
y∈Y cXy . For each edge e = (v, w) of K,

we define its weight we to be max(cXv , c
X
w ). For a subgraph Λ of K, let w(Λ) denote its total edge

weight.
Now, let Y ∗ be a Steiner set for X of minimum cost, and let Λ∗ be a Steiner tree for X of

minimum total edge weight. (Note that the Steiner nodes of Λ∗ may be different from Y ∗.) The
4-cohesiveness of K implies a corresponding gap of 4 between the cost of the optimal Steiner set
Y ∗ and the weight of the optimal Steiner tree Λ∗.

Lemma 5.3. w(Λ∗) � 4c(Y ∗).
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Proof. Since X ∪ Y ∗ is a connected subset of K, Lemma 5.2 implies that it has a spanning
tree Λ of maximum degree four. By the definition of the edge weights, each edge e = (v, w) of Λ

has the property that at least one of its ends has an X-reduced cost that is at least as large as we.
We charge the weight of e to this end.

Each node in X ∪ Y ∗ is charged for the cost of at most four edges, and hence w(Λ) � 4cX(X ∪
Y ∗) = 4c(Y ∗). Since Λ is a Steiner tree for X, and Λ∗ is the Steiner tree for X of minimum total
edge weight, we also have w(Λ∗) � w(Λ), completing the proof.

A Steiner tree whose edge weight is within a constant factor γ � 1.55 of optimal can be
computed in polynomial time via an algorithm from Robins and Zelikovsky [23]. Let Λ′ be a
Steiner tree for X computed using this algorithm. Let Y ′ be the Steiner nodes of Λ′. By charging
the costs of nodes in Y ′ to the weights of distinct incident edges in Λ′, we have the following.

Lemma 5.4. c(Y ′) � w(Λ′).

Proof. We root Λ′ at a node in X, and we charge the cost of each node in Y ′ to the incident
edge leading toward the root in the rooted version of Λ′. The cost of each y ∈ Y ′ is thus charged
to a distinct edge e(y) in Λ′, and by the definition of the edge weights, we have cy � we(y).

Finally, we use Y ′ as our Steiner set for X. Using Lemma 5.3 and Lemma 5.4, together with
the approximation guarantee for the edge weight of Λ′, we obtain a bound of 4γ � 6.2 on c(Y ′)

relative to the optimum c(Y ∗):

c(Y ′) � w(Λ′) � γw(Λ∗) � 4γc(Y ∗).
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