
Banishing Bias from Consensus SequencesAmir Ben-Dor1, Giuseppe Lancia2, Jennifer Perone3, and R. Ravi21 Dept. of Computer Science, Technion, Haifa 32000, Israel.2 GSIA, Carnegie Mellon University, Pittsburgh, PA 15213.3 New York University School of Medicine, New York.Abstract. With the exploding size of genome databases, it is becomingincreasingly important to devise search procedures that extract relevantinformation from them. One such procedure is particularly e�ective in�nding new, distant members of a given family of related sequences: startwith a multiple alignment of the given members of the family and use anintegral or fractional consensus sequence derived from the alignment tofurther probe the database. However, the multiple alignment constructedto begin with may be biased due to skew in the sample of sequences usedto construct it.We suggest strategies to overcome the problem of bias in building con-sensus sequences. When the intention is to build a fractional consensussequence (often termed a pro�le), we propose assigning weights to thesequences such that the resulting fractional sequence has roughly thesame similarity score against each of the sequences in the family. Wecall such fractional consensus sequences balanced pro�les. On the otherhand, when only regular sequences can be used in the search, we proposethat the consensus sequence have minimum maximum distance from anysequence in the family to avoid bias. Such sequences are NP-hard tocompute exactly, so we present an approximation algorithm with verygood performance ratio based on randomized rounding of an integer pro-gramming formulation of the problem. We also mention applications ofthe rounding method to selection of probes for disease detection and toconstruction of consensus maps.1 IntroductionE�orts in genome projects have led to wide availability of genetic information inthe form of nucleic acid and protein sequences. This is reected by the exponen-tially increasing sizes of several sequence databases such as SwissProt [BB92].Proteins are comprised of sequences of amino acids, or residues, which deter-mine their structure and thereby function. Many proteins exist in many di�erentorganisms, or in several di�erent forms in the same organism. The sets of theseproteins are called families. These families exhibit structural, and therefore pre-sumably sequential, similarities. The careful study of one protein in a family canprovide information concerning the function, or predicted function of other pro-teins in that family. Likewise, the classi�cation of a relatively unstudied proteininto a well-de�ned family can o�er insight toward its structure and function. Inorder to study families of proteins, the technique of multiple alignment is used.



Multiple alignments allow the simultaneous comparison of several sequences.Using blocks of conserved regions identi�ed from multiple alignment data, adatabase can be probed for sequences with similarity with all of the sequences inthe alignment. In order to do so, it is �rst necessary to derive from the multiplealignment a single sequence called the consensus which best represents all thealigned sequences, that can be used to search the database. Alternatively, apro�le can be derived: this is a numerical representation of the multiple alignment[GME87], which, for each position and each residue, scores the likelihood thatthe given residue will appear at the indicated position in the protein alignment.Intuitively, we can think of the pro�le as a \fractional" consensus in which atany position, some fraction of each residue is present instead of just one.Sequence collections are seldom a fair representation of the diversity of se-quences consistent with a given protein structure conserved in a family. Anexample is the set of all currently available globin sequences, of which morethan half are vertebrate �- and �-globins, while the remaining subfamilies arerepresented by much fewer sequences. A reason for this bias is that experimentalsequence collections are not accurate representations of the diversity associatedwith the structure of a given protein in nature. This is partly by necessity sincethere are a select few organisms that are suitable for scienti�c research. Hence,biases in sequence databases tend to exist toward common experimental modelorganisms which are intensively sequenced.A problem resulting from such biased database collections is that multiplealignments and consensus sequences that are built from such collections tendto be biased as well. For example, consider a multiple alignment constructedfrom a group of closely related proteins and one distant family member. Theclose proteins will dominate the consensus sequence and preclude retrieval ofsequences which may bear more resemblance to the outlyer. Thus in the globinexample, a pro�le or consensus built from a multiple alignment of all currentlyknown globins would e�ectively recognize vertebrate globin sequences, while in-vertebrate globins would be poorly recognized.The more intrinsic problem here is that the consensus built from a multiplealignment of a skewed sample from a family may not reect the sequence ho-mology of the family. This is what renders it ine�ective in identifying distantmembers of the family that may be present in the database. In this paper, wedescribe two approaches to banish bias from consensus sequences for the twocases of constructing fractional and integral consensus sequences.1.1 Weights for Unbiased Pro�le ConstructionThe traditional approach to correcting bias in constructing pro�les from a multi-ple alignment is to weight the di�erent sequences in the alignment di�erently inconstructing the pro�le. A plethora of weighting schemes have been proposed inthe literature [ACL89, GSC94, HH94, THG94, SA90, LXB94, EMD95, KM95].The basic idea is to emphasize under-represented sequences by giving them highweights, while de-emphasizing over-represented sequences by giving them lowweights. It is an open problem to determine a system of weights that results



in the pro�le that can be used to search the database most e�ectively for bio-logically relevant signals. In Section 2 we discuss some of the existing weightingschemes.We propose a new method for sequence weighting whose goal is to yield apro�le that has roughly the same similarity score to each of the sequences inthe alignment. We call a pro�le of this type a balanced pro�le and the problemof determining the corresponding weights will be called the Balanced Pro�leWeight Assignment Problem. For this problem we outline a simple iterativealgorithm which converges to the desired weights. Preliminary experiments withan implementation of this algorithm indicate that this method may be moree�ective than an unweighted pro�le construction, especially when the alignmentis composed of several divergent sequences. We elaborate on this in Section 3.1.2 Unbiased Consensus SequencesA similar fairness problem arises also when building the (integral) consensussequence. One way to de�ne a consensus sequence is to require that it minimizesits total distance from the sequences of the alignment (sum-of-pairs criterion),but this objective is biased toward overrepresented sequences. To overcome thisbias, we de�ne the consensus as the sequence whose maximal distance fromany of the sequences in the alignment is minimum. Under this de�nition, theproblem of determining the consensus turns out to be NP-hard. In this paper wemodel this consensus problem as an integer programming problem and give anapproximation algorithm based on randomized rounding applied to its fractionalrelaxation.1.3 Two applications of randomized roundingConsider a problem arising in the design of probes for disease detection. Theprobes work by hybridizing with complementary strands of su�cient similarity.To design such probes to be speci�c for a particular strain of bacteria, we wouldlike the probe sequence to be as close as possible to the genetic sequence fromthis strain while staying as far away as possible (in Hamming distance) fromthe sequences of all the other strains. We propose approximation algorithms for�nding near-optimal probes by applying the rounding mentioned earlier.Another application is to the construction of a consensus map from a varietyof physical maps, all of which identify the location of the same set of markerslinearly along the same fragment of DNA. The construction of a consensus mapthat is unbiased against any skew in the input data can be formulated as an inte-ger program. Applying randomized rounding gives good approximate solutionsto this problem as well.The rest of the paper is organized as follows. In section 2 we describe someof the existing schemes for weighting sequences in an alignment and address theBalanced Pro�le Weight Assignment Problem. Section 3 reports computationalresults of database search with our method as opposed to the unweighted one.Section 4 describes the randomized rounding approximation algorithm for the



consensus problem. Finally in section 5 we outline extensions of the randomizedrounding technique to designing probes for disease detection and to physical mapconstruction.2 Pro�les and Weighting SchemesLet � = f�1; : : : ; �j�jg be a �nite alphabet (in particular, we can take � to bethe set of 20 amino acids). We will consider elements of �n, called sequences. Letd : ��� �! R be a distance function (e.g., for amino-acids d = PAM-250). Wegeneralize d to sequences in �n in the natural way, i.e., d(x; y) =Pni=1 d(xi; yi).A weighted multiple alignment is a vector of k sequences, i.e. a k�n matrix over� [ f�g (where � denotes the blank character), together with a set w1; : : : ; wkof weights for the sequences.Given a multiple alignment, a pro�le is an n � j�j real{valued matrix P .Each entry P [i; j] of P scores the likelihood with which �j is the i{th symbolof the sequences in the alignment (blanks are traditionally excluded from thepro�le). A pro�le can be constructed for a group of k aligned sequences each ofequal length n using Profilemake, Genetic Computer Group's pro�le buildingtool [GCG94]. Pro�les can also reect values for any gaps which may appear inthe alignment; however, gaps will not be discussed here (see [GME87] for furtherinformation). A database can then be searched with a pro�le by using the GCG'sprocedure Profilesearch [GCG94], which implements an alignment algorithmby Smith and Waterman, based on dynamic programming [SW81].When using Profilemake, the scores at position r, character �, are de�nedas follows: P [r; �] = j�jXj=1Wjs(�j ; �) (1)where s is the Dayho� similarity score [DBH83]. The weight Wj depends on thenumber of occurrences of each type of residue at each alignment position and thesum of the weighted number of sequences. Profilemake can use either linearweighting: Wj = kPi=1wi�i;jkPi=1wior logarithmic weighting:Wj = ln�1� kPi=1wi�i;j��1 + kPi=1wi��ln�1��1 + kPi=1wi��



where �i;j is equal to 1 if sequence i has residue �j at the current position, andis equal to 0 otherwise. As expected with either of these methods the weight willbe zero if the given amino acid does not occur in the alignment position, and itwill be one if it is the only amino acid which appears at that position.Weights assigned to each sequence a�ect these values. In the unweightedsystem, all weights wi are equal, so the contribution to Wj is the same forall sequences. In this case, the Wj value calculated for a residue �j is simplythe fraction of input sequences that contain residue �j at the current position.When di�erent weights are assigned to sequences, each sequences contributionto Wj is scaled by its weight. Sequences can be accentuated or de-emphasizedto reect closely related sequences by varying these weights. Intuitively, weightson distant sequences should be larger than the weights of the closely relatedsequences. Strategies to determine appropriate weights are discussed next.While there is a consensus about the necessity of weighting sequences whensearching with multiple alignments, there is considerable debate concerning whatweighting method should be used. Many of the di�erences in these weightingsystems are based on di�ering opinions on the problem as well as de�ning correctbehavior. Some of the existing weighting techniques are the following (see also[VS93]):{ Pairwise Distance: A sequence weight is set to be equal to the sum of thedistances from this sequence to all other sequences in the alignment. Theidea is that a far-o� sequence which is under-represented in the population,will have higher weight than a single sequence in a cluster of closely relatedsequences, thus correcting the bias. If D is the square matrix of pairwisedistances between the sequences, we have w = D1 for this method, where 1is a vector with 1 in each component.{ Voronoi Weighting: This method, introduced by Sibbald and Argos [SA90],relies on constructing a Voronoi diagram from the sequences, based on pair-wise distances [SA90]. A hypothetical population of sequences is built usingthe information from the real sequence alignment. A Voronoi diagram forthis population is constructed using the input sequences as Voronoi centers.The weight for each input sequence is proportional to its Voronoi volume, i.e.the volume of the Voronoi polygon occupied by the sequence. Instead of gen-erating all sequences, estimates of this volume can be obtained by randomsampling.{ Weighting by Phylogeny: Altschul, Carroll, and Lipman describe a methodfor assigning weights based on an implied evolutionary relationship amongthe given sequence set [ACL89]. Using a tree constructed with all sequencesin an alignment, weights can be determined by inverting a matrix of variancesand covariances between pairs of sequences that is inferred from the tree.{ Balanced Pro�les: The notion of balanced pro�les appears in the work ofVingron and Sibbald [VS93], where they also draw a parallel between thisscheme and that of Altschul et al. mentioned above [ACL89]. Even thoughthe sequence weights are de�ned in exactly the same way as we do here, theway in which the weights are used in their method to compute the pro�le



is di�erent from ours. As mentioned earlier, in our method, the pro�le ateach position is computed using a combination of the weights as well as theunderlying distance function (see Equation 1), while in Vingron and Sibbaldthe pro�le is de�ned simply as the weighted sum of the sequences in thealignment (i.e. P [i; �] is the sum of the weights for the sequences havingresidue � in column i). With their de�nition, the weights yield a balancedpro�le if Dw = �1 so that, if D is invertible, w can be found by solvingw = �D�11. This objective is pursued in Vingron and Argos [VA89] wherethe weights of sequences far from the (unweighted) pro�le are increased thusmoving the weighted pro�le away from nearby sequences and toward distantones.{ Maximum Discrimination: This probabilistic method introduced by Eddy,Mitchison and Durbin [EMD95], uses Hidden Markov Model to model theprotein family (based on the given multiple alignment). The objective isto �nd a HMM that maximizes the probability that all of the sequencesparticipating in the multiple alignment will be produced by the model (asopposed to being produced by a random model). The following gradientdescent training method is proposed: Find the sequence (or sequences) withthe lowest score, and change the model probabilities so as to better recognizethose sequences (this method is called the Maxmin algorithm in [EMD95]).We remark that in our algorithm, a very similar training method is used;However, no probabilistic modeling of the multiple alignment is employedand hence our algorithm is much simpler and faster.2.1 The Balanced Pro�le Weight Assignment ProblemThe main utility of a sequence weighting scheme in building pro�les is its po-tential to correct for bias in the input sequences. Motivated by this intendedapplication of weighting schemes, we de�ne a balanced pro�le to be one withalmost identical similarity to all sequences participating in its construction. Inother words, all sequences are chosen with the same intensity by this pro�le.The problem of weighting the sequences to build a pro�le then becomes one ofsetting the weights so that the resulting pro�le is balanced.A pro�le can be thought of as a sequence of weighted residuals. A naturalway to de�ne the similarity score of a pro�le versus a target sequence is, bylinearity, to compute the weighted sum, for all the positions in the sequence,of the similarities of residues in the pro�le and that in the target. When thisscoring function is used, computing the weights which yield a balanced pro�lewould simply amount to solving a system of linear equations in the variablesfwig 4. However, this method can not be applied to the scoring function usedby Profilesearch, since it is not additive over the columns (e.g. the score fora run of k gaps is not the same as k times the score of one gap).We propose an algorithm which is independent from the details of the scoringfunction adopted in Profilesearch, or in any other scoring procedure to be4 This remark also appears in the article by Vingron and Sibbald[VS93]



used. Our algorithm is iterative and starts by giving equal weights to all thesequences. At each iteration the pro�le is computed using the current weights.If the pro�le is not balanced, the weights are updated and a new iteration isexecuted. Preliminary computational experiments with the scoring function usedby Profilesearch have shown that the algorithm convergences on the averagevery fast (under 20 iterations) to the �nal weights. A formal statement of theprocedure follows.Repeat1. Build a pro�le from the multiple alignment (initially, all weights are equal).2. Score this pro�le against the sequences in the alignment.3. If the pro�le is not balancedthen change the weight of either the sequences with the highest or lowestscore.until the pro�le is balanced.In order to choose which weight to change (Step 3), the following procedureis followed. De�ne scoremid = (scoremax + scoremin)=2. Determine how manyscores lie on either side of scoremid. If there are fewer scores below scoremid,raise the weight of all sequences with the lowest score by �, and if there arefewer weights above scoremid, then lower the scores of the sequences of thehighest score by �, where � = (scoremax � scoremin)=scoremax. The choice of �reects the dependence on the step size on the current spread of scores, movingrapidly when the spread is high and more carefully otherwise.In order to prevent negative weights, if the weight of the sequences with thescores to be lowered is below a threshold, simply increase the lowest scoringsequence's weight instead. The iterations are stopped when all scores are withinsome speci�ed error bound of each other, i.e. roughly similar. This method ofweight changing assumes that increasing the weight of one sequence while hold-ing everything else constant, will increase the amount by which the pro�le re-ects that sequence compared to the others. This is true for both the linear andlogarithmic weighting schemes used by Profilemake.3 Search Results with Balanced Pro�lesBalanced pro�les were constructed for protein blocks and searched against Swis-sProt. The results of these searches are compared to searches with pro�les ofthe same blocks constructed using equal weights. The data for these experi-ments were provided by Heniko� and Heniko�, which they used to calibratetheir weight setting scheme against an equal-weights model [HH94]. Known pro-tein families were extracted from Prosite, and subsets of these families wereused to construct blocks with Protomat [Bai92]. Weights were assigned to se-quences with the balanced pro�le scheme, and pro�les were constructed fromthese blocks.



In order to compare the balanced pro�le search results to the ones with equal-weights, the Profilesearch results are compared to the sequences known to bein the protein family of the block subset. Thirty-seven blocks (corresponding toas many families) were arbitrarily chosen from the complete data set of Heniko�and Heniko�. Thirty seven pairs of pro�les were constructed from these blocksusing the balanced weights and equal weights for each case, and these were usedto search the database for members of the corresponding blocks. The overviewof the computational results is presented in Table 1.Number of Sequences Equal Weights Balanced Pro�le Ties0-50 6 4 2751-100 2 4 31101-200 4 3 30201-300 3 1 33301-400 0 1 36401-500 0 1 36501-1000 4 3 301001-5000 3 2 32over 5000 0 1 36overall 4 4 29Table 1. Overview of results - the number of wins for each scheme and the ties areshown for each of the ranges. E.g., among the 37 tests, Equal weight pro�les recoveredmore sequences from the family 6 times than the balanced pro�le and the reversehappened 4 times, while in the remaining 27 cases, they were tied in the recovery ratein this range. The �nal row tabulates overall wins considered over all the ranges forthe 37 tests. Note that every row sums to the total number of tests - 37.The small sample size does not allow conjecture toward signi�cant conclu-sions, however it appears that the balanced pro�le will perform no worse onaverage than the equal-weights pro�le. Simply by inspection, it appears that thebalanced pro�le performed better when the blocks which composed the multi-ple alignment were more divergent. This is to be expected since this is exactlythe type of data that exploits the bene�ts of using balanced pro�les. As seenin Table 1, the overwhelming number of results are ties. This is likely a resultof the nature of the experimental dataset. The majority of blocks used in theseexperiments were composed of sequences with a high degree of similarity. Whendata sets are constructed from very similar sequences, the weights generatedby the balanced pro�le method should not signi�cantly impact the databasesearch. Those blocks which resulted in ties often had more residues which werecompletely conserved over all sequences than those for which the balanced pro-�le won. These preliminary experiments have helped to provide some insightinto potential situations where balanced pro�les would be a helpful search tool.Further experiments with datasets with a wide variety of skew will enable the



speci�c usefulness of balanced pro�les to be further de�ned.4 Approximation Algorithms for the Consensus ProblemThe sphere in �n of radius r with center a 2 �n is the set of all sequencesv 2 �n such that d(v; a) � r, and is denoted by S(a; r). Given a sequence x anda set V � �n, the radius of V with respect to x, denoted by R(V; x) is the thesmallest integer r such that V � S(x; r). We de�ne the radius of V , denoted byR(V ), as R(V ) = minx2�n R(V; x).The consensus problem is then the following: given a set of sequences V � �n,representing the rows of some multiple alignment, �nd a sequence c 2 �n (theconsensus) such that R(V; c) = R(V ) (in other words, �nd the sequence c whichminimizes maxa2V d(c; a)).It has been shown by Frances and Litman ([FL94]) that determining the con-sensus is NP-complete (using a reduction from 3-SAT), in the special case wherethe alphabet is binary and the distance measure is the Hamming distance. Aslight modi�cation of their reduction generalizes the hardness result to arbitrary�nite alphabet �. Assuming the distance function d takes only rational values,and using the fact that scaling d does not change the problem, allows us togeneralize the hardness results to arbitrary distance functions d. Because of thecomputational complexity of the problem, exact methods for �nding the con-sensus sequence may require too much computing time and heuristic proceduresshould be sought instead. In particular, we are interested in fast performance-guarantee algorithms.Our version of the consensus problem arises as a natural alternate objectivefor tree alignment in the special case when the tree is a star with the given se-quences at the leaves and the internal node has to be computed so as to minimizethe bottleneck cost of the tree { namely, minimize the maximum distance fromthe internal sequence to the other input sequences. This is termed bottlenecktree alignments by Ravi and Kececioglu [RK95]. Thus our method for �ndingunbiased consensus sequences also �nds near-optimal bottleneck tree alignmentsfor the star. However, our method is applicable only for the case when the dis-tance function does not allow gaps, and is therefore not applicable to the generalversion of the tree problem allowing arbitrary edit distances.A trivial 2-approximation algorithm for the consensus problem consists sim-ply in picking any of the given sequences as the consensus [RK95]. In fact,assuming that the distance between sequences satis�es the triangle inequality,we have the following.Claim1. Let V be a set of sequences; then any sequence v 2 V gives a 2-approximation of the radius of V .Proof. Let v? be an optimal solution, and let r denote the minimal radius of asphere around v? that contains V , that is d(v?; x) � r for every x 2 V . Let vbe an arbitrary sequence in V . We need to show that for every word w 2 V , thedistance between w and v is at most 2r. Using the inequalities d(v?; v) � r and



d(v?; w) � r together with the triangle inequality d(v; w) � d(v; v?) + d(v?; w),completes the proof. ut4.1 Near-optimal approximation using randomized roundingIn this section we use the method of randomized rounding [RT87, Rag88, MR95]to achieve a near-optimal solution to the consensus problem. The method canbe roughly described as follows: First we formulate our problem as an integer-programming problem, using zero-one variables. Then, we relax the integralityconstrains, so that the variables are allowed to have fractional values. An optimalsolution to this linear programming problem can be found in polynomial time[Kar84]. To obtain a solution to the original, integer program, we \round" thesolution of the relaxed problem, using the fractional values in each column asprobabilities. We then show that with high probability, the value of the roundedsolution is close to the value of the non-integral (optimal) solution.The consensus problem can be cast as a zero-one linear program as follows.Let c be the consensus sequence to be determined. For every symbol � 2 �, andevery column i (1 � i � n), we use a zero-one variable xi;� to indicate whetherci = �. Note that we do not allow the blank character to occur as part of theconsensus sequence. Our integer program can be expressed as follows.Minimize rs:t: P� xi;� = 1 8i 2 f1; : : :ng (2)Pi;� xi;�d(�; vi) � r 8v 2 V (3)where xi;� 2 f0; 1g (4)The constraint (2) ensures that a unique symbol is chosen for each position ofc. The constraint (3) speci�es that the total distance between any member ofV and c is at most r (i.e, R(V; c) � r). The objective function seeks a solutionof minimum radius, r, with the zero-one constraint imposed. Let r0 denote thevalue of the objective function in the optimum solution to the program above.Since this problem is NP-Hard, we do not hope to compute r0 e�ciently. Instead,we solve its linear programming relaxation.We replace the integrality constraint (4) with xi;� � 0. In other words, weallow xi;� to assume real values between 0 and 1 (the constraint xi;� � 1 isimplicit in the constraint (2)). Let r̂ be the value of the objective function forthis problem and x̂i;� its solution. Since the linear program is a relaxation ofthe integer program, it is clear that r0 � r̂. The x̂i;�'s may be fractional values,and therefore may not constitute a feasible solution to the integer program. Wemust therefore \round" these fractional values to 0's and 1's to obtain a feasiblesolution x.Note that the fractional solution x̂i;� still satis�es the constraints of theoriginal linear program, in particular, for each i, the values fx̂i;�g�2� are all



non-negative, and satisfy P�2� x̂i;� = 1. Therefore, they de�ne a probabilitydistribution over �. The rounding process goes as follows. Independently foreach i, choose a symbol for ci according to the probability distribution de�nedby fx̂i;�g�2� . That is, Pr(ci = �) = x̂i;�.Consider some �xed sequence v 2 V ; The expected value of the distancebetween c and v satis�es the following.E[d(c; v)] = E[ nXi=1 d(ci; vi)]= nXi=1 E[d(ci; vi)] (by linearity of expectation)= nXi=1 X�2� Pr(ci = �)d(�; vi)= nXi=1 X�2� x̂i;�d(�; vi)� r̂� r0Following [RT87], we use Hoe�ding's bound [Hoe63] (See, e.g., [MR95]).Lemma2. Let X1; X2; : : : ; Xn be n independent random variables, each rangingover the real interval [a; b]. Let S be a random variable denoting the sum of theXi's, and � any nonnegative real number. ThenPr(S � (1 + �)E[S]) � e� E[S]�23(b�a)2Notice that each random variable d(ci; vi) range over [0; D], where D is anupper bound on the distance function, e.g. D = max�;�2�fd(�; �)g. Let � > 0be a positive constant. For � = Ds 3E[S] log jV j� ;we get Pr(d(c; v) � r0(1+�)) � �jV j . Summing over every member of V , we havePr(R(V; c) � r0(1 + �)) � �: We get the following theorem.Theorem3. Let V � �n be a set of sequences, and let copt denote the optimalconsensus. Let r0 denote R(V; copt). Let c be the rounded solution to the relaxedinteger program above, and let r denote R(V; c). ThenPr r > r0 +Dr3r0 log jV j� ! < �where � > 0 is a constant.



Notice that this probabilistic algorithm can be de-randomized using standardtechniques of conditional probabilities, along with pessimistic estimators as in[Rag88].Remark. Using a di�erent version of the Hoe�ding bound: Pr(S�E[S] > �) �e� 2�2(b�a)2n , we can derive the following result.Pr r > r0 +Drn2 log jV j� ! < �where � > 0 is a constant. This version is better when r0 >> Dqn2 log jV j� .5 Extensions5.1 Selecting Probes for Bacterial InfectionsAssume a patient has a bacterial infection. Let S be the set consisting of shortnucleotides sequences which are speci�c DNA (either chromosomal or ribosomal)of several possible bacteria that might be the cause of the infection. Let T � S bea set of sequences of the target bacteria species that actually cause the infection.DNA diagnosis for the bacterial infection ([DKK88, MM90]) is a techniqueusing the complementary nature of DNA nucleotides to decide whether the causeof the infection is from the set T . The idea is to choose a DNA sequence, calledthe DNA probe, such that its complement is \close" to the sequences in T , and\far away" from the sequences in S n T . In practice, even if the complementarysequence of a probe has a few mismatches with a speci�c substring of the targetsequences, the probe forms duplexes with some of the target sequences. Thus forany given probe, the accuracy of the diagnosis using this probe is a function oftwo parameters:{ The maximumnumber of mismatches between the complementary sequenceof the probe and any nucleotide sequence from the target bacteria. Thesmaller this number is, the smaller is the probability of a false negative.{ The minimum number of mismatches between the complementary sequenceof the probe and any nucleotide sequences of a bacteria not in the targetspecies. The larger this number is, the smaller is the probability of a falsepositive.We say that a sequence t is a k{separator with respect to hT; S n T i ifminv2SnT d(t; v)�maxv2T d(t; v) = k:The Probe{Selection Problem can now be stated as follows: given two sets ofsequences, T and S n T , �nd a sequence t with maximum separation.Note that this problem generalizes the consensus problem (which occurs whenT = S) and is therefore NP-complete. By casting the problem as a 0-1 programand using randomized rounding as in the preceding section, we obtain the fol-lowing result.



Theorem4. Let T � S be two sets of sequences, and let topt denote the opti-mal hT; S nT i{separator. Let kopt denote minv2SnT d(topt; v)�maxv2T d(topt; v).Let t be the rounded solution to the relaxed integer program, and let k denoteminv2SnT d(t; v)�maxv2T d(t; v). ThenPr�k < kopt �Dr4kopt log m� � < �where m = maxfjT j ; jS n T jg, and � > 0 is a constant.5.2 Building Consensus MapsAssume a human chromosome (modeled by the real interval [0,1]) is known tocontain n speci�c markers. Various mapping techniques are used to order thosemarkers, and even suggest chromosomal locations of them.Assume we are given a setM of physical maps of the chromosome. Each mapconsists of the locations of n markers. That is, each map can be represented bya vector v 2 [0; 1]n. The distance between two maps, v; u 2 [0; 1]n is de�ned as:d(v; u) = Xi=1;:::;n jvi � uijThe goal is to �nd a map which is a good representative of all maps.A trivial solution is to choose each marker location in the consensus map asthe average location of that marker in the input maps. This solution, however,introduce bias. Alternatively, we can use our bottleneck criterion and applyrandomized rounding method to choose a consensus map with almost no bias.Notice that we can not simply introduce a real variable yi 2 [0; 1], for eachmarker location as the resulting program will not be linear. In order to write anlinear program we need to approximate the in�nite alphabet � = [0; 1] with apolynomial size alphabet �0 = f 1m+1 ; 2m+1 ; : : : ; mm+1g. We restrict each markerlocation in the consensus map to choose a position from �0. Naturally, we loseprecision, but we can choose m large enough so the inaccuracy introduced willbe not more than the inaccuracy introduced by the rounding phase.We introduce mn zero-one variables xi;j, where xi;j = 1 if and only if thei-th marker location in the consensus map c is im+1 . The resulting integer linearprogram is therefore:Minimize rs:t: Pj xi;j = 1 8i 2 f1; : : :ngPi;j xi;jd( jm+1 ; vi) � r 8v 2Mwhere xi;j 2 f0; 1gTo get the consensus map, we relax the integrality constraints, and round thelinear solution, as in the previous section.
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