Quasi-Polynomial Time Approximation
Algorithm for Low-Degree Minimum-Cost
Steiner Trees

J. Konemann and R. Ravi

GSIA, Carnegie Mellon University,
Pittsburgh PA 15213, USA.

{jochen,ravi}@cmu.edu

Abstract. In a recent paper [5], we addressed the problem of finding a
minimum-cost spanning tree T for a given undirected graph G = (V, E)
with maximum node-degree at most a given parameter B > 1. We devel-
oped an algorithm based on Lagrangean relaxation that uses a repeated
application of Kruskal’s MST algorithm interleaved with a combinatorial
update of approximate Lagrangean node-multipliers maintained by the
algorithm.

In this paper, we show how to extend this algorithm to the case of
Steiner trees where we use a primal-dual approximation algorithm due
to Agrawal, Klein, and Ravi [1] in place of Kruskal’s minimum-cost span-
ning tree algorithm. The algorithm computes a Steiner tree of maximum
degree O(B + logn) and total cost that is within a constant factor of
that of a minimum-cost Steiner tree whose maximum degree is bounded
by B. However, the running time is quasi-polynomial.

1 Introduction

We consider the minimum-degree Steiner tree problem (B-ST) where we are given
an undirected graph G = (V,), a non-negative cost ¢, for each edge e € F and
a set of terminal nodes R C V. Additionally, the problem input also specifies
positive integers {By },ev. The goal is to find a minimum-cost Steiner tree T'
covering R such each node v in T has degree at most By, i.e. degp(v) < B,
for all v € V. We present an algorithm for the problem and give a proof of the
following theorem.

Theorem 1. There is a primal-dual approximation algorithm that, given a graph
G = (V, E), a set of terminal nodes R C 'V, a nonnegative cost function ¢ : F —
R*, integers B, > 1 for allv € V, and an arbitrary b > 1 computes a Steiner
tree T' that spans the nodes of R such that

1. degp(v) <12b- By + [4logyn] + 1 for allv € V, and
2. ¢(T) < 30PT

where OPT s the munimum cost of any Steiner tree whose degree at node v s
bounded by B, for all v. Our method runs in O(nlog(|R|) - |R|[*1°8 1) iterations
each of which can be tmplemented in polynomial time.

The algorithm combines ideas from the primal-dual algorithm for Steiner
trees due to Agrawal et al. [1] with local search elements from [2].

2 A linear programming formulation

The following natural integer programming formulation models the problem. Let

U={UCV:UNR£0 R\U #0}.

min Z Cole (TP)

s.t ;((5(U)) >1 YU el (1)
z(0(w) < B, YveV (2)
x integer

The dual of the linear programming relaxation (LP) of (IP) is given by

max Y yu— Y A B, (D)

Ueld veV

s.t Z yr <ce+ A+ A, Ve=uwv ekl (3)
U:eed(U)
y, A >0

We also let (IP-ST) denote (IP) without constraints of type (2). This is the
usual integer programming formulation for the Steiner tree problem. Let the LP
relaxation be denoted by (LP-ST) and let its dual be (D-ST).

3 An algorithm for the Steiner tree problem

Our algorithm is based upon previous work on the generalized Steiner tree prob-
lem by Agrawal et al. [1]. A fairly complete description of their algorithm to
compute an approximate Steiner tree can be found in the extended version of
this paper. We refer to the algorithm by AKR.

Before proceeding with the description of an algorithm for minimum-cost
degree-bounded Steiner trees, we present an alternate view of Algorithm AKR
which simplifies the following developments in this paper.

3.1 An alternate view of 4KR

Executing AKR on an undirected graph G = (V, EF) with terminal set R C V
and costs {ce}ecp is — in a certain sense — equivalent to executing AKR on the
complete graph H with vertex set R where the cost of edge e =uv € R x R is
equal to the minimum cost of any u, v-path in G.

Let Ps 7 denote the set of s,¢-Steiner paths for all s€ RNSandt € RNT.
For an s, t-Steiner path P, we define

AMPY=c(P)+ X +M+2- Y A
vE€int(P)

and finally, let

dist. (S, T) = PH%Jin A(P)
€Ps,r

be the minimum ¢*

lowing dual:

-cost for any S, T-Steiner path. We now work with the fol-

max Z YU — Z Ay - By (D2)

UCR veEV

s.t > w<N(P) Vst€RPEP,,EE (4)
UCR,seU,tgU
y,A >0

Let H be a complete graph on vertex set R. We let the length of edge (s,t) €
E[H] be distx(s,t). Running AKR on input graph H with length function dist x
yields a tree in H that corresponds to a Steiner tree spanning the nodes of R
in G in a natural way. We also obtain a feasible dual solution for (D2). The
following lemma shows that (D) and (D2) are equivalent (the proof is deferred
to the extended version of this paper).

Lemma 1. (D) and (D2) are equivalent.

4 An algorithm for the B-ST problem

In this section, we propose a modification of AKR in order to compute a feasi-
ble degree-bounded Steiner tree of low total cost. We start by giving a rough
overview over our algorithm.

4.1 Algorithm: Overview

We define the normalized degree ndeg(v) of a node v in a Steiner tree T as

ndegy(v) = max{0,degy(v) — By - By } (5)

where {f, },ev are parameters to be defined later.

Algorithm B-ST goes through a sequence of Steiner trees E° ..., E' and
associated pairs of primal (infeasible) and dual feasible solutions ¢, (y, A?) for
0 < ¢ <. The goal is to reduce the maximum normalized degree of at least one
node in V in the transition from one Steiner tree to the next.

In the ** iteration our algorithm passes through two main steps:

Compute Steiner tree. Compute an approximate Steiner tree spanning the
nodes of R for our graph G = (V, F) using a modified version of AKR. Roughly
speaking, this algorithm implicitly assumes a cost function ¢ that satisfies

¢(P) <EP) <M(P) (6)

for all Steiner paths P.

When the algorithm finishes, we obtain a primal solution #? together with a

corresponding dual solution 4. In the following we use P’ to denote the set

of paths used by AKR to connect the terminals in iteration i.

Notice that using the cost function ¢ that satisfies (6) ensures that (y*, \') is a

feasible solution for (D2). The primal solution # may induce high normalized

degree at some of the vertices of V' and hence may not be feasible for (IP).
Update node multipliers. The main goal here is to update the node multi-

pliers A’ such that another run of AKR yields a tree in which the normalized

degree of at least one node decreases. Specifically, we continue running our

algorithm as long as the maximum normalized node-degree induced by ' is

at least 2log, n where b > 1 is a positive constant to be specified later.

Let A’ be the maximum normalized degree of any node in the tree induced

by #'. The algorithm then picks a threshold d' > A’ — [4log, n] + 2. Sub-

sequently we raise the A values of all nodes that have normalized degree at

least d* — 2 in the tree induced by z' by some ¢ > 0. We also implicitly

increase the ¢ cost of two sets of Steiner paths:

1. those paths P € P’ that contain nodes of degree at least d’ and
2. those paths P ¢ P! that contain nodes of degree at least d* — 2.

We denote to the set of all such paths by £°.

Rerunning AKR replaces at least one Steiner path whose ¢-cost increased with

a Steiner path whose length stayed the same. In other words, a path that

touches a node of normalized degree at least d’ is replaced by some other

path that has only nodes of normalized degree less than d’ — 2.

Throughout the algorithm we will maintain that the cost of the current tree
induced by z* is within a constant factor of the dual objective function value
induced by (y', \'). By weak duality, this ensures that the cost of our tree is
within a constant times the cost of any Steiner tree that satisfies the individual
degree bounds. However, we are only able to argue that the number of iterations
1s quasi-polynomial.

In the following, we will give a detailed description of the algorithm. In
particular, we elaborate on the choice of ¢! and d' in the node-multiplier update
and on the modification to AKR that we have alluded to in the previous intuitive
description.

4.2 Algorithm: A detailed top-level description

We first present the pseudo-code of our B-ST-algorithm. In the description of
the algorithm we use the abbreviation ndeg’(v) in place of ndegg.(v) for the

normalized degree of vertex v in the Steiner tree E'. We also let A’ denote the
maximum normalized degree of any vertex in E’, i.e.

A' = maxndeg' (v).

vER

Furthermore, we adopt the notation of [2] and let
St ={vEV : ndeg'(v) > d}

be the set of all nodes whose normalized degrees are at least d in the i*” solution.
The following lemma is proved easily by contradiction

Lemma 2. There is a d' € {A* — [4log, n] +2,..., A"} such that

> B, <b- > B,

vESdl_2 vESdl

for a given constant b > 1.

The low expansion of Sﬁl,_z turns out to be crucial in the analysis of the
performance guarantee of our algorithm.

Finally, we let mod-AKR denote a call to the modified version of the Steiner

tree algorithm AKR. Algorithm 1 has the pseudo code for our method.

Algorithm 1 An algorithm to compute an approximate minimum-cost degree-
bounded Steiner tree.

1: Given: primal feasible solution z°, P° to (LP-ST) and dual feasible solution y° to
(D-ST)

A O, Yo eV

10
while A" > 4[log, n] do

Choose d* > A" — [4log, n] + 2 s.t. ZveS;, . B, <b->

‘ vest, B,
6: Choose e"‘ > 0 and identify swap pair (Pi7 fl>

7o ML X petifoe S, and AT AL otherwise

8 Yl mod—AKR(Pi7 e, yi, (Pi7 ?l>)

9: P PA{PTU{P}

10: 1141

11: end while

Step 6 of Algorithm 1 hides the details of choosing an appropriate ¢!. We
lengthen all Steiner paths in £¢. Our choice of ¢ will ensure that there exists at
least one point in time during the execution of a slightly modified version of AKR
in step 8 at which we now have the choice to connect two moats using paths pi

and FZ, respectively. We show that there is a way to pick ¢’ such that

PiNS, #0 and FiﬂSil,_z =0.

We now break ties such that P’ is chosen instead of P! and hence, we end up
with a new Steiner tree i1,

In mod-AKR, we prohibit including alternate paths that contain nodes from
and argue that the dual load that such a non-tree path P’ sees does not

Si

di—2
go up by more than €. Hence, we preserve dual feasibility.

We first present the details of Algorithm mod-AKR and discuss how to find €’

afterwards.

4.3 Algorithm: mod-AKR

Throughout this section and the description of mod-AKR we work with the mod-
ified dual (D2) as discussed in Section 3.1.

For a 71, 7o-Steiner path P we let Rp C 2% denote all sets S C R that contain
exactly one of 71,73 € R. For a dual solution y, A we then define the cut-metric
ly(P) = > scrp Ys- From here it is clear that (y,A) is a feasible dual solution
iff I,(P) < ¢*(P) for all Steiner paths P. We use [!(P) as an abbreviation for
ly:(P).

At all times during the execution of Algorithm 1 we want to maintain dual
feasibility, i.e. we maintain

IH(P) < (P) (7)

for all Steiner paths P and for all ¢. Moreover, we want to maintain that for all
1, the cost of any path P € P’ is bounded by the dual load that P sees. In other
words, we want to enforce that

e(P) < I'(P) (8)

for all P € P? and for all i. It is easy to see that both (7) and (8) hold for i = 0
from the properties of AKR.

First, let P! = P! U P be a partition of the set of Steiner paths used to
connect the terminal nodes in the i** iteration. Here, a path P € P’ is added to
Piiff P NS # 0 and we let PL = P!\ Pi.

mod-AKR first constructs an auxiliary graph G* with vertex set R. We add an
edge (s,t) to G* for each s, t-path P € P'\ {P'}. The edge (s, t) is then assigned
alength of Iif1 = 1'(P) + ¢ if P € P} and I{ = I'(P) otherwise.

Assume that P’ is an s, #’-path. We then also add an edge connecting s” and
' to G and let its length be the maximum of I/(P') and ¢(P'). Observe, that
since PP\ {P'}U{P'} is tree, G' is a tree as well,

Subsequently, mod-AKR runs AKR on the graph G and returns the computed
dual solution. We will show that this solution together with Ait! is feasible for
(D2). A formal definition of mod-AKR is given in Algorithm 2.

We defer the proof of invariants (7) and (8) to the end of the next section.

Algorithm 2 mod-AKR(P? ¢y (P!, Fl>) A modified version of AKR.

1: Assume P is an s', #-Steiner path
2 G = (R, E’) where

E'={(s,t) : Is,t —path P € P'\ {P'}}U{(s,t)}
3: For all s,t Steiner paths P € P*\ {P'} :

[I'(Py+¢ : PePj
TP : otherwise
4 li“,"t% = max{c(?l),li(?l)}
yz+1 . AKR(Gl,lH-l)
6: return y*t!

(e

4.4 Algorithm: Choosing €’

In this section, we show how to choose ¢’. Remember that, intuitively, we want to

increase the cost of currently used Steiner paths that touch nodes of normalized

degree at least d’'. The idea is to increase the cost of such paths by the smallest

possible amount such that other non-tree paths whose length we did not increase

can be used at their place. We make this idea more precise in the following.
We first define K to be the set of connected components of

alyr

PeP:

Let H' be an auxiliary graph that has one node for each set in K?. Moreover, H’
contains edge (K’ , K"') iff there is a K’, K"-Steiner path in the set P%. It can be
seen that each path P € P! corresponds to unique edge in H'. It then follows
from the fact that G[F?] is a tree that H' must also be a tree.

For K', K" € K' such that (K’, K"} is not an edge of H®, let C' be the unique
cycle in H' + (K’, K""). We then use P!(C) to denote the set of Steiner paths
from P! corresponding to edges on C.

For any two connected components K’ K" € K' we let

il T .
d'(K' K"y = PE%EEKH c(P). (9)
pns: =0
be the cost of the minimum-cost K’ K”-Steiner path that avoids nodes from
Sﬁl,_z. For a pair of components K’ K" € K we denote the path that achieves
the above minimum by Pg g.

Definition 1. We say that a path P & P’ that contains no nodes from Sﬁl,_z 15

e-swappable against P € Pl in iteration i if

1. P e Pi0) where C' 1s the unique cycle created in H' by adding the edge
corresponding to P, and

2. ¢(P)<I(P)+e¢

We are now looking for the smallest ¢! such that there exists a witness pair
of paths <Pi,ﬁ> where P is ¢/-swappable against P'.

Formally consider all pairs K/, K" € K* such that (K’, K"") is not an edge of
H'. Inserting the edge corresponding to P/ gn into H® creates a unique cycle
C. For each such path P € P (C), let €&/ s (P) be the smallest non-negative
value of € such that 7

&K' K"y <I'(P)+e. (10)
We then let 63{’,1{” = minpepi(c) 6%,7K,,(P) and define

:]
[— min Crer e
K/ K'eK? KK

We let (P, Fl> be the pair of Steiner paths that defines ¢!, i.e. Plisa K' K-
Steiner path such that
1. inserting edge (K’, K') into H? creates a cycle C' and P! € P¥(C), and
2. ¢(P") <li(P)) +¢€.
We are now in the position to show that (7) and (8) are maintained for our

choice of (Pi,ﬁ) and ¢'. The following Lemma whose proof is deferred to the
full version of this paper shows that mod-AKR produces a feasible dual solution
(y't1, AP for (D2) provided that (y', \') was dual feasible.

Lemma 3. Algorithm 2 produces a feasible dual solution (y't1, Nt1) for (D2)
given that (y', \) is dual feasible for (D2).

This shows (7). Tt is clear from the choice of ¢! that we include a Steiner path

P’ into Pitl only if l“’l(?l) > c(?l). (8) now follows since the dual load on any
path is non-decreasing as we progress.

4.5 Analysis: Performance guarantee

In this section we show that the cost of the tree computed by Algorithm 1 is
within a constant factor of any Steiner tree satisfying all degree bounds. We en-
sure this by way of weak duality. In particular, our goal is to prove the inequality

D e(P)<3> ys—=3> By A (11)
Pepi SCR vEV

for all iterations i of our algorithm.
First, we observe the following simple consequence of the AKR algorithm.

Lemma 4. Assume that Algorithm 1 terminates aftert iterations. For iteration
0<i<t, letl . . = maxpep: I'(P). We then must have

Z ZZ(P) =2 Z yf‘i _lfnax'

Pepi SCR

Proof. Let r = |R| and let P* = {P} ... Pi_,} be the paths computed by
mod-AKR in iteration ¢—1. Also let 4* be the corresponding dual solution returned
by mod-AKR. W.l.0.g. we may assume that

F(PL) <...<U(PLy).
From the AKRalgorithm it is not hard to see that
r—1

Svh= g P (P =+ 1) (12)

SCR j—l

:5.212 PO (= +1) — (=) + 2Py

1 Z Z i i
= 5 : Zl _l Pr 1)
where we define [!(Pi) = 0. The last equality (12) can be restated as

Z ll(_QZyS max

Pcpi SCR
and that yields the correctness of the lemma.

We now proceed with proving (11) for all 1 < ¢ < ¢. Notice that Lemma 4
together with (8) implies (11) for ¢ = 0. We concentrate on the case ¢ > 1.
The proof i1s based on the following invariant that we maintain inductively

forall 0 <1 <t: ' '
3~ZBU/\ZU < Zyls (Tnv)
vev SCR
Since, AY = 0 for all v € V by definition, (Inv) holds for i = 0.
Growmg Al by ¢ at nodes v € Sd, , decreases the right hand side of (11) by

e ZUES;,_2 B, . Still the cost of the Steiner tree E*! is potentially higher than

the cost of the old tree E?. We must show that the first term on the right hand-
side of (11),i.e. 3-3 g y% grows sufficiently to compensate for the decrease
in the second term and the increased Steiner tree cost. In order to show this we
need the following technical lemma that lower-bounds the number of paths that
contain nodes of degree at least d’ in terms of the number of nodes of normalized
degree at least d' — 2.

Lemma 5. In each iteration 1 < ¢ <t we must have

Vs,

Jor an arbitrary parameter o > 0 by setling B, > 2ab+ 1/B, for allv € V in
the definition of ndegy(v) in (5).

1))

Fig.1. Figure (1) shows a Steiner tree where circles represent terminals and squares
represent Steiner nodes. We assume that there are exactly two nodes of high normalized
degree: s and t. Figure (2) shows the set M of marked edges in red. Notice that the
edge between Steiner nodes s and s’ is not marked since there must be a Steiner path
connecting a terminal node ! on the left side and a terminal node r on the right side.
This Steiner path has the form (PlS7 ss’, PS/T> and P, contains node s which has high
normalized degree.

Proof. We first define a set of marked edges

McC | s

vESdl

and then show that each Steiner path that contains nodes from St has at most
two marked edges. This shows that the cardinality of the set of marked edges is
at most twice the number of paths in Pi, 1.e.

|M] <2 [Pil. (13)

In the second part of the proof we argue that M is sufficiently large.

First, we include all edges that are incident to terminal nodes from 5%, into
M. Secondly, we also mark edges uv € E' that are incident to non-terminal
nodes in Sﬁl, and that in addition satisfy that there is no Steiner path

P = (P, uv, P) € P

such that both P; and Ps contain nodes from Sﬁl,.

It is immediately clear from this definition that each Steiner path P € P*
has at most two edges from M.

We now claim that M contains at least

ba- > B, (14)

’UES;l

edges. To see this, we let T" be the tree on node set Sﬁl, that is induced by E’:
For s,t € 5%, we insert the edge st into 1" iff the unique s,¢-path in £" has no
other nodes from S7;. We let P, C /' be the path that corresponds to an edge
e € E[T.

Define Eil, C E' to be the set of tree edges that are incident to nodes of
normalized degree at least d’, i.e.

=] d(v).

vESdl

Now let U/ C E’ be the set of unmarked tree edges that are incident to nodes of
normalized degree at least d', i.e. U = Eil, \ M.

First observe that, by definition of M, for each unmarked edge e € U there
must be an edge ¢! € E[T] such that e is an edge on the path P.:. Moreover,
for all e, € E[T] there are at most two unmarked edges on the path P.:. Since
T has |Si,| — 1 edges we obtain

U] <2 (S

—1). (15)

Each node in Sﬁl, has at least 3, B, + d edges incident to it. On the other
hand, since E' is a tree, at most (]S%| — 1) of the edges in E’,; are incident to
exactly two nodes from S?,. Hence, we obtain

Bl > | >0 BuBy+d' | =(1S41-1)= | 2ab- > B, | +d"|Si|+1 (16)
’UES;l ’UES;l
where the last equality uses the definition of 3.
Now observe that |M| = |E%,| — |U| and hence
(M[> | 2ab- Y By | +|Skl(d —2) - 1. (17)

’UES;l

using (15) and (16). Notice that d* > A’ —[4log, n] +2 and A’ > [4log, n] and
hence d’ > 3. This together with (17) and the fact that Sﬁl, is non-empty implies

|M|>2ab- > B,. (18)
’UES;l

Combining (13) and (18) yields [P}| > ab -} ¢ B,. Using the fact that
e
ZUES’ B, <b- ZUES’ B, finishes the proof of the lemma.
dt—2 dt
The following claim now presents the essential insight that ultimately yields
the validity of (11).
Lemma 6. Let « be as in Lemma 5. We then must have
i+1 i X
SRS TN S
SCR SCR veS?

dt—2

for adl 0 <¢<t.

Proof. We can use (12) to quantify the change in dual in iteration i.

r—1

) i 1 i i z 1 B B B B
Do =) =5 DoUTHR) TP + ST (L) — 1T (PLY)
SCR j=1

Ei i
Z§'|771|

where the inequality follows from the fact that we increase the length of all paths
in P} by € and the length of all other paths are non-decreasing as we progress.
An application of Lemma 5 finishes the proof.

As mod-AKR finishes with cut metric !t!, we obtain
li+1(7)i+1) — Z lz+1 < 9 Z yz+1 (19)
Pepitl SCR

from Lemma 4. Observe that the real cost of the Steiner tree Et! is much
smaller than {*+1(P*1). In fact, notice that we have
(P < TP + (P {P)) (20)
<EHYP) (P (P

where the last inequality follows from (8), i.e. the [-cost of a Steiner path in P!
always dominates its c-cost. Also, observe that
PHPINAPY) = F(PINAPY) +€ - [P} (21)
> (PI\A{PY) 4 ac' - Z B,

Vs,

using Lemma 5. Combining (19), (20) and (21) yields

(Pl-l—l) < ll-l—l(r])l-l—l Z B
Vs,
<2- Z Yt — e Z B,.
SCR UESL’“ ,

We can now add (Inv) to the last inequality and get

P <3 it =3 > BA —ad > B,
ScR VeV vest,

Finally notice that Ait! = X + ¢ if v € S
choose a > 3 and it follows that

(P <3y =3 BT

SCR veEV

‘., and ALYt = X! otherwise. Now

We have to show that (Inv) is maintained as well. Observe that the left hand

side of (Inv) increases by 3¢’ - > wesi By. Weobtain from Lemma 6 that
dr—2

Szt Y B

SCR veS?

Choosing «v > 6 shows that the right hand side of (Inv) increases sufficiently and
(Tnv) holds in iteration ¢ 4+ 1 as well.

4.6 Analysis: Running time

For a Steiner tree P in path representation, we define its potential value as

@('P) — Z |R|maxvepndeg7,(v)
PeP

where ndegy(v) is the normalized degree of node v in the Steiner tree defined
by P. The proof of the following lemma is a direct adaptation of the arguments
in [8] via the above potential function and is omitted.

Lemma 7. Algorithm I terminates after O(nlog(|R|) - |R|[*1°871)) iterations.

References

1. A. Agrawal, P. Klein and R. Ravi, “When trees collide: an approximation algorithm
for the generalized Steiner problem on networks,” SIAM Journal on Computing,
vol.24, (1995), pp. 440-456.

2. M. Furer, B. Raghavachari: Approximating the minimum degree Steiner tree to
within one of optimal. Journal of Algorithms, 17 (1994) 409-423

3. M. X. Goemans and D. P. Williamson, “A general approximation technique for
constrained forest problems,” SIAM J. Computing, Vol. 24, 1995, pp. 296-317.

4. J. Konemann, R. Ravi: A matter of degree: improved approximation algorithms for
degree-bounded minimum spanning trees. Proceedings of the 32nd Symp. on the
Theory of Comput. (2000) 537-546. A complete version appears in the STAM J. on
Comput, 31(6), 1783-1793 (2002)

5. J. Kénemann, R. Ravi: Primal-dual algorithms come of age: Approximating MST’s
with nonuniform degree bounds. Proceedings, ACM Symposium on Theory of Com-
puting (2003)

6. R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, H. B. Hunt II1: Many Birds
with One Stone: Multi-Objective Approximation Algorithms (Extended Abstract).
Proceedings of the 25th Symp. on the Theory of Comput. (1993) 438-447

7. R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, H. B. Hunt III: Approxima-
tion Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems.
Algorithmica 31(1) (2001) 58-78

8. R. Rawvi, B. Raghavachari, and P. N. Klein, “Approximation through local optimal-
ity: Designing networks with small degree,” Proc., 12th Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FST & TCS),
December (1992), LNCS 652, pp. 279-290.

