
Boosted Sampling: Approximation Algorithms for Stochastic
Optimization

Anupam Gupta∗ Martin Ṕal † R. Ravi‡ Amitabh Sinha‡

November 17, 2003

Abstract

Several combinatorial optimization problems choose elements to minimize the total cost of constructing
a feasible solution that satisfies requirements of clients. For example, in the STEINER TREE problem,
edges must be chosen to connect terminals (clients); in VERTEX COVER, vertices must be chosen to
cover edges (clients); in FACILITY LOCATION, facilities must be chosen and demand vertices (clients)
connected to these chosen facilities.

We consider a stochastic version of such a problem where the solution is constructed in two stages: Be-
fore the actual requirements materialize, we can choose elements in afirst stage. The actual requirements
are then revealed, drawn from a pre-specified probability distributionπ; thereupon, some more elements
may be chosen to obtain a feasible solution for the actual requirements. However, in thissecond(re-
course) stage, choosing an element is costlier by a factor ofσ > 1. The goal is to minimize the first stage
cost plus the expected second stage cost.

We give a general yet simple technique to adapt approximation algorithms for several deterministic
problems to their stochastic versions via the following method.

• First stage:Drawσ independent sets of clients from the distributionπ and apply the approximation
algorithm to construct a feasible solution for the union of these sets.

• Second stage:Since the actual requirements have now been revealed, augment the first-stage so-
lution to be feasible for these requirements.

We use this framework to derive constant factor approximations for stochastic versions of VERTEX

COVER, STEINER TREE and UNCAPACITATED FACILITY LOCATION for arbitrary distributionsπ in
one fell swoop. For special (product) distributions, we obtain additional and improved results. Our
techniques adapt and use the notion of strict cost-shares introduced in [5].

∗Dept. of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213. Email:anupamg@cs.cmu.edu
†Dept. of Computer Science, Cornell University, Ithaca NY 14853. Supported by ONR grant N00014-98-1-0589. Email:

mpal@cs.cornell.edu .
‡GSIA, Carnegie Mellon University, Pittsburgh PA 15213. Supported in part by NSF grant CCR-0105548 and ITR grant CCR-

0122581 (The ALADDIN project). Email:{ravi, asinha }@andrew.cmu.edu



1 Introduction

Infrastructure planning problems involve making decisions under uncertainty about future requirements;
while more effective decisions can be made after the actual set of clients have materialized, the decision-
making costs are inflated if deferred until then. The following simple two-stage model captures this tradeoff
effectively. Future requirements are uncertain, but are assumed to be drawn from a known probability distri-
bution (e.g., from demand forecasts, industry outlooks). In light of this information, ananticipatorypart of
the solution may be constructed in a first-stage at the current costs. Subsequently, the requirements facing
the planner materialize in the form of a client set (drawn from the distribution), and the first-stage solu-
tion must beaugmentedto satisfy the revealed requirements. The elements chosen in this second stage are
costlier than when chosen earlier, reflecting the need for careful (first-stage) planning. Given the uncertainty
of the requirements, the traditional minimum-cost goal may be adapted to minimize the totalexpectedcost
of the solution.

As an example, consider the STOCHASTIC STEINER TREEproblem that specifies an inflation parameterσ
and a probability distributionπ on the set of terminal nodes (which are clients) that have to be connected to
the root in a given rooted discrete metric space. A subset of edgesE0 may be bought by paying the original
lengths in the first stage. Once the actual set of terminalsS is revealed, we must then buy the recourse
edgesES at σ times their lengths so thatS is connected to the root by edges inE0 ∪ ES . The objective
is to minimizec(E0) + E[σ c(ES)]. Here the expectation is overπ, the randomness in the set of terminals
revealed.

The framework is that oftwo-stage stochastic optimization with recourse[13, 12, 23] which may be para-
phrased as “On Monday, we only know the input distribution on the clients, and we can buy some resources.
On Tuesday, the client set is now completely specified, but things are now more expensive (in our case, by
a factorσ); we mustbuy any additional resources needed to get a feasible solution to the instance.”

Following this framework, in STOCHASTICVERTEX COVER, the clients are edges to be covered, and we are
given a probability distribution over sets of edges that will arrive; vertices becomeσ times more expensive
after these edges are revealed. The STOCHASTIC FACILITY LOCATION problem on a metric space contain-
ing clients and facilities with opening costs defines a probability distribution over the set of clients that will
require connection to open facilities. Opening facilities becomesσ times costlier in the second stage. The
objective, in addition to expected cost of opening facilities, also includes expected connection costs of the
revealed clients to their closest open facilities.

Our Results: In this paper, we give a simple yet general framework to translate approximation algo-
rithms for deterministic optimization problems1 into approximation algorithms for corresponding stochastic
versions with second-stage inflation parameterσ. Given anα-approximation algorithm for the classical
problem, one can use it in the following framework:

1. Boosted Sampling:Sampleσ times from the distributionπ to get sets of clientsD1, . . . , Dσ.

2. Building First Stage Solution:Build anα-approximate solution for the clientsD = ∪iDi.

3. Building Recourse: When actual future in the form of a setS of clients appears (with probability
π(S)), augment the solution of Step 2 to a feasible solution forS.

Note thatwe do not need to know the distributionπ explicitly; it could be a black-box from which we can
draw samples. (In practice, these samples could be drawn from market predictions, or from Monte-Carlo
simulations.) Thus we can sidestep the often-lethal problem of handling an exponential number of scenarios.

1While the approximation algorithm solves the deterministic counterpart of the problem as opposed to thestochasticone, there
is no requirement for this algorithm itself to be deterministic, e.g., randomized approximation algorithms can just as well be used
in our framework.

1



Problem Non-Stoc. Approximation Strictness Stochastic Approximation
Ratioα β General Distrib. Indep. decisions

Steiner Tree 1.55 (Robins & Zelikovsky) 2 3.55 3.55
Vertex Cover 2 (Primal-dual) 6 8 3

Facility Location 3 (Mettu-Plaxton) 5.45 8.45 6
Steiner Network 4 (Gupta et al.) 4‡ - 8

Figure 1.1:Result Summary .‡Weaker strictness that gives approximations only in the independent decisions model.

Informal Main Result 1.1 If the α-approximation algorithmA satisfies some technical properties (the
problem issub-additive, andA admits aβ-strict cost-sharingfunction2), then the above framework yields
anα+ β approximation for the stochastic version of the problem.

The framework is laid out in Section 2 and the formal result is Theorem 3.1. Using this framework, we show
that stochastic variants of STEINER TREE, FACILITY LOCATION, and VERTEX COVER have constant-factor
approximation algorithms; the details are in Sections 4-5. The approximation ratiosα and strictness of the
corresponding cost-sharesβ, and the resulting guarantees for the stochastic variants are summarized in
Figure 1.1.

We also consider the special case ofindependent decisions; in this, each clientj has a probabilityπj

of arrival independentof other clients, and the probabilityπ(S) of the setS materializing is given by∏
j∈S πj

∏
j /∈S(1 − πj). For this model, we can also give a 8-approximation for the stochastic version

of the STEINER FORESTproblem and improve the approximation ratios of the corresponding versions of
VERTEX COVER and FACILITY LOCATION to 3 and 6 respectively.

While a natural approach to utilizing an approximation algorithm for a deterministic problem is to set the
client requirements at their expected value according toπ, we note that this approach cannot yield bounded
approximation ratios even in simple examples. Rather, using the full power of sampling in building the first
stage solution gives a provably good solution as we demonstrate.

Related Work: The study of stochastic optimization [2, 10] dates back to the work of Dantzig [3] and
Beale [1] in 1955; these papers defined the notions ofstochastic linear programming. Stochastic LPs have
been very widely studied since, and several gradient-based and decomposition-based approaches are known
for two-stage versions of stochastic linear programming. On the other hand, only moderate progress has
been reported for stochastic integer (and mixed-integer) programming in both theoretical and computational
domains; see [23, 13] for details.

While stochastic scheduling problems have been studied extensively in the literature [19], the papers often
try to identify cases where some standard scheduling policies yield optimal results, or the results hold
for some special distributions (e.g., where job sizes are exponentially distributed), or focus on problems
for which the deterministic versions are polynomial-time solvable. There are, of course, exceptions; see,
e.g., [14, 4, 16, 24].

Very recently, there has been a surge of interest in stochastic versions of NP-hard problems, with papers
on the topic by Ravi and Sinha [21], and independently, by Immorlica et al. [7]. Both these works look at
versions of our model with some restrictions on the distributionπ, while we considerarbitrary distributions
π. In particular, they consider the following cases.

2These terms will soon be defined, in Definitions 2.1 and 2.2 respectively.

2



• thescenario model, where the distributionπ has its support on a familyF of possible subsets explicitly
given as part of the input (and hence the algorithms are allowed to take timepoly(|F|, n)), and

• the independent decisionsmodel, where each elementj has an associated probabilityπj , and the
probability of a setπ(S) =

∏
j∈S πj

∏
j /∈S(1 − πj). (I.e., the sets are chosen by flipping a coin

independently for each element.)

Since our algorithms in Sections 4 and 5 work forarbitrary distributions, our theorems hold in both the
above models as well. In particular, our3.55- and3-approximations for stochastic STEINER TREE and
VERTEX COVER in the independent model improve upon theO(log n)- and6.3-approximations in [7] re-
spectively.

One can define (as in [21]) other stochastic variants of the problems we define here: e.g., one can imagine
that there are multiple inflation parameters, and that instead of all things getting dearer byσ, different parts
of the problem change in different ways. This work leaves open the question of whether our framework can
be extended to handle such multiple-parameter stochastic problems.

Stochastic Steiner Tree appears similar to themaybecastproblem of Karger and Minkoff [11]; however,
the latter is a single-stage optimization problem. Finally, though some of our techniques, including strict
cost-shares come from the work of [6, 5], the problems considered there are deterministic optimization
problems.

2 Model and Notation

We define an abstract combinatorial optimization problem that we will adapt to a stochastic setting. To
defineΠ, a combinatorial optimization problem, letU be the universe ofclients(or requirements), and let
X be the set ofelementsthat we can purchase. For anyF ⊆ X, let c(F ) denote thecostof the element
setF . Given a set of clientsS ⊆ U , let Sols(S) ⊆ 2X be the set offeasible solutionsfor the client setS.
The deterministic versionDet(Π) specifies a fixed subset of clientsS ⊆ U , and the objective is to return
F ∈ Sols(S) with least cost. We denote byOPT(S) a solution inSols(S) of minimum cost.

Definition 2.1 We require all our problemsΠ to satisfysub-additivity. This property states that ifS andS′

are two sets of clients with solutionsF ∈ Sols(S) andF ′ ∈ Sols(S′), then we must have that (i)S ∪ S′ is a
legal set of clients forΠ, and (ii)F ∪ F ′ ∈ Sols(S ∪ S′).
For example, the STEINER TREE problem on a graphG = (V,E); the clientsU = V are the set of vertices,
and the elementsX are edgesE of the graph. To ensure sub-additivity, we require aroot vertexr. The
cost of a set of edgesF ⊆ X is c(F ) =

∑
e∈F ce. Given a setS ⊆ V of terminals, the solutions are

Sols(S) = {T |T connects all vertices ofS ∪ {r}}.
Given any problemΠ, we can define a variant adapted from the framework oftwo-stage stochastic program-
ming with recourseas follows.

• There will betwo stagesof purchasing. Letσ ≥ 1 be a giveninflation parameter; every element
x ∈ X costscx in the first stage but costsσ cx in the second.

• In the first stage, the algorithm is only given access to an oracle that can draw from the probability
distributionπ : 2U → [0, 1] in timepoly(|U |). It can then construct afirst-stage solutionby buying a
set of elementsF0 at costc(F0).

• In the second stage, one setS ⊆ U of clients isrealizedaccording to the distributionπ; i.e., the
probability thatS is realized isπ(S). We assume that this setS is conditionally independent of any
of our actions in the first stage. Now thesecond-stage solution(also called therecourse) consists of a
set of elementsFS purchased at the inflated costσ c(FS). The union of the setsF0 ∪ FS must lie in

3



Sols(S), i.e., the first and second stage solutions taken together give a feasible solution for the realized
set of clients.

The objective of an algorithm for the stochastic problemStoc(Π) is to select a setF0, and then, given a set
S from the distributionπ, to selectFS to minimize the expected cost of the solution:

c(F0) +
∑

S⊆U π(S)σc(FS). (2.1)

Hence the stochastic version of the Steiner Tree problem allows us to purchase some edgesF0 in the first
stage, and once the set of realized clientsS ⊆ V is revealed, to buy some more edgesFS so thatF0 ∪ FS

contains a tree spanningS.

2.1 Cost sharing functions

We now define thecost-sharesthat are used crucially to bound the performance of our approximation algo-
rithms. Loosely, a cost-sharing function is one that divides the cost of a solutionF ∈ Sols(S) among the
client setS. Cost-sharing functions have long been used in the context of game-theory [8, 9, 17, 18, 25].
We will use (a slight variant of) a cost-sharing function defined recently by Gupta et al. [5]: in contrast to
previous cost-sharing mechanisms, this cost-sharing function is defined relative to a fixed (approximation)
algorithm for the problemΠ.

Definition 2.2 Given anα-approximation algorithmA for the problemΠ, the functionξ : 2U × U → R≥0

is aβ-strict cost-sharing functionif the following properties hold:

P1. For a setS ⊆ U , ξ(S, j) > 0 only for j ∈ S.

P2. For a setS ⊆ U ,
∑

j∈S ξ(S, j) ≤ c(OPT(S)). (fairness)

P3. IfS′ = S ] T , then
∑

j∈T ξ(S
′, j) ≥ (1/β)× cost ofaugmentingthe solutionA(S) to a solution in

Sols(S′). (strictness)

Formally, there must exist a polynomial time algorithmAugA which can augmentA(S) to a solution
in Sols(S′) at cost at mostβ

∑
j∈T ξ(S

′, j).

Define the functionξ(S,A) as the sum
∑

j∈A ξ(S, j).

Remark 2.3 Note that one possible algorithmAugA is obtained by just zeroing out the costs of elements
already picked inA(S), and runningA again. In all cases we consider, there are natural algorithmsA
for which thisAugA ensures strictness; however, in this paper, we choose algorithmsA andAugA that
complement each other and give better approximation ratios.

3 Approximation Algorithms via Cost Sharing

In this section, we give a general technique for converting an approximation algorithmA for a deterministic
problemDet(Π) into an approximation algorithm for the stochastic versionStoc(Π), provided the problem
Π satisfies sub-additivity, and there is a cost-sharing functionξ that is strict w.r.t.A.

3.1 Algorithm: Boosted Sampling

Given an instance of a stochastic problemStoc(Π), the goal of the first stage is to buy the elements that will
be useful for the unknown client set realized in the second stage. Since our algorithm is not clairvoyant and
hence cannot see the future, the next best thing it can do is to sample from the distributionπ, and use the
samples as an indication of what the future holds. This simple idea is the basis of our method.

A näıve attempt would be to sample once from the distribution and use the set obtained as our prediction for
the future: however, this is not aggressive enough in that it ignores the fact that the future is more expensive

4



by a factor ofσ. In fact, asσ → ∞, the optimal solution would be to assume that every client inU will
be realized and must be accounted for in the first stage itself. Motivated by these concerns, the algorithm
for the problemStoc(Π) is stated below, in terms of theα-approximation algorithmA for Π, which comes
equipped with aβ-strict cost-sharing function (and hence an associated augmentation algorithmAugA).

We will assume in the rest of the paper thatσ is an integer, and is bounded by somepoly(n). The former
assumption is essentially without loss of generality (since we can roundσ to the nearest integer, and lose
a small amount in the approximation factor); the latter assumption is stronger, but can be removed in some
cases (e.g., see Section 6).

Algorithm Boost-and-Sample(Π)

1. Drawσ independent samplesD1, D2, . . . , Dσ of the realized clients by sampling from the distribu-
tion π. LetD = ∪iDi.

2. Using the algorithmA, construct anα-approximatefirst-stage solutionF0 ∈ Sols(D).
3. If the client setS is realized in the second stage, use the augmenting algorithmAugA from (P3) to

computeFS such thatF0 ∪ FS ∈ Sols(S).

The following theorem is the main result of the paper:

Theorem 3.1 Consider a combinatorial optimization problemΠ that is sub-additive, and letA be anα-
approximation algorithm for its deterministic versionDet(Π) with a β-strict cost sharing function. Then
Boost-and-Sample(Π) is an(α+ β)-approximation algorithm forStoc(Π).

We will prove Theorem 3.1 in the rest of the section. In the next section, we illustrate an application of this
theorem to obtain an approximation algorithm for the STOCHASTICSTEINER TREE. In subsequent sections,
we go on to consider several other problems, and show that their approximation algorithms and attendant
cost sharing functions provide approximation algorithms for the corresponding stochastic versions.

Proof of Theorem 3.1: We will bound the expected costs of our first and second-stage solutions separately.
Let F ∗

0 be the first-stage component of the optimal solution, andF ∗
S be the second-stage component if the

set of realized clients isS. Hence

the optimal costZ∗ = c(F ∗
0 ) +

∑
S π(S)σ c(F ∗

S). (3.2)

Let us denoteZ∗
0 = c(F ∗

0 ) andZ∗
r =

∑
S π(S)σ c(F ∗

S).

First stage: We claim that there is an element̂F1 ∈ Sols(D) such thatE[c(F̂1)] ≤ Z∗. Indeed, define
F̂1 = F ∗

0 ∪F ∗
D1
∪F ∗

D2
∪ . . .∪F ∗

Dσ
. The fact thatF̂1 ∈ Sols(D) follows from sub-additivity of the problem

Π. Therefore,

ED[c(F̂1)] ≤ c(F ∗
0 ) + ED[

∑σ
i=1 c(F

∗
Di

)]

= c(F ∗
0 ) +

∑σ
i=1 EDi [c(F

∗
Di

)]

= c(F ∗
0 ) + σ

∑
S π(S) c(F ∗

S) = Z∗,

the penultimate equality following from the fact that each of theDi’s are chosen from the probability dis-
tributionπ. Since we have anα-approximation algorithm forDet(Π), our solutionF0 satisfiesE[c(F0)] ≤
αc(F̂1), which in turn is at mostαZ∗, bounding our first stage costs.

Second stage:Let S be the set of realized clients, and letFS be the result of our algorithmAugA such
thatF0 ∪ FS ∈ Sols(S). We need to bound our expected second stage cost, which isσ E[c(FS)]. The
β-strictness of the cost sharing functionξ implies thatc(FS) ≤ β ξ(D ∪ S, S). In fact, we even have
c(FS) ≤ β ξ(D ∪ S, S \D).

5



Consider the following alternate probabilistic process to generate the setsDi and the setS: Draw σ + 1
independent sampleŝD1, D̂2, . . . , D̂σ+1 from the distributionπ. Now choose a random valueK uniformly
from {1, 2, . . . , σ + 1}, and setS = D̂K andD = ∪i6=KD̂i. This process is identically distributed to the
original process, since we are picking the sets independently. LetD̂ be the union ofall theD̂i’s, and letD̂−i

be the union∪l 6=iD̂l of all the sets except̂Di.

Since the cost sharing function is fair (Property P2), we have∑σ+1
i=1 ξ(D̂, D̂i \ D̂−i) ≤ c(OPT(D̂)).

By our random choice ofK, we get

EK [ξ(D̂, D̂K \ D̂−K)] ≤ 1
σ+1c(OPT(D̂))

Since the alternate process is probabilistically identical to the one we used to pickD andS,

ED,S [ξ(D ∪ S, S \D)] = ED̂,K
[ξ(D̂, D̂K \ D̂−K)]

≤ 1
σ+1 ED̂[c(OPT(D̂))] (3.3)

To complete the argument, we now show thatED̂[c(OPT(D̂))] ≤ σ+1
σ Z∗. To derive a feasible solution tôD,

defineF̂2 = F ∗
0 ∪ F ∗

D̂1
∪ F ∗

D̂2
∪ . . . ∪ F ∗

D̂σ+1
. Again, the fact that̂F2 ∈ Sols(D̂) follows from sub-additivity

of Π. Thus we have

ED̂[c(OPT(D̂))] ≤ c(F ∗
0 ) +

∑σ+1
i=1 E

D̂i
[c(F ∗

D̂i
)]

≤ Z∗
0 + (σ + 1) Z∗

r
σ

≤ σ+1
σ (Z∗

0 + Z∗
r ) = σ+1

σ Z∗. (3.4)

ThusES [c(FS)] ≤ β ED,S [ξ(D∪S, S \D)], which using (3.3) and (3.4), is bounded byβ
σ Z

∗. Finally, since
our second stage cost isσ c(FS), our expected second stage cost isES [σ c(FS)] ≤ β Z∗.

Putting together the first and second stage costs gives the bound claimed in the theorem.

4 An Illustration: Stochastic Steiner Trees

In the classical deterministic STEINER TREE problem, we are given a set of verticesV , and the costsce on
edges satisfy the triangle inequality. (This assumption is without loss of generality, since we can take the
metric completion of the graph.) We assume there is a designatedroot vertexr. Given a set of terminals
(i.e., the clients), the goal is to buy a set of edges (the elements) of minimum cost so that the terminals
and the rootr lie in a connected component. Note that the presence of the root ensures that the problem is
sub-additive.

Now let us consider the problemStoc(STEINER TREE): in the first stage, we can buy some edgesF0 at cost∑
e∈F0

ce. In the second stage, a set of terminalsS ⊆ V is realized with probabilityπ(S), after which we
may buy some more edges to connect the terminals to the root; however, these edges must be bought at cost
σ ce each.

Theorem 4.1 There exists a2-approximate algorithmA for STEINER TREE, along with a cost sharing
functionξ that is2-strict forA.

6



Proof: The algorithmA is simply Prim’s algorithm [20] for minimum spanning tree; given a set of terminals
S, it ignores the vertices not inS∪{r}, and builds anMST onS∪{r}. It is well-known that the costc(A(S))
of anyMST is within a factor of 2 of the cost of the optimal Steiner treeOPT(S).

Given anMSTA(S) on the set of terminalsS, let us imagine it to be rooted atr; for j ∈ S, setξ(S, j) to be
half the cost of the edge connectingj to its parent inA(S), which we callj’s parental edgeinA(S). Clearly,
if j /∈ S, thenξ(S, j) = 0. By definition,

∑
j∈S ξ(S, j) = 1

2 c(A(S)); since theMST is a 2-approximation
to the Steiner tree problem, this implies that1

2 c(A(S)) ≤ c(OPT(S)), and henceξ is fair.

Finally, to prove the2-strictness, consider a setS′ = S ] T . The augmenting procedureAugA basically
zeroes out the edges ofA(S) and runs Prim’s algorithm; i.e., it takes the solutionA(S), and for eachj ∈ T ,
adds the parental edge ofj inA(S ∪T ). We claim this gives a solution inSols(S ∪T ). (Indeed, each vertex
j ∈ T whose parent inA(S∪T ) was inS∪{r} will now be connected toA(S), and hence tor; the general
argument follows by a simple induction.) Since these edges cost2×

∑
j∈T ξ(S ∪ T, j), we have proved the

theorem.

Note that the argument for strictness only required that each vertex in the solutionA(S) was connected to
the root, and hence the same cost shares are also2-strict for anyheuristic for Steiner Tree. Now, using the
1.55-approximation for STEINER TREE [22] and Theorem 3.1, we obtain the following improved theorem:

Theorem 4.2 There is a1.55-approximation algorithm forSTEINER TREE, along with a cost-sharing func-
tion ξ that is2-strict for it. Hence, there is a3.55-approximation algorithm forStoc(STEINER TREE).

This improves on theO(log n)-approximation for theindependent decisionsversion ofStoc(STEINER TREE)
given by Immorlica et al. [7].

5 Other Applications

This section will be devoted to looking at several other (deterministic) problemsΠ; for each problem, we
will give an α-approximation algorithmA and its accompanyingβ-strict cost-share function. Our results
have been summarized in Figure 1.1; due to lack of space, the longer proofs appear in Appendix A.

5.1 Facility Location

An instance of FACILITY LOCATION is given by a set of facilitiesF and a set of clientsS. The distances
cij between any pair of pointsi, j from F ∪ S form a metric. Each facilityp has opening costfp; the goal
is to open a subset of facilitiesF ′ to minimize the opening costs plus the sum of distances from each client
to its closest open facility: ∑

p∈F ′ fp +
∑

j∈S c(j, F
′).

The main result forStoc(FACILITY LOCATION) is the following:

Theorem 5.1 The cost sharing functionξ given by Ṕal and Tardos is5.45-strict for the3-approximation
algorithm of Mettu and Plaxton. Hence, there is a8.45-approximation algorithm forStoc(FACILITY LO-
CATION).

5.2 Vertex Cover

In the Vertex Cover problem, we are given a graphG = (V,E) with costscv on vertices. The clients are the
edges, and our goal is to choose a subsetV ′ of the vertices so that each edge iscovered; i.e., at least one of
its adjacent vertices is chosen. In the stochastic version, we paycv for picking a vertexv in the first phase,
andσ cv for picking it in the second phase. We will prove the following theorem:

7



Theorem 5.2 There is a8-approximation algorithm forStoc(VERTEX COVER).

Before we do this, let us define a version of the problem calledRelaxed Stochastic Vertex Cover. In the
relaxed version of the stochastic problem, we are allowed to make payments to a vertex in both stages,
with p1(v) andp2(v) being payments made tov in the first and second stage respectively. A vertexv is
chosen if and only ifp1(v) + p2(v)/σ ≥ cv. Again, given a set of realized edgesS, the set of chosen
vertices must form a feasible vertex cover forS. The cost of our solution is just the sum of payments, i.e.∑

v∈V p
1(v) + p2(v), and the goal is again to minimize the expected cost.

Note that by requiring thatp1(v) ∈ {0, cv} andp2(v) ∈ {0, σcv}, we get back to our usual stochastic
framework, and hence the relaxed problem allows us to make partial commitments to vertices in the first
stage. However, it turns out that we can convert any algorithmA for the relaxed problem into an algorithm
A′ for the unrelaxed version with the same expected cost. Indeed, ifp1(v) is the amount of money placed
on vertexv by A in the first stage, the algorithmA′ picks the vertexv in its first stage with probability
min{1, p1(v)/cv}. In the second stage,A′ selects the vertexv if v was selected byA (that is,p1

v + p2
v/σ ≥

cv), and ifA′ has not already selected it in the first stage. By linearity of expectations, the expected cost
incurred byA′ in each phase is at most the cost incurred byA in that phase. Thus it suffices to give an
algorithm and a cost sharing function for relaxed vertex cover.

The Algorithm A: We use a standard primal-dual 2-approximation algorithmA for vertex cover. LetS ⊆
E be the set of edges in the instance. For each edgee, we have a dual variableye, initially set to 0. We
simultaneously raise all dual variables at a uniform rate. A vertexv becomestight when the duals of
edges adjacent to it can pay its cost, i.e. when

∑
e∈δ(v) ye = cv. When a vertexv becomes tight, we

freezeall edges adjacent to it, i.e., we stop raising their dual variables. We continue raising the dual
variables of all unfrozen edges, until all edges become frozen.

Output: The algorithm places paymentsp(v) =
∑

e∈δv
ye on each vertexv ∈ V . Since each edge

is adjacent to some tight vertexv, it has been paidcv and hence bought outright; thus the solution is
feasible forS.

The Cost Shares:Defineξ(S, e) = ye; since each edge pays both its endpoints, it holds that
∑

v∈V p(v) =
2

∑
e∈S ye. Furthermore,

∑
e ξ(S, e) is just the LP dual value, and hence at mostOPT(S).

Clearly, the algorithmA is a 2-approximation for the vertex cover problem. To prove Theorem 5.2, it suffices
to prove the strictness ofξ for A.

Theorem 5.3 The cost sharesξ defined above are 6-strict with respect to the algorithmA.

Proof: Let S andT be two disjoint sets of edges. To augment the solutionA(S) to handleT as well, the
augmenting algorithmAugA looks at the (relaxed) payment functionp : V → R≥0 for the set of edgesS,
and runs the algorithmA on the set of edgesT with the reduced costsc′v = cv − p(v). To prove strictness,
we need to compare this augmentation cost to the cost shareξ(S ∪ T, T ). To this end, we shall compare
several runs ofA on different related inputs.

• Run R1: This is the run ofA with original costscv on the setS ∪ T . Let y1
e be the duals produced.

Let us define paymentsp1
S(v) =

∑
e∈δ(v)∩S ye andp1

T (v) =
∑

e∈δ(v)∩T ye respectively.

Note thatp1 = p1
S∪T = p1

S + p1
T is exactly the payment function computed byA. Furthermore, this

is the run that computes the cost-sharesξ(S ∪ T, T ).
• RunsRS andRT : The runRS is the run ofA on the set of edgesS, but with costscS = c− p1

T (i.e.,
reduced by the payments ofT in R1). Similarly the runRT is on the edgesT , with reduced costs
cT = c− p1

S .

8



• Run R2: This isA’s run on the edge setS, with original costsc, and hence corresponds to the actual
run of the first stage. Lety2 be the duals andp2 the payments computed.

• Run R3: This is on the edge setT , with reduced costsc3 = c − p2; hence, this corresponds to the
augmentation step forT . Again,y3 andp3 are the duals and the payments.

By the definition ofRS , the freezing time of all edgese ∈ S in the two runsRS andR1 is the same; hence
the dualyS is just the dualy1 restricted to the setS, andp1

S = pS . Similarly, the dualyT from the runRT

is identical to the dualy1 restricted toT , andp1
T = pT . We claim that, to prove the theorem, it suffices to

prove the following claim:

Claim 5.4
∑

v∈V p
3(v) ≤ 3

∑
v∈V p

1
T (v).

Before we prove this claim, let us see how it proves Theorem 5.3. Note that cost of the augmentation run
R3 is exactly

∑
v p

3(v), while the cost shares

ξ(S ] T, T ) =
∑
e∈T

ye =
1
2

∑
v∈V

p1
T (v).

Henceξ(S ∪ T, T ) can defray at least one-sixth of the cost of the runR3, proving the theorem.

Proof of Claim 5.4: The proof relies on the following Lipschitz-type property of the algorithmA: imagine
the vertex costs to be vectors inR|V |, and suppose the costs change by an amountε (in theirL1-distance),
then the claim says that the payments do not change by more than2 ε. Formally,

Claim 5.5 (Lipschitz continuity) Consider two runsR andR̂ ofA with the same edge setS on two differ-
ent cost vectorsc and ĉ, and letp and p̂ be the two vectors of payments computed. If we define∆ so that
(p− p̂) = (c− ĉ) + ∆, then‖∆‖1 ≤ ‖c− ĉ‖1.

The proof of the Lipschitz condition is deferred to Appendix; but let us use it to complete this proof. First,
we use it to compare the runsRS andR2 (both being defined on the edge setS): define∆1 so that

p2 − p1
S = c− (c− p1

T ) + ∆1 = p1
T + ∆1; (5.5)

then Claim 5.5 implies that‖∆1‖1 ≤ ‖p1
T ‖1. The second application of Claim 5.5 is to the runsR3 andRT

(both on the edge setT ); it implies that if∆2 is such that

p3 − p1
T = (c− p2)− (c− p1

S) + ∆2 = p1
S − p2 + ∆2, (5.6)

then‖∆2‖1 ≤ ‖p1
S−p2‖1; this, by (5.5), is at most‖p1

T ‖1 +‖∆1‖1 ≤ 2‖p1
T ‖1. Furthermore, plugging (5.5)

into (5.6), we get
p3 − p1

T = −(p1
T + ∆1) + ∆2.

Simplifying, this gives‖p3‖1 = ‖∆1‖1 + ‖∆2‖1 ≤ 3‖p1
T ‖1.

6 Independent Decisions: Steiner Forest and Other Improvements

The independent decisionsmodel was defined in Section 1 as the model when each clientj ∈ U has a
probabilityπj of requiring serviceindependentlyof all other clients. For this special case of our model, we
show that a weaker version of strict cost-shares is sufficient to obtain algorithms for stochastic problems.
This allows us to obtain approximations for some more problems (e.g., for STEINER NETWORK), and
obtain stronger results for others (e.g., for VERTEX COVER and FACILITY LOCATION) in the independent
decisions model.

9



Given a problemΠ, we useInd(Π) to denote the stochastic extension ofΠ in this independent decisions
model. For this section, we will need the following weaker definition of strictness that holds only for
additions of asingleclient.

Definition 6.1 Given anα-approximation algorithmA for the problemΠ, the functionξ : 2U × U → R≥0

is aβ-uni-strict cost-sharing functionif properties (P1), (P2) hold in conjunction with:

P3′. If S′ = S ] {j}, thenξ(S′, j) ≥ (1/β)× cost ofaugmentingthe solutionA(S) to a solution in
Sols(S′). (uni-strictness)

Again, we need apoly-time algorithmAugA that does the augmentation with cost at mostβ ξ(S′, j).

6.1 The (Even Simpler) Algorithm Ind-Boost

Let us define the (yet simpler) algorithm for the independent case:

Algorithm Ind-Boost(Π)

1. Choose a setD by picking each elementj ∈ U with probabilityσ πj independently.

2. Using the algorithmA, construct anα-approximate solutionF0 ∈ Sols(D).

3. If the client setS is realized in the second stage, use the augmentation algorithmAugA of (P3′) to
computeFS such thatF0 ∪ FS ∈ Sols(S).

Note thatInd-Boost(Π) is much easier to implement, and can be done in polynomial time regardless of how
largeσ is. Here is the version of the main Theorem 3.1 for the independent decisions model, the proof of
which appears in Appendix B:

Theorem 6.2 Consider a deterministic combinatorial optimization problemΠ that is sub-additive, and let
A be anα-approximation algorithm forΠ with aβ-uni-strict cost sharing function. ThenInd-Boost(Π) is
an (α+ β)-approximation algorithm forInd(Π).

6.2 Steiner network

The Steiner network problem is a generalization of the Steiner tree problem, and is defined over an edge-
weighted graph. A clientu is now a pair(si, ti) of vertices, and given a set of clientsS, a feasible solution
consists of a set of edgesF such that for each(si, ti) ∈ S, there is a path fromsi to ti in F . The prob-
lem is easily verified to be sub-additive. The following result gives us the claimed 8-approximation for
Ind(STEINER FOREST).

Theorem 6.3 ([5]) There is a 4-approximation algorithm for the Steiner network problem which admits a
4-uni-strict cost-sharing function.

6.3 Other Problems

Improved results may be obtained for other problems which have already been studied in Section 5; here are
some of the results we can obtain. (The proofs have been relegated to the Appendices.)

Theorem 6.4 There is a3-approximation algorithmA for the facility location problem, along with cost-
sharesξ that are3-uni-strict w.r.t.A. Hence, there is a6-approximation forInd(FACILITY LOCATION).

Theorem 6.5 There is a 2-approximation algorithmA for the relaxed Vertex Cover problem, and cost-
sharesξ that are 1-strict with respect toA, giving us a3-approximation forInd(VERTEX COVER).

This improves on the6.3-approximation given forInd(VERTEX COVER) given by Immorlica et al. [7].

10



References

[1] E. M. L. Beale. On minimizing a convex function subject to linear inequalities.J. Roy. Statist. Soc.
Ser. B., 17:173–184; discussion, 194–203, 1955. (Symposium on linear programming.).

[2] John R. Birge and François Louveaux.Introduction to stochastic programming. Springer Series in
Operations Research. Springer-Verlag, New York, 1997.

[3] George B. Dantzig. Linear programming under uncertainty.Management Sci., 1:197–206, 1955.

[4] Ashish Goel and Piotr Indyk. Stochastic load balancing and related problems. In40th Annual Sym-
posium on Foundations of Computer Science (New York, 1999), pages 579–586. IEEE Computer Soc.,
Los Alamitos, CA, 1999.

[5] Anupam Gupta, Amit Kumar, Martin Ṕal, and Tim Roughgarden. Approximations via cost-sharing.
In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pages 606–
615, 2003.

[6] Anupam Gupta, Amit Kumar, and Tim Roughgarden. Simpler and better approximation algorithms for
network design. InProceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
365–372, 2003.

[7] Nicole Immorlica, David Karger, Maria Minkoff, and Vahab Mirrokni. On the costs and benefits of
procrastination: Approximation algorithms for stochastic combinatorial optimization problems. In
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004. to appear.

[8] Kamal Jain and Vijay Vazirani. Applications of approximation algorithms to cooperative games. In
Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing (STOC), pages 364–372,
2001.

[9] Kamal Jain and Vijay V. Vazirani. Equitable cost allocations via primal-dual-type algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 313–321.
ACM Press, 2002.

[10] Peter Kall and Stein W. Wallace.Stochastic programming. Wiley-Interscience Series in Systems and
Optimization. John Wiley & Sons Ltd., Chichester, 1994.

[11] David R. Karger and Maria Minkoff. Building Steiner trees with incomplete global knowledge. In
Proceedings of the 41th Annual IEEE Symposium on Foundations of Computer Science, pages 613–
623, 2000.

[12] Willem K. Klein Haneveld and Maarten H. van der Vlerk. Stochastic integer programming: general
models and algorithms.Ann. Oper. Res., 85:39–57, 1999. Stochastic programming. State of the art,
1998 (Vancouver, BC).

[13] Willem K. Klein Haneveld and Maarten H. van der Vlerk.Stochastic Programming. Department of
Econometrics and OR, University of Groningen, Netherlands, 2003.

[14] Jon Kleinberg, Yuval Rabani, and́Eva Tardos. Allocating bandwidth for bursty connections.SIAM J.
Comput., 30(1):191–217 (electronic), 2000.

[15] Ramgopal R. Mettu and C. Greg Plaxton. The online median problem. In41st Annual Symposium on
Foundations of Computer Science (Redondo Beach, CA, 2000), pages 339–348. IEEE Comput. Soc.
Press, Los Alamitos, CA, 2000.

11



[16] Rolf H. Möhring, Andreas S. Schulz, and Marc Uetz. Approximation in stochastic scheduling: the
power of lp-based priority policies.Journal of the ACM (JACM), 46(6):924–942, 1999.

[17] Hervé Moulin and Scott Shenker. Strategyproof sharing of submodular costs: budget balance versus
efficiency.Econom. Theory, 18(3):511–533, 2001.

[18] Martin Ṕal andÉva Tardos. Group strategyproof mechanisms via primal-dual algorithms. InPro-
ceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pages 584–593,
2003.

[19] Michael Pinedo.Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1995.

[20] Robert C. Prim. Shortest interconnection networks and some generalizations.Bell System Technical
Journal, 36:1389–1401, 1957.

[21] R. Ravi and Amitabh Sinha. Hedging uncertainty: Approximation algorithms for stochastic optimiza-
tion problems.GSIA Working Paper 2003-E68, 2003.

[22] Gabriel Robins and Alexander Zelikovsky. Improved Steiner tree approximation in graphs. InPro-
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 770–779, 2000.

[23] R. Schultz, L. Stougie, and M. H. van der Vlerk. Two-stage stochastic integer programming: a survey.
Statist. Neerlandica, 50(3):404–416, 1996.

[24] Martin Skutella and Marc Uetz. Scheduling precedence-constrained jobs with stochastic processing
times on parallel machines. InProceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 589–590. Society for Industrial and Applied Mathematics, 2001.

[25] H. P. Young. Cost allocation. In R. J. Aumann and S. Hart, editors,Handbook of Game Theory,
volume 2, chapter 34, pages 1193–1235. North-Holland, 1994.

A Proofs from Section 5

A.1 Facility Location: Strict Cost Shares

Theorem 5.1. The cost sharing functionξ given by Ṕal and Tardos is5.45-strict for the3-approximation
algorithm of Mettu and Plaxton. Hence, there is a8.45-approximation algorithm forStoc(FACILITY LO-
CATION).

Proof of Theorem 5.1: Let us briefly review the algorithm of Mettu and Plaxton, and the cost sharing
defined by Ṕal and Tardos [18]. LetS be a set of clients. For a facilityp, letB(p, τ) be a ball with center
p and radiusτ . We define theopening timetp(S) of a facility p w.r.t. the set of clientsS to be the unique
radiusτ such that

fp =
∑

j∈B(p,τ)∩S (τ − c(j, p)). (A.7)

Let the setCp(S) = {j ∈ S | c(j, p) < tp(S)} be called thecontributing setfor p. Note that if we charge
each client inCp the amounttp(S), we exactly recover the facility cost ofp plus the cost of assigning clients
in Cp to p. We drop the set of clients from the notation, and saytp instead oftp(S) when there is no danger
of confusion. The cost shares of clients are then defined as

ξ(S, j) = min
p∈F

{ max(tp(S), c(j, p)) }. (A.8)

12



Intuitively, the contribution of userj towards the facilityp should be eithertp if j ∈ Cp, or the connection
costc(j, p) if j /∈ Cp. The client can (and does) choose to contribute only to the least demanding facility;
the facility p for which this minimum is attained is called theprimary facility of j (in the run onS). A
facility p is said to bewell-fundedif ξ(S, j) ≥ tp(S)/3 for all j ∈ Cp.

The algorithmA we use is a slight modification of the algorithm of Mettu and Plaxton; given a set of clients
S, A considers all the well-funded facilitiesp in order of increasing opening timetp(S). For each such
(well-funded) facilityp, the algorithm declares itopenif there are no previously opened facilities within a
radius2 tp(S) aroundp.

For each open facilityp, A assigns all clients inCp to p. (By construction, the setsCp for open facilitiesp
are disjoint.) It then assigns each client not lying in anyCp to its closest open facility. The following facts
can be derived from the arguments in [15] and [18]:

1. For each open facilityp, the cost sharesξ(S,Cp) of the clients inCp pay1/3 of fp plus their assign-
ment cost. (See [18, Lemma 2.4] and the preceding discussion therein.)

2. For each facilityp, there exists awell-fundedfacility q (possiblyp = q) such thatc(p, q) ≤ 2 (tp−tq).
(Note that it must be thattq ≤ tp.)

3. For each facilityp, there exists anopenfacility q within a distance of2tp. Hence, ifp is a primary
facility for some clientj, thenc(j, q) ≤ 3ξ(S, j).

To show strictness ofξ, we must specify the algorithmAugA which augments a solutionA(S) to cover a set
of new clientsT with S∩T = ∅. In the following, letCp = Cp(S∪T ) denote the contributor set of a facility
p in the runA(S ∪ T ). Similarly, when we say a facilityp is well-funded, we mean thatp is well-funded in
the runA(S ∪ T ). A facility p is calledT -heavyif |Cp ∩ T | ≥ b|Cp| (where the parameterb ∈ (0, 1) will
be specified later), and isT -light otherwise. Note that aT -light facility must have|Cp ∩ S| ≥ (1− b)|Cp|.
Claim A.1 If p is aT -light facility, then

tp(S) ≤ 1
1−b tp(S ∪ T ) − 1

|Cp∩S|
∑

j∈Cp∩T c(j, p).

Proof: Consider the setCp = {j ∈ S ∪ T | c(j, p) < tp}; by the definition (A.7),

fp +
∑
j∈Cp

c(j, p) = |Cp| tp(S ∪ T )

Sincep is T -light, |Cp ∩ S| ≥ (1− b) |Cp|.

fp +
∑

j∈Cp∩S

c(j, p) = |Cp| tp(S ∪ T )−
∑

j∈Cp∩T

c(j, p) ≤ |Cp ∩ S|
tp(S ∪ T )

1− b
−

∑
j∈Cp∩T

c(j, p).

which means facilityp was already paid for at timetp(S ∪T )/(1− b)−
∑

j∈Cp∩T c(j, p)/(|Cp ∩S|) in the
runA(S), proving the claim.

Augmentation procedureAugA: To augmentA(S) to coverT as well, we pick a subset of well-funded
T -heavy facilities to open greedily in a manner very similar to that inA(S∪T ): we consider all well-funded
T -heavy facilities in order of increasingtp(S ∪T ), and open a facilityp if there is no facilityq already open
within a radius2 tp(S ∪ T ) of p. (Note thatq may have been opened in eitherA(S), or in the augmenting
phase beforep was considered.) We never open anyT -light or non-well-funded facilities. At the end of this
procedure, for a clientj ∈ Cp whosep is open, we assignj to p; else we assignj to the closest open facility.

13



Claim A.2 The augmentation cost for a setT is at most(3 +
√

6)
∑

j∈T ξ(S ∪ T, j).
Proof: Firstly, consider any well-fundedT -heavy facilityp. Sincep is T -heavy, the shares of clients in
Cp ∩ T can pay for ab/3 fraction of the facility cost plus their own connection costs. Hence we must
consider clientsj whose primary facilityp is either not well-funded or notT -heavy. We claim that in both
cases there must be a facility close top opened either byA(S), or in the augmenting phase. Note that by
the properties of the algorithmA, there is a well-funded facilityq such thattq(S ∪ T ) ≤ tp(S ∪ T ) and
c(p, q) ≤ 2 (tp(S ∪ T )− tq(S ∪ T )).

Now, if q is T -heavy, by the properties of our augmentation procedure, there must a facilityr that was open
in the augmentation step such thatc(q, r) ≤ 2 tq(S ∪ T ). On the other hand, ifq is T -light, we have that
tq(S) ≤ tq(S ∪ T )/(1 − b) by Claim A.1 above. Thus, in the runA(S), there must be an open facilityr
such thatc(q, r) ≤ 2 tq(S) ≤ (2/(1− b)) tq(S ∪ T ).

In both cases, the assignment cost of the clientj is bounded by

c(j, r) ≤ c(j, p) + c(p, q) + c(q, r)
≤ c(j, p) + 2(tp(S ∪ T )− tq(S ∪ T )) + (2/(1− b)) tq(S ∪ T )
≤ c(j, p) + (2/(1− b)) tp(S ∪ T )
≤ (1 + 2/(1− b)) ξ(S ∪ T, j).

To balance3/b and(1 + 2/(1− b)), we can now pickb = 3−
√

6 to get the desired result.

Sinceβ = 3 +
√

6 ≤ 5.45, this proves the theorem.

A.2 Vertex Cover: Lipschitz Continuity

Claim 5.5. Consider two runsR andR̂ ofA with the same edge setS on two different cost vectorsc and
ĉ, and letp and p̂ be the two vectors of payments computed. If we define∆ so that(p− p̂) = (c− ĉ) + ∆,
then‖∆‖1 ≤ ‖c− ĉ‖1.

Proof of Claim 5.5: Consider the two runsR andR̂ ofA on the two cost vectorsc andĉ being executed in
parallel. Letpt(v) andp̂t(v) be the payments towards vertexv accumulated in the respective runs until time
t. We claim that the quantityΦ(t) =

∑
v∈V |(c(v)− pt(v))− (ĉ(v)− p̂t(v))| never increases as a function

of t. SinceΦ(0) = ‖c− ĉ‖1 andΦ(∞) = ‖(p− p̂)− (c− ĉ)‖1 = ‖∆‖1, this will prove Claim 5.5.

Consider any edgee = {u, v} at timet in both runs. Ife is not frozen in either run, it causes bothp(u) and
p̂(u) to increase at unit rate; the same arguments hold forv. Sinceu is not tight in either run,c(u)−pt(u) > 0
and ĉ(u) − p̂t(u) > 0, and edgee contributes to both terms equally; hence it is currently contributing at
rate zero to the difference(c(u) − pt(u)) − (ĉ(u) − p̂t(u)). If e is frozen in both runs, its current rate of
contribution is zero as well.

Now suppose thate is frozen in only one of the runs; say, it is frozen in the runR but not in the runR̂
(the other case is symmetric). That means one of its endpoints must be tight inR; w.l.o.g., assume the tight
vertex isu. Thusc(u) − pt(u) = 0. In the runR̂, the contribution ofe makes the term̂c(u) − p̂t(u) =
|(c(u) − pt(u)) − (ĉ(u) − p̂t(u))| decreaseat unit rate. However, its contribution towardsv, and hence
towards the term|c(v) − pt(v) − (ĉ(v) − p̂t(v))| increases at a rate of at most 1 in the worst case. Hence,
the quantityΦ never increases.

B Proofs from Section 6

Theorem 6.2. Consider a deterministic combinatorial optimization problemΠ that is sub-additive, and let
A be anα-approximation algorithm forΠ with aβ-uni-strict cost sharing function. ThenInd-Boost(Π) is

14



an (α+ β)-approximation algorithm forInd(Π).

Proof of Theorem 6.2: While it is possible to prove this result closely following the lines of that for
Theorem 3.1, we give a slightly different proof here.

First, some notation: letπ(S) =
∏

j∈S πj
∏

j 6∈S(1−πj). LetF ∗
0 be the first-stage component of the optimal

solution, andF ∗
S be the second-stage component if the set of realized clients isS, and letZ∗ be defined as

in Equation (3.2).

First stage: Again, we claim that there iŝF1 ∈ Sols(D) such thatE[c(F̂1)] ≤ Z∗; the actual proof is
by a slightly different “coupling” argument. As a thought experiment, throw elements ofD into σ sets
D1, . . . , Dσ independently and uniformly at random. Now, sinceD was picked by samplingU at rateσ πj ,
eachDi is distributed as though we sampled elementj ∈ U with probabilityπj . (The contents of different
Di’s are correlated negatively, but we will only use linearity of expectations.)

DefineF̂1 = F ∗
0 ∪ F ∗

D1
∪ F ∗

D2
∪ . . . ∪ F ∗

Dσ
. Again,F̂1 ∈ Sols(D) from sub-additivity, and

ED[c(F̂1)] ≤ c(F ∗
0 ) + ED[

σ∑
i=1

c(F ∗
Di

)] = c(F ∗
0 ) +

σ∑
i=1

EDi [c(F
∗
Di

)]

= c(F ∗
0 ) + σ

∑
S

π(S) c(F ∗
S) = Z∗.

Now anα-approximation algorithm forDet(Π) gives us a solutionF0 with E[c(F0)] ≤ αc(F̂1) ≤ αZ∗,
bounding our first stage costs.

Second stage:Let S be the set of realized clients, and letFS be the result of our algorithmAugA such that
F0 ∪ FS ∈ Sols(S). We need to bound our expected second stage cost, which isσ E[c(FS)], which we will
bound by the expectedfirst stagecost.

Defineφj for an elementj ∈ U to be the random variableφj = ξ(D, j), andψj to be the cost of augmenting
a solution forD to includej as well, in the case thatj ∈ S. (Hence, ifj /∈ S, thenψj = 0.) Let
Xj = σψj − β φj .

Now let us condition on all the first-stage coin-tossesT in U except forj’s toss. LetDT be all the vertices
picked according toT (which does not includej), and consider the expected value ofXj over the first-stage
toss forj, and the tosses of the realized setS.

ED,S [σ ψj | T ] = σ × πj × (1− σ πj) (cost of augmentingA(DT ) to includej), and (B.9)

ED[β φj | T ] = β × σ πj × ξ(DT ] {j}, j). (B.10)

By uni-strictness ofA, (B.10) is at least (B.9), and henceED,S [Xj | T ] ≤ 0. Since this holds for allT ,
ED,S [Xj ] ≤ 0 unconditionally, and thus

ED,S [ψj ] ≤
β

σ
ED[φj ]. (B.11)

Note that Properties (P1) and (P2) of the cost sharesξ imply that∑
j∈U

ED[φj ] =
∑
j∈U

ED[ξ(D, j)] = ED[
∑
j∈D

ξ(D, j)] ≤ ED[c(OPT (D))] ≤ Z∗. (B.12)

Furthermore,ED,S [FS ] ≤
∑

j ED,S [ψj ] by sub-additivity; using this, (B.11) and (B.12), we get that ex-
pected second-stage costσE[c(FS)] ≤ β Z∗, proving the result.

15



B.1 Facility Location: Independent Decisions

Theorem 6.4. There is a3-approximation algorithmA for the facility location problem, along with a cost-
sharesξ that are3-uni-strict w.r.t.A. Hence, there is a 6-approximation forInd(FACILITY LOCATION).

Proof: The proof closely follows that of Theorem 5.1 given in Appendix A, which the reader is urged to
peruse. Here, we will be concerned with the special case of the singleton setT = {j}.
Consider the runA(S ∪ {j}), and letp be the primary facility ofj in this run. Here is the augmentation
procedureAugA: if p is open in the runA(S), it simply assignsj to p. If p is closed, it has two options: if
p is {j}-heavy, it opensp and assignsj to it. Otherwise, it assignsj to the closest facility opened inA(S).

We claim that the augmentation cost is at most3ξ(S ∪ {j}, j). Indeed, if we decide to openj’s primary
facility p, ξ(S ∪ {j}, j) can pay for ab-fraction of the facility cost ofp plus assignment cost ofj. If not,

Claim A.1 implies thattp(S) ≤ tp(S ∪{j}) |Cp|
|Cp∩S| −

c(j,p)
|Cp∩S| . We know that there is an open facilityr within

distance2 tp(S) from p, and so reroutej to r. The connection cost in this case is at most

c(j, p) + 2
(
tp(S ∪ {j})

|Cp|
|Cp ∩ S|

− c(j, p)
|Cp ∩ S|

)
which is at most3 max(c(j, p), tp(S ∪ {j})) = 3 ξ(S ∪ {j}, j). Since we need to minimizemax{1/b, 3},
the best value isb = 1/3, finishing the proof.

B.2 Vertex Cover: Independent Decisions

As discussed in Section 5.2, to obtain an approximation algorithm forStoc(VERTEX COVER), it is enough
to consider the relaxed version of the problem, where we are allowed to make arbitrary paymentsp1 and
p2 to vertices in the two stages, with the vertexv being bought ifp1(v) + p2(v)/σ ≥ cv. As mentioned
there, results for this relaxed problem can be easily transferred back to obtain an algorithm in the standard
model: this is done by choosing a vertex with probabilityp1(v)/cv in the first stage, and then picking it in
the second stage ifp1(v) + p2(v)/σ ≥ cv and it was not already picked. Using this idea, we can now prove
the following theorem:

Theorem B.1 There is a2-approximation algorithmA for relaxed vertex cover that admits a1-uni-strict
cost sharing functionξ.

Proof: The algorithmA, as well as the cost sharesξ, are the same as in Section 5.2. To augment a solution
A(S) on the addition of the edgee = {u, v}, the augmentation procedureAugA opens the endpoint whose
reduced cost is less. I.e., if the payments inA(S) are denoted byp, we payδ = min(cu − p(u), cv − p(v))
to the vertex from{u, v} that achieves this minimum and open it. Proving strictness is now equivalent to
proving thatδ ≤ ξ(S ∪ {e}, e).
Indeed, consider the runsA(S) andA(S ∪ {e}). Both runs behave identically till some endpoint ofe, say
u, goes tight in the latter run. At that point, the payment made by other edges tou in A(S ∪ {e}) is exactly
cu − ξ(S ∪ {e}, e). Since the two runs were identical till now,u has received this payment inA(S) as well,
and hencep(u) ≥ cu − ξ(S ∪ {e}, e). Hence,ξ(S ∪ {e}, e) ≥ cu − p(u) ≥ δ, proving the theorem.

16


