
Quasi-Polynomial Time ApproximationAlgorithm for Low-Degree Minimum-CostSteiner TreesJ. K�onemann and R. RaviGSIA, Carnegie Mellon University,Pittsburgh PA 15213, USA.fjohen,ravig�mu.eduAbstrat. In a reent paper [5℄, we addressed the problem of �nding aminimum-ost spanning tree T for a given undireted graph G = (V;E)with maximum node-degree at most a given parameter B > 1. We devel-oped an algorithm based on Lagrangean relaxation that uses a repeatedappliation of Kruskal's MST algorithm interleaved with a ombinatorialupdate of approximate Lagrangean node-multipliers maintained by thealgorithm.In this paper, we show how to extend this algorithm to the ase ofSteiner trees where we use a primal-dual approximation algorithm dueto Agrawal, Klein, and Ravi [1℄ in plae of Kruskal's minimum-ost span-ning tree algorithm. The algorithm omputes a Steiner tree of maximumdegree O(B + log n) and total ost that is within a onstant fator ofthat of a minimum-ost Steiner tree whose maximum degree is boundedby B. However, the running time is quasi-polynomial.1 IntrodutionWe onsider the minimum-degree Steiner tree problem (B-ST) where we are givenan undireted graph G = (V;E), a non-negative ost e for eah edge e 2 E anda set of terminal nodes R � V . Additionally, the problem input also spei�espositive integers fBvgv2V . The goal is to �nd a minimum-ost Steiner tree Tovering R suh eah node v in T has degree at most Bv , i.e. degT (v) � Bvfor all v 2 V . We present an algorithm for the problem and give a proof of thefollowing theorem.Theorem 1. There is a primal-dual approximation algorithm that, given a graphG = (V;E), a set of terminal nodes R � V , a nonnegative ost funtion  : E !R+, integers Bv > 1 for all v 2 V , and an arbitrary b > 1 omputes a Steinertree T that spans the nodes of R suh that1. degT (v) � 12b �Bv + d4 logb ne + 1 for all v 2 V , and2. (T ) � 3OPTwhere OPT is the minimum ost of any Steiner tree whose degree at node v isbounded by Bv for all v. Our method runs in O(n log(jRj) � jRjd4 logne) iterationseah of whih an be implemented in polynomial time.



The algorithm ombines ideas from the primal-dual algorithm for Steinertrees due to Agrawal et al. [1℄ with loal searh elements from [2℄.2 A linear programming formulationThe following natural integer programming formulationmodels the problem. LetU = fU � V : U \R 6= ;; R n U 6= ;g.min Xe2E exe (IP)s.t x(Æ(U )) � 1 8U 2 U (1)x(Æ(v)) � Bv 8v 2 V (2)x integerThe dual of the linear programming relaxation (LP) of (IP) is given bymax XU2U yU �Xv2V �v �Bv (D)s.t XU :e2Æ(U) yU � e + �u + �v 8e = uv 2 E (3)y; � � 0We also let (IP-ST) denote (IP) without onstraints of type (2). This is theusual integer programming formulation for the Steiner tree problem. Let the LPrelaxation be denoted by (LP-ST) and let its dual be (D-ST).3 An algorithm for the Steiner tree problemOur algorithm is based upon previous work on the generalized Steiner tree prob-lem by Agrawal et al. [1℄. A fairly omplete desription of their algorithm toompute an approximate Steiner tree an be found in the extended version ofthis paper. We refer to the algorithm by AKR.Before proeeding with the desription of an algorithm for minimum-ostdegree-bounded Steiner trees, we present an alternate view of Algorithm AKRwhih simpli�es the following developments in this paper.3.1 An alternate view of AKRExeuting AKR on an undireted graph G = (V;E) with terminal set R � Vand osts fege2E is { in a ertain sense { equivalent to exeuting AKR on theomplete graph H with vertex set R where the ost of edge e = uv 2 R � R isequal to the minimum ost of any u; v-path in G.



Let PS;T denote the set of s; t-Steiner paths for all s 2 R\ S and t 2 R\ T .For an s; t-Steiner path P , we de�ne�(P ) = (P ) + �s + �t + 2 � Xv2int(P ) �vand �nally, let dist� (S; T ) = minP2PS;T �(P )be the minimum �-ost for any S; T -Steiner path. We now work with the fol-lowing dual:max XU�R yU �Xv2V �v �Bv (D2)s.t XU�R;s2U;t62U yU � �(P ) 8s; t 2 R;P 2 Ps;t 2 E (4)y; � � 0Let H be a omplete graph on vertex set R. We let the length of edge (s; t) 2E[H℄ be dist� (s; t). Running AKR on input graphH with length funtion dist�yields a tree in H that orresponds to a Steiner tree spanning the nodes of Rin G in a natural way. We also obtain a feasible dual solution for (D2). Thefollowing lemma shows that (D) and (D2) are equivalent (the proof is deferredto the extended version of this paper).Lemma 1. (D) and (D2) are equivalent.4 An algorithm for the B-ST problemIn this setion, we propose a modi�ation of AKR in order to ompute a feasi-ble degree-bounded Steiner tree of low total ost. We start by giving a roughoverview over our algorithm.4.1 Algorithm: OverviewWe de�ne the normalized degree ndegT (v) of a node v in a Steiner tree T asndegT (v) = maxf0; degT (v) � �v �Bvg (5)where f�vgv2V are parameters to be de�ned later.Algorithm B-ST goes through a sequene of Steiner trees E0; : : : ; Et andassoiated pairs of primal (infeasible) and dual feasible solutions xi, (yi; �i) for0 � i � t. The goal is to redue the maximum normalized degree of at least onenode in V in the transition from one Steiner tree to the next.In the ith iteration our algorithm passes through two main steps:



Compute Steiner tree. Compute an approximate Steiner tree spanning thenodes ofR for our graph G = (V;E) using a modi�ed version of AKR. Roughlyspeaking, this algorithm impliitly assumes a ost funtion e that satis�es(P ) � e(P ) � �i(P ) (6)for all Steiner paths P .When the algorithm �nishes, we obtain a primal solution xi together with aorresponding dual solution yi. In the following we use Pi to denote the setof paths used by AKR to onnet the terminals in iteration i.Notie that using the ost funtion e that satis�es (6) ensures that (yi; �i) is afeasible solution for (D2). The primal solution xi may indue high normalizeddegree at some of the verties of V and hene may not be feasible for (IP).Update node multipliers. The main goal here is to update the node multi-pliers �i suh that another run of AKR yields a tree in whih the normalizeddegree of at least one node dereases. Spei�ally, we ontinue running ouralgorithm as long as the maximumnormalized node-degree indued by xi isat least 2 logb n where b > 1 is a positive onstant to be spei�ed later.Let �i be the maximum normalized degree of any node in the tree induedby xi. The algorithm then piks a threshold di � �i � d4 logb ne + 2. Sub-sequently we raise the � values of all nodes that have normalized degree atleast di � 2 in the tree indued by xi by some �i > 0. We also impliitlyinrease the e ost of two sets of Steiner paths:1. those paths P 2 Pi that ontain nodes of degree at least di and2. those paths P 62 Pi that ontain nodes of degree at least di � 2.We denote to the set of all suh paths by Li.Rerunning AKR replaes at least one Steiner path whose e-ost inreased witha Steiner path whose length stayed the same. In other words, a path thattouhes a node of normalized degree at least di is replaed by some otherpath that has only nodes of normalized degree less than di � 2.Throughout the algorithm we will maintain that the ost of the urrent treeindued by xi is within a onstant fator of the dual objetive funtion valueindued by (yi; �i). By weak duality, this ensures that the ost of our tree iswithin a onstant times the ost of any Steiner tree that satis�es the individualdegree bounds. However, we are only able to argue that the number of iterationsis quasi-polynomial.In the following, we will give a detailed desription of the algorithm. Inpartiular, we elaborate on the hoie of �i and di in the node-multiplier updateand on the modi�ation to AKR that we have alluded to in the previous intuitivedesription.4.2 Algorithm: A detailed top-level desriptionWe �rst present the pseudo-ode of our B-ST-algorithm. In the desription ofthe algorithm we use the abbreviation ndegi(v) in plae of ndegEi(v) for the



normalized degree of vertex v in the Steiner tree Ei. We also let �i denote themaximum normalized degree of any vertex in Ei, i.e.�i = maxv2R ndegi(v):Furthermore, we adopt the notation of [2℄ and letSid = fv 2 V : ndegi(v) � dgbe the set of all nodes whose normalized degrees are at least d in the ith solution.The following lemma is proved easily by ontraditionLemma 2. There is a di 2 f�i � d4 logb ne + 2; : : : ;�ig suh thatXv2Sidi�2 Bv � b � Xv2Sidi Bvfor a given onstant b > 1.The low expansion of Sidi�2 turns out to be ruial in the analysis of theperformane guarantee of our algorithm.Finally, we let mod-AKR denote a all to the modi�ed version of the Steinertree algorithm AKR. Algorithm 1 has the pseudo ode for our method.Algorithm 1 An algorithm to ompute an approximate minimum-ost degree-bounded Steiner tree.1: Given: primal feasible solution x0;P0 to (LP-ST) and dual feasible solution y0 to(D-ST)2: �0v  0; 8v 2 V3: i 04: while �i > 4dlogb ne do5: Choose di � �i � d4 logb ne+ 2 s.t.Pv2Sidi�2 Bv � b �Pv2Sidi Bv6: Choose �i > 0 and identify swap pair hP i; P ii.7: �i+1v  �iv + �i if v 2 Sidi�2 and �i+1v  �iv otherwise8: yi+1  mod-AKR(Pi; �i; yi; hP i; P ii)9: Pi+1  Pi n fP ig [ fP ig10: i i + 111: end whileStep 6 of Algorithm 1 hides the details of hoosing an appropriate �i. Welengthen all Steiner paths in Li. Our hoie of �i will ensure that there exists atleast one point in time during the exeution of a slightly modi�ed version of AKRin step 8 at whih we now have the hoie to onnet two moats using paths P iand P i, respetively. We show that there is a way to pik �i suh thatP i \ Sidi 6= ; and P i \ Sidi�2 = ;:



We now break ties suh that P i is hosen instead of P i and hene, we end upwith a new Steiner tree Ei+1.In mod-AKR, we prohibit inluding alternate paths that ontain nodes fromSidi�2 and argue that the dual load that suh a non-tree path P 0 sees does notgo up by more than �i. Hene, we preserve dual feasibility.We �rst present the details of Algorithm mod-AKR and disuss how to �nd �iafterwards.4.3 Algorithm: mod-AKRThroughout this setion and the desription of mod-AKR we work with the mod-i�ed dual (D2) as disussed in Setion 3.1.For a r1; r2-Steiner path P we let RP � 2R denote all sets S � R that ontainexatly one of r1; r2 2 R. For a dual solution y; � we then de�ne the ut-metrily(P ) = PS2RP ys. From here it is lear that (y; �) is a feasible dual solutioni� ly(P ) � �(P ) for all Steiner paths P . We use li(P ) as an abbreviation forlyi(P ).At all times during the exeution of Algorithm 1 we want to maintain dualfeasibility, i.e. we maintain li(P ) � �i(P ) (7)for all Steiner paths P and for all i. Moreover, we want to maintain that for alli, the ost of any path P 2 Pi is bounded by the dual load that P sees. In otherwords, we want to enfore that (P ) � li(P ) (8)for all P 2 Pi and for all i. It is easy to see that both (7) and (8) hold for i = 0from the properties of AKR.First, let Pi = Pi1 [ Pi2 be a partition of the set of Steiner paths used toonnet the terminal nodes in the ith iteration. Here, a path P 2 Pi is added toPi1 i� P \ Sidi 6= ; and we let Pi2 = Pi n Pi1.mod-AKR �rst onstruts an auxiliary graph Gi with vertex set R. We add anedge (s; t) to Gi for eah s; t-path P 2 Pi nfP ig. The edge (s; t) is then assigneda length of li+1st = li(P ) + �i if P 2 Pi1 and li+1st = li(P ) otherwise.Assume that P i is an s0; t0-path. We then also add an edge onneting s0 andt0 to Gi and let its length be the maximum of li(P i) and (P i). Observe, thatsine Pi n fP ig [ fP ig is tree, Gi is a tree as well.Subsequently, mod-AKR runs AKR on the graph Gi and returns the omputeddual solution. We will show that this solution together with �i+1 is feasible for(D2). A formal de�nition of mod-AKR is given in Algorithm 2.We defer the proof of invariants (7) and (8) to the end of the next setion.



Algorithm 2 mod-AKR(Pi; �i; yi; hP i; P ii): A modi�ed version of AKR.1: Assume P i is an s0; t0-Steiner path2: Gi = (R;Ei) whereEi = f(s; t) : 9s; t� path P 2 Pi n fP igg [ f(s0; t0)g3: For all s; t Steiner paths P 2 Pi n fP ig :li+1st = � li(P ) + �i : P 2 Pi1li(P ) : otherwise4: li+1s0t0 = maxf(P i); li(P i)g5: yi+1  AKR(Gi; li+1)6: return yi+14.4 Algorithm: Choosing �iIn this setion, we show how to hoose �i. Remember that, intuitively, we want toinrease the ost of urrently used Steiner paths that touh nodes of normalizeddegree at least di. The idea is to inrease the ost of suh paths by the smallestpossible amount suh that other non-tree paths whose length we did not inreasean be used at their plae. We make this idea more preise in the following.We �rst de�ne Ki to be the set of onneted omponents ofG24 [P2Pi2 P35 :Let Hi be an auxiliary graph that has one node for eah set in Ki. Moreover, Hiontains edge (K 0;K00) i� there is a K 0;K00-Steiner path in the set Pi1. It an beseen that eah path P 2 Pi1 orresponds to unique edge in Hi. It then followsfrom the fat that G[Ei℄ is a tree that Hi must also be a tree.For K0;K00 2 Ki suh that (K 0;K00) is not an edge of Hi, let C be the uniqueyle in Hi + (K0;K00). We then use Pi(C) to denote the set of Steiner pathsfrom Pi orresponding to edges on C.For any two onneted omponents K0;K00 2 Ki we letdi(K0;K00) = minP2PK0 ;K00P\Sidi�2=; (P ): (9)be the ost of the minimum-ost K0;K00-Steiner path that avoids nodes fromSidi�2. For a pair of omponents K0;K00 2 Ki we denote the path that ahievesthe above minimum by PK0;K00 .De�nition 1. We say that a path P 62 Pi that ontains no nodes from Sidi�2 is�-swappable against P 2 Pi1 in iteration i if1. P 2 Pi(C) where C is the unique yle reated in Hi by adding the edgeorresponding to P , and



2. (P ) � li(P ) + �We are now looking for the smallest �i suh that there exists a witness pairof paths hP i; P ii where P i is �i-swappable against P i.Formally onsider all pairs K0;K00 2 Ki suh that (K 0;K00) is not an edge ofHi. Inserting the edge orresponding to PK0;K00 into Hi reates a unique yleC. For eah suh path P 2 Pi(C), let �iK0;K00(P ) be the smallest non-negativevalue of � suh that di(K0;K00) � li(P ) + �: (10)We then let �iK0;K00 = minP2Pi(C) �iK0;K00(P ) and de�ne�i = minK0;K002Ki �iK0;K00 :We let hP i; P ii be the pair of Steiner paths that de�nes �i, i.e. P i is aK 0;K00-Steiner path suh that1. inserting edge (K 0;K00) into Hi reates a yle C and P i 2 Pi(C), and2. (P i) � li(P i) + �i.We are now in the position to show that (7) and (8) are maintained for ourhoie of (P i; P i) and �i. The following Lemma whose proof is deferred to thefull version of this paper shows that mod-AKR produes a feasible dual solution(yi+1; �i+1) for (D2) provided that (yi; �i) was dual feasible.Lemma 3. Algorithm 2 produes a feasible dual solution (yi+1; �i+1) for (D2)given that (yi; �i) is dual feasible for (D2).This shows (7). It is lear from the hoie of �i that we inlude a Steiner pathP i into Pi+1 only if li+1(P i) � (P i). (8) now follows sine the dual load on anypath is non-dereasing as we progress.4.5 Analysis: Performane guaranteeIn this setion we show that the ost of the tree omputed by Algorithm 1 iswithin a onstant fator of any Steiner tree satisfying all degree bounds. We en-sure this by way of weak duality. In partiular, our goal is to prove the inequalityXP2Pi (P ) � 3XS�R yiS � 3Xv2V Bv � �iv (11)for all iterations i of our algorithm.First, we observe the following simple onsequene of the AKR algorithm.Lemma 4. Assume that Algorithm 1 terminates after t iterations. For iteration0 � i � t, let limax = maxP2Pi li(P ). We then must haveXP2Pi li(P ) = 2XS�R yiS � limax:



Proof. Let r = jRj and let Pi = fP i1; : : : ; P ir�1g be the paths omputed bymod-AKR in iteration i�1. Also let yi be the orresponding dual solution returnedby mod-AKR. W.l.o.g. we may assume thatli(P i1) � : : : � li(P ir�1):From the AKRalgorithm it is not hard to see thatXS�R yiS = 12 � r�1Xj=1(li(P ij ) � li(P ij�1)) � (r � j + 1) (12)= 12 � r�1Xj=1 li(P ij ) ((r � j + 1)� (r � j)) + 12 li(P ir�1)= 12 � r�1Xj=1 li(P ij ) + 12 li(P ir�1)where we de�ne li(P i0) = 0. The last equality (12) an be restated asXP2Pi li(P ) = 2XS�R yiS � limaxand that yields the orretness of the lemma.We now proeed with proving (11) for all 1 � i � t. Notie that Lemma 4together with (8) implies (11) for i = 0. We onentrate on the ase i � 1.The proof is based on the following invariant that we maintain indutivelyfor all 0 � i � t: 3 �Xv2V Bv�iv � XS�R yiS : (Inv)Sine, �0v = 0 for all v 2 V by de�nition, (Inv) holds for i = 0.Growing �iv by �i at nodes v 2 Sidi�2 dereases the right hand side of (11) by3���Pv2Sidi�2 Bv. Still the ost of the Steiner tree Ei+1 is potentially higher thanthe ost of the old tree Ei. We must show that the �rst term on the right hand-side of (11), i.e. 3 �PS�R yiS grows suÆiently to ompensate for the dereasein the seond term and the inreased Steiner tree ost. In order to show this weneed the following tehnial lemma that lower-bounds the number of paths thatontain nodes of degree at least di in terms of the number of nodes of normalizeddegree at least di � 2.Lemma 5. In eah iteration 1 � i � t we must havejPi1j � � � Xv2Sidi�2 Bvfor an arbitrary parameter � > 0 by setting �v � 2�b + 1=Bv for all v 2 V inthe de�nition of ndegT (v) in (5).
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(2)Fig. 1. Figure (1) shows a Steiner tree where irles represent terminals and squaresrepresent Steiner nodes. We assume that there are exatly two nodes of high normalizeddegree: s and t. Figure (2) shows the set M of marked edges in red. Notie that theedge between Steiner nodes s and s0 is not marked sine there must be a Steiner pathonneting a terminal node l on the left side and a terminal node r on the right side.This Steiner path has the form hPls; ss0; Ps0ri and Pls ontains node s whih has highnormalized degree.Proof. We �rst de�ne a set of marked edgesM � [v2Sidi Æ(v)and then show that eah Steiner path that ontains nodes from Sidi has at mosttwo marked edges. This shows that the ardinality of the set of marked edges isat most twie the number of paths in Pi1, i.e.jM j � 2 � jPi1j: (13)In the seond part of the proof we argue that M is suÆiently large.First, we inlude all edges that are inident to terminal nodes from Sidi intoM . Seondly, we also mark edges uv 2 Ei that are inident to non-terminalnodes in Sidi and that in addition satisfy that there is no Steiner pathP = hP1; uv; P2i 2 Pisuh that both P1 and P2 ontain nodes from Sidi .It is immediately lear from this de�nition that eah Steiner path P 2 Pihas at most two edges from M .We now laim that M ontains at leastb� � Xv2Sidi Bv (14)edges. To see this, we let T be the tree on node set Sidi that is indued by Ei:For s; t 2 Sidi we insert the edge st into T i� the unique s; t-path in Ei has noother nodes from Sidi . We let Pe � Ei be the path that orresponds to an edgee 2 E[T ℄.



De�ne Eidi � Ei to be the set of tree edges that are inident to nodes ofnormalized degree at least di, i.e.Eidi = [v2Sidi Æ(v):Now let U � Ei be the set of unmarked tree edges that are inident to nodes ofnormalized degree at least di, i.e. U = Eidi nM .First observe that, by de�nition of M , for eah unmarked edge e 2 U theremust be an edge et 2 E[T ℄ suh that e is an edge on the path Pet . Moreover,for all et 2 E[T ℄ there are at most two unmarked edges on the path Pet. SineT has jSidi j � 1 edges we obtainjU j � 2 � (jSidi j � 1): (15)Eah node in Sidi has at least �vBv + di edges inident to it. On the otherhand, sine Ei is a tree, at most (jSidi j � 1) of the edges in Eidi are inident toexatly two nodes from Sidi . Hene, we obtainjEidi j � 0B� Xv2Sidi �vBv + di1CA� (jSidi j�1) = 0B�2�b � Xv2Sidi Bv1CA+di � jSidi j+1 (16)where the last equality uses the de�nition of �v.Now observe that jM j = jEidi j � jU j and henejM j � 0B�2�b � Xv2Sidi Bv1CA+ jSidi j(di � 2)� 1: (17)using (15) and (16). Notie that di � �i�d4 logb ne+2 and �i > d4 logb ne andhene di � 3. This together with (17) and the fat that Sidi is non-empty impliesjM j � 2�b � Xv2Sidi Bv: (18)Combining (13) and (18) yields jPi1j � �b �Pv2Sidi Bv. Using the fat thatPv2Sidi�2 Bv � b �Pv2Sidi Bv �nishes the proof of the lemma.The following laim now presents the essential insight that ultimately yieldsthe validity of (11).Lemma 6. Let � be as in Lemma 5. We then must haveXS�R yi+1S � XS�R yiS + �2 �i � Xv2Sidi�2Bvfor all 0 � i � t.



Proof. We an use (12) to quantify the hange in dual in iteration i.XS�R(yi+1S � yiS ) = 12 � r�1Xj=1(li+1(P ij )� li(P ij )) + 12(li+1(P ir�1) � li+1(P ir�1))� �i2 � jPi1jwhere the inequality follows from the fat that we inrease the length of all pathsin Pi1 by �i and the length of all other paths are non-dereasing as we progress.An appliation of Lemma 5 �nishes the proof.As mod-AKR �nishes with ut metri li+1, we obtainli+1(Pi+1) = XP2Pi+1 li+1(P ) � 2XS�R yi+1S (19)from Lemma 4. Observe that the real ost of the Steiner tree Ei+1 is muhsmaller than li+1(Pi+1). In fat, notie that we have(Pi+1) � li+1(P i) + (Pi n fP ig) (20)� li+1(P i) + li(Pi n fP ig)where the last inequality follows from (8), i.e. the l-ost of a Steiner path in Pialways dominates its -ost. Also, observe thatli+1(Pi n fP ig) = li(Pi n fP ig) + �i � jP1i j (21)� li(Pi n fP ig) + ��i � Xv2Sidi�2 Bvusing Lemma 5. Combining (19), (20) and (21) yields(Pi+1) � li+1(Pi+1) � ��i � Xv2Sidi�2Bv� 2 �XS�R yi+1S � ��i � Xv2Sidi�2 Bv:We an now add (Inv) to the last inequality and get(Pi+1) � 3XS�R yi+1S � 3 �Xv2V Bv�iv � ��i � Xv2Sidi�2 Bv:Finally notie that �i+1v = �iv + �i if v 2 Sidi�2 and �i+1v = �iv otherwise. Nowhoose � � 3 and it follows that(Pi+1) � 3XS�R yi+1S � 3 �Xv2V Bv�i+1v :



We have to show that (Inv) is maintained as well. Observe that the left handside of (Inv) inreases by 3�i �Pv2Sidi�2 Bv. We obtain from Lemma 6 thatXS�R yi+1S � yiS � �2 � �i � Xv2Sidi�2 Bv:Choosing � � 6 shows that the right hand side of (Inv) inreases suÆiently and(Inv) holds in iteration i+ 1 as well.4.6 Analysis: Running timeFor a Steiner tree P in path representation, we de�ne its potential value as�(P) = XP2P jRjmaxv2P ndegP (v)where ndegP(v) is the normalized degree of node v in the Steiner tree de�nedby P. The proof of the following lemma is a diret adaptation of the argumentsin [8℄ via the above potential funtion and is omitted.Lemma 7. Algorithm 1 terminates after O(n log(jRj) � jRjd4 logne)) iterations.Referenes1. A. Agrawal, P. Klein and R. Ravi, \When trees ollide: an approximation algorithmfor the generalized Steiner problem on networks," SIAM Journal on Computing,vol.24, (1995), pp. 440-456.2. M. F�urer, B. Raghavahari: Approximating the minimum degree Steiner tree towithin one of optimal. Journal of Algorithms, 17 (1994) 409{4233. M. X. Goemans and D. P. Williamson, \A general approximation tehnique foronstrained forest problems," SIAM J. Computing, Vol. 24, 1995, pp. 296{317.4. J. K�onemann, R. Ravi: A matter of degree: improved approximation algorithms fordegree-bounded minimum spanning trees. Proeedings of the 32nd Symp. on theTheory of Comput. (2000) 537{546. A omplete version appears in the SIAM J. onComput, 31(6), 1783{1793 (2002)5. J. K�onemann, R. Ravi: Primal-dual algorithms ome of age: Approximating MST'swith nonuniform degree bounds. Proeedings, ACM Symposium on Theory of Com-puting (2003)6. R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, H. B. Hunt III: Many Birdswith One Stone: Multi-Objetive Approximation Algorithms (Extended Abstrat).Proeedings of the 25th Symp. on the Theory of Comput. (1993) 438{4477. R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, H. B. Hunt III: Approxima-tion Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems.Algorithmia 31(1) (2001) 58{788. R. Ravi, B. Raghavahari, and P. N. Klein, \Approximation through loal optimal-ity: Designing networks with small degree," Pro., 12th Annual Conferene on Foun-dations of Software Tehnology and Theoretial Computer Siene (FST & TCS),Deember (1992), LNCS 652, pp. 279-290.


