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Abstract. With the exploding size of genome databases, it is becoming
increasingly important to devise search procedures that extract relevant
information from them. One such procedure is particularly effective in
finding new, distant members of a given family of related sequences: start
with a multiple alignment of the given members of the family and use an
integral or fractional consensus sequence derived from the alignment to
further probe the database. However, the multiple alignment constructed
to begin with may be biased due to skew in the sample of sequences used
to construct it.

We suggest strategies to overcome the problem of bias in building con-
sensus sequences. When the intention is to build a fractional consensus
sequence (often termed a profile), we propose assigning weights to the
sequences such that the resulting fractional sequence has roughly the
same similarity score against each of the sequences in the family. We
call such fractional consensus sequences balanced profiles. On the other
hand, when only regular sequences can be used in the search, we propose
that the consensus sequence have minimum maximum distance from any
sequence in the family to avoid bias. Such sequences are NP-hard to
compute exactly, so we present an approximation algorithm with very
good performance ratio based on randomized rounding of an integer pro-
gramming formulation of the problem. We also mention applications of
the rounding method to selection of probes for disease detection and to
construction of consensus maps.

1 Introduction

Efforts in genome projects have led to wide availability of genetic information in
the form of nucleic acid and protein sequences. This is reflected by the exponen-
tially increasing sizes of several sequence databases such as SwissProt [BB92].
Proteins are comprised of sequences of amino acids, or residues, which deter-
mine their structure and thereby function. Many proteins exist in many different
organisms, or in several different forms in the same organism. The sets of these
proteins are called families. These families exhibit structural, and therefore pre-
sumably sequential, similarities. The careful study of one protein in a family can
provide information concerning the function, or predicted function of other pro-
teins in that family. Likewise, the classification of a relatively unstudied protein
into a well-defined family can offer insight toward its structure and function. In
order to study families of proteins, the technique of multiple alignment is used.



Multiple alignments allow the simultaneous comparison of several sequences.
Using blocks of conserved regions identified from multiple alignment data, a
database can be probed for sequences with similarity with all of the sequences in
the alignment. In order to do so, it is first necessary to derive from the multiple
alignment a single sequence called the consensus which best represents all the
aligned sequences, that can be used to search the database. Alternatively, a
profile can be derived: this 1s a numerical representation of the multiple alignment
[GMEST], which, for each position and each residue, scores the likelihood that
the given residue will appear at the indicated position in the protein alignment.
Intuitively, we can think of the profile as a “fractional” consensus in which at
any position, some fraction of each residue is present instead of just one.

Sequence collections are seldom a fair representation of the diversity of se-
quences consistent with a given protein structure conserved in a family. An
example is the set of all currently available globin sequences, of which more
than half are vertebrate a- and [-globins, while the remaining subfamilies are
represented by much fewer sequences. A reason for this bias is that experimental
sequence collections are not accurate representations of the diversity associated
with the structure of a given protein in nature. This is partly by necessity since
there are a select few organisms that are suitable for scientific research. Hence,
biases in sequence databases tend to exist toward common experimental model
organisms which are intensively sequenced.

A problem resulting from such biased database collections is that multiple
alignments and consensus sequences that are built from such collections tend
to be biased as well. For example, consider a multiple alignment constructed
from a group of closely related proteins and one distant family member. The
close proteins will dominate the consensus sequence and preclude retrieval of
sequences which may bear more resemblance to the outlyer. Thus in the globin
example, a profile or consensus built from a multiple alignment of all currently
known globins would effectively recognize vertebrate globin sequences, while in-
vertebrate globins would be poorly recognized.

The more intrinsic problem here is that the consensus built from a multiple
alignment of a skewed sample from a family may not reflect the sequence ho-
mology of the family. This is what renders it ineffective in identifying distant
members of the family that may be present in the database. In this paper, we
describe two approaches to banish bias from consensus sequences for the two
cases of constructing fractional and integral consensus sequences.

1.1 Weights for Unbiased Profile Construction

The traditional approach to correcting bias in constructing profiles from a multi-
ple alignment is to weight the different sequences in the alignment differently in
constructing the profile. A plethora of weighting schemes have been proposed in
the literature [ACL89, GSC94, HH94, THG94, SA90, LXB94, EMD95, KM95].
The basic idea is to emphasize under-represented sequences by giving them high
weights, while de-emphasizing over-represented sequences by giving them low
weights. It 1s an open problem to determine a system of weights that results



in the profile that can be used to search the database most effectively for bio-
logically relevant signals. In Section 2 we discuss some of the existing weighting
schemes.

We propose a new method for sequence weighting whose goal is to yield a
profile that has roughly the same similarity score to each of the sequences in
the alignment. We call a profile of this type a balanced profile and the problem
of determining the corresponding weights will be called the Balanced Profile
Weight Assignment Problem. For this problem we outline a simple iterative
algorithm which converges to the desired weights. Preliminary experiments with
an implementation of this algorithm indicate that this method may be more
effective than an unweighted profile construction, especially when the alignment
i1s composed of several divergent sequences. We elaborate on this in Section 3.

1.2 Unbiased Consensus Sequences

A similar fairness problem arises also when building the (integral) consensus
sequence. One way to define a consensus sequence is to require that it minimizes
its total distance from the sequences of the alignment (sum-of-pairs criterion),
but this objective i1s biased toward overrepresented sequences. To overcome this
bias, we define the consensus as the sequence whose maximal distance from
any of the sequences in the alignment is minimum. Under this definition, the
problem of determining the consensus turns out to be NP-hard. In this paper we
model this consensus problem as an integer programming problem and give an
approximation algorithm based on randomized rounding applied to its fractional
relaxation.

1.3 Two applications of randomized rounding

Consider a problem arising in the design of probes for disease detection. The
probes work by hybridizing with complementary strands of sufficient similarity.
To design such probes to be specific for a particular strain of bacteria, we would
like the probe sequence to be as close as possible to the genetic sequence from
this strain while staying as far away as possible (in Hamming distance) from
the sequences of all the other strains. We propose approximation algorithms for
finding near-optimal probes by applying the rounding mentioned earlier.

Another application is to the construction of a consensus map from a variety
of physical maps, all of which identify the location of the same set of markers
linearly along the same fragment of DNA. The construction of a consensus map
that is unbiased against any skew in the input data can be formulated as an inte-
ger program. Applying randomized rounding gives good approximate solutions
to this problem as well.

The rest of the paper is organized as follows. In section 2 we describe some
of the existing schemes for weighting sequences in an alignment and address the
Balanced Profile Weight Assignment Problem. Section 3 reports computational
results of database search with our method as opposed to the unweighted one.
Section 4 describes the randomized rounding approximation algorithm for the



consensus problem. Finally in section 5 we outline extensions of the randomized
rounding technique to designing probes for disease detection and to physical map
construction.

2 Profiles and Weighting Schemes

Let X = {o1,...,0|5|} be a finite alphabet (in particular, we can take X' to be
the set of 20 amino acids). We will consider elements of X7, called sequences. Let
d: X x X — R be a distance function (e.g., for amino-acids d = PAM-250). We
generalize d to sequences in L™ in the natural way, i.e., d(z,y) = Y i, d(z;, y;).
A weighted multiple alignment is a vector of k sequences, i.e. a k X n matrix over
Y U{—} (where — denotes the blank character), together with a set wy, ..., wy
of weights for the sequences.

Given a multiple alignment, a profile is an n x |X| real-valued matrix P.
Each entry P[i,j] of P scores the likelihood with which o¢; is the i—th symbol
of the sequences in the alignment (blanks are traditionally excluded from the
profile). A profile can be constructed for a group of £ aligned sequences each of
equal length n using PROFILEMAKE, Genetic Computer Group’s profile building
tool [GCGI4]. Profiles can also reflect values for any gaps which may appear in
the alignment; however, gaps will not be discussed here (see [GME87] for further
information). A database can then be searched with a profile by using the GCG’s
procedure PROFILESEARCH [GCG94], which implements an alignment algorithm
by Smith and Waterman, based on dynamic programming [SW81].

When using PROFILEMAKE, the scores at position 7, character o, are defined
as follows:

¥
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where s is the Dayhoff similarity score [DBH83]. The weight 1¥; depends on the
number of occurrences of each type of residue at each alignment position and the
sum of the weighted number of sequences. PROFILEMAKE can use either linear
weighting:
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or logarithmic weighting:




where 6; ; is equal to 1 if sequence 7 has residue o; at the current position, and
is equal to 0 otherwise. As expected with either of these methods the weight will
be zero if the given amino acid does not occur in the alignment position, and 1t
will be one if it is the only amino acid which appears at that position.

Weights assigned to each sequence affect these values. In the unweighted
system, all weights w; are equal, so the contribution to W; is the same for
all sequences. In this case, the W; value calculated for a residue o; is simply
the fraction of input sequences that contain residue o; at the current position.
When different weights are assigned to sequences, each sequences contribution
to W; is scaled by its weight. Sequences can be accentuated or de-emphasized
to reflect closely related sequences by varying these weights. Intuitively, weights
on distant sequences should be larger than the weights of the closely related
sequences. Strategies to determine appropriate weights are discussed next.

While there is a consensus about the necessity of weighting sequences when
searching with multiple alignments, there is considerable debate concerning what
weighting method should be used. Many of the differences in these weighting
systems are based on differing opinions on the problem as well as defining correct
behavior. Some of the existing weighting techniques are the following (see also

[VS93]):

— Pairuise Distance: A sequence weight is set to be equal to the sum of the
distances from this sequence to all other sequences in the alignment. The
idea is that a far-off sequence which is under-represented in the population,
will have higher weight than a single sequence in a cluster of closely related
sequences, thus correcting the bias. If D is the square matrix of pairwise
distances between the sequences, we have w = D1 for this method, where 1
is a vector with 1 in each component.

— Voronoi Weighting: This method, introduced by Sibbald and Argos [SA90],
relies on constructing a Voronoi diagram from the sequences, based on pair-
wise distances [SA90]. A hypothetical population of sequences is built using
the information from the real sequence alignment. A Voronoi diagram for
this population is constructed using the input sequences as Voronoi centers.
The weight for each input sequence is proportional to its Voronoi volume, i.e.
the volume of the Voronoi polygon occupied by the sequence. Instead of gen-
erating all sequences, estimates of this volume can be obtained by random
sampling.

— Weighting by Phylogeny: Altschul, Carroll, and Lipman describe a method
for assigning weights based on an implied evolutionary relationship among
the given sequence set [ACL89]. Using a tree constructed with all sequences
in an alignment, weights can be determined by inverting a matrix of variances
and covariances between pairs of sequences that is inferred from the tree.

— Balanced Profiles: The notion of balanced profiles appears in the work of
Vingron and Sibbald [VS93], where they also draw a parallel between this
scheme and that of Altschul et al. mentioned above [ACL89]. Even though
the sequence weights are defined in exactly the same way as we do here, the
way in which the weights are used in their method to compute the profile



is different from ours. As mentioned earlier, in our method, the profile at
each position is computed using a combination of the weights as well as the
underlying distance function (see Equation 1), while in Vingron and Sibbald
the profile is defined simply as the weighted sum of the sequences in the
alignment (i.e. P[i, o] is the sum of the weights for the sequences having
residue ¢ in column ¢). With their definition, the weights yield a balanced
profile if Dw = Al so that, if D is invertible, w can be found by solving
w = AD711. This objective is pursued in Vingron and Argos [VA89] where
the weights of sequences far from the (unweighted) profile are increased thus
moving the weighted profile away from nearby sequences and toward distant
ones.

— Maximum Discrimination: This probabilistic method introduced by Eddy,
Mitchison and Durbin [EMD95], uses Hidden Markov Model to model the
protein family (based on the given multiple alignment). The objective is
to find a HMM that maximizes the probability that all of the sequences
participating in the multiple alignment will be produced by the model (as
opposed to being produced by a random model). The following gradient
descent training method is proposed: Find the sequence (or sequences) with
the lowest score, and change the model probabilities so as to better recognize
those sequences (this method is called the Maxmin algorithm in [EMD95]).
We remark that in our algorithm, a very similar training method is used;
However, no probabilistic modeling of the multiple alignment is employed
and hence our algorithm is much simpler and faster.

2.1 The Balanced Profile Weight Assignment Problem

The main utility of a sequence weighting scheme in building profiles is its po-
tential to correct for bias in the input sequences. Motivated by this intended
application of weighting schemes, we define a balanced profile to be one with
almost identical similarity to all sequences participating in its construction. In
other words, all sequences are chosen with the same intensity by this profile.
The problem of weighting the sequences to build a profile then becomes one of
setting the weights so that the resulting profile is balanced.

A profile can be thought of as a sequence of weighted residuals. A natural
way to define the similarity score of a profile versus a target sequence is, by
linearity, to compute the weighted sum, for all the positions in the sequence,
of the similarities of residues in the profile and that in the target. When this
scoring function 1s used, computing the weights which yield a balanced profile
would simply amount to solving a system of linear equations in the variables
{w;} . However, this method can not be applied to the scoring function used
by PROFILESEARCH, since it is not additive over the columns (e.g. the score for
a run of k gaps is not the same as k times the score of one gap).

We propose an algorithm which is independent from the details of the scoring
function adopted in PROFILESEARCH, or in any other scoring procedure to be

* This remark also appears in the article by Vingron and Sibbald[VS893]



used. Our algorithm is iterative and starts by giving equal weights to all the
sequences. At each iteration the profile is computed using the current weights.
If the profile is not balanced, the weights are updated and a new iteration is
executed. Preliminary computational experiments with the scoring function used
by PROFILESEARCH have shown that the algorithm convergences on the average
very fast (under 20 iterations) to the final weights. A formal statement of the
procedure follows.

Repeat

1. Build a profile from the multiple alignment (initially, all weights are equal).
2. Score this profile against the sequences in the alignment.
3. If the profile is not balanced
then change the weight of either the sequences with the highest or lowest
score.

until the profile is balanced.

In order to choose which weight to change (Step 3), the following procedure
is followed. Define scoremiq = (scoremas + scoremin)/2. Determine how many
scores lie on either side of score;;q. If there are fewer scores below scoren;q,
raise the weight of all sequences with the lowest score by é, and if there are
fewer weights above scoren;q, then lower the scores of the sequences of the
highest score by 8, where § = (scoremay — SCOTemin)/sc0T€may. The choice of 6
reflects the dependence on the step size on the current spread of scores, moving
rapidly when the spread is high and more carefully otherwise.

In order to prevent negative weights, if the weight of the sequences with the
scores to be lowered is below a threshold, simply increase the lowest scoring
sequence’s weight instead. The iterations are stopped when all scores are within
some specified error bound of each other, i.e. roughly similar. This method of
weight changing assumes that increasing the weight of one sequence while hold-
ing everything else constant, will increase the amount by which the profile re-
flects that sequence compared to the others. This is true for both the linear and
logarithmic weighting schemes used by PROFILEMAKE.

3 Search Results with Balanced Profiles

Balanced profiles were constructed for protein blocks and searched against Swis-
sProt. The results of these searches are compared to searches with profiles of
the same blocks constructed using equal weights. The data for these experi-
ments were provided by Henikoff and Henikoff, which they used to calibrate
their weight setting scheme against an equal-weights model [HH94]. Known pro-
tein families were extracted from PROSITE, and subsets of these families were
used to construct blocks with PROTOMAT [Bai92]. Weights were assigned to se-
quences with the balanced profile scheme, and profiles were constructed from

these blocks.



In order to compare the balanced profile search results to the ones with equal-
weights, the PROFILESEARCH results are compared to the sequences known to be
in the protein family of the block subset. Thirty-seven blocks (corresponding to
as many families) were arbitrarily chosen from the complete data set of Henikoff
and Henikoff. Thirty seven pairs of profiles were constructed from these blocks
using the balanced weights and equal weights for each case, and these were used
to search the database for members of the corresponding blocks. The overview
of the computational results is presented in Table 1.

Number of Sequences|Equal Weights|Balanced Profile|Ties
0-50 6 4 27
51-100 2 4 31
101-200 4 3 30
201-300 3 1 33
301-400 0 1 36
401-500 0 1 36
501-1000 4 3 30
1001-5000 3 2 32
over 5000 0 1 36
overall 4 4 29

Table 1. Overview of results - the number of wins for each scheme and the ties are
shown for each of the ranges. E.g., among the 37 tests, Equal weight profiles recovered
more sequences from the family 6 times than the balanced profile and the reverse
happened 4 times, while in the remaining 27 cases, they were tied in the recovery rate
in this range. The final row tabulates overall wins considered over all the ranges for
the 37 tests. Note that every row sums to the total number of tests - 37.

The small sample size does not allow conjecture toward significant conclu-
sions, however it appears that the balanced profile will perform no worse on
average than the equal-weights profile. Simply by inspection, it appears that the
balanced profile performed better when the blocks which composed the multi-
ple alignment were more divergent. This is to be expected since this is exactly
the type of data that exploits the benefits of using balanced profiles. As seen
in Table 1, the overwhelming number of results are ties. This is likely a result
of the nature of the experimental dataset. The majority of blocks used in these
experiments were composed of sequences with a high degree of similarity. When
data sets are constructed from very similar sequences, the weights generated
by the balanced profile method should not significantly impact the database
search. Those blocks which resulted in ties often had more residues which were
completely conserved over all sequences than those for which the balanced pro-
file won. These preliminary experiments have helped to provide some insight
into potential situations where balanced profiles would be a helpful search tool.
Further experiments with datasets with a wide variety of skew will enable the



specific usefulness of balanced profiles to be further defined.

4 Approximation Algorithms for the Consensus Problem

The sphere in X" of radius r with center a € X" is the set of all sequences
v € 2™ such that d(v, a) < r, and is denoted by S(a,r). Given a sequence z and
aset V C X7 the radius of V' with respect to x, denoted by R(V, ) is the the
smallest integer r such that V' C S(z,r). We define the radius of V', denoted by
R(V), as R(V) = minge x» R(V, ).

The consensus problem is then the following: given a set of sequences V' C X"
representing the rows of some multiple alignment, find a sequence ¢ € X" (the
consensus) such that R(V,¢) = R(V) (in other words, find the sequence ¢ which
minimizes maxgev d(c, a)).

It has been shown by Frances and Litman ([FL94]) that determining the con-
sensus is NP-complete (using a reduction from 3-SAT), in the special case where
the alphabet is binary and the distance measure is the Hamming distance. A
slight modification of their reduction generalizes the hardness result to arbitrary
finite alphabet Y. Assuming the distance function d takes only rational values,
and using the fact that scaling d does not change the problem, allows us to
generalize the hardness results to arbitrary distance functions d. Because of the
computational complexity of the problem, exact methods for finding the con-
sensus sequence may require too much computing time and heuristic procedures
should be sought instead. In particular, we are interested in fast performance-
guarantee algorithms.

Our version of the consensus problem arises as a natural alternate objective
for tree alignment in the special case when the tree is a star with the given se-
quences at the leaves and the internal node has to be computed so as to minimize
the bottleneck cost of the tree — namely, minimize the maximum distance from
the internal sequence to the other input sequences. This is termed bottleneck
tree alignments by Ravi and Kececioglu [RK95]. Thus our method for finding
unbiased consensus sequences also finds near-optimal bottleneck tree alignments
for the star. However, our method is applicable only for the case when the dis-
tance function does not allow gaps, and is therefore not applicable to the general
version of the tree problem allowing arbitrary edit distances.

A trivial 2-approximation algorithm for the consensus problem consists sim-
ply in picking any of the given sequences as the consensus [RK95]. In fact,
assuming that the distance between sequences satisfies the triangle inequality,
we have the following.

Claim 1. Let V be a set of sequences; then any sequence v € V gives a 2-
approzimation of the radius of V.

Proof. Let v* be an optimal solution, and let r denote the minimal radius of a
sphere around v* that contains V, that is d(v*, ) < r for every # € V. Let v
be an arbitrary sequence in V. We need to show that for every word w € V| the
distance between w and v is at most 2r. Using the inequalities d(v*, v) < r and



d(v*,w) < r together with the triangle inequality d(v,w) < d(v,v*) + d(v*, w),
completes the proof.
O

4.1 Near-optimal approximation using randomized rounding

In this section we use the method of randomized rounding [RT87, Rag88, MR95]
to achieve a near-optimal solution to the consensus problem. The method can
be roughly described as follows: First we formulate our problem as an integer-
programming problem, using zero-one variables. Then, we relax the integrality
constrains, so that the variables are allowed to have fractional values. An optimal
solution to this linear programming problem can be found in polynomial time
[Kar84]. To obtain a solution to the original, integer program, we “round” the
solution of the relaxed problem, using the fractional values in each column as
probabilities. We then show that with high probability, the value of the rounded
solution is close to the value of the non-integral (optimal) solution.

The consensus problem can be cast as a zero-one linear program as follows.
Let ¢ be the consensus sequence to be determined. For every symbol ¢ € X, and
every column ¢ (1 < ¢ < n), we use a zero-one variable ; , to indicate whether
¢; = 0. Note that we do not allow the blank character to occur as part of the
consensus sequence. OQur integer program can be expressed as follows.

Mintmaize r
s.t. Yoo tio=1 Vie{l,...n} (2)
Zi,a 2 od(o,v) <rVv eV (3)
where %, €{0,1} (4)

The constraint (2) ensures that a unique symbol is chosen for each position of
¢. The constraint (3) specifies that the total distance between any member of
V and ¢ is at most r (i.e, R(V,¢) < r). The objective function seeks a solution
of minimum radius, r, with the zero-one constraint imposed. Let ry denote the
value of the objective function in the optimum solution to the program above.
Since this problem is NP-Hard, we do not hope to compute rg efficiently. Instead,
we solve its linear programming relaxation.

We replace the integrality constraint (4) with #; , > 0. In other words, we
allow z; , to assume real values between 0 and 1 (the constraint ; , < 1 is
implicit in the constraint (2)). Let # be the value of the objective function for
this problem and #;, its solution. Since the linear program is a relaxation of
the integer program, it is clear that ro > #. The 2; ,’s may be fractional values,
and therefore may not constitute a feasible solution to the integer program. We
must therefore “round” these fractional values to 0’s and 1’s to obtain a feasible
solution .

Note that the fractional solution Z; , still satisfies the constraints of the
original linear program, in particular, for each i, the values {&; ,},¢x are all



non-negative, and satisfy ) .y #;, = 1. Therefore, they define a probability
distribution over Y. The rounding process goes as follows. Independently for
each 2, choose a symbol for ¢; according to the probability distribution defined
by {Z; o }oex. That is, Pr(c; = 0) = & ».

Consider some fixed sequence v € V; The expected value of the distance
between ¢ and v satisfies the following.

Eld(c,v)] = E[Z d(ci, v)]

= Z Eld(e;,vi)]  (by linearity of expectation)
i=1

= Z Z Pr(c; = o)d(o,v;)

i=1 ceX

= Z Z i‘iyo—d(o-’ Ui)

i=1 ceX
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Following [RT87], we use Hoeffding’s bound [Hoe63] (See, e.g., [MRI5]).

Lemma2. Let X1, X, ..., X, be n independent random variables, each ranging
over the real interval [a,b]. Let S be a random variable denoting the sum of the
X;’s, and 6 any nonnegative real number. Then

B[s]s2

Pr(S > (1+6)E[S]) < e 36-07

Notice that each random variable d(¢;, v;) range over [0, D], where D is an
upper bound on the distance function, e.g. D = max, gex{d(c, 5)}. Let € > 0
be a positive constant. For

3 VI
=Dy —log
E[S] % e

we get Pr(d(e,v) > ro(146)) < ﬁ Summing over every member of V| we have

Pr(R(V,e) > ro(1+8)) < e. We get the following theorem.

Theorem 3. Let V C L7 be a set of sequences, and let copy denote the optimal
consensus. Let ro denote R(V, copt). Let ¢ be the rounded solution to the relaved
integer program above, and let r denote R(V,c). Then

Pr (r>r0—|—D\/3rologm) < €
€

where € > 0 s a constant.



Notice that this probabilistic algorithm can be de-randomized using standard
techniques of conditional probabilities, along with pessimistic estimators as in
[Rag88].

Remark. Using a different version of the Hoeffding bound: Pr(S — E[S] > ¢) <

_ 2582
e (-a)®n we can derive the following result.

€

Pr(r>ro+D glog|v|) <e€

where € > 0 is a constant. This version is better when ro >> D4/ % log @

5 Extenslons

5.1 Selecting Probes for Bacterial Infections

Assume a patient has a bacterial infection. Let S be the set consisting of short
nucleotides sequences which are specific DNA (either chromosomal or ribosomal)
of several possible bacteria that might be the cause of the infection. Let 7" C S be
a set of sequences of the target bacteria species that actually cause the infection.

DNA diagnosis for the bacterial infection ([DKK88, MM90]) is a technique
using the complementary nature of DNA nucleotides to decide whether the cause
of the infection is from the set T'. The idea is to choose a DNA sequence, called
the DNA probe, such that its complement is “close” to the sequences in T', and
“far away” from the sequences in S\ 7. In practice, even if the complementary
sequence of a probe has a few mismatches with a specific substring of the target
sequences, the probe forms duplexes with some of the target sequences. Thus for
any given probe, the accuracy of the diagnosis using this probe is a function of
two parameters:

— The maximum number of mismatches between the complementary sequence
of the probe and any nucleotide sequence from the target bacteria. The
smaller this number is, the smaller is the probability of a false negative.

— The minimum number of mismatches between the complementary sequence
of the probe and any nucleotide sequences of a bacteria not in the target
species. The larger this number is, the smaller is the probability of a false
positive.

We say that a sequence t is a k—separator with respect to (T, S\ T) if

min d(¢,v) — maxd(t,v) = k.
veS\T veT

The Probe-Selection Problem can now be stated as follows: given two sets of
sequences, T and S\ T, find a sequence ¢ with maximum separation.

Note that this problem generalizes the consensus problem (which occurs when
T = S) and is therefore NP-complete. By casting the problem as a 0-1 program
and using randomized rounding as in the preceding section, we obtain the fol-
lowing result.



Theorem4. Let T' C S be two sets of sequences, and let t,,; denote the opti-
mal (T, S\ T') ~separator. Let kops denote minges\p d(topt, v) —maxyer d(topt,v).
Let t be the rounded solution to the relaxed integer program, and let k denote
min, es\p d(t,v) — maxyer d(t,v). Then

Pr (k < kopt — Dy [ 4kopy log T) <e
€

where m = max{|T|,|S\ T|}, and ¢ > 0 is a constani.

5.2 Building Consensus Maps

Assume a human chromosome (modeled by the real interval [0,1]) is known to
contain n specific markers. Various mapping techniques are used to order those
markers, and even suggest chromosomal locations of them.

Assume we are given a set M of physical maps of the chromosome. Each map
consists of the locations of n markers. That is, each map can be represented by
a vector v € [0,1]". The distance between two maps, v,u € [0, 1]" is defined as:

d(v,u) = Z |v; — ;]

i=1,...,n

The goal is to find a map which is a good representative of all maps.

A trivial solution is to choose each marker location in the consensus map as
the average location of that marker in the input maps. This solution, however,
introduce bias. Alternatively, we can use our bottleneck criterion and apply
randomized rounding method to choose a consensus map with almost no bias.

Notice that we can not simply introduce a real variable y; € [0, 1], for each
marker location as the resulting program will not be linear. In order to write an
linear program we need to approximate the infinite alphabet X = [0, 1] with a
polynomial size alphabet X' = #—I—U mL-H’ cey mL-H} We restrict each marker
location in the consensus map to choose a position from X’. Naturally, we lose
precision, but we can choose m large enough so the inaccuracy introduced will
be not more than the inaccuracy introduced by the rounding phase.

We introduce mn zero-one variables x; ;, where z; ; = 1 if and only if the

t-th marker location in the consensus map ¢ is —2—. The resulting integer linear

. m+1-
program is therefore:
Minimaize r
s.t. >y =1 Vie{l,...n}
Zi,j xivjd(—m];l—l , Ui) <rVveM
where z;; €40,1}

To get the consensus map, we relax the integrality constraints, and round the
linear solution, as in the previous section.



Notice that we can bound the distance between the X-optimal map to the
X'-optimal map by 2 for m = ny/n|M]|, and using the fact that the distance
function d is bounded by 1 (i.e. D = 1), we have the following.

Theorem 5. Let M be a set of maps, and let copr denote the optimal consensus
map. Let ro denote R(M, copi). Let ¢ be the rounded solution to the relaxed
integer program above, and let v denote R(M,c). Then

2
Pr(r>ro—|—3 glog |M|) <€

€
where ¢ > 0 15 a constant.

6 Open Questions

In order to check the performance of the balanced profile method more accu-
rately, the most divergent protein families should be selected for searching. This
way, we would be testing the cases that the weighting systems are developed for,
namely sequence sets which may result in bias. A fair comparison with weighting
schemes other than equal weights must be done to determine its relative efficacy.

While our method for consensus sequences applies to compute bottleneck tree
alignments for a star, they do not extend directly to arbitrary tree topologies. As
a first step, an extension of our method to the general version of the star bottle-
neck problem allowing edit distances should be investigated. Then, it would be
interesting to see if our technique can be further extended to the following prob-
lem: given a leaf-labeled tree, find ancestral sequence labels at the internal nodes
so that the maximum cost of any edge (edit-distance or even Hamming distance
between the endpoints) in the tree is minimized. A logarithmic approximation
for this problem even with edit-distances is already known [RK95].
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