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Abstract

Several combinatorial optimization problems choose elements to minimize the total cost of constructing
a feasible solution that satisfies requirements of clients. For example, imth&eR TREE problem,

edges must be chosen to connect terminals (clients);BERT¥X COVER, vertices must be chosen to
cover edges (clients); indEILITY LOCATION, facilities must be chosen and demand vertices (clients)
connected to these chosen facilities.

We consider a stochastic version of such a problem where the solution is constructed in two stages: Be-
fore the actual requirements materialize, we can choose elemerfissirstage. The actual requirements

are then revealed, drawn from a pre-specified probability distributjdhereupon, some more elements

may be chosen to obtain a feasible solution for the actual requirements. However, sSedbigi(re-

course) stage, choosing an element is costlier by a factorofl. The goal is to minimize the first stage

cost plus the expected second stage cost.

We give a general yet simple technique to adapt approximation algorithms for several deterministic
problems to their stochastic versions via the following method.

e First stage:Draw o independent sets of clients from the distributioand apply the approximation
algorithm to construct a feasible solution for the union of these sets.

e Second stageSince the actual requirements have now been revealed, augment the first-stage so-
lution to be feasible for these requirements.

We use this framework to derive constant factor approximations for stochastic versiorsROEX
COVER, STEINER TREE and UNCAPACITATED FACILITY LOCATION for arbitrary distributionsr in

one fell swoop. For special (product) distributions, we obtain additional and improved results. Our
technigues adapt and use the notion of strict cost-shares introduced in [5].
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1 Introduction

Infrastructure planning problems involve making decisions under uncertainty about future requirements;
while more effective decisions can be made after the actual set of clients have materialized, the decision-
making costs are inflated if deferred until then. The following simple two-stage model captures this tradeoff
effectively. Future requirements are uncertain, but are assumed to be drawn from a known probability distri-
bution (e.g., from demand forecasts, industry outlooks). In light of this informatioanacipatorypart of

the solution may be constructed in a first-stage at the current costs. Subsequently, the requirements facing
the planner materialize in the form of a client set (drawn from the distribution), and the first-stage solu-
tion must beaugmentedo satisfy the revealed requirements. The elements chosen in this second stage are
costlier than when chosen earlier, reflecting the need for careful (first-stage) planning. Given the uncertainty
of the requirements, the traditional minimum-cost goal may be adapted to minimize theximatedost

of the solution.

As an example, consider ther@CHASTIC STEINER TREEproblem that specifies an inflation parameter

and a probability distributiomr on the set of terminal nodes (which are clients) that have to be connected to
the root in a given rooted discrete metric space. A subset of ddgesy be bought by paying the original
lengths in the first stage. Once the actual set of termifials revealed, we must then buy the recourse
edgesEs at o times their lengths so théft is connected to the root by edgeshig U Es. The objective

is to minimizec(Ey) + E[o ¢(Eg)]. Here the expectation is over the randomness in the set of terminals
revealed.

The framework is that ofwo-stage stochastic optimization with recouf$8, 12, 23] which may be para-
phrased as “On Monday, we only know the input distribution on the clients, and we can buy some resources.
On Tuesday, the client set is now completely specified, but things are now more expensive (in our case, by
a factoro); we mustbuy any additional resources needed to get a feasible solution to the instance.”

Following this framework, in SOCHASTICVERTEX COVER, the clients are edges to be covered, and we are
given a probability distribution over sets of edges that will arrive; vertices becotimes more expensive

after these edges are revealed. THOSHASTIC FACILITY LOCATION problem on a metric space contain-

ing clients and facilities with opening costs defines a probability distribution over the set of clients that will
require connection to open facilities. Opening facilities becom@imes costlier in the second stage. The
objective, in addition to expected cost of opening facilities, also includes expected connection costs of the
revealed clients to their closest open facilities.

Our Results: In this paper, we give a simple yet general framework to translate approximation algo-
rithms for deterministic optimization problemimito approximation algorithms for corresponding stochastic
versions with second-stage inflation parameterGiven ana-approximation algorithm for the classical
problem, one can use it in the following framework:

1. Boosted SamplingSamples times from the distributiomr to get sets of client®, ..., D,.
2. Building First Stage SolutionBuild an«-approximate solution for the clienf3 = U; D;.

3. Building Recourse: When actual future in the form of a sgtof clients appears (with probability
7(S)), augment the solution of Step 2 to a feasible solutiorsfor

Note thatwe do not need to know the distributiarexplicitly; it could be a black-box from which we can
draw samples. (In practice, these samples could be drawn from market predictions, or from Monte-Carlo
simulations.) Thus we can sidestep the often-lethal problem of handling an exponential number of scenarios.

While the approximation algorithm solves the deterministic counterpart of the problem as opposestactibstione, there
is no requirement for this algorithm itself to be deterministic, e.g., randomized approximation algorithms can just as well be used
in our framework.



Problem Non-Stoc. Approximation | Strictness Stochastic Approximation
Ratio« I} General Distrib.\ Indep. decisions
Steiner Tree | 1.55 (Robins & Zelikovsky) 2 3.55 3.55
Vertex Cover 2 (Primal-dual) 6 8 3
Facility Location 3 (Mettu-Plaxton) 5.45 8.45 6
Steiner Network 4 (Gupta et al.) 4t - 8

Figure 1.1:Result Summary*Weaker strictness that gives approximations only in the independent decisions model.

Informal Main Result 1.1  If the «-approximation algorithm4 satisfies some technical properties (the
problem issub-additive and.4 admits aj3-strict cost-sharingfunctior?), then the above framework yields
ana + ( approximation for the stochastic version of the problem.

The framework is laid out in Section 2 and the formal result is Theorem 3.1. Using this framework, we show
that stochastic variants offBINER TREE, FACILITY LOCATION, and VERTEX COVER have constant-factor
approximation algorithms; the details are in Sections 4-5. The approximation aeding strictness of the
corresponding cost-shareés and the resulting guarantees for the stochastic variants are summarized in
Figure 1.1.

We also consider the special caseindependent decisionsn this, each clientj has a probabilityr;

of arrival independenof other clients, and the probability(S) of the setS materializing is given by
[Lesm Hj¢s(1 — m;). For this model, we can also give a 8-approximation for the stochastic version
of the STEINER FOREST problem and improve the approximation ratios of the corresponding versions of
VERTEX COVER and FACILITY LOCATION to 3 and 6 respectively.

While a natural approach to utilizing an approximation algorithm for a deterministic problem is to set the
client requirements at their expected value according twe note that this approach cannot yield bounded
approximation ratios even in simple examples. Rather, using the full power of sampling in building the first
stage solution gives a provably good solution as we demonstrate.

Related Work:  The study of stochastic optimization [2, 10] dates back to the work of Dantzig [3] and
Beale [1] in 1955; these papers defined the notiorst@thastic linear programmingStochastic LPs have

been very widely studied since, and several gradient-based and decomposition-based approaches are known
for two-stage versions of stochastic linear programming. On the other hand, only moderate progress has
been reported for stochastic integer (and mixed-integer) programming in both theoretical and computational
domains; see [23, 13] for details.

While stochastic scheduling problems have been studied extensively in the literature [19], the papers often
try to identify cases where some standard scheduling policies yield optimal results, or the results hold
for some special distributions (e.g., where job sizes are exponentially distributed), or focus on problems
for which the deterministic versions are polynomial-time solvable. There are, of course, exceptions; see,
e.g., [14, 4, 16, 24].

Very recently, there has been a surge of interest in stochastic versions of NP-hard problems, with papers
on the topic by Ravi and Sinha [21], and independently, by Immorlica et al. [7]. Both these works look at
versions of our model with some restrictions on the distributipwhile we considearbitrary distributions

m. In particular, they consider the following cases.

2These terms will soon be defined, in Definitions 2.1 and 2.2 respectively.



e thescenario modelwhere the distribution has its support on a familf of possible subsets explicitly
given as part of the input (and hence the algorithms are allowed to taketing.F|, n)), and

e the independent decisionsodel, where each elemepthas an associated probability, and the
probability of a setr(S) = [[;cq7; Hj¢3(1 — 7). (l.e., the sets are chosen by flipping a coin
independently for each element.)

Since our algorithms in Sections 4 and 5 work &vbitrary distributions our theorems hold in both the
above models as well. In particular, o8u55- and 3-approximations for stochasticT&INER TREE and
VERTEX COVER in the independent model improve upon thélog n)- and6.3-approximations in [7] re-
spectively.

One can define (as in [21]) other stochastic variants of the problems we define here: e.g., one can imagine
that there are multiple inflation parameters, and that instead of all things getting dearediffgrent parts

of the problem change in different ways. This work leaves open the question of whether our framework can
be extended to handle such multiple-parameter stochastic problems.

Stochastic Steiner Tree appears similar to rieybecasproblem of Karger and Minkoff [11]; however,

the latter is a single-stage optimization problem. Finally, though some of our techniques, including strict
cost-shares come from the work of [6, 5], the problems considered there are deterministic optimization
problems.

2 Model and Notation

We define an abstract combinatorial optimization problem that we will adapt to a stochastic setting. To
definell, a combinatorial optimization problem, 1&t be the universe oflients(or requirements), and let

X be the set oklementghat we can purchase. For ahy C X, let ¢(F') denote thecostof the element

setF. Given a set of client§ C U, let Sols(S) C 2% be the set ofeasible solutiongor the client setS.

The deterministic versiomet(II) specifies a fixed subset of clientsC U, and the objective is to return

F € Sols(S) with least cost. We denote yPT(S) a solution inSols(.S) of minimum cost.

Definition 2.1 We require all our problem&l to satisfysub-additivity This property states that § and S’
are two sets of clients with solutiods € Sols(S) and F’ € Sols(S), then we must have that U S’ is a
legal set of clients fofl, and (ii) F U F’ € Sols(S U S").

For example, the 8INER TREE problem on a graply = (V, E); the clientsU = V are the set of vertices,
and the elementX are edgedv of the graph. To ensure sub-additivity, we requirmat vertexr. The
cost of a set of edgeB’ C X is ¢(F) = ) . c.. Given a setS C V of terminals the solutions are
Sols(S) = {T"| T connects all vertices &f U {r}}.

Given any problenil, we can define a variant adapted from the framewotkotstage stochastic program-
ming with recourseas follows.

e There will betwo stagesof purchasing. Let > 1 be a giveninflation parameter every element
x € X costse, in the first stage but costsc,. in the second.

¢ In the first stagethe algorithm is only given access to an oracle that can draw from the probability
distributionr : 2V — [0, 1] in time poly(|U|). It can then construct first-stage solutioby buying a
set of elements, at costc(Fp).

¢ In the second stagene setS C U of clients isrealizedaccording to the distribution; i.e., the
probability thatS is realized ist(S). We assume that this sgtis conditionally independent of any
of our actions in the first stage. Now teecond-stage solutidialso called theecoursé consists of a
set of elementd’s purchased at the inflated cest(Fs). The union of the set8; U Fis must lie in



Sols(.9), i.e., the first and second stage solutions taken together give a feasible solution for the realized
set of clients.

The objective of an algorithm for the stochastic probgroc(II) is to select a seky, and then, given a set
S from the distributionr, to selectF's to minimize the expected cost of the solution:

c(Fo) + 2 gcpy m(S)oc(Fs). (2.1)

Hence the stochastic version of the Steiner Tree problem allows us to purchase somgyedgés first
stage, and once the set of realized cliesitS V' is revealed, to buy some more eddésso thatFy U Fg
contains a tree spannirfg

2.1 Cost sharing functions

We now define theost-shareshat are used crucially to bound the performance of our approximation algo-
rithms. Loosely, a cost-sharing function is one that divides the cost of a solkitierSols(.S) among the

client setS. Cost-sharing functions have long been used in the context of game-theory [8, 9, 17, 18, 25].
We will use (a slight variant of) a cost-sharing function defined recently by Gupta et al. [5]: in contrast to
previous cost-sharing mechanisms, this cost-sharing function is defined relative to a fixed (approximation)
algorithm for the problentl.

Definition 2.2 Given ana-approximation algorithr for the problentl, the function¢ : 2V x U — Rxg
is a3-strict cost-sharing functioif the following properties hold:
P1. Foraset C U,&(S,7) >0onlyforj e S.
P2. Foraset C U, > ;.s&(5,7) < ¢(OPT(S)). (fairess)
P3. IfS" = SWT, then) . +&(5,j) > (1/8)x cost ofaugmentinghe solutionA(S) to a solution in
Sols(S"). (strictness)
Formally, there must exist a polynomial time algoritiAmg 4, which can augmenti(S) to a solution
in Sols(S’) at cost at mosB 3 (5, 7).
Define the functiorg (S5, A) as the sund ;. , £(S, 7).
Remark 2.3 Note that one possible algorithAug 4 is obtained by just zeroing out the costs of elements
already picked inA(.S), and runningA again. In all cases we consider, there are natural algoritAms

for which this Aug 4 ensures strictness; however, in this paper, we choose algoritharsd Aug 4 that
complement each other and give better approximation ratios.

3 Approximation Algorithms via Cost Sharing

In this section, we give a general technique for converting an approximation algoifioma deterministic
problemDet(IT) into an approximation algorithm for the stochastic versSesc(II), provided the problem
11 satisfies sub-additivity, and there is a cost-sharing funditirat is strict w.r.t A.

3.1 Algorithm: Boosted Sampling

Given an instance of a stochastic problgtac(IT), the goal of the first stage is to buy the elements that will

be useful for the unknown client set realized in the second stage. Since our algorithm is not clairvoyant and
hence cannot see the future, the next best thing it can do is to sample from the distriuimhuse the
samples as an indication of what the future holds. This simple idea is the basis of our method.

A naive attempt would be to sample once from the distribution and use the set obtained as our prediction for
the future: however, this is not aggressive enough in that it ignores the fact that the future is more expensive

4



by a factor ofo. In fact, asc — oo, the optimal solution would be to assume that every cliertt iwill

be realized and must be accounted for in the first stage itself. Motivated by these concerns, the algorithm
for the problenftoc(II) is stated below, in terms of the-approximation algorithnd for II, which comes
equipped with g-strict cost-sharing function (and hence an associated augmentation algacigyh

We will assume in the rest of the paper thais an integer, and is bounded by sopgy(n). The former
assumption is essentially without loss of generality (since we can reundhe nearest integer, and lose

a small amount in the approximation factor); the latter assumption is stronger, but can be removed in some
cases (e.g., see Section 6).

Algorithm Boost-and-Sample(II)

1. Drawo independent sampld3;, Do, ..., D, of the realized clients by sampling from the distribu-
tionw. Let D = U; D;.
2. Using the algorithrd, construct amv-approximatdirst-stage solutiorfy € Sols(D).

3. If the client setS is realized in the second stage, use the augmenting algoAtigy from (P3) to
computeFs such thatFy U Fis € Sols(.5).

The following theorem is the main result of the paper:

Theorem 3.1 Consider a combinatorial optimization problerhthat is sub-additive, and lel be ana-
approximation algorithm for its deterministic versi@et(II) with a §-strict cost sharing function. Then
Boost-and-Sample(II) is an (a + )-approximation algorithm fo6toc(II).

We will prove Theorem 3.1 in the rest of the section. In the next section, we illustrate an application of this
theorem to obtain an approximation algorithm for thed§HASTIC STEINER TREE. In subsequent sections,

we go on to consider several other problems, and show that their approximation algorithms and attendant
cost sharing functions provide approximation algorithms for the corresponding stochastic versions.

Proof of Theorem 3.1: We will bound the expected costs of our first and second-stage solutions separately.
Let F be the first-stage component of the optimal solution, A&ide the second-stage component if the
set of realized clients iS. Hence

the optimal cost* = c(Fy) + > g m(S) o c(F3). (3.2)
Let us denoteZ; = c(Fy) andZ;: = ) ¢ m(S) o c(F3).

First stage: We claim that there is an eIemeﬁtA € Sols(D) such thalE[c(ﬁl)] < Z*. Indeed, define
Fy=FyUFp UFp, U...UF}, . The fact thatty € Sols(D) follows from sub-additivity of the problem
I1. Therefore,

Eple(F1)] < e(Fy) + Ep[X7, c(Fp,)]

c(F5) + 2271 Epy[e(Fp,)]
= c(Fg) + o Ygm(S)e(Fg) =27,

the penultimate equality following from the fact that each of ihés are chosen from the probability dis-
tribution 7. Since we have an-approximation algorithm foDet(II), our solutionF; satisfiesE|c(Fp)] <
ac(Fy), which in turn is at mostv Z*, bounding our first stage costs.

Second stagelLet S be the set of realized clients, and ¢ be the result of our algorithmug 4 such
that Fy U Fs € Sols(S). We need to bound our expected second stage cost, whick[i§ Fs)]. The
B-strictness of the cost sharing functignmplies thatc(Fs) < g&(D U S,S). In fact, we even have
c(Fs) <BE(DUS, S\ D).



Consider the following alternate probabilistic process to generate thé)setad the sefS: Draw o + 1
independent sampleﬁl, Do, ... D¢ from the distributionr. Now choose a random valu€ uniformly
from{1,2,...,0 + 1}, and setS’ DK andD = U#KD This process is |dent|cally distributed to the
original process, since we are picking the sets independentiyd betthe union ofll the D;’s, and letD_;

be the uniom#if)l of all the sets excedf)i.

Since the cost sharing function is fair (Property P2), we have
ST €D, Di\ D) < c(OPT(D)).
By our random choice of, we get
Ex[¢(D, D \D_g)] < 747¢(OPT(D))
Since the alternate process is probabilistically identical to the one we used tD giok S,

Ep,s[¢(DUS, S\ D)] = Eg  [6(D, Di \ D_g)]

< ]ﬁ)[c(OPT( )] (3.3)

1 E
_l’_

To complete the argument, we now show tEB{c(OPT(I@))] < =tl Z*_ To derive a feasible solution o,

defineF, = FUFL UFS U...UFZ . Again, the fact thaf, € SoIs(iﬁ)) follows from sub-additivity
1 2 o+1

of I1. Thus we have

Es[c(OPT(D))] < e(Fg) + X7 Ep [e(F )]

5+ (o + 1) 77
et (Zy + Z7) = 2 77, (3.4)

VANVAN

ThusEs|c(Fs)] < BEp s[€(DUS, S\ D)], which using (3.3) and (3.4), is bounded ByZ*. Finally, since
our second stage costds:(Fys), our expected second stage codtifo c¢(Fs)] < 5 Z*.

Putting together the first and second stage costs gives the bound claimed in the theorem. [

4 An lllustration: Stochastic Steiner Trees

In the classical deterministicTERINER TREE problem, we are given a set of verticés and the costs, on

edges satisfy the triangle inequality. (This assumption is without loss of generality, since we can take the
metric completion of the graph.) We assume there is a designadedertexr. Given a set of terminals

(i.e., the clients), the goal is to buy a set of edges (the elements) of minimum cost so that the terminals
and the root lie in a connected component. Note that the presence of the root ensures that the problem is
sub-additive.

Now let us consider the probleftoc(STEINER TREE): in the first stage, we can buy some edggsit cost

Zeepo ce. In the second stage, a set of termingls. V' is realized with probabilityr(S), after which we

may buy some more edges to connect the terminals to the root; however, these edges must be bought at cost
o c. each.

Theorem 4.1 There exists &-approximate algorithmA for STEINER TREE, along with a cost sharing
function¢ that is2-strict for A.



Proof: The algorithmA is simply Prim’s algorithm [20] for minimum spanning tree; given a set of terminals
S, itignores the vertices not ifiu{r}, and builds aMST on SU{r}. Itis well-known that the cost(.A(S))
of anyMST is within a factor of 2 of the cost of the optimal Steiner t@eT(.5).

Given anMST A(S) on the set of terminalS, let us imagine it to be rooted atfor j € .S, set{(.S, j) to be
halfthe cost of the edge connectintp its parent ind(.S), which we callj’s parental edgén A(S). Clearly,
if j ¢ S, then&(S, ) = 0. By definition, > ¢ £(S,7) = § ¢(A(S)); since theMST is a 2-approximation
to the Steiner tree problem, this implies tBat(A(S)) < ¢(OPT(S)), and hencg is fair.

Finally, to prove the2-strictness, consider a sét = S w 7. The augmenting procedureug 4 basically
zeroes out the edges df(S) and runs Prim’s algorithm; i.e., it takes the solutid(S), and for each € T,
adds the parental edge pin A(SUT'). We claim this gives a solution ols(SUT). (Indeed, each vertex
j € T'whose parentivd(SUT) was inS U {r} will now be connected tol(S), and hence to; the general
argument follows by a simple induction.) Since these edges2cost’ ;. {(S UT, j), we have proved the
theorem. [

Note that the argument for strictness only required that each vertex in the solltfhrwas connected to
the root, and hence the same cost shares ar@asiict for any heuristic for Steiner Tree. Now, using the
1.55-approximation for SEINER TREE [22] and Theorem 3.1, we obtain the following improved theorem:

Theorem 4.2 There is al .55-approximation algorithm foSTEINER TREE, along with a cost-sharing func-
tion ¢ that is2-strict for it. Hence, there is 8.55-approximation algorithm fo6toc(STEINER TREE).

This improves on thé&(log n)-approximation for thendependent decisiongrsion ofStoc(STEINER TREE)
given by Immorlica et al. [7].

5 Other Applications

This section will be devoted to looking at several other (deterministic) problénfier each problem, we
will give an a-approximation algorithmd and its accompanying-strict cost-share function. Our results
have been summarized in Figure 1.1; due to lack of space, the longer proofs appear in Appendix A.

5.1 Facility Location

An instance of BCILITY LOCATION is given by a set of facilitie” and a set of client§. The distances

c;; between any pair of points j from £ U S form a metric. Each facility has opening cosf,; the goal

is to open a subset of facilities’ to minimize the opening costs plus the sum of distances from each client
to its closest open facility:

Yoperr fp + Xjes U, FY).
The main result fo6toc(FACILITY LOCATION) is the following:

Theorem 5.1 The cost sharing functiog given by Rl and Tardos is5.45-strict for the 3-approximation
algorithm of Mettu and Plaxton. Hence, there i8.d5-approximation algorithm foStoc(FACILITY LoO-
CATION).

5.2 Vertex Cover

In the Vertex Cover problem, we are given a grapk- (V, E) with costse, on vertices. The clients are the
edges, and our goal is to choose a sub8atf the vertices so that each edgemveredi.e., at least one of
its adjacent vertices is chosen. In the stochastic version, we pfay picking a vertexv in the first phase,
ando ¢, for picking it in the second phase. We will prove the following theorem:



Theorem 5.2 There is a8-approximation algorithm foStoc(V ERTEX COVER).

Before we do this, let us define a version of the problem cdRethxed Stochastic Vertex Covdn the

relaxed version of the stochastic problem, we are allowed to make payments to a vertex in both stages,
with p!(v) andp?(v) being payments made toin the first and second stage respectively. A vertas

chosen if and only ifp!(v) + p*(v)/o > c,. Again, given a set of realized edgés the set of chosen
vertices must form a feasible vertex cover far The cost of our solution is just the sum of payments, i.e.

> vev P'(v) + p*(v), and the goal is again to minimize the expected cost.

Note that by requiring thap'(v) € {0,¢,} andp?(v) € {0,0¢,}, we get back to our usual stochastic
framework, and hence the relaxed problem allows us to make partial commitments to vertices in the first
stage. However, it turns out that we can convert any algorithfar the relaxed problem into an algorithm

A’ for the unrelaxed version with the same expected cost. Indegi:if is the amount of money placed

on vertexv by A in the first stage, the algorithtd’ picks the vertex in its first stage with probability
min{1, p*(v)/c,}. In the second stagel’ selects the vertex if v was selected by (that is,p} + p? /o >

¢y), and if A’ has not already selected it in the first stage. By linearity of expectations, the expected cost
incurred by A’ in each phase is at most the cost incurred4jyn that phase. Thus it suffices to give an
algorithm and a cost sharing function for relaxed vertex cover.

The Algorithm A: We use a standard primal-dual 2-approximation algorithfior vertex cover. LetS C
E be the set of edges in the instance. For each edge have a dual variablg, initially set to 0. We
simultaneously raise all dual variables at a uniform rate. A vartegcomegight when the duals of
edges adjacent to it can pay its cost, i.e. w@&é(v) Ye = ¢y. When a vertex becomes tight, we
freezeall edges adjacent to it, i.e., we stop raising their dual variables. We continue raising the dual
variables of all unfrozen edges, until all edges become frozen.

Output: The algorithm places paymentgv) = »_ s ve On each vertex € V. Since each edge
is adjacent to some tight vertex it has been paid, and hence bought outright; thus the solution is
feasible forS.

The Cost Shares: Define{ (S, e) = y.; since each edge pays both its endpoints, it holds}hat;, p(v) =
23 .cgYe. Furthermorepy | (S, e) is just the LP dual value, and hence at mosIT (S).

Clearly, the algorithn is a 2-approximation for the vertex cover problem. To prove Theorem 5.2, it suffices
to prove the strictness gffor .A.

Theorem 5.3 The cost share§ defined above are 6-strict with respect to the algoritdm

Proof: Let S andT be two disjoint sets of edges. To augment the solutidf) to handleT” as well, the
augmenting algorithmiug 4 looks at the (relaxed) payment functipn V' — R for the set of edges,
and runs the algorithni on the set of edgeB with the reduced costg, = ¢, — p(v). To prove strictness,
we need to compare this augmentation cost to the cost gkére 7, T'). To this end, we shall compare
several runs ofd on different related inputs.

e Run Ry: This is the run of4 with original costsz, on the setS U T'. Lety. be the duals produced.
Let us define paymenis (v) = 3° c5(,)ns Ye ANAPE (V) = 3 50,1 Ve TESPECTiVEly.

Note thatp® = pl - = pk + pk is exactly the payment function computed Hy Furthermore, this
is the run that computes the cost-shaggs U T, T').

e Runs Rg and Rr: The runRg is the run ofA on the set of edges, but with costs® = ¢ —pk (e,

reduced by the payments &fin R;). Similarly the runR7 is on the edge§’, with reduced costs

CT:C—p}q.



e Run Ry: ThisisA’s run on the edge sét, with original costs:, and hence corresponds to the actual
run of the first stage. Lej? be the duals ang? the payments computed.

e Run R3: This is on the edge sét, with reduced costs® = ¢ — p?; hence, this corresponds to the
augmentation step faF. Again,y> andp?® are the duals and the payments.

By the definition ofRg, the freezing time of all edgesc S in the two runsRg and R, is the same; hence
the dualy” is just the duay® restricted to the sef, andp} = p°. Similarly, the dual” from the runr”

is identical to the duay' restricted tal’, andp’}. = p’. We claim that, to prove the theorem, it suffices to
prove the following claim:

Claim 5.4 Zvevp?’(v) <3 e p%p(v).
Before we prove this claim, let us see how it proves Theorem 5.3. Note that cost of the augmentation run
Rs is exactlyy ", p*(v), while the cost shares

ESOTT) =Y =5 > phiv)

eeT veV

Hence{(S U T, T') can defray at least one-sixth of the cost of the R#n proving the theorem. [

Proof of Claim 5.4: The proof relies on the following Lipschitz-type property of the algoritdomimagine
the vertex costs to be vectorsii¥!, and suppose the costs change by an ame(inttheir L;-distance),
then the claim says that the payments do not change by more th&ormally,

Claim 5.5 (Lipschitz continuity) Consider two runs? and R of A with the same edge s&ton two differ-
ent cost vectors and¢, and letp and p be the two vectors of payments computed. If we deéfise that
(p—p) = (c—7) + A, then[|A[[; < [[c —¢]]x.

The proof of the Lipschitz condition is deferred to Appendix; but let us use it to complete this proof. First,
we use it to compare the ruig and Ro (both being defined on the edge $8t defineA; so that

PP —ph=c—(c—ph)+ A1 =pp+ Ay (5.5)

then Claim 5.5 implies thatA; ||, < ||pk 1. The second application of Claim 5.5 is to the rutysand Ry
(both on the edge s&); it implies that if A, is such that

P’ —pp = (c—p?) — (c—pg) + Ao = p§ — p* + Ay, (5.6)

then||Azly < [lps —p°
into (5.6), we get

1; this, by (5.5), is at mositph||1 + | A1]]1 < 2[|p¥||:. Furthermore, plugging (5.5)

p* —pp = —(pp + A1) + Ao,
Simplifying, this gives|p? |1 = |All1 + [[A2][1 < 3[|p7 1. u

6 Independent Decisions: Steiner Forest and Other Improvements

The independent decisiommodel was defined in Section 1 as the model when each clientU has a
probability 7; of requiring servicendependentlyf all other clients. For this special case of our model, we
show that a weaker version of strict cost-shares is sufficient to obtain algorithms for stochastic problems.
This allows us to obtain approximations for some more problems (e.g., T/@BN&R NETWORK), and

obtain stronger results for others (e.g., foERTEX COVER and FACILITY LOCATION) in the independent
decisions model.



Given a problemI, we uselnd(IT) to denote the stochastic extensionlbin this independent decisions
model. For this section, we will need the following weaker definition of strictness that holds only for
additions of asingleclient.

Definition 6.1 Given ana-approximation algorithnd for the problentl, the function¢ : 2V x U — Rxg
is ag-uni-strict cost-sharing functioif properties (P1), (P2) hold in conjunction with:
P3. If S = Sw{j}, then{(S’,j) > (1/83)x cost ofaugmentingthe solution.4(S) to a solution in
Sols(S). (uni-strictness)
Again, we need @oly-time algorithmAug 4 that does the augmentation with cost at most.s’, j).

6.1 The (Even Simpler) Algorithm Ind-Boost

Let us define the (yet simpler) algorithm for the independent case:
Algorithm Ind-Boost(II)

1. Choose a sdb by picking each elemente U with probability o 7; independently.
2. Using the algorithrnd, construct amv-approximate solutiody € Sols(D).

3. If the client setS is realized in the second stage, use the augmentation algotitigm of (P3') to
computeFs such thatFy U Fis € Sols(.5).

Note thatind-Boost(II) is much easier to implement, and can be done in polynomial time regardless of how
largeo is. Here is the version of the main Theorem 3.1 for the independent decisions model, the proof of
which appears in Appendix B:

Theorem 6.2 Consider a deterministic combinatorial optimization probl&nthat is sub-additive, and let
A be ana-approximation algorithm fofI with a S-uni-strict cost sharing function. Thénd-Boost(II) is
an (a + ()-approximation algorithm foind(II).

6.2 Steiner network

The Steiner network problem is a generalization of the Steiner tree problem, and is defined over an edge-
weighted graph. A client is now a pair(s;, t;) of vertices, and given a set of clients a feasible solution
consists of a set of edgds such that for eaclgs;, ;) € S, there is a path froms; to ¢; in F'. The prob-

lem is easily verified to be sub-additive. The following result gives us the claimed 8-approximation for
Ind(STEINER FOREST).

Theorem 6.3 ([5]) There is a 4-approximation algorithm for the Steiner network problem which admits a
4-uni-strict cost-sharing function.

6.3 Other Problems

Improved results may be obtained for other problems which have already been studied in Section 5; here are
some of the results we can obtain. (The proofs have been relegated to the Appendices.)

Theorem 6.4 There is a3-approximation algorithmA for the facility location problem, along with cost-
shares( that are3-uni-strict w.r.t. A. Hence, there is &-approximation foind(FACILITY LOCATION).

Theorem 6.5 There is a 2-approximation algorithmd for the relaxed Vertex Cover problem, and cost-
shares¢ that are 1-strict with respect tel, giving us a3-approximation forlnd(VERTEX COVER).

This improves on thé.3-approximation given folnd(VERTEX COVER) given by Immorlica et al. [7].
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A Proofs from Section 5

A.1 Facility Location: Strict Cost Shares

Theorem 5.1. The cost sharing functiof given by Rl and Tardos ish.45-strict for the3-approximation
algorithm of Mettu and Plaxton. Hence, there i8.d5-approximation algorithm foStoc(FACILITY Lo-
CATION).

Proof of Theorem 5.1: Let us briefly review the algorithm of Mettu and Plaxton, and the cost sharing
defined by Rl and Tardos [18]. Lef be a set of clients. For a facility, let B(p, 7) be a ball with center

p and radiusr. We define theopening time,,(S) of a facility p w.r.t. the set of clients' to be the unique
radiusr such that

fp = ZjGB(p,T)ﬂS (7_ - C(.77p)) (A7)
Let the setC},(S) = {j € S| c(4,p) < t,(S)} be called theontributing sefor p. Note that if we charge
each client inC), the amount,,(.S), we exactly recover the facility cost pfplus the cost of assigning clients

in C,, to p. We drop the set of clients from the notation, and gaiystead oft,,(S) when there is no danger
of confusion. The cost shares of clients are then defined as

5(5,]) = géll{—'l{ maX(tP(S>7C(Jap)) } (AB)
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Intuitively, the contribution of usej towards the facilityp should be eithet,, if j € C,, or the connection
coste(j, p) if j ¢ Cp. The client can (and does) choose to contribute only to the least demanding facility;
the facility p for which this minimum is attained is called tipeimary facility of j (in the run onS). A
facility p is said to bewell-fundedif £(S, j) > t,(S5)/3 forall j € C,,.

The algorithmA4 we use is a slight modification of the algorithm of Mettu and Plaxton; given a set of clients
S, A considers all the well-funded facilitigsin order of increasing opening timg(.S). For each such
(well-funded) facilityp, the algorithm declares d@penif there are no previously opened facilities within a
radius2¢,(.S) aroundp.

For each open facility, .4 assigns all clients id, to p. (By construction, the setsS,, for open facilitiesp
are disjoint.) It then assigns each client not lying in @hyto its closest open facility. The following facts
can be derived from the arguments in [15] and [18]:

1. For each open facility, the cost share§(.S, C,,) of the clients inC;, pay1/3 of f, plus their assign-
ment cost. (See [18, Lemma 2.4] and the preceding discussion therein.)

2. For each facility, there exists avell-fundedacility ¢ (possiblyp = ¢) such that:(p, q) < 2 (¢, —1t,).
(Note that it must be that, < ¢,.)

3. For each facilityp, there exists ampenfacility ¢ within a distance oRt¢,. Hence, ifp is a primary
facility for some clientj, thenc(j, q) < 3£(S,j).

To show strictness af, we must specify the algorithAwug 4 which augments a solutiad(S) to cover a set
of new clientsI" with SNT = §. In the following, letC},, = C,,(SUT') denote the contributor set of a facility
pinthe runA(S U T). Similarly, when we say a facility is well-funded, we mean thatis well-funded in
the runA(S U T). Afacility p is calledT-heavyif |C, N T'| > b|C,| (Where the parametére (0, 1) will
be specified later), and &-light otherwise. Note that &-light facility must have/C, N'S| > (1 — b)|C,|.

Claim A.1 If pis aT-light facility, then
tP(S) < ﬁtp(SUT) - m Zjecme C(j,p).
Proof: Consider the set, = {j € SUT | ¢(4,p) < t,}; by the definition (A.7),

Jo+ Z c(4,p) = |Cpl tp(SUT)

7€l

Sincep is T-light, |C, 0S| > (1 —b) |C,|.

fot Y in) = IGILEUT) — Y e < 160 PEED S )

JEC,NS jec,nT jec,NT

which means facility was already paid for at timg,(SUT) /(1 —b) = >_ cc, nr (4, )/ (|Cp N S]) inthe
run A(S), proving the claim. |

Augmentation procedure Aug 4: To augmentA(S) to cover? as well, we pick a subset of well-funded
T-heavy facilities to open greedily in a manner very similar to thad {5 UT"): we consider all well-funded
T-heavy facilities in order of increasing(S UT'), and open a facility if there is no facilityg already open
within a radius2¢,(S U T') of p. (Note thaty may have been opened in eith4(.S), or in the augmenting
phase beforp was considered.) We never open amight or non-well-funded facilities. At the end of this
procedure, for a client € C, whosep is open, we assiginto p; else we assigp to the closest open facility.
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Claim A.2 The augmentation cost for a sEtis at most(3 + v/6) > jer§(SUT,j).

Proof: Firstly, consider any well-funde@-heavy facilityp. Sincep is T-heavy, the shares of clients in
C, N T can pay for ab/3 fraction of the facility cost plus their own connection costs. Hence we must
consider clientg whose primary facilityp is either not well-funded or ndf-heavy. We claim that in both
cases there must be a facility closeptopened either byA(S), or in the augmenting phase. Note that by
the properties of the algorithd, there is a well-funded facility such thatt,(S U T) < ¢,(SUT) and
c(prq) S2((SUT) —tg(SUT)).

Now, if ¢ is T-heavy, by the properties of our augmentation procedure, there must a fatiiaywas open

in the augmentation step such thgg, ) < 2¢,(S U T). On the other hand, if is T-light, we have that
tqe(S) < t,(SUT)/(1 —0b) by Claim A.1 above. Thus, in the ruA(S), there must be an open facility
such that(q, ) < 2t,(S) < (2/(1 = b)) t,(SUT).

In both cases, the assignment cost of the cljastbounded by
c(j,r) < c(4,p) + c(p, q) + clq,7)
<ec(d,p) +2(t,(SUT) —t,(SUT)) 4+ (2/(1 = b)) t,(SUT)
< c(j,p) +(2/(1=0))tp(SUT)
<(1+2/(1-b)ESUT,5).
To balance3/b and(1 +2/(1 — b)), we can now pick = 3 — /6 to get the desired result.
Sincef = 3 + V6 < 5.45, this proves the theorem. [ ]

A.2 Vertex Cover: Lipschitz Continuity

Claim 5.5. Consider two runs? and R of A with the same edge sston two different cost vectorsand
¢, and letp andp be the two vectors of payments computed. If we d&fige that(p — p) = (¢ — ¢) + A,
then[|Af|; < fle —¢]l.

Proof of Claim 5.5: Consider the two run® and R of .4 on the two cost vectorsand¢ being executed in
parallel. Letp,(v) andp;(v) be the payments towards verteaccumulated in the respective runs until time
t. We claim that the quantit®(t) = >° .y [(c(v) — pi(v)) — (€(v) — pr(v))| never increases as a function
of ¢. Since®(0) = ||c — ¢]|l1 and®(c0) = ||(p — p) — (¢ — ¢)||1 = ||Al|1, this will prove Claim 5.5.

Consider any edge = {u, v} at timet in both runs. Ife is not frozen in either run, it causes bgtfu) and
p(u) toincrease at unit rate; the same arguments hold.f8inceu is not tight in either rung(u) —p(u) > 0
andc(u) — pr(u) > 0, and edge: contributes to both terms equally; hence it is currently contributing at

rate zero to the difference:(u) — pi(u)) — (c(u) — pe(u)). If e is frozen in both runs, its current rate of
contribution is zero as well.

Now suppose that is frozen in only one of the runs; say, it is frozen in the @rbut not in the runk

(the other case is symmetric). That means one of its endpoints must be tighiviho.g., assume the tight
vertex isu. Thusc(u) — p¢(u) = 0. In the runR, the contribution of: makes the ternd(u) — p;(u) =
|(c(u) — pe(u)) — (c(u) — pe(u))| decreaseat unit rate. However, its contribution towardsand hence
towards the ternic(v) — pi(v) — (¢(v) — pe(v))| increases at a rate of at most 1 in the worst case. Hence,
the quantity® never increases. [

B Proofs from Section 6

Theorem 6.2. Consider a deterministic combinatorial optimization problHrthat is sub-additive, and let
A be ana-approximation algorithm foiI with a 5-uni-strict cost sharing function. Thdnd-Boost(I1) is
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an (a + (3)-approximation algorithm foind(II).

Proof of Theorem 6.2: While it is possible to prove this result closely following the lines of that for
Theorem 3.1, we give a slightly different proof here.

First, some notation: let(S) = [ ;¢ 7 [[;25(1 — ;). Let Iy be the first-stage component of the optimal
solution, andF'$ be the second-stage component if the set of realized cliestsand letZ* be defined as
in Equation (3.2).

First stage: Again, we claim that there ig} € Sols(D) such thatE[c(F})] < Z*; the actual proof is
by a slightly different “coupling” argument. As a thought experiment, throw elemenf3 bfto o sets
Dy, ..., D, independently and uniformly at random. Now, sirgavas picked by samplinyy at rateo 7,
eachD; is distributed as though we sampled elemgrt U with probability7;. (The contents of different
D;’s are correlated negatively, but we will only use linearity of expectations.)

Define F; = F U Fp UFp UL UFp . Again, F; € Sols(D) from sub-additivity, and

g

Eple(F1)] < e(Fy) +Ep[> | e(Fp)] = c(Fg)+ > Ep,[e(Fp,)]
; i=1

=1
=c(Fg)+o0 Y n(S)e(Fs) =2
S

Now an«-approximation algorithm foPet(II) gives us a solutiory with E[c(Fy)] < ac(F)) < a Z*,
bounding our first stage costs.

Second stagelet S be the set of realized clients, and fé§ be the result of our algorithrAug 4 such that
Fy U Fs € Sols(S). We need to bound our expected second stage cost, which([ig Fs)], which we will
bound by the expectditst stagecost.

Define¢; for an elemenj € U to be the random variablg; = £(D, j), andy; to be the cost of augmenting
a solution forD to includej as well, in the case thgt € S. (Hence, ifj ¢ S, theny; = 0.) Let

Xj=ov; — B¢;.
Now let us condition on all the first-stage coin-tosgem U except forj’s toss. LetDy be all the vertices

picked according t@ (which does not includg), and consider the expected valueXof over the first-stage
toss forj, and the tosses of the realized Set

Epsloy;| T] =0 xm x(1—o0m;) (costof augmentingd(D7) to includej), and (B.9)
ED[ﬁ(ﬁj‘T]:BX o T Xé(D’]’Hﬂ{j},j) (BlO)

By uni-strictness of4, (B.10) is at least (B.9), and hen&, s[X;| 7 | < 0. Since this holds for aff’,
Ep,s[X;] < 0 unconditionally, and thus

Ep,s[¥)] < §ED[¢>J']- (B.11)
Note that Properties (P1) and (P2) of the cost shaiewply that

> Epnle;l =Y Eplé(D,5)] =Ep[>_ &(D, )] < Ep[c(OPT(D))] < Z*. (B.12)

jeu jeu jeD

FurthermoreEp s[Fs] < Zj Ep,s[v;] by sub-additivity; using this, (B.11) and (B.12), we get that ex-
pected second-stage cogt[c(Fs)] < ( Z*, proving the result. [ ]
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B.1 Facility Location: Independent Decisions

Theorem 6.4. There is a3-approximation algorithm4 for the facility location problem, along with a cost-
shares¢ that are3-uni-strict w.r.t. A. Hence, there is a 6-approximation ford(FACILITY LOCATION).

Proof: The proof closely follows that of Theorem 5.1 given in Appendix A, which the reader is urged to
peruse. Here, we will be concerned with the special case of the singletén-sdt }.

Consider the rund(S U {j}), and letp be the primary facility of; in this run. Here is the augmentation
procedureAug 4: if p is open in the rund(.S), it simply assigng to p. If p is closed, it has two options: if
pis {j}-heavy, it openg and assigng to it. Otherwise, it assignsto the closest facility opened iA(.5).
We claim that the augmentation cost is at m&&tS U {j}, j). Indeed, if we decide to opefis primary
facility p, £(S U {j}, ) can pay for a&-fraction of the facility cost op plus assignment cost gf If not,
Claim A.1 implies that, (S) < ¢,(SU{j}) |c|fg|5\ — |é(,ff%|- We know that there is an open facilitywithin
distance2 ,,(S) from p, and so reroutg to . The connection cost in this case is at most

‘CP‘ _ C(j7p)
C,n S| G S

cmm+20wmnﬁ>

which is at mos8 max(c(j, p), t,(SU{j})) = 3&(SU{j}, ). Since we need to minimiz@ax{1/b, 3},
the best value i8 = 1/3, finishing the proof. [ ]

B.2 \Vertex Cover: Independent Decisions

As discussed in Section 5.2, to obtain an approximation algorithréttar(\VERTEX COVER), it is enough

to consider the relaxed version of the problem, where we are allowed to make arbitrary payhamds

p? to vertices in the two stages, with the vertebeing bought ifp!(v) + p?(v)/o > ¢,. As mentioned

there, results for this relaxed problem can be easily transferred back to obtain an algorithm in the standard
model: this is done by choosing a vertex with probabitityv)/c, in the first stage, and then picking it in

the second stage it (v) + p?(v)/o > ¢, and it was not already picked. Using this idea, we can now prove

the following theorem:

Theorem B.1 There is a2-approximation algorithmA for relaxed vertex cover that admitslauni-strict
cost sharing functioq.

Proof: The algorithmA, as well as the cost shargsare the same as in Section 5.2. To augment a solution
A(S) on the addition of the edge= {u, v}, the augmentation procedufeg 4, opens the endpoint whose
reduced cost is less. |l.e., if the paymentsdift) are denoted by, we payé = min(c, — p(u), ¢, —p(v))

to the vertex from{w, v} that achieves this minimum and open it. Proving strictness is now equivalent to
proving thaty < £(S U {e}, e).

Indeed, consider the run4(.S) and. A(S U {e}). Both runs behave identically till some endpointeptay
u, goes tight in the latter run. At that point, the payment made by other edgestd(S U {e}) is exactly
cu — &(SU{e}, e). Since the two runs were identical till nowhas received this payment.iy(S) as well,
and hence(u) > ¢, — £(S U {e},e). Henceg(S U {e}, e) > ¢, — p(u) > 4, proving the theorem. m
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