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hen,ravig�
mu.eduAbstra
t. In a re
ent paper [5℄, we addressed the problem of �nding aminimum-
ost spanning tree T for a given undire
ted graph G = (V;E)with maximum node-degree at most a given parameter B > 1. We devel-oped an algorithm based on Lagrangean relaxation that uses a repeatedappli
ation of Kruskal's MST algorithm interleaved with a 
ombinatorialupdate of approximate Lagrangean node-multipliers maintained by thealgorithm.In this paper, we show how to extend this algorithm to the 
ase ofSteiner trees where we use a primal-dual approximation algorithm dueto Agrawal, Klein, and Ravi [1℄ in pla
e of Kruskal's minimum-
ost span-ning tree algorithm. The algorithm 
omputes a Steiner tree of maximumdegree O(B + log n) and total 
ost that is within a 
onstant fa
tor ofthat of a minimum-
ost Steiner tree whose maximum degree is boundedby B. However, the running time is quasi-polynomial.1 Introdu
tionWe 
onsider the minimum-degree Steiner tree problem (B-ST) where we are givenan undire
ted graph G = (V;E), a non-negative 
ost 
e for ea
h edge e 2 E anda set of terminal nodes R � V . Additionally, the problem input also spe
i�espositive integers fBvgv2V . The goal is to �nd a minimum-
ost Steiner tree T
overing R su
h ea
h node v in T has degree at most Bv , i.e. degT (v) � Bvfor all v 2 V . We present an algorithm for the problem and give a proof of thefollowing theorem.Theorem 1. There is a primal-dual approximation algorithm that, given a graphG = (V;E), a set of terminal nodes R � V , a nonnegative 
ost fun
tion 
 : E !R+, integers Bv > 1 for all v 2 V , and an arbitrary b > 1 
omputes a Steinertree T that spans the nodes of R su
h that1. degT (v) � 12b �Bv + d4 logb ne + 1 for all v 2 V , and2. 
(T ) � 3OPTwhere OPT is the minimum 
ost of any Steiner tree whose degree at node v isbounded by Bv for all v. Our method runs in O(n log(jRj) � jRjd4 logne) iterationsea
h of whi
h 
an be implemented in polynomial time.



The algorithm 
ombines ideas from the primal-dual algorithm for Steinertrees due to Agrawal et al. [1℄ with lo
al sear
h elements from [2℄.2 A linear programming formulationThe following natural integer programming formulationmodels the problem. LetU = fU � V : U \R 6= ;; R n U 6= ;g.min Xe2E 
exe (IP)s.t x(Æ(U )) � 1 8U 2 U (1)x(Æ(v)) � Bv 8v 2 V (2)x integerThe dual of the linear programming relaxation (LP) of (IP) is given bymax XU2U yU �Xv2V �v �Bv (D)s.t XU :e2Æ(U) yU � 
e + �u + �v 8e = uv 2 E (3)y; � � 0We also let (IP-ST) denote (IP) without 
onstraints of type (2). This is theusual integer programming formulation for the Steiner tree problem. Let the LPrelaxation be denoted by (LP-ST) and let its dual be (D-ST).3 An algorithm for the Steiner tree problemOur algorithm is based upon previous work on the generalized Steiner tree prob-lem by Agrawal et al. [1℄. A fairly 
omplete des
ription of their algorithm to
ompute an approximate Steiner tree 
an be found in the extended version ofthis paper. We refer to the algorithm by AKR.Before pro
eeding with the des
ription of an algorithm for minimum-
ostdegree-bounded Steiner trees, we present an alternate view of Algorithm AKRwhi
h simpli�es the following developments in this paper.3.1 An alternate view of AKRExe
uting AKR on an undire
ted graph G = (V;E) with terminal set R � Vand 
osts f
ege2E is { in a 
ertain sense { equivalent to exe
uting AKR on the
omplete graph H with vertex set R where the 
ost of edge e = uv 2 R � R isequal to the minimum 
ost of any u; v-path in G.



Let PS;T denote the set of s; t-Steiner paths for all s 2 R\ S and t 2 R\ T .For an s; t-Steiner path P , we de�ne
�(P ) = 
(P ) + �s + �t + 2 � Xv2int(P ) �vand �nally, let dist
� (S; T ) = minP2PS;T 
�(P )be the minimum 
�-
ost for any S; T -Steiner path. We now work with the fol-lowing dual:max XU�R yU �Xv2V �v �Bv (D2)s.t XU�R;s2U;t62U yU � 
�(P ) 8s; t 2 R;P 2 Ps;t 2 E (4)y; � � 0Let H be a 
omplete graph on vertex set R. We let the length of edge (s; t) 2E[H℄ be dist
� (s; t). Running AKR on input graphH with length fun
tion dist
�yields a tree in H that 
orresponds to a Steiner tree spanning the nodes of Rin G in a natural way. We also obtain a feasible dual solution for (D2). Thefollowing lemma shows that (D) and (D2) are equivalent (the proof is deferredto the extended version of this paper).Lemma 1. (D) and (D2) are equivalent.4 An algorithm for the B-ST problemIn this se
tion, we propose a modi�
ation of AKR in order to 
ompute a feasi-ble degree-bounded Steiner tree of low total 
ost. We start by giving a roughoverview over our algorithm.4.1 Algorithm: OverviewWe de�ne the normalized degree ndegT (v) of a node v in a Steiner tree T asndegT (v) = maxf0; degT (v) � �v �Bvg (5)where f�vgv2V are parameters to be de�ned later.Algorithm B-ST goes through a sequen
e of Steiner trees E0; : : : ; Et andasso
iated pairs of primal (infeasible) and dual feasible solutions xi, (yi; �i) for0 � i � t. The goal is to redu
e the maximum normalized degree of at least onenode in V in the transition from one Steiner tree to the next.In the ith iteration our algorithm passes through two main steps:



Compute Steiner tree. Compute an approximate Steiner tree spanning thenodes ofR for our graph G = (V;E) using a modi�ed version of AKR. Roughlyspeaking, this algorithm impli
itly assumes a 
ost fun
tion e
 that satis�es
(P ) � e
(P ) � 
�i(P ) (6)for all Steiner paths P .When the algorithm �nishes, we obtain a primal solution xi together with a
orresponding dual solution yi. In the following we use Pi to denote the setof paths used by AKR to 
onne
t the terminals in iteration i.Noti
e that using the 
ost fun
tion e
 that satis�es (6) ensures that (yi; �i) is afeasible solution for (D2). The primal solution xi may indu
e high normalizeddegree at some of the verti
es of V and hen
e may not be feasible for (IP).Update node multipliers. The main goal here is to update the node multi-pliers �i su
h that another run of AKR yields a tree in whi
h the normalizeddegree of at least one node de
reases. Spe
i�
ally, we 
ontinue running ouralgorithm as long as the maximumnormalized node-degree indu
ed by xi isat least 2 logb n where b > 1 is a positive 
onstant to be spe
i�ed later.Let �i be the maximum normalized degree of any node in the tree indu
edby xi. The algorithm then pi
ks a threshold di � �i � d4 logb ne + 2. Sub-sequently we raise the � values of all nodes that have normalized degree atleast di � 2 in the tree indu
ed by xi by some �i > 0. We also impli
itlyin
rease the e
 
ost of two sets of Steiner paths:1. those paths P 2 Pi that 
ontain nodes of degree at least di and2. those paths P 62 Pi that 
ontain nodes of degree at least di � 2.We denote to the set of all su
h paths by Li.Rerunning AKR repla
es at least one Steiner path whose e
-
ost in
reased witha Steiner path whose length stayed the same. In other words, a path thattou
hes a node of normalized degree at least di is repla
ed by some otherpath that has only nodes of normalized degree less than di � 2.Throughout the algorithm we will maintain that the 
ost of the 
urrent treeindu
ed by xi is within a 
onstant fa
tor of the dual obje
tive fun
tion valueindu
ed by (yi; �i). By weak duality, this ensures that the 
ost of our tree iswithin a 
onstant times the 
ost of any Steiner tree that satis�es the individualdegree bounds. However, we are only able to argue that the number of iterationsis quasi-polynomial.In the following, we will give a detailed des
ription of the algorithm. Inparti
ular, we elaborate on the 
hoi
e of �i and di in the node-multiplier updateand on the modi�
ation to AKR that we have alluded to in the previous intuitivedes
ription.4.2 Algorithm: A detailed top-level des
riptionWe �rst present the pseudo-
ode of our B-ST-algorithm. In the des
ription ofthe algorithm we use the abbreviation ndegi(v) in pla
e of ndegEi(v) for the



normalized degree of vertex v in the Steiner tree Ei. We also let �i denote themaximum normalized degree of any vertex in Ei, i.e.�i = maxv2R ndegi(v):Furthermore, we adopt the notation of [2℄ and letSid = fv 2 V : ndegi(v) � dgbe the set of all nodes whose normalized degrees are at least d in the ith solution.The following lemma is proved easily by 
ontradi
tionLemma 2. There is a di 2 f�i � d4 logb ne + 2; : : : ;�ig su
h thatXv2Sidi�2 Bv � b � Xv2Sidi Bvfor a given 
onstant b > 1.The low expansion of Sidi�2 turns out to be 
ru
ial in the analysis of theperforman
e guarantee of our algorithm.Finally, we let mod-AKR denote a 
all to the modi�ed version of the Steinertree algorithm AKR. Algorithm 1 has the pseudo 
ode for our method.Algorithm 1 An algorithm to 
ompute an approximate minimum-
ost degree-bounded Steiner tree.1: Given: primal feasible solution x0;P0 to (LP-ST) and dual feasible solution y0 to(D-ST)2: �0v  0; 8v 2 V3: i 04: while �i > 4dlogb ne do5: Choose di � �i � d4 logb ne+ 2 s.t.Pv2Sidi�2 Bv � b �Pv2Sidi Bv6: Choose �i > 0 and identify swap pair hP i; P ii.7: �i+1v  �iv + �i if v 2 Sidi�2 and �i+1v  �iv otherwise8: yi+1  mod-AKR(Pi; �i; yi; hP i; P ii)9: Pi+1  Pi n fP ig [ fP ig10: i i + 111: end whileStep 6 of Algorithm 1 hides the details of 
hoosing an appropriate �i. Welengthen all Steiner paths in Li. Our 
hoi
e of �i will ensure that there exists atleast one point in time during the exe
ution of a slightly modi�ed version of AKRin step 8 at whi
h we now have the 
hoi
e to 
onne
t two moats using paths P iand P i, respe
tively. We show that there is a way to pi
k �i su
h thatP i \ Sidi 6= ; and P i \ Sidi�2 = ;:



We now break ties su
h that P i is 
hosen instead of P i and hen
e, we end upwith a new Steiner tree Ei+1.In mod-AKR, we prohibit in
luding alternate paths that 
ontain nodes fromSidi�2 and argue that the dual load that su
h a non-tree path P 0 sees does notgo up by more than �i. Hen
e, we preserve dual feasibility.We �rst present the details of Algorithm mod-AKR and dis
uss how to �nd �iafterwards.4.3 Algorithm: mod-AKRThroughout this se
tion and the des
ription of mod-AKR we work with the mod-i�ed dual (D2) as dis
ussed in Se
tion 3.1.For a r1; r2-Steiner path P we let RP � 2R denote all sets S � R that 
ontainexa
tly one of r1; r2 2 R. For a dual solution y; � we then de�ne the 
ut-metri
ly(P ) = PS2RP ys. From here it is 
lear that (y; �) is a feasible dual solutioni� ly(P ) � 
�(P ) for all Steiner paths P . We use li(P ) as an abbreviation forlyi(P ).At all times during the exe
ution of Algorithm 1 we want to maintain dualfeasibility, i.e. we maintain li(P ) � 
�i(P ) (7)for all Steiner paths P and for all i. Moreover, we want to maintain that for alli, the 
ost of any path P 2 Pi is bounded by the dual load that P sees. In otherwords, we want to enfor
e that 
(P ) � li(P ) (8)for all P 2 Pi and for all i. It is easy to see that both (7) and (8) hold for i = 0from the properties of AKR.First, let Pi = Pi1 [ Pi2 be a partition of the set of Steiner paths used to
onne
t the terminal nodes in the ith iteration. Here, a path P 2 Pi is added toPi1 i� P \ Sidi 6= ; and we let Pi2 = Pi n Pi1.mod-AKR �rst 
onstru
ts an auxiliary graph Gi with vertex set R. We add anedge (s; t) to Gi for ea
h s; t-path P 2 Pi nfP ig. The edge (s; t) is then assigneda length of li+1st = li(P ) + �i if P 2 Pi1 and li+1st = li(P ) otherwise.Assume that P i is an s0; t0-path. We then also add an edge 
onne
ting s0 andt0 to Gi and let its length be the maximum of li(P i) and 
(P i). Observe, thatsin
e Pi n fP ig [ fP ig is tree, Gi is a tree as well.Subsequently, mod-AKR runs AKR on the graph Gi and returns the 
omputeddual solution. We will show that this solution together with �i+1 is feasible for(D2). A formal de�nition of mod-AKR is given in Algorithm 2.We defer the proof of invariants (7) and (8) to the end of the next se
tion.



Algorithm 2 mod-AKR(Pi; �i; yi; hP i; P ii): A modi�ed version of AKR.1: Assume P i is an s0; t0-Steiner path2: Gi = (R;Ei) whereEi = f(s; t) : 9s; t� path P 2 Pi n fP igg [ f(s0; t0)g3: For all s; t Steiner paths P 2 Pi n fP ig :li+1st = � li(P ) + �i : P 2 Pi1li(P ) : otherwise4: li+1s0t0 = maxf
(P i); li(P i)g5: yi+1  AKR(Gi; li+1)6: return yi+14.4 Algorithm: Choosing �iIn this se
tion, we show how to 
hoose �i. Remember that, intuitively, we want toin
rease the 
ost of 
urrently used Steiner paths that tou
h nodes of normalizeddegree at least di. The idea is to in
rease the 
ost of su
h paths by the smallestpossible amount su
h that other non-tree paths whose length we did not in
rease
an be used at their pla
e. We make this idea more pre
ise in the following.We �rst de�ne Ki to be the set of 
onne
ted 
omponents ofG24 [P2Pi2 P35 :Let Hi be an auxiliary graph that has one node for ea
h set in Ki. Moreover, Hi
ontains edge (K 0;K00) i� there is a K 0;K00-Steiner path in the set Pi1. It 
an beseen that ea
h path P 2 Pi1 
orresponds to unique edge in Hi. It then followsfrom the fa
t that G[Ei℄ is a tree that Hi must also be a tree.For K0;K00 2 Ki su
h that (K 0;K00) is not an edge of Hi, let C be the unique
y
le in Hi + (K0;K00). We then use Pi(C) to denote the set of Steiner pathsfrom Pi 
orresponding to edges on C.For any two 
onne
ted 
omponents K0;K00 2 Ki we letdi(K0;K00) = minP2PK0 ;K00P\Sidi�2=; 
(P ): (9)be the 
ost of the minimum-
ost K0;K00-Steiner path that avoids nodes fromSidi�2. For a pair of 
omponents K0;K00 2 Ki we denote the path that a
hievesthe above minimum by PK0;K00 .De�nition 1. We say that a path P 62 Pi that 
ontains no nodes from Sidi�2 is�-swappable against P 2 Pi1 in iteration i if1. P 2 Pi(C) where C is the unique 
y
le 
reated in Hi by adding the edge
orresponding to P , and



2. 
(P ) � li(P ) + �We are now looking for the smallest �i su
h that there exists a witness pairof paths hP i; P ii where P i is �i-swappable against P i.Formally 
onsider all pairs K0;K00 2 Ki su
h that (K 0;K00) is not an edge ofHi. Inserting the edge 
orresponding to PK0;K00 into Hi 
reates a unique 
y
leC. For ea
h su
h path P 2 Pi(C), let �iK0;K00(P ) be the smallest non-negativevalue of � su
h that di(K0;K00) � li(P ) + �: (10)We then let �iK0;K00 = minP2Pi(C) �iK0;K00(P ) and de�ne�i = minK0;K002Ki �iK0;K00 :We let hP i; P ii be the pair of Steiner paths that de�nes �i, i.e. P i is aK 0;K00-Steiner path su
h that1. inserting edge (K 0;K00) into Hi 
reates a 
y
le C and P i 2 Pi(C), and2. 
(P i) � li(P i) + �i.We are now in the position to show that (7) and (8) are maintained for our
hoi
e of (P i; P i) and �i. The following Lemma whose proof is deferred to thefull version of this paper shows that mod-AKR produ
es a feasible dual solution(yi+1; �i+1) for (D2) provided that (yi; �i) was dual feasible.Lemma 3. Algorithm 2 produ
es a feasible dual solution (yi+1; �i+1) for (D2)given that (yi; �i) is dual feasible for (D2).This shows (7). It is 
lear from the 
hoi
e of �i that we in
lude a Steiner pathP i into Pi+1 only if li+1(P i) � 
(P i). (8) now follows sin
e the dual load on anypath is non-de
reasing as we progress.4.5 Analysis: Performan
e guaranteeIn this se
tion we show that the 
ost of the tree 
omputed by Algorithm 1 iswithin a 
onstant fa
tor of any Steiner tree satisfying all degree bounds. We en-sure this by way of weak duality. In parti
ular, our goal is to prove the inequalityXP2Pi 
(P ) � 3XS�R yiS � 3Xv2V Bv � �iv (11)for all iterations i of our algorithm.First, we observe the following simple 
onsequen
e of the AKR algorithm.Lemma 4. Assume that Algorithm 1 terminates after t iterations. For iteration0 � i � t, let limax = maxP2Pi li(P ). We then must haveXP2Pi li(P ) = 2XS�R yiS � limax:



Proof. Let r = jRj and let Pi = fP i1; : : : ; P ir�1g be the paths 
omputed bymod-AKR in iteration i�1. Also let yi be the 
orresponding dual solution returnedby mod-AKR. W.l.o.g. we may assume thatli(P i1) � : : : � li(P ir�1):From the AKRalgorithm it is not hard to see thatXS�R yiS = 12 � r�1Xj=1(li(P ij ) � li(P ij�1)) � (r � j + 1) (12)= 12 � r�1Xj=1 li(P ij ) ((r � j + 1)� (r � j)) + 12 li(P ir�1)= 12 � r�1Xj=1 li(P ij ) + 12 li(P ir�1)where we de�ne li(P i0) = 0. The last equality (12) 
an be restated asXP2Pi li(P ) = 2XS�R yiS � limaxand that yields the 
orre
tness of the lemma.We now pro
eed with proving (11) for all 1 � i � t. Noti
e that Lemma 4together with (8) implies (11) for i = 0. We 
on
entrate on the 
ase i � 1.The proof is based on the following invariant that we maintain indu
tivelyfor all 0 � i � t: 3 �Xv2V Bv�iv � XS�R yiS : (Inv)Sin
e, �0v = 0 for all v 2 V by de�nition, (Inv) holds for i = 0.Growing �iv by �i at nodes v 2 Sidi�2 de
reases the right hand side of (11) by3���Pv2Sidi�2 Bv. Still the 
ost of the Steiner tree Ei+1 is potentially higher thanthe 
ost of the old tree Ei. We must show that the �rst term on the right hand-side of (11), i.e. 3 �PS�R yiS grows suÆ
iently to 
ompensate for the de
reasein the se
ond term and the in
reased Steiner tree 
ost. In order to show this weneed the following te
hni
al lemma that lower-bounds the number of paths that
ontain nodes of degree at least di in terms of the number of nodes of normalizeddegree at least di � 2.Lemma 5. In ea
h iteration 1 � i � t we must havejPi1j � � � Xv2Sidi�2 Bvfor an arbitrary parameter � > 0 by setting �v � 2�b + 1=Bv for all v 2 V inthe de�nition of ndegT (v) in (5).
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(2)Fig. 1. Figure (1) shows a Steiner tree where 
ir
les represent terminals and squaresrepresent Steiner nodes. We assume that there are exa
tly two nodes of high normalizeddegree: s and t. Figure (2) shows the set M of marked edges in red. Noti
e that theedge between Steiner nodes s and s0 is not marked sin
e there must be a Steiner path
onne
ting a terminal node l on the left side and a terminal node r on the right side.This Steiner path has the form hPls; ss0; Ps0ri and Pls 
ontains node s whi
h has highnormalized degree.Proof. We �rst de�ne a set of marked edgesM � [v2Sidi Æ(v)and then show that ea
h Steiner path that 
ontains nodes from Sidi has at mosttwo marked edges. This shows that the 
ardinality of the set of marked edges isat most twi
e the number of paths in Pi1, i.e.jM j � 2 � jPi1j: (13)In the se
ond part of the proof we argue that M is suÆ
iently large.First, we in
lude all edges that are in
ident to terminal nodes from Sidi intoM . Se
ondly, we also mark edges uv 2 Ei that are in
ident to non-terminalnodes in Sidi and that in addition satisfy that there is no Steiner pathP = hP1; uv; P2i 2 Pisu
h that both P1 and P2 
ontain nodes from Sidi .It is immediately 
lear from this de�nition that ea
h Steiner path P 2 Pihas at most two edges from M .We now 
laim that M 
ontains at leastb� � Xv2Sidi Bv (14)edges. To see this, we let T be the tree on node set Sidi that is indu
ed by Ei:For s; t 2 Sidi we insert the edge st into T i� the unique s; t-path in Ei has noother nodes from Sidi . We let Pe � Ei be the path that 
orresponds to an edgee 2 E[T ℄.



De�ne Eidi � Ei to be the set of tree edges that are in
ident to nodes ofnormalized degree at least di, i.e.Eidi = [v2Sidi Æ(v):Now let U � Ei be the set of unmarked tree edges that are in
ident to nodes ofnormalized degree at least di, i.e. U = Eidi nM .First observe that, by de�nition of M , for ea
h unmarked edge e 2 U theremust be an edge et 2 E[T ℄ su
h that e is an edge on the path Pet . Moreover,for all et 2 E[T ℄ there are at most two unmarked edges on the path Pet. Sin
eT has jSidi j � 1 edges we obtainjU j � 2 � (jSidi j � 1): (15)Ea
h node in Sidi has at least �vBv + di edges in
ident to it. On the otherhand, sin
e Ei is a tree, at most (jSidi j � 1) of the edges in Eidi are in
ident toexa
tly two nodes from Sidi . Hen
e, we obtainjEidi j � 0B� Xv2Sidi �vBv + di1CA� (jSidi j�1) = 0B�2�b � Xv2Sidi Bv1CA+di � jSidi j+1 (16)where the last equality uses the de�nition of �v.Now observe that jM j = jEidi j � jU j and hen
ejM j � 0B�2�b � Xv2Sidi Bv1CA+ jSidi j(di � 2)� 1: (17)using (15) and (16). Noti
e that di � �i�d4 logb ne+2 and �i > d4 logb ne andhen
e di � 3. This together with (17) and the fa
t that Sidi is non-empty impliesjM j � 2�b � Xv2Sidi Bv: (18)Combining (13) and (18) yields jPi1j � �b �Pv2Sidi Bv. Using the fa
t thatPv2Sidi�2 Bv � b �Pv2Sidi Bv �nishes the proof of the lemma.The following 
laim now presents the essential insight that ultimately yieldsthe validity of (11).Lemma 6. Let � be as in Lemma 5. We then must haveXS�R yi+1S � XS�R yiS + �2 �i � Xv2Sidi�2Bvfor all 0 � i � t.



Proof. We 
an use (12) to quantify the 
hange in dual in iteration i.XS�R(yi+1S � yiS ) = 12 � r�1Xj=1(li+1(P ij )� li(P ij )) + 12(li+1(P ir�1) � li+1(P ir�1))� �i2 � jPi1jwhere the inequality follows from the fa
t that we in
rease the length of all pathsin Pi1 by �i and the length of all other paths are non-de
reasing as we progress.An appli
ation of Lemma 5 �nishes the proof.As mod-AKR �nishes with 
ut metri
 li+1, we obtainli+1(Pi+1) = XP2Pi+1 li+1(P ) � 2XS�R yi+1S (19)from Lemma 4. Observe that the real 
ost of the Steiner tree Ei+1 is mu
hsmaller than li+1(Pi+1). In fa
t, noti
e that we have
(Pi+1) � li+1(P i) + 
(Pi n fP ig) (20)� li+1(P i) + li(Pi n fP ig)where the last inequality follows from (8), i.e. the l-
ost of a Steiner path in Pialways dominates its 
-
ost. Also, observe thatli+1(Pi n fP ig) = li(Pi n fP ig) + �i � jP1i j (21)� li(Pi n fP ig) + ��i � Xv2Sidi�2 Bvusing Lemma 5. Combining (19), (20) and (21) yields
(Pi+1) � li+1(Pi+1) � ��i � Xv2Sidi�2Bv� 2 �XS�R yi+1S � ��i � Xv2Sidi�2 Bv:We 
an now add (Inv) to the last inequality and get
(Pi+1) � 3XS�R yi+1S � 3 �Xv2V Bv�iv � ��i � Xv2Sidi�2 Bv:Finally noti
e that �i+1v = �iv + �i if v 2 Sidi�2 and �i+1v = �iv otherwise. Now
hoose � � 3 and it follows that
(Pi+1) � 3XS�R yi+1S � 3 �Xv2V Bv�i+1v :



We have to show that (Inv) is maintained as well. Observe that the left handside of (Inv) in
reases by 3�i �Pv2Sidi�2 Bv. We obtain from Lemma 6 thatXS�R yi+1S � yiS � �2 � �i � Xv2Sidi�2 Bv:Choosing � � 6 shows that the right hand side of (Inv) in
reases suÆ
iently and(Inv) holds in iteration i+ 1 as well.4.6 Analysis: Running timeFor a Steiner tree P in path representation, we de�ne its potential value as�(P) = XP2P jRjmaxv2P ndegP (v)where ndegP(v) is the normalized degree of node v in the Steiner tree de�nedby P. The proof of the following lemma is a dire
t adaptation of the argumentsin [8℄ via the above potential fun
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