Approximation Algorithms for Degree-Constrained

Minimum-Cost Network-Design Problems*

R. Ravi ! MADHAV V. MARATHE 2 S.S. Rv?

DANIEL J. ROSENKRANTZ? HARRY B. HUNT III 3

Abstract

We study network-design problems with two different desiodpjectives: the total cost of
the edges and nodes in the network and the maximum degreey ofoae in the network. A
prototypical example is the degree-constrained nodeweibSteiner tree problem: We are given
an undirected grapli/(V, E), with a non-negative integral functiaf that specifies an upper
boundd(v) on the degree of each vertexc V' in the Steiner tree to be constructed, nonnegative
costs on the nodes, and a subsek ofodes callederminals The goal is to construct a Steiner
treeT" containing all the terminals such that the degree of any madd” is at most the specified
upper bound/(v) and the total cost of the nodesThis minimum. Our main result is a bicriteria
approximation algorithm whose output is approximate imeof both the degree and cost criteria
— the degree of any node € V in the output Steiner tree i9(d(v) log k) and the cost of the
tree isO(log k) times that of a minimum-cost Steiner tree that obeys theegegoundd(v)
for each node. Our result extends to the more general problem of constigicine-connected
networks such as generalized Steiner forests. We alsodmmisie special case in which the
edge costs obey the triangle inequality and present singgeoaimation algorithms with better
performance guarantees.

AMS 1980 Subject ClassificatioB8R10, 68Q25

Keywords:Approximation algorithms, Network design, Bicriteria ptems.

1Graduate School of Industrial Administration, Carnegiellbte University, Pittsburgh, PA 15213-3890. Email:
ravi @nu. edu. Research supported by a NSF CAREER grant 96-25297.

2p.0. Box 1663, MS B265, Los Alamos National Laboratory, Léamos NM 87545. Emailrar at he@ anl . gov.
The work is supported by the Department of Energy under @ohW-7405-ENG-36.

Department of Computer Science, University at Albany-SUM¥bany, NY 12222. E-mail: {ravi, djr,
hunt }@s. al bany. edu. Supported by NSF Grants CCR 89-03319, CCR 90-06396, CCB66841 and CCR 97-
34936.

4A preliminary version of this paper appeared as [25].

1 Introduction and Motivation

Several problems in the design of communication networkslEa modeled as finding a network
obeying certain connectivity specifications. For instarnice network may be required to connect all
the nodes in the graph (a spanning tree problem), a speaifisgsof the nodes in the graph (a Steiner
tree problem) or to only interconnect a set of pairs of no@egeneralized Steiner forest problem).
The goal in such network-design problems can usually beesspd as minimizing some measure
of cost associated with the network. Several examples df sast measures have been considered
in the literature. For example, if we associate costs witlpescand nodes that can be used to build
the network, then we may seek a network such that the costrstru@tion is minimized. This is
the minimum-cost network desigogroblem and has been well studied. A notion of cost that risflec
the vulnerability of the network to single point failuresdatihe amount of load at a given point in
the network is the maximum degree of any node in the networkirMzing this cost gives rise to
the minimum-degree network desigmoblem, which has also been well studied. Another common
cost measure is the maximum cost of any edge in the networik. giial falls under the category of
bottleneck problemthat have also received considerable attention.

Finding a network of sufficient generality and of minimum tcagth respect to any one of these
measures is ofteNP-hard [13]. Hence much of the work mentioned above focusegproximation
algorithms for these problems. However, in applicatiora #rise in real-world situations, it is often
the case that the network design problem involves the maatitin of more than one of these cost
measures simultaneously [9, 16].

In this paper, we concentrate on two objectives: (i) the ele@f the network and (ii) the total cost
of the network. Typically, our goal will be to find networks wfinimum cost subject to degree con-
straints. For example, consider the following problem: éaian undirected grap = (V, E') with
nonnegative costs on its edges and an intéger2, find a spanning tree in which the maximum de-
gree of any node is at mostand the total cost is a minimum. Sudbgree-constrained minimum-cost
network problems arise in diverse areas such as VLSI design, vetodling and communication
networks. For example, Deo and Hakimi [8] considered thabl@m in the context of back-plane
wiring among pins, where no more than a fixed number of wiresbeawrapped around any pin on
the wiring panel. In communication literature, this prables commonly known as thieleprocessing
design problenor as themultidrop terminal layout problerf2]. Here, we investigate the complexity
and approximability of a number of such degree-constraimégdmum-cost network-design prob-
lems. The main focus of our work is to develop a general teglaior constructing near-optimal
solutions to such problems.

The remainder of the paper is organized as follows. Sect@mmgains basic definitions and formal
statements of the problems considered in this paper. Itdigmsses a framework for evaluating
approximation algorithms. Section 3 summarizes the resulthe paper. Section 4 discusses related
work. In Section 5 we present our algorithm for degree-bedndode-weighted networks. In that
section we also discuss an extension of the algorithm toor&Bwrepresented using proper functions.
In Section 6, we outline the algorithms with improved perfance and running times for constructing
networks when restricted to input graphs obeying the ti@aigequality. Section 7 contains negative

results on the approximabilities of some problems. Findlgction 8 discusses some implications
and directions for future research.

2 Basic Definitions and Problem Formulations

Following the framework developed in [21], a generic bani& network design problem, denoted by
(A, B, S), is defined by identifying two minimization objectives, déed byA andB, from a set of
possible objectives, and specifying a membership reqentim a class of subgraphs, denotedSy
The problem specifies a budget value on the first objecfyeuider one cost function, and the goal
is to find a network having minimum possible value for the secobjective B) under another cost
function, such that this network is within the budget on thet fhbjective. The solution network must
belong to the subgraph-class

The two objectives we consider in this paper are: (i) degféleonetwork and (ii) the cost of the
network. We consider two extensions of these objectives. fifbt extension deals with the budgeted
objective, namely degree, and the second deals with themizaiion objective, namely the total cost.
The two versions of degree constraints that we consider(gneon-uniform degree (denoted by N-
DeGREE and (ii) uniform degree (denoted by UEBREE. In the non-uniform degreeversion, a
possibly different degree bounifv)(> 2) is specified for each vertax Theuniform degreesersion
is a special case whet&w € V,d(v) = b for some integeb; i.e., all the vertices have the same
degree constraint. Thus, for the problems considered snpitaperA € {U-DEGREE, N-DEGREE}.
For the minimization objective, we focus on the total costhaf network. We assume we are given
nonnegative costs on the edges and/or nodes of the inputeateti graph. Théotal costis given
by the sum of the costs of all the edges (denoted byd&AL-CosT) or all the nodes (denoted by
N-TOTAL-CosT) in the network. ThusB € {N-ToTAL-CosT, E-TOTAL-CosT}. Finally, the class
of subgraphsS studied here includesPANNING TREES STEINER TREES GENERALIZED STEINER
TREESand networks specified using proper 0-1 functions introdting14].

Using the above notation, the problem of finding a minimurat&panning tree in which each
node has degree at madss denoted by (U-BGREE E-TOTAL COST, SPANNING TREE). Similarly,
given a node weighted grafgh(V, E'), an integer functior specifying the upper bound on the degree
of each node and a set of termindlsthe (N-DEGREE N-TOTAL-COST, STEINER TREE) problem
is to find a minimum-cost tre@ spanning the nodes ifi such that the nodes il obey the degree
constraints. Problems in which the desired network is argdimed Steiner forest or a graph specified
by a proper 0-1 function can be formulated along similardine

Some of the problems considered in this paper also involgenthximum cost of any edge in
the network, i.e., the bottleneck cost, as a minimizatiojeative. We use E-BTTLENECK-COST to
denote this objective. For the rest of the paper, we use the'i(v)-bounded network” to mean a
network in which the degree of nodes at mostd(v) for all v.

Most of the degree-constrained network-design problemsidered in this paper afé¢P-hard.

In fact, for several problems (e.g. (UHBREE E-TOTAL COST, SPANNING TREE)) we show
(Theorem 7.1) that it iNP-hard to find a solution that is within any factor of the optinohjec-
tive value, if the solution is required to satisfy the budgehstraint; alternatively, if the solution

must achieve exactly the minimum value of the total cost cihbje, then it isNP-hard to find one
which satisfies the budget within any given factor. Motidaby these hardness results for unicrite-
rion approximations, we focus on finding bicriteria appmations, that is, efficient algorithms that
guarantee a solution which is approximate in terms of baghbtidget and the objective function.

An («, B) approximation algorithm for a generic bicriteria probléd, B, S) is a polynomial-
time algorithm that produces a solution in which the objectralue forA is at mosta times the
budget and the cost of the solution with respeciBtds at mosts times the value of an optimal
solution with respect t@B that respects the budget constraint with respecAtoOur algorithms
provide bicriteria approximations in the sense describdsal/a for a wide variety of one-connected
network-design problems.

3 Summary of Results

3.1 Hardness Results

Our lower bound results on finding near-optimal solutiortdude the following. Additional hardness
results are discussed in Section 7.

1. For general graphs, unleBs= NP, for anyp > 1, there is no polynomial timél, p) approxi-
mation algorithm for the (U-BGREE E-TOTAL COST, SPANNING TREE) problem.

2. For general graphs, unleBs= NP, for anyp > 1, there is no polynomial timép, 1) approxi-
mation algorithm for the problem (U-B5REE E-TOTAL-COST, STEINER TREE).

3. For general graphs, unleBs= NP, for anye > 0 andp > 1, there is no polynomial time
(2 — ¢, p)-approximation algorithm for the (N-BGREE E-TOTAL-COST, STEINER TREE) prob-
lem.

4. For general graphs, unleBs= NP, for anye > 0 andp > 1, there is no polynomial time
(p, T — €)-approximation algorithm for the (N-EGREE E-TOTAL-COST, STEINER TREE) prob-
lem. Herer is the lower bound on the performance guarantee of any #hgorior finding
minimum Steiner trees (see Chapter 10 of [15] for the best@i®u This result is an immediate
corollary of hardness results for the minimum Steiner tnedlem.

These hardness results motivate the need for bicriterfeetrahan unicriterion approximation
algorithms for these problems.

3.2 Approximation Algorithms

A problem with costs on nodes as well as edges can be transfioffior the purposes of designing ap-
proximation algorithms) into one with only node costs atofeb: subdivide each edge by introducing
a new node with cost equal to the cost of the &dgeerefore, in stating our approximation results,
we focus on the node-weighted case. To keep the descriptioaranain result simple, we present

5This transformation is not applicable to minimum cost spamirees, for which the node weighted case is trivial.

below the result for the case of degree-constrained nodghtesl Steiner trees. The extension of
this theorem to more general classes of one-connected riestwapresentable as cut-covers of proper
functions is deferred to Section 5.7.

Theorem 3.1 There is a polynomial-time algorithm that, given an undieecgraphG on n nodes
with nonnegative costs on its nodes, a subsgtwfdes called terminals, and a degree bouitd) > 2
for every nodev, constructs a Steiner tree spanning all the terminals, wigreeO(d(v) log k) at
a nodev and of costO(log k) times that of the minimum-cost Steiner treeGbthat spans all the
terminals and obeys all the degree bounds.

A proof of this theorem is provided in Section 5. The positiesult presented in this theorem
should be contrasted with the hardness results mentionéeresating that there is n@ — ¢, p) or
(p, ™ —) (for anyp > 1 and some > 0) approximation algorithm for the (N-EGREE E-TOTAL-
CosT, STEINER TREE) problem unles® = NP. Combining the above observations we get that
finding an approximation algorithm with performance gugee2 — ¢, 7 — ¢) is NP-hard. Note that
the performance guarantee on the node-cost in the abovestheannot be asymptotically improved
(even if the other performance ratio is arbitrarily wealdr&nce one of the problems included in the
framework of Theorem 3.1 is the node-weighted Steiner treblem considered by Klein and Ravi
in [18]. By a reduction from the set cover problem and the kmavn-approximability results for the
latter problem, they note that the best possible performaatio achievable for this problem (even
without the degree restrictions imposed in Theorem 3.1gailithmic unles® = NP [20, 3, 27]. As
an immediate corollary of Theorem 3.1, we obtain(@tlog n), O(log n)) approximation algorithm
for the (U-DEGREE E-TOTAL COST, SPANNING TREE) problem introduced earlier.

In Section 6, we address the special case in which the edge @bsy triangle inequality and
presentsimpleapproximation algorithms with better performance guaasit Further, for the prob-
lem of constructing spanning networks in this special caseshow that our algorithms also simulta-
neously approximate yet another objective, namely the mami cost of any edge in the network.

4 Related Work

Much work has been done on approximating each of the two ceasures that we simultaneously
minimize (see [4, 5] and the references therein). We alsar the reader to the comprehensive book
edited by Hochbaum [15] for recent results and techniquesdiving these problems.

There has also been extensive work on bicriteria networlgdgsoblems. The (U-BGREE
E-ToTAL COST, SPANNING TREE) problem, originally posed and studied in [8], has beenntdge
considered in Boldon, Deo and Kumar [4]. They present hecsiand their parallel implementations
but do not provide worst case performance guarantees. aipaml and Vazirani [23] studied the
Euclidean version of this problem for the case whesa 3,4. Monma and Suri [22] showed that for
any set of points in the plane, a minimum spanning tree wWith 5 can be constructed efficiently.
Khuller, Raghavachari and Young [17] gave approximatiggoathms with performance guarantees
of 3/2 and 5/4 ford = 3 andd = 4 respectively for points in the plane. They also presentedpan
proximation algorithm with a performance guarantee of 6f3bint sets in higher dimensions when

4

d = 3. lwainsky et al. [16] formulated a version of the minimunmst&teiner problem with an ad-
ditional cost based on node-degrees. Duin and Volgenariof@julated the degree-bounded Steiner
tree problem motivated by practical considerations. Ireptklated work, Fischer [11] considered the
problem of finding a MST of minimum possible maximum degrea Wweighted undirected graph.
He showed that the techniques of Furer and Raghavachgrc@tbe applied to find a MST of ap-
proximately minimum degree.

In [25], we presented early versions of the results in thigepaiving specific algorithms for the
edge-cost versions, and using a simpler version of the iggés in this paper to give results for
the uniform degree node-weighted versions. Building onwaik there, in [21], we studied other
bicriteria network design problems. There we also preseatpolynomial-time algorithm for the
(U-DEGREE E-TOTAL COST, SPANNING TREE) problem when inputs are restricted to treewidth-
bounded graphs. In [24], Ravi has applied some of the idegstbesolve a bicriteria problem that
forms the basis for finding an approximately minimum broatitine scheme in an arbitrary graph.

5 Degree-Constrained Node-Weighted Steiner Trees

In this section, we present our algorithm in detail for thgrée-constrained node-weighted Steiner
tree problem. In Section 5.7, we briefly indicate how the atgm can be extended to accommodate
more general connectivity specifications.

Recall that, as input to the problem, we are given an undicegtaphG(V, E), with nonnegative
costs on the nodes and a set&iminalsto be connected together into a Steiner tree. In additian, fo
each vertex, a budgeti(v) on its degree in the Steiner tree is specified. The goal is doefiteiner
tree of minimum node cost that obeys the degree constraguesy node. There are no edge costs
in this version since the problem with node and edge costdbeamansformed into one involving
just node costs (see Section 3.2). We shall assume for tleecadimplicity that such a Steiner tree
always exists on the input graph and address the problemngbating one that approximately obeys
the degree budgets as well as minimizes the total node ao#eldescription of the algorithm and
its analysis, we use;(v) to denote the cost of a nodec V. We omit the subscrip& when there is
no ambiguity.

5.1 High Level Description

The algorithm maintains a sétof nodes and a sdf of edges. InitiallyS contains all the terminals
andF is empty. During the course of the algorithm, the connectedponents of the grap$, F) are
node-disjoint trees whose union contains all the termin@ksfine a connected component(sf F')
to beactiveif it contains at least one terminal but not all of the ternfsnarhe algorithm works in
O(log k) iterations. In each iteration, we run a greedy algorithmhoase a subgraph (a collection
of many smaller subgraphs callsgiderg of small degree and small node-cost such that the addition
of this subgraph to the current solution reduces the numbesrmected components 6§, F') by a
constant factor.

We first define a few additional terms used in describing ogor@hm. We use) PT to denote
the minimum cost of any Steiner tree that obeys the degréséctEms in the input.

5

ALGORITHM-DEGREE STEINER:

Input: An undirected graphG(V, E) with nonnegative costs on its nodes, a $etC V of
terminals (wherd7 | = k), and a functiond assigning nonnegative values (each value is at |
two) to the nodes off. Letb = min,{d(v)}.

Output: A Steiner treel’ spanning the terminal$ such that the degree of any nodén T
is at most isO(d(v) log k) and the cost of" is at mostO(log k) times that of a minimum-cos
degree-constrained Steiner tree spanning the termjnals

1
2

(G2 NN

10

11

12

13
14
15

16

17

Initialization: S = 7 andF' = ¢.

Repeatwhile there are active components(ifi F')

LetC be the set of active components(sf, F'). LetC = {C1,...,Cq} Whereq = [C|.
SetG'(V',E') := G(V, E).
While |C| > 11¢/12 and ¢ > 6 do

If ¢ <6 then

elseGoto Step 2. |C| is now less thark)

Output(S, F') as the solution.

Construct an auxiliary grapH as follows: Starting withG(V, E) delete the node
in V' — V' to get a graplG’ on V'. For every component surviving (as activeXin
contract all nodes within this component occurringihto a single supernode.
For every nodev € V', consider as the center of a spider.
If v is in a supernode off, then uncontract from this supernode and attach
zero-cost edge between them; if no nodes fiohmemain in the supernode afts
uncontracting, then add a new dummy supernodeHaepresenting the activ
component containing and a zero-cost edge to it from
For j = 2tod(v) + 1 do Find a minimum-cost spider centeredvah H with j
supernodes as its feet using@®CEDUREFIND-SPIDER.
Among all the spiders produced in Step 6, choose one of mimimatio-cost, de+
fined as the ratio of the cost of all the real nodes in the spa#re number of fee
in it.
Letv be the center node aid,, . . . , C, be the components ifi chosen as the fee
of the spider in Step 9. LePy,..., P. be the legs of the spider connectingo
Ci,...,C, respectively. AddJ!_, P, to the current solutiofS, F') so as to mergg
C1,Cs, ..., C, into one active component. Updaie
For every noder € V', if the degree of this node using edges added so f3g
this iteration (Steps 5 through 11) is betwekifv) and3d(v), then updatd/’ =
V' —{v}.

Repeatwhile there are active components
Run Steps 5 to 10.
SetV' = ¢.

past

U7

t

1}

r in

Definition 5.1 [18]

A spideris a tree with at most one node of degree greater than twoeemterof a spider is a node
from which there are node-disjoint paths (calleg)s to the leaves of the spider. Note that if a spider
has at least three leaves, its center is unigue. The leavitgeapider are also called thfeet of the
spider. Anontrivial spideris one with at least two feet.

5.2 The Algorithm and its Performance Guarantee

The rest of Section 5 is devoted to describing the algoritimeh its performance for approximately
solving the (N-DEGREE E-TOTAL-COST, STEINER TREE). ALGORITHM-DEGREESTEINER gives
the details of the entire algorithm.

5.3 A Procedure to Find Minimum Ratio Spiders

The heart of AGORITHM-DEGREESTEINER is Step 8 — a procedure that chooses a nontrivial
spider of minimum “ratio-cost”. We describe this procedimformally. Consider a generic step
of ALGORITHM-DEGREESTEINER (Step 4). Observe that we maintain a current gr&pland the
current partial solutiong.S, F'). Let the connected components(sf F') be denoted by C; ..., Cy}.
The spider we use to merge these components must have a deadbf@' as the center and some of
these components as its feet. During the course of an @aratie may delete a nodefrom G’ if the
degree ob due to the addition of edges in the generic step is bet@égan and3d(v); i.e., a constant
factor of the degree bound for We must then choose in the current grapha spider of minimum
ratio-cost, namely the ratio of the cost of all the node&6f- S in the spider and the number of feet
of the spider.

Although the concept of a spider is similar to the one used),[the degree constraint makes
the problem of finding a “good spider” harder. As a result, ghecedure in [18] for finding spiders
cannot be used in place oRBCEDUREFIND-SPIDER described below.

We find a spider of minimum ratio-cost by using several calla thinimum-cost flow algorithm
on the auxiliary graplH. We describe how to find a minimum ratio spider centered aeaiBp node
v € G, the current graph. By trying all nodes, we can choose theathinimum ratio spider. To
find a minimum ratio spider centered:atit suffices to find a spider centeredvatontaining exactly
feet such that it has minimum total node cost. By trying alliea ofj in the set{2,3,...,d(v) + 1},
we can find the value of minimizing the ratio cost of the resulting spider for PROCEDURE
FIND-SPIDER given below describes a method to find a minimum node-codespientered at with
exactlyj feet.

PROCEDUREFIND-SPIDER:
Input: An undirected graptH containing real nodes and supernodes, a real naethe center
and a numbey specifying the number of feet in the spider to be constructed
Output: A minimum-cost spider centered awith j feet that are supernodes.

1 Bi-direct all the undirected edges #f giving each resulting arc the cost of the node af its
tail. (Supernodes have zero cost.)

2 Reassign the cost of all the arcs leaving the center mdé)e#.

3 Attach a new sink nodg, with new arcs of zero-cost coming to it from all the superrsde

4 In this digraph, impose a capacity bound of one unit on allescexcept andt, and find a
minimum-cost flow of valug from v to ¢,,.

Remarks:

1. The solution to the above flow problem (when feasible) aafobind in polynomial time and is
integral (see [2] or Chapter 4 of [6]).

2. Such a flow gives a minimum-cost set of node-disjoint patiggnating atv and ending at a set
of j supernodes.

3. The cost of real nodes i other thanv that occur in flow paths are accounted for in the cost
of the arcs leaving them. Nodehas exactlyj arcs leaving it in the flow solution, each of cost
C(J—?’) for a total ofc(v). Thus, the total cost of the flow solution is equal to the céstlidhe real
nodes in the spider that are not in any componeniSo#’).

4. The set of edges in the solution to the flow problem contamsycles. Consequently, the set
of undirected edges from the original graph that corresgoritiese flow paths (i.e., ignoring
the arcs inta,) contain no cycles.

We now prove the claimed performance guarantee of the #igori For ease of exposition the
proof is broken down into a sequence of lemmas and theorems.

Proposition 5.2 The number of iterations of Step 2 in the algorithr®idog k) wherek is the number
of terminals.

The above proposition follows by observing that in eachatien of Step 4, we reduce the number
of active components by a constant factor. We start witbmponents and the last iteration runs to
completion when this number drops to 6 or below.

Proposition 5.3 For each node, the increase in the degree @in (S, F') due to edges added in one
iteration of Step 2 is at mo8u(v).

Proof: Consider a node and fix an iteration (Step 4). If degree of exceed=2d(v) using edges in
this iteration, then it is deleted from further consideratin Step 11 and no more edges are added in
this iteration that are adjacent to it. Furthermore, in Sdpe increase in degree ofis either (i) at
mostd(v) + 1 if it is the center of the chosen spider or (ii) at m@swhich is in turn at mostl(v) if
it is a non-center node of the chosen spider (since far,al(v) > 2). Thus, if the degree af is no
less thard(v) to begin with, it never exceedsi(v) after executing Step 8. In the last iteration, we
merge at most 6 components using an acyclic set of edges, thieudegree of increases by at most
6 < 3d(v), since for allv, d(v) > 2. O

Combining Propositions 5.2 and 5.3 immediately leads tgpgméormance guarantee on the de-
gree of a node in the final solution. We now bound the total abibte subgraph added in one iteration.
Lemma 5.4 along with Proposition 5.2 yield the required genfance guarantee on the total cost of
the final solution, completing the entire proof.

Lemma 5.4 The cost of the set of nodes added to the solution in eacltidgaraf Step 2 is at most
O(OPT).

First we complete the proof with regard to the the cost adddiad last iteration. Recall that at the
beginning of the last iteration, the number of active comgmds is at most 6. For this iteration, our
algorithm reduces to that of Klein and Ravi [18] for node-géded Steiner trees. Hence using their
result with the number of “terminals” to be connected beihmast6, the cost of the nodes added is
at mostO(OPT log6) = O(OPT).

The proof of the lemma for the remaining iterations is mok®Iived and is described in Sections
5.4 through 5.6. The proof proceeds by deriving a deconipasitf an optimal solution and using it as
awitness to the performance of the algorithm in each it@natin particular, we use the decomposition
to prove an averaging lemma and use this in conjunction wibtential function argument due to
Leighton and Rao [19] to prove Lemma 5.4. We begin by provitgand on the total degree of all
the nodes that are deleted frai in any iteration.

5.4 Bounding the Total Degree of Deleted Nodes

Fix an iteratior:. Let the active components in the beginning of this iteratibe C1, Cs, . . ., Cy. At
the beginning of this iteration, we initialize the gragh := G. During the course of this iteration,
we may delete nodes frod’ in Step 11.

Lemma 5.5 In each iteration of Step 2 of the algorithm, the sum of theekegof all the nodes deleted
from G’ due to edges added in this iteration is at mest

The proof relies on the following observations.
1. The subgraph added in a given iteration is acyclic.

2. The iteration terminates when at mght of the active components are merged using edges
added in a given iteration.

Using these observations we can show that a large fractidheoflegree of the deleted nodes con-
tributes to merging the active components. This implies an upper bound on the sulreadégrees.
Proof: Letmn be the number of components that were merged in this iteralote thatn < . We

can assume without loss of generality that#i@omponents are merged into a single component. (It
is easy to see that in other cases we obtain better bounds.)

Let R denote the acyclic subgraph added to mergentheomponents. By the working of the
algorithm, the leaves dR are precisely then components that were merged. By our assumption,
d(v) > 2 for all v. Thus, all vertices of degree 21 do not contribute to the degree sum of deleted
nodes. Hence we modifff to obtainR’ as follows: We contract all simple paths in which each
internal node has degree 2 into a single edge. Now each atteode inR’ has a degree of at least 3.
Let N = {wy,ws,...,wp} denote the internal nodes Bf. Note that some of these nodes might not
have been deleted. L&(w;), 1 < ¢ < P denote the degree af; in R'. We now prove a stronger
statement and show that

P
D=3 D(w)<q (1)
i=1

Note thatl < i < P, D(w;) > 3. ThusD > 3P. But sinceR’ is a tree we know that the number
of edge§ E(R')| is given by|E(R')| = P + m — 1. Thus
2lE(R)|=2(P+m—-1)=D+m>3P+m)

implying thatP < m — 2. This gives an upper bound on the total number of internaésdaR’.

D+m=2ER) =2P+m—-1)<2(m—-24+m-1)<3m—5 ®3)

Combining this with the upper bound anwe get

q q
D<om-5<2ZL _5<14
SAMTY L9 7925

proving Equation (1).O0

5.5 Spider Decompositions and an Averaging Lemma

We employ the notion of spider decompositions introducedkl®in and Ravi [18] in showing that
the each node chosen in Step 9 has small ratio-cost withaespthe optimal solution.

Let G be a graph, and |e¥ be a subset of its nodes. gpider decompositionf M in G is a set
of node-disjoint nontrivial spiders i& such that the union of the feet and the centers of the spiders
in the decomposition contain .

Theorem 5.6 ([18]) LetG be a connected graph, and I&f be a subset of its nodes such that| >
2. Then@G contains a spider decomposition f. O

Let v be a node chosen in Step 9 of the algorithm. Ceadenote the cost of the subgraph added
subsequently in Step 10. Let this subgraph mergees. We prove the following claim.

10

Claim 5.7

5 Cq
> ——— 4
"= 120PT @
Proof. Let T be a minimum-cost degree-bounded Steiner tree of @33T. Let (1, ..., C, be the

active components when a spider centered at nogdas chosen by the algorithm. L&t (v) be the
graph obtained frorfi™ by contracting eacli’; to a supernode of zero cost*(v) is connected and
contains all supernodes. We then remove edges To(a) so as to make it acyclic; this*(v) is a
tree.

Delete all edges incident on nodeslin— V' (the deleted nodes) i*(v). Consider a node.
By construction ofl™(v), u's degree irl™*(v) (denoted byl (u)) is at mostd(u). Furthermorey is
deleted in our algorithm only if its degree, denoteddi), exceed2d(u) due to the edges added in
a given iteration of Step 2. Thus we have

Vu eV — V' d(u) > 2d(u) and dr(u) < d(u)

Combining these observations with Lemma 5.5, we get

| =

Yo odrw <5 Y di(u) < q/2
ueV—v' ueV v
Thus, the total number of edges deleted frétf(v) is also at most. Since there werg active
components (and hence supernodes) wheas chosen, the tréé*(v) hasp supernodes in it. Since
we deleted at mos} edges from this tree, at legst- £ of the supernodes are in subtrees with at least
two or more supernodes. Singe> % at Ieastf—g supernodes are in such trees. We summarize this
in the following proposition.

Proposition 5.8 Let M denote the subset of supernodes that are in subtrees witbrtmore supern-
5
odes. ThenM| > 1—3. 0

We apply Theorem 5.6 to each subtre€lti{v) with at least two supernodes to obtain a spider
decomposition ofdf. We now compare the ratio cost of spider chosen by the afgorivith that
of each spider in the decomposition. To do this however, wetrensure that the following two
conditions hold.

(i) the center of each spider in the decomposition must belan@e (not a supernode) and
(i) the number of legs of each spider must be at nalfs) + 1.

We achieve this as follows. We further partition a spidertesrd at a supernode into many
nontrivial spiders each centered at a real nodmntained in this supernode such that the union of
their feet contains the feet of the original spiders and tivalver of legs of the spider centeredvas
at mostd(v) + 1. To do this, first consider all the real nodes in the centrpéstode with at least one
leg of the spider incident on them. Each such real node candde tine center of a nontrivial spider
(satisfying (i)) with all the legs incident on it as the ledgtee spider, along with a zero cost leg to the

11

supernode that it belongs to. Since the degree of any real indb* is at mostd(v), the number of
legs of any such spider is at mae&t) + 1 satisfying (ii).

Let the centers of the resulting spider decompositionfgaiis (i) and (i) be the set of real nodes
vy, ...,vs. Letly, ..., ¢y denote the number of nodes &f (feet) in each of these spiders respectively.
Since every spider in the decomposition is nontrivial ardkisved as above, ea¢his at least two and
at mostd(v) + 1. Moreover, a spider with center induces a subset of the current active components,
namely the/; components whose supernodes belong to this spider. Lebgt@tthe spider centered
atv; (i.e., cost ofv; plus the sum of the node-costs of the paths frgrto the/; components — ib;
is already in a supernode, we may assume its cost to be zemisimas already been paid for in the
formation of the supernode) ligost;. Then the ratio cost of the spider centered;an the auxiliary
graphH constructed in this loop is at mogi]%tf

Since the algorithm chooses a spider of minimum ratio-ao$f i for each spider in the decom-
position we havec‘sz_tf > % Summing over all the spiders in the decomposition yields

t C t
Z COStj > ? ZEJ (5)
7j=1 j=1

Combining Proposition 5.8 with the observation that theonrof the feet of the spiders contains,
we get

t
St > M| > 2L 6)
£ 12
7=1
Also note that
t
Y Cost; < COST(T*(v)) < OPT 7)

7=1
since (i) the cost of the nodes in the tré&(v) is at mostOPT and (ii) each real node iff"™*(v)
appears in at most one spider. Combining Equations (5),n®)3) yields Claim 5.7.0

5.6 A Potential Function Argument

Now we are ready to complete the proof of Lemma 5.4. Fix amiiten : and let the set of hodes
chosen in Step 9 of the algorithm in this iterationge. . . v¢ in the order in which they were chosen.

Let ¢; denote the number of active components in the solution afteosing vertex; in this
iteration. Thus, for instancep, = ¢, the number of active components at the beginning of this
iteration in(S, F), ¢y_1 > % andgy < % Let the number of trees merged using vertgeder;.
Then we have

¢j=¢j_1—(rj —1) (8)

Let C; denote the cost of the subgraph added by the algorithm irt¢pendhen vertex; was chosen.
Then by Claim 5.7, we have

i > 5 G > 5 Giti

120PT — 12 OPT

9)

12

We now use an analysis technique due to Leighton and RaodX@jmplete the proof as in [18].
Substituting Equation (9) into (8) and simplifying using> 2 gives

5 C;
< b _ J
9 < ¢l = 51 5p7) (10)
Simplifying (10), we obtain
-1
5 C,

<o [J(1-= }
51 < o j:1(1 210PT)

Taking natural logarithms on both sides and simplifyinghggsihe approximatioin(1 + z) < x, we
obtain

f-1
2—4OPT1n(%0) >3 0

5 I
Note thatpy = ¢ and¢;_; > L and so we have
= 12
> C;j<50PTn = O(OPT) (11)
7=1

Note that the cost of the nodes added in this iteration istixtme sumz;c:1 C;.
To complete the proof, we bound the cost of the subgraph @sedavithv, the last node chosen
in this iteration. Using Claim 5.7 and noting thgt < ¢ we have

Cr < %OPT.

Using the above equation and (11), we have that the cost akthef nodes added in this iteration is

f
> Cj = O(OPT).
j=1
This completes the proof of Lemma 5.4.
The performance of our approximation algorithm was summedrin Theorem 3.1.

5.7 Extension to Proper Function Cut Covers

The extension of Theorem 3.1 to construct cut-covers defigguioper 0-1 functions is fairly straight-
forward, and the algorithm for this case follows the samdirmitas the one above. The reader is
referred to [14, 15] for the definition of proper 0-1 functonThe algorithm begins with the st
being the set of terminals defined by the proper function. défaition of active components in the
algorithm is now based on th&values given to cuts by the input proper function. In otherds, a
component is deemed active if the cut around it is. Note thenall components are inactive, the
set of edges added by the algorithm until then constitutessilile cut-cover.

The only additional issue is that in the proof of the upperrban the cost of the subgraph added
in each iteration, the optimal solution is a forest insteéa gingle tree. However, as in [18], we

13

can use the fact that each tree in the forest must contairastt o active components to infer that
this forest contains at least as many edges as half the nushbetive components. This observation
is sufficient to prove a modified version of Claim 5.7 with bliy worse constants. The details are
straightforward and omitted to avoid repetition. Thus weehtne following theorem.

Theorem 5.9 There is a polynomial-time algorithm that, given an undieecgraphG with nonneg-
ative costs on its nodes, a proper functigrdefined on the node subsets®f and a functiond
assigning a nonnegative vald¢v) > 2 to each node of G, constructs a cut-cover for the family of
cuts defined by in which the maximum degree of any nads at mostO(d(v) log k) and the cost of
the cover is at mos(log k) times that of the “minimum-cost degree-constrained cuecbfor f.
Herek represents the number of terminals definedf b\ degree-constrained cut cover is a subgraph
which covers (i.e., contains at least one edge in) all the defined by and has degree at mogtv)

at nodev, for all v. O

6 Algorithms Under Triangle Inequality

One way to circumvent the difficulty of approximating the Iplems studied is to consider more
structured cost functions on the edges. In this directiom,tuvn to the case where the underlying
graph is assumed to be complete with costs only on the edgkshase costs obey the triangle
inequality. Define thdottleneck cosbf a network to be the maximum cost of any edge in it. In this
case, we present approximation algorithms that strictiyfawon to the degree restriction in the input
problem and approximate the bottleneck cost of the outpmtar& as well. Most of the results in this
section are straightforward and we discuss it here for the shcompleteness.

6.1 Results for Spanning Trees

Proposition 6.1

1. There is a polynomial time approximation algorithm fdi-DEGREE E-TOTAL COST, SPAN-
NING TREE) problem restricted to edge-weighted graphs that satisgngle inequality. Its
performance guarantee {4, (2 — %)). Moreover, the bottleneck cost of the tree pro-
duced byALGORITHM-TI-SPANNING-TREE is at most twice that of the minimum-bottleneck

spanning tree. Heré i, (v) denotes the smallest degree constraint.

2. There is a polynomial-time algorithm that, given a undiegl graph with edge costs satisfying
the triangle inequality, outputs a TSP tour of total cost atstrtwo times the cost of a MST and
of bottleneck cost at most three times that of a minimumeratk-cost spanning tree.

Proof. First we sketch the proof of Part 1. The algorithm starts bystmicting an MST. It then
partitions the edges of the MST into claws and sorts the eitgesery claw in the order of non-
decreasing cost. Each claw is short-cut locally by reptaeitiges from the internal node to its children
(except the very first child) with edges between consecutiielren. LetT denote the resulting tree.

14

To prove the first part of the proposition, for any ##tof edges, let(E') denote the sum of the
costs of all the edges iB’. We have the following relations.

c(MST) = Z c(claw(v)).
v : vis not aleaf of the MST

For an internal node, let¢(v) denote the number of children ofin the rooted MST. For the solution
T, we have

t(v)—d(v)+2 t(v)—d(v)+2
e(T) = Z [e(claw(v)) — Z c(v,v;) + Z c(vi—1,v4)].
v : visnot aleaf of the MST i=2 i=2

By triangle inequality on the costs we have
c(vi—1,v;) < ¢(vi—1,v) + c(v,v;) < 2¢(v,v;)

The last inequality follows from the way we ordered the edgesach claw in non-decreasing order
of costs. Putting the above three equations together, wthgdbllowing bound on the cost of the
output treeT".
oT) oy (min(0) =2))
c(MST) (n—1)
Since the cost of any(v)-bounded spanning tree is at least as much as that of the MiSTives the
bound on the cost of the tree output by the algorithm.

We now complete proof by proving the bound of two on the bo#tk cost. It is well known that
an MST is also an optimum bottleneck spanning tree. Sinde glaart-cut used in forming the output
treeT is made up of at most two edges, the bottleneck codt & at most twice that of the MST.
Since the bottleneck cost of ahybounded spanning tree is at least as much as that of theroeti
spanning tree, the resulting tree has bottleneck cost attmize the optimum.

Part 2 of the proposition follows from standard construwditbased on a recursive short-cutting
procedure using edges from the cube of the Minimum Spannieg. Trhis is also hinted at in [7] (see
problem 37.2-3 on page 975).

g

6.2 Extension to Higher Connectivities

Now we are ready to prove our result for networks with higtmrrectivities. The result is proved by
using short-cuts that induce higher-connected graphs.

Theorem 6.2 There is a polynomial-time algorithm that, given an undieecgraph with edge costs
satisfying the triangle inequality, and an integer> 2 (the vertex-connectivity requirement), outputs
a k-connected spanning subgraph@fin which the degree of every node is exaétythe total cost
of all the edges in the subgraph is at mé%ﬁ times that of a minimum-cogtconnected subgraph,
and the bottleneck cost of the subgraph is at rﬁosf%} times that of a minimum bottleneck-cost
spanning tree.

15

Proof: Let ¢* ands* denote the cost of an MST and the optimum bottleneck cost paarsng tree

of the input graph. By Proposition 6.1, we can obtain a TSP Toaf coste(7') and bottleneck cost
B(T) such that(T") < 2¢* ands(T') < 33*. Let the vertices in this tour be numbered vs, . . ., vy,.
Now, we add extra edges to this cycle as follows: For everyenadd edges joining it to vertices to
its left in the cycle that are Withirﬁgl edges from it and all vertices to its right in the cycle tha ar
within L%J edges from it. It is not hard to see that this graph-igertex-connected (by showir@}
disjoint paths between any pair of nodes going clockwiséénaycle and anothe{r’gj disjoint paths
going counter-clockwise). The degree of every node in theplg is exactlyk. Since each shortcut
employed replaces a path of at mgb%f] edges, the bottleneck cost goes up by this factor. This prove
that the bottleneck cost of this subgraph is Wit&iﬂ(%} of optimal.

The total cost of the graph obtained this way can be compuwelionding how many newly
added edges contain a given edge in the TSP tour within thair ef% or less. We can compute this
for an edgeuv by counting all the added edges that originate at to the left of it and end at or
to its right. The number of such edges originating: & (%1, and the number originating at the node
beforeu crossing oveww is (%1 — 1 and so on, giving a total of at moéftkSLm + 1. Thus the total
cost of this graph is at moﬁfk%z) + 1 times that of the TSP todF that we started with. This in turn
is at most(w + 1)c*. However, we can apply an approximate min-max relation betwa MST
and a packing of cuts in the graph that is derived in [1, 14Jroving a better performance guarantee
of &2 + 1 for the total cost.

In particular, if OPT;, denotes the cost of a minimuitconnected subgraph, we show that
OPT}, > ’% This would prove that the cost of tiheconnected subgraph output by our algorithm is
at most(£$2 + 1)OPTj, as claimed in Theorem 6.2.

It remains to prove thaD PT;, > ’% We do this in the remainder of this section. Before that
we need some definitions. Given a gra@hrecall that an edge cut in the graph can be written as
I'(W), whereW is a node subset of the graph, angd?’) denotes the set of edges with exactly one
endpoint inl¥. A fractional packing of cuts is a family of cuiy W), I'(Ws),...,TI'(Wy), together
with a rationalweightfor each cut. A (fractionalv-packingof cuts is a weighted collection of cuts
that have the following property: for each edgev) of costw(u, v), the sum of the weights of all
the cuts in this collection containing the edge is at ma@t, v). Thevalue of the packings the sum
of the weights of all the cuts in the packing. Maximum packings one of maximum value. The
following theorem is a consequence of the results in [1, 14].

Theorem 6.3 Given an undirected graph with edge-weights, a minimungitespanning tree has
weight at most twice the value of a maximum packing of €uts.

The algorithms in [1, 14] find a greedy packing of cuts and #iameously build a minimum
spanning tree of weight at most twice the value of this pagkin

Note that anyk-connected spanning subgraph must have at feaslges crossing any cut since
this subgraph hak disjoint connections between every pair of vertices. Thashave the following
lemma.

Lemma 6.4 The weight of any:-connected subgraph is at leasttimes as much as the value of a
maximum packing of cuts.

16

Applying the above lemma to the optimutrconnected subgraph of ca3tPT;, and combining with
Theorem 6.3 above we conclude t@&PT}, > £ .0

7 Hardness Results

In this section, we prove hardness results that motivat@éieel for bicriteria approximations rather
than approximating only one objective while strictly ob®yithe budget on the other. We first prove
the results for spanning trees and then strengthen thegdésuBteiner trees.

7.1 Hardness Results for Spanning Tree Problems

Theorem 7.1 1. UnlessP = NP, for anyp > 1, there is no polynomial timgl, p) approximation
algorithm for the problemy-DEGREE E-TOTAL COST, SPANNING TREE).

2. UnlessP = NP, for anyp > 1, there is no polynomial timél, p) approximation algorithm for
the problem (J-DEGREE, E-BOTTLENECK-COST, SPANNING TREE).

3. Unless? = NP, for anyl < p < 2, there is no polynomial timgl, p) approximation algorithm
for the problem -DEGREE E-BOTTLENECK-COST, SPANNING TREE), even when edge
weights satisfy triangle inequality.

Proof: The NP-hardness of (U-BGREE E-TOTAL COST, SPANNING TREE) and (U-DEGREE E-
BOTTLENECK-COST, SPANNING TREE), follows via a straightforward reduction from theaMiL -
TONIAN PATH problem in which we add a the right number of distinct leawegdch node of the
original graph.

To prove the third part, we use the cost assignment as in gtefirt of the proof that obeys the
triangle inequality. Under this assignment, the maximust obany edge in any-bounded spanning
tree of the resulting graph is at most one if the original grégHamiltonian and is at least two
otherwise. Hence an approximation algorithm with perfarogaratio less than two in this case would
be able to recognize Hamiltonian graphs. This completeprbef of Theorem 7.10

7.2 Hardness Results for Steiner Tree Problems

Since a spanning tree is a special case of a Steiner tredlpivéofrom Part 1 of Theorem 7.1 that
unlessP = NP, there is no polynomial timé1, p) or (p, 1) approximation algorithm for the (U-
DEGREE E-TOTAL-COST, STEINER TREE) problem for anyp > 1. Furthermore, since the problem
of computing a Steiner tree of minimum total edge weight fewdthout any degree constraints on
nodes) isNP-hard, it follows that unles® = NP, there is no polynomial timép, 1) approximation
algorithm for the (U-EGREE, E-TOTAL-COST, STEINER TREE) problem for anyp > 1.

These hardness results require either the budget to béezhixactly or the cost of the network
to be optimal. We now present a result which points out thigcdity of solving the Steiner version
of the non-uniform degree bounded problem within constantoirs. This result is obtained by a
reduction from the 8T CoVER problem. Recently, Arora and Sudan [3], and independerely &hd
Safra [27] have shown the following non-approximabilitgut for MiN SET COVER.

17

Theorem 7.2 UnlessP = NP, the MIN SET COVER problem, with a universe of size cannot be
approximated to better thanla k factor.O

Theorem 7.3 UnlessP = NP, for anye > 0, there is no polynomial timé& — ¢)-approximation
algorithm for the non-uniform degree-bounded Steiner mexdlem.

Proof: Suppose there is a polynomial tin2 — ¢)-approximation algorithnA for the problem. We
will show thatA can be used to obtain a polynomial time 2-approximationHerMin SET COVER.
In view of Theorem 7.2, the required result would follow.

Given an instance of Mi SET COVER, we construct the natural bipartite graph with one partitio
for set nodes (denoted &y, @, ..., @) and the other for element nodes (denotedifyye, - . .,
gn), and edges representing element inclusion in the setfidbipartite graph, we add an “enforcer”
node (denoted by) which is adjacent to each of the set nodes. zedenote the resulting bipartite
graph. The seR of terminals for the Steiner tree instance is givenby= {z,q1,q2,...,4qn}-

In this way, we create a sequencenefinstances of the problem (NHEREE E-TOTAL-COST,
STEINER TREE). In all these instances, the degree bound for each elenoeletis chosen as 1 and
the degree bound for each set node is chosen asl. For thej** instance of the (N-RGREE
E-ToTAL-COST, STEINER TREE) problem, the degree bound on the enforcer node is chosg¢n as
1 <j<m).

Suppose there is an optimal solutigh = {Q;,, Qs,, - - -, @i, } consisting ofk sets to the NN
SET CoVER instance. Then the Steiner tréein G consisting ofz, the edgegz, Q;;), 1 < j < k,
and one edge from each element node to some set naglesiatisfies all the degree constraints. The
cost of T is equal tok.

Suppose we run the approximation algorith successively on instances 1,.2,, m of the
(N-DEGREE E-TOTAL-COST, STEINER TREE) problem. Note thafA may fail to produce a Steiner
tree on some of these instances since there may be no Steieesatisfying the degree constraints,
even after allowing for degree violations by a factor2of- . We stop as soon a& produces a
solution. We now argue that from this solution, we can obtaRrapproximate solution to the IM
SET COVER instance. To see this, note that when we Auon instancek, A must produce a Steiner
treeT’, since as argued above, there is a feasible solution tairesta Since the degree requirement
for each element node is 1 and the violation factor is less thdhe degree of each element node in
T" is 1. Similarly, the degree of the enforcer nadi 7" is less thar2k. The set nodes adjacent#o
must cover all the element nodes since the degree of eaclemiemde is 1. We thus have a solution
of size at mosRk for MIN SET CoVER and this completes the proof]

Corollary 7.4 UnlessP = NP, for anye > 0 andp > 1, there is no polynomial timé& — ¢, p)-
approximation algorithm for theN-DEGREE E-TOTAL-COST, STEINER TREE) problem.O

8 Concluding Remarks

We have introduced bicriteria approximation algorithmsdegree-constrained minimum-cost one-
connected network problems, that allow general degredfg@dions and node costs. Our results for

18

bicriteria problems can be used to improve previous resul&pproximating certain minimum degree
network problems. In particular, Theorem 5.9 implies a potyial-time approximation algorithm
for a class of minimum-degree forest problems considere®yi, Raghavachari and Klein [26].
They address the problem of finding one-connected netwheksare cut-covers of proper functions
such that the maximum degree of any node in the network isnmoimi. This is a single criterion
problem without the node weight objective. They provide asipolynomial 21081+ ")-time)
approximation algorithm for these problems omanode graph that provides a solution of degree at
most(1 + €) times the minimum with an additive error 6f(log, , . n), for anye > 0. A prototypical
example of the one-connected network problem consider@b]ris the minimum-degree generalized
Steiner forest problem: given an undirected graph withsities of nodes, find a generalized Steiner
forest for the site-pairs in which the maximum degree is mimn. The techniques in [26] can be
adapted to provide polynomial-time approximation aldoris with performance rati2(n?) for any
constan® > 0 (by settinge = n%). By a direct application of Theorem 5.9, an improved (ldanic)
approximation ratio can be achieved in polynomial time Fas fproblem.

Subsequent Work

In subsequent work, we have used a similar framework to deypproximation algorithms for other
bicriteria problems (see [21, 24]). An obvious open problesulting from this work is to improve
the performance ratios in all our results; although diffiéreechniques than those given seem to be
required. In this context, it would be interesting to inigate whether the primal-dual method [1, 14]
can be applied to provide such better guarantees and alsil@ra general framework for bicriteria
network-design problems. Another interesting questido iavestigate the extension of our work to
higher-connected degree-constrained networks with@utriiingle inequality.

In other follow-up to our work, the special case of the (#EREE E-TOTAL COST, SPANNING
TREE) problem in the Euclidean plane was addressed in [17], apdawements to the short-cutting
scheme of Proposition 6.1 using network flow techniques ergemted in [10].

Acknowledgments: We thank the referee for several valuable suggestions. atefgtly acknowl-
edge helpful conversations with M. X. Goemans, P. N. KleinrK@njevod, S. Krumke, B. Raghavachari,
V. S. Ramakrishnan, S. Subramanian and R. Sundaram.

References

[1] A. Agrawal, P. Klein and R. Ravi, “When Trees Collide: Ampproximation Algorithm for the
Generalized Steiner Problem on NetworkSIAM J. ComputingVol. 24, pp. 440-456, 1995.

[2] R. Ahuja, T. Magnanti and J. Orlif\etwork Flows: Theory and Algorithm®&rentice Hall,
Englewood Cliffs, N.J. 1993.

[3] S.Aroraand M. Sudan, “Improved Low-Degree Testing aad\pplications,”Proc. 29th Annual
ACM Symposium on Theory of Computing (STOG'8p) 485—-496, 1997.

19

[4] B. Boldon, N. Deo and N. Kumar, “Minimum Weight Degree Gtrained Spanning Tree Prob-
lem: Heuristics and Implementation on a SIMD Parallel MaetiiParallel ComputingVol. 22,
No. 3, pp. 369-382, March 1996.

[5] P. M. Camerini, G. Galbiati and F. Maffioli, “The Compléxiof Weighted Multi-Constrained
Spanning Tree Problem4,0VSZEM: Colloquium on the Theory of Algorithrgrth-Holland,
1985.

[6] W. Cook, W. Cunningham, W. Pulleybank and A. Schrij@ambinatorial OptimizationWiley-
Interscience Series on Discrete Mathematics and Optimizdilew York, NY, 1998.

[7] T.H.Cormen, C. E. Leiserson, and R. L. Rivdstroduction to AlgorithmsMcGraw-Hill Book
Co., Cambridge, MA, 1990.

[8] N.Deo and S. L. Hakimi, “The Shortest Generalized Hapmian Tree,Proc. 6th Annual Aller-
ton Conferencepp. 879-888, 1968.

[9] C. W. Duin and A. Volgenant, “Some Generalizations of Bteiner problem in GraphsNet-
works Vol. 17, pp. 353—-364, 1987.

[10] S. Fekete, S. Khuller, M. Klemmstein, B. Raghavachad &l. Young, “A Network Flow Tech-
nique for Finding Low-Weight Bounded-Degree Spanning $fek AlgorithmsMol. 24, No. 2,
pp. 310-324, August 1997.

[11] T. Fischer, “Optimizing the Degree of Minimum Weight&@ming Trees,” Technical Report TR
93-1338, Department of Computer Science, Cornell Unitserdhaca, New York, April 1993.

[12] M. Farer and B. Raghavachari, “Approximating the minim-degree Steiner tree to within one
of optimal,” J. Algorithms Vol. 17, No. 3, pp. 409-423, November 1994.

[13] M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide to the Theory of NP-
CompletenessV. H. Freeman, San Francisco, CA, 1979.

[14] M. Goemans and D. Williamson, “A General Approximatidachnique for Constrained Forest
Problems,"SIAM J. ComputingVol. 24, pp. 296-317, 1995.

[15] D. Hochbaum (Editor) Approximation Algorithms for NP-Hard ProblemPWS Publishing
Company, Boston, MA, 1997.

[16] A. lwainsky, E. Canuto, O. Taraszow and A. Villa, “Netskddecomposition for the Optimiza-
tion of Connection StructuresiNetworks Vol. 16, pp. 205-235, 1986.

[17] S. Khuller, B. Raghavachari and N. Young, “Low-DegrggaBning Trees of Small Weight,”
SIAM J. ComputingVol. 25 No. 2, pp. 355-368, April 1996.

[18] P.Klein and R. Ravi, “A Nearly Best-Possible Approxitioa for Node-Weighted Steiner Trees,”
J. Algorithms Vol. 19, No. 1, pp. 104-115, July 1995.

[19] F. T. Leighton and S. Rao, “An Approximate Max-Flow M@ut Theorem for Uniform Multi-
commodity Flow Problems with Application to Approximatidtgorithms,” Proc. 29th Annual
IEEE Symp. Foundations of Computer Science (FO@:%)422-431, 1988. (Complete version
to appear inJ. ACM)

20

[20] C. Lund and M. Yannakakis, “On the Hardness of Approxing Minimization Problems,”
J. ACM,\ol. 41, No. 5, pp. 960-981, September 1994.

[21] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rkentz and H. B. Hunt Ill, “Bicri-
teria Network Design ProblemsJ. AlgorithmsMol. 28, No. 1, pp. 142-171, July 1998.

[22] C. Monma and S. Suri, “Transitions in Geometric Minim@panning TreesDiscrete & Com-
putational Geometry\Vol. 8, No. 3, pp. 265-293, 1992.

[23] C. Papadimitriou and U. Vazirani, “On Two Geometric Blems Related to the Traveling Sales-
man Problem,J. Algorithms Vol. 4, pp. 231-246, 1984.

[24] R. Ravi, “Rapid Rumor RamificationProc. 35th Annual IEEE Symp. on the Foundations of

Computer Science (FOCS'94)p. 202—-213, November 1994.

[25] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, &hd. Hunt I, “Many Birds with
One Stone: Multi-Objective Approximation Algorithmsroc. 25th Annual ACM Symposium
on Theory of Computing (STOC'93)p. 438—447, 1993.

[26] R. Ravi, B. Raghavachari and P. N. Klein, “Approximati®hrough Local Optimality: Design-

ing Networks with Small DegreeProc. 12th Annual Conference on Foundations of Software

Technology and Theoretical Computer Science (FST & TS®jinger Verlag, LNCS 652, pp.
279-290, December 1992.

[27] R. Raz and S. Safra, “A Sub-Constant Error-Probabllibyv-Degree Test and a Sub-Constant
Error-Probability PCP characterization of NPfoc. 29th Annual ACM Symposium on Theory

of Computing (STOC'97pp. 475-484, 1997.

[28] D. J. Rosenkrantz, R. E. Stearns and P. M. Lewis I, “Anlgsis of Several Heuristics for the
Traveling Salesman Problen§lAM J. ComputingVol. 6, No. 3, pp. 563-581, 1977.

21

