
Approximation Algorithms for Degree-Constrained

Minimum-Cost Network-Design Problems4
R. RAVI 1 MADHAV V. M ARATHE 2 S. S. RAVI 3
DANIEL J. ROSENKRANTZ 3 HARRY B. HUNT III 3

Abstract

We study network-design problems with two different designobjectives: the total cost of
the edges and nodes in the network and the maximum degree of any node in the network. A
prototypical example is the degree-constrained node-weighted Steiner tree problem: We are given
an undirected graphG(V;E), with a non-negative integral functiond that specifies an upper
boundd(v) on the degree of each vertexv 2 V in the Steiner tree to be constructed, nonnegative
costs on the nodes, and a subset ofk nodes calledterminals. The goal is to construct a Steiner
treeT containing all the terminals such that the degree of any nodev in T is at most the specified
upper boundd(v) and the total cost of the nodes inT is minimum. Our main result is a bicriteria
approximation algorithm whose output is approximate in terms of both the degree and cost criteria
– the degree of any nodev 2 V in the output Steiner tree isO(d(v) log k) and the cost of the
tree isO(log k) times that of a minimum-cost Steiner tree that obeys the degree boundd(v)
for each nodev. Our result extends to the more general problem of constructing one-connected
networks such as generalized Steiner forests. We also consider the special case in which the
edge costs obey the triangle inequality and present simple approximation algorithms with better
performance guarantees.

AMS 1980 Subject Classification:68R10, 68Q25

Keywords:Approximation algorithms, Network design, Bicriteria problems.

1Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213-3890. Email:
ravi@cmu.edu. Research supported by a NSF CAREER grant 96-25297.

2P.O. Box 1663, MS B265, Los Alamos National Laboratory, Los Alamos NM 87545. Email:marathe@lanl.gov.
The work is supported by the Department of Energy under Contract W-7405-ENG-36.

3Department of Computer Science, University at Albany-SUNY, Albany, NY 12222. E-mail: fravi, djr,
huntg@cs.albany.edu. Supported by NSF Grants CCR 89-03319, CCR 90-06396, CCR 94-06611 and CCR 97-
34936.

4A preliminary version of this paper appeared as [25].

1 Introduction and Motivation

Several problems in the design of communication networks can be modeled as finding a network

obeying certain connectivity specifications. For instance, the network may be required to connect all

the nodes in the graph (a spanning tree problem), a specified subset of the nodes in the graph (a Steiner

tree problem) or to only interconnect a set of pairs of nodes (a generalized Steiner forest problem).

The goal in such network-design problems can usually be expressed as minimizing some measure

of cost associated with the network. Several examples of such cost measures have been considered

in the literature. For example, if we associate costs with edges and nodes that can be used to build

the network, then we may seek a network such that the cost of construction is minimized. This is

the minimum-cost network designproblem and has been well studied. A notion of cost that reflects

the vulnerability of the network to single point failures and the amount of load at a given point in

the network is the maximum degree of any node in the network. Minimizing this cost gives rise to

the minimum-degree network designproblem, which has also been well studied. Another common

cost measure is the maximum cost of any edge in the network. This goal falls under the category of

bottleneck problemsthat have also received considerable attention.

Finding a network of sufficient generality and of minimum cost with respect to any one of these

measures is oftenNP-hard [13]. Hence much of the work mentioned above focuses onapproximation

algorithms for these problems. However, in applications that arise in real-world situations, it is often

the case that the network design problem involves the minimization of more than one of these cost

measures simultaneously [9, 16].

In this paper, we concentrate on two objectives: (i) the degree of the network and (ii) the total cost

of the network. Typically, our goal will be to find networks ofminimum cost subject to degree con-

straints. For example, consider the following problem: Given an undirected graphG = (V;E) with

nonnegative costs on its edges and an integerb � 2, find a spanning tree in which the maximum de-

gree of any node is at mostb and the total cost is a minimum. Suchdegree-constrained minimum-cost

networkproblems arise in diverse areas such as VLSI design, vehiclerouting and communication

networks. For example, Deo and Hakimi [8] considered this problem in the context of back-plane

wiring among pins, where no more than a fixed number of wires can be wrapped around any pin on

the wiring panel. In communication literature, this problem is commonly known as theteleprocessing

design problemor as themultidrop terminal layout problem[2]. Here, we investigate the complexity

and approximability of a number of such degree-constrainedminimum-cost network-design prob-

lems. The main focus of our work is to develop a general technique for constructing near-optimal

solutions to such problems.

The remainder of the paper is organized as follows. Section 2contains basic definitions and formal

statements of the problems considered in this paper. It alsodiscusses a framework for evaluating

approximation algorithms. Section 3 summarizes the results in the paper. Section 4 discusses related

work. In Section 5 we present our algorithm for degree-bounded node-weighted networks. In that

section we also discuss an extension of the algorithm to networks represented using proper functions.

In Section 6, we outline the algorithms with improved performance and running times for constructing

networks when restricted to input graphs obeying the triangle inequality. Section 7 contains negative

1

results on the approximabilities of some problems. Finally, Section 8 discusses some implications

and directions for future research.

2 Basic Definitions and Problem Formulations

Following the framework developed in [21], a generic bicriteria network design problem, denoted by(A;B;S), is defined by identifying two minimization objectives, denoted byA andB, from a set of

possible objectives, and specifying a membership requirement in a class of subgraphs, denoted byS.

The problem specifies a budget value on the first objective (A) under one cost function, and the goal

is to find a network having minimum possible value for the second objective (B) under another cost

function, such that this network is within the budget on the first objective. The solution network must

belong to the subgraph-classS.

The two objectives we consider in this paper are: (i) degree of the network and (ii) the cost of the

network. We consider two extensions of these objectives. The first extension deals with the budgeted

objective, namely degree, and the second deals with the minimization objective, namely the total cost.

The two versions of degree constraints that we consider are:(i) non-uniform degree (denoted by N-

DEGREE) and (ii) uniform degree (denoted by U-DEGREE). In the non-uniform degreeversion, a

possibly different degree boundd(v)(� 2) is specified for each vertexv. Theuniform degreeversion

is a special case where8v 2 V; d(v) = b for some integerb; i.e., all the vertices have the same

degree constraint. Thus, for the problems considered in this paperA 2 fU-DEGREE, N-DEGREEg.
For the minimization objective, we focus on the total cost ofthe network. We assume we are given

nonnegative costs on the edges and/or nodes of the input undirected graph. Thetotal costis given

by the sum of the costs of all the edges (denoted by E-TOTAL-COST) or all the nodes (denoted by

N-TOTAL-COST) in the network. Thus,B 2 fN-TOTAL-COST, E-TOTAL-COSTg. Finally, the class

of subgraphsS studied here includes SPANNING TREES, STEINER TREES, GENERALIZED STEINER

TREESand networks specified using proper 0-1 functions introduced in [14].

Using the above notation, the problem of finding a minimum-cost spanning tree in which each

node has degree at mostb is denoted by (U-DEGREE, E-TOTAL COST, SPANNING TREE). Similarly,

given a node weighted graphG(V;E), an integer functiond specifying the upper bound on the degree

of each node and a set of terminalsT , the (N-DEGREE, N-TOTAL-COST, STEINER TREE) problem

is to find a minimum-cost treeT spanning the nodes inT such that the nodes inT obey the degree

constraints. Problems in which the desired network is a generalized Steiner forest or a graph specified

by a proper 0-1 function can be formulated along similar lines.

Some of the problems considered in this paper also involve the maximum cost of any edge in

the network, i.e., the bottleneck cost, as a minimization objective. We use E-BOTTLENECK-COST to

denote this objective. For the rest of the paper, we use the term “d(v)-bounded network” to mean a

network in which the degree of nodev is at mostd(v) for all v.

Most of the degree-constrained network-design problems considered in this paper areNP-hard.

In fact, for several problems (e.g. (U-DEGREE, E-TOTAL COST, SPANNING TREE)) we show

(Theorem 7.1) that it isNP-hard to find a solution that is within any factor of the optimal objec-

tive value, if the solution is required to satisfy the budgetconstraint; alternatively, if the solution

2

must achieve exactly the minimum value of the total cost objective, then it isNP-hard to find one

which satisfies the budget within any given factor. Motivated by these hardness results for unicrite-

rion approximations, we focus on finding bicriteria approximations, that is, efficient algorithms that

guarantee a solution which is approximate in terms of both the budget and the objective function.

An (�; �) approximation algorithm for a generic bicriteria problem(A;B;S) is a polynomial-

time algorithm that produces a solution in which the objective value forA is at most� times the

budget and the cost of the solution with respect toB is at most� times the value of an optimal

solution with respect toB that respects the budget constraint with respect toA. Our algorithms

provide bicriteria approximations in the sense described above for a wide variety of one-connected

network-design problems.

3 Summary of Results

3.1 Hardness Results

Our lower bound results on finding near-optimal solutions include the following. Additional hardness

results are discussed in Section 7.

1. For general graphs, unlessP = NP, for any� > 1, there is no polynomial time(1; �) approxi-

mation algorithm for the (U-DEGREE, E-TOTAL COST, SPANNING TREE) problem.

2. For general graphs, unlessP = NP, for any� > 1, there is no polynomial time(�; 1) approxi-

mation algorithm for the problem (U-DEGREE, E-TOTAL-COST, STEINER TREE).

3. For general graphs, unlessP = NP, for any " > 0 and� > 1, there is no polynomial time(2� "; �)-approximation algorithm for the (N-DEGREE, E-TOTAL-COST, STEINER TREE) prob-

lem.

4. For general graphs, unlessP = NP, for any" > 0 and� > 1 , there is no polynomial time(�; � � ")-approximation algorithm for the (N-DEGREE, E-TOTAL-COST, STEINER TREE) prob-

lem. Here� is the lower bound on the performance guarantee of any algorithm for finding

minimum Steiner trees (see Chapter 10 of [15] for the best bounds). This result is an immediate

corollary of hardness results for the minimum Steiner tree problem.

These hardness results motivate the need for bicriteria rather than unicriterion approximation

algorithms for these problems.

3.2 Approximation Algorithms

A problem with costs on nodes as well as edges can be transformed (for the purposes of designing ap-

proximation algorithms) into one with only node costs as follows: subdivide each edge by introducing

a new node with cost equal to the cost of the edge5. Therefore, in stating our approximation results,

we focus on the node-weighted case. To keep the description of our main result simple, we present
5This transformation is not applicable to minimum cost spanning trees, for which the node weighted case is trivial.

3

below the result for the case of degree-constrained node-weighted Steiner trees. The extension of

this theorem to more general classes of one-connected networks representable as cut-covers of proper

functions is deferred to Section 5.7.

Theorem 3.1 There is a polynomial-time algorithm that, given an undirected graphG on n nodes

with nonnegative costs on its nodes, a subset ofk nodes called terminals, and a degree boundd(v) � 2
for every nodev, constructs a Steiner tree spanning all the terminals, withdegreeO(d(v) log k) at

a nodev and of costO(log k) times that of the minimum-cost Steiner tree ofG that spans all the

terminals and obeys all the degree bounds.

A proof of this theorem is provided in Section 5. The positiveresult presented in this theorem

should be contrasted with the hardness results mentioned earlier stating that there is no(2 � "; �) or(�; � � ") (for any� > 1 and some� > 0) approximation algorithm for the (N-DEGREE, E-TOTAL-

COST, STEINER TREE) problem unlessP = NP. Combining the above observations we get that

finding an approximation algorithm with performance guarantee(2� ", � � ") is NP-hard. Note that

the performance guarantee on the node-cost in the above theorem cannot be asymptotically improved

(even if the other performance ratio is arbitrarily weakened) since one of the problems included in the

framework of Theorem 3.1 is the node-weighted Steiner tree problem considered by Klein and Ravi

in [18]. By a reduction from the set cover problem and the known non-approximability results for the

latter problem, they note that the best possible performance ratio achievable for this problem (even

without the degree restrictions imposed in Theorem 3.1) is logarithmic unlessP = NP [20, 3, 27]. As

an immediate corollary of Theorem 3.1, we obtain an(O(log n); O(log n)) approximation algorithm

for the (U-DEGREE, E-TOTAL COST, SPANNING TREE) problem introduced earlier.

In Section 6, we address the special case in which the edge costs obey triangle inequality and

presentsimpleapproximation algorithms with better performance guarantees. Further, for the prob-

lem of constructing spanning networks in this special case,we show that our algorithms also simulta-

neously approximate yet another objective, namely the maximum cost of any edge in the network.

4 Related Work

Much work has been done on approximating each of the two cost measures that we simultaneously

minimize (see [4, 5] and the references therein). We also refer the reader to the comprehensive book

edited by Hochbaum [15] for recent results and techniques for solving these problems.

There has also been extensive work on bicriteria network design problems. The (U-DEGREE,

E-TOTAL COST, SPANNING TREE) problem, originally posed and studied in [8], has been recently

considered in Boldon, Deo and Kumar [4]. They present heuristics and their parallel implementations

but do not provide worst case performance guarantees. Papadimitriou and Vazirani [23] studied the

Euclidean version of this problem for the case whend = 3; 4. Monma and Suri [22] showed that for

any set of points in the plane, a minimum spanning tree withd = 5 can be constructed efficiently.

Khuller, Raghavachari and Young [17] gave approximation algorithms with performance guarantees

of 3/2 and 5/4 ford = 3 andd = 4 respectively for points in the plane. They also presented anap-

proximation algorithm with a performance guarantee of 5/3 for point sets in higher dimensions when

4

d = 3. Iwainsky et al. [16] formulated a version of the minimum-cost Steiner problem with an ad-

ditional cost based on node-degrees. Duin and Volgenant [9]formulated the degree-bounded Steiner

tree problem motivated by practical considerations. In other related work, Fischer [11] considered the

problem of finding a MST of minimum possible maximum degree ina weighted undirected graph.

He showed that the techniques of Fürer and Raghavachari [12] can be applied to find a MST of ap-

proximately minimum degree.

In [25], we presented early versions of the results in this paper giving specific algorithms for the

edge-cost versions, and using a simpler version of the techniques in this paper to give results for

the uniform degree node-weighted versions. Building on ourwork there, in [21], we studied other

bicriteria network design problems. There we also presented a polynomial-time algorithm for the

(U-DEGREE, E-TOTAL COST, SPANNING TREE) problem when inputs are restricted to treewidth-

bounded graphs. In [24], Ravi has applied some of the ideas here to solve a bicriteria problem that

forms the basis for finding an approximately minimum broadcast-time scheme in an arbitrary graph.

5 Degree-Constrained Node-Weighted Steiner Trees

In this section, we present our algorithm in detail for the degree-constrained node-weighted Steiner

tree problem. In Section 5.7, we briefly indicate how the algorithm can be extended to accommodate

more general connectivity specifications.

Recall that, as input to the problem, we are given an undirected graphG(V;E), with nonnegative

costs on the nodes and a set ofterminalsto be connected together into a Steiner tree. In addition, for

each vertexv, a budgetd(v) on its degree in the Steiner tree is specified. The goal is to find a Steiner

tree of minimum node cost that obeys the degree constraint atevery node. There are no edge costs

in this version since the problem with node and edge costs canbe transformed into one involving

just node costs (see Section 3.2). We shall assume for the sake of simplicity that such a Steiner tree

always exists on the input graph and address the problem of computing one that approximately obeys

the degree budgets as well as minimizes the total node cost. In the description of the algorithm and

its analysis, we use
G(v) to denote the cost of a nodev 2 V . We omit the subscriptG when there is

no ambiguity.

5.1 High Level Description

The algorithm maintains a setS of nodes and a setF of edges. InitiallyS contains all the terminals

andF is empty. During the course of the algorithm, the connected components of the graph(S; F) are

node-disjoint trees whose union contains all the terminals. Define a connected component of(S; F)
to beactive if it contains at least one terminal but not all of the terminals. The algorithm works inO(log k) iterations. In each iteration, we run a greedy algorithm to choose a subgraph (a collection

of many smaller subgraphs calledspiders) of small degree and small node-cost such that the addition

of this subgraph to the current solution reduces the number of connected components of(S; F) by a

constant factor.

We first define a few additional terms used in describing our algorithm. We useOPT to denote

the minimum cost of any Steiner tree that obeys the degree restrictions in the input.

5

ALGORITHM-DEGREE-STEINER:
Input : An undirected graphG(V;E) with nonnegative costs on its nodes, a setT � V of
terminals (wherejT j = k), and a functiond assigning nonnegative values (each value is at least
two) to the nodes ofG. Let b = minvfd(v)g.
Output : A Steiner treeT spanning the terminalsT such that the degree of any nodev in T
is at most isO(d(v) log k) and the cost ofT is at mostO(log k) times that of a minimum-cost
degree-constrained Steiner tree spanning the terminalsT .

1 Initialization: S = T andF = �.

2 Repeatwhile there are active components in(S; F)
3 LetC be the set of active components of(S; F). Let C = fC1; : : : ; Cqg whereq = jCj.

SetG0(V 0; E0) := G(V;E).
4 While jCj � 11q=12 and q > 6 do
5 Construct an auxiliary graphH as follows: Starting withG(V;E) delete the nodes

in V � V 0 to get a graphG0 onV 0. For every component surviving (as active) inC,
contract all nodes within this component occurring inG0 to a single supernode.

6 For every nodev 2 V 0, considerv as the center of a spider.
7 If v is in a supernode ofH, then uncontractv from this supernode and attach a

zero-cost edge between them; if no nodes fromV 0 remain in the supernode after
uncontractingv, then add a new dummy supernode toH representing the active
component containingv and a zero-cost edge to it fromv.

8 For j = 2 to d(v) + 1 do Find a minimum-cost spider centered atv in H with j
supernodes as its feet using PROCEDURE-FIND-SPIDER.

9 Among all the spiders produced in Step 6, choose one of minimum ratio-cost, de-
fined as the ratio of the cost of all the real nodes in the spiderto the number of feet
in it.

10 Letv be the center node andC1; : : : ; Cr be the components inC chosen as the feet
of the spider in Step 9. LetP1; : : : ; Pr be the legs of the spider connectingv toC1; : : : ; Cr respectively. Add[ra=1Pa to the current solution(S; F) so as to mergeC1; C2; : : : ; Cr into one active component. UpdateC.

11 For every nodev 2 V 0, if the degree of this node using edges added so far in
this iteration (Steps 5 through 11) is between2d(v) and3d(v), then updateV 0 =V 0 � fvg.

12 If q � 6 then
13 Repeatwhile there are active components
14 Run Steps 5 to 10.
15 SetV 0 = �.

16 elseGoto Step 2. (jCj is now less than11q12 .)

17 Output(S; F) as the solution.

6

Definition 5.1 [18]

A spideris a tree with at most one node of degree greater than two. Acenterof a spider is a node

from which there are node-disjoint paths (calledlegs) to the leaves of the spider. Note that if a spider

has at least three leaves, its center is unique. The leaves ofthe spider are also called thefeetof the

spider. Anontrivial spideris one with at least two feet.

5.2 The Algorithm and its Performance Guarantee

The rest of Section 5 is devoted to describing the algorithm and its performance for approximately

solving the (N-DEGREE, E-TOTAL-COST, STEINER TREE). ALGORITHM-DEGREE-STEINER gives

the details of the entire algorithm.

5.3 A Procedure to Find Minimum Ratio Spiders

The heart of ALGORITHM-DEGREE-STEINER is Step 8 — a procedure that chooses a nontrivial

spider of minimum “ratio-cost”. We describe this procedureinformally. Consider a generic step

of ALGORITHM-DEGREE-STEINER (Step 4). Observe that we maintain a current graphG0 and the

current partial solution(S; F). Let the connected components of(S; F) be denoted byfC1 : : : ; Cqg.
The spider we use to merge these components must have a real node ofG0 as the center and some of

these components as its feet. During the course of an iteration, we may delete a nodev fromG0 if the

degree ofv due to the addition of edges in the generic step is between2d(v) and3d(v); i.e., a constant

factor of the degree bound forv. We must then choose in the current graphG0 a spider of minimum

ratio-cost, namely the ratio of the cost of all the nodes ofG0 � S in the spider and the number of feet

of the spider.

Although the concept of a spider is similar to the one used in [18], the degree constraint makes

the problem of finding a “good spider” harder. As a result, theprocedure in [18] for finding spiders

cannot be used in place of PROCEDURE-FIND-SPIDER described below.

We find a spider of minimum ratio-cost by using several calls to a minimum-cost flow algorithm

on the auxiliary graphH. We describe how to find a minimum ratio spider centered at a specific nodev 2 G0, the current graph. By trying all nodes, we can choose the overall minimum ratio spider. To

find a minimum ratio spider centered atv, it suffices to find a spider centered atv containing exactlyj
feet such that it has minimum total node cost. By trying all values ofj in the setf2; 3; : : : ; d(v)+ 1g,
we can find the value ofj minimizing the ratio cost of the resulting spider forv. PROCEDURE-

FIND-SPIDER given below describes a method to find a minimum node-cost spider centered atv with

exactlyj feet.

7

PROCEDURE-FIND-SPIDER:
Input : An undirected graphH containing real nodes and supernodes, a real nodev as the center
and a numberj specifying the number of feet in the spider to be constructed.
Output : A minimum-cost spider centered atv with j feet that are supernodes.

1 Bi-direct all the undirected edges inH giving each resulting arc the cost of the node at its
tail. (Supernodes have zero cost.)

2 Reassign the cost of all the arcs leaving the center nodev to be
(v)j .

3 Attach a new sink nodetv with new arcs of zero-cost coming to it from all the supernodes.

4 In this digraph, impose a capacity bound of one unit on all nodes exceptv andtv and find a
minimum-cost flow of valuej from v to tv.

Remarks:

1. The solution to the above flow problem (when feasible) can be found in polynomial time and is

integral (see [2] or Chapter 4 of [6]).

2. Such a flow gives a minimum-cost set of node-disjoint pathsoriginating atv and ending at a set

of j supernodes.

3. The cost of real nodes inH other thanv that occur in flow paths are accounted for in the cost

of the arcs leaving them. Nodev has exactlyj arcs leaving it in the flow solution, each of cost
(v)j for a total of
(v). Thus, the total cost of the flow solution is equal to the cost of all the real

nodes in the spider that are not in any component of(S; F).
4. The set of edges in the solution to the flow problem containsno cycles. Consequently, the set

of undirected edges from the original graph that correspondto these flow paths (i.e., ignoring

the arcs intotv) contain no cycles.

We now prove the claimed performance guarantee of the algorithm. For ease of exposition the

proof is broken down into a sequence of lemmas and theorems.

Proposition 5.2 The number of iterations of Step 2 in the algorithm isO(log k) wherek is the number

of terminals.

The above proposition follows by observing that in each iteration of Step 4, we reduce the number

of active components by a constant factor. We start withk components and the last iteration runs to

completion when this number drops to 6 or below.

Proposition 5.3 For each nodev, the increase in the degree ofv in (S; F) due to edges added in one

iteration of Step 2 is at most3d(v).
8

Proof: Consider a nodev and fix an iterationi (Step 4). If degree ofv exceeds2d(v) using edges in

this iteration, then it is deleted from further consideration in Step 11 and no more edges are added in

this iteration that are adjacent to it. Furthermore, in Step8 the increase in degree ofv is either (i) at

mostd(v) + 1 if it is the center of the chosen spider or (ii) at most2 which is in turn at mostd(v) if

it is a non-center node of the chosen spider (since for allv, d(v) � 2). Thus, if the degree ofv is no

less than2d(v) to begin with, it never exceeds3d(v) after executing Step 8. In the last iteration, we

merge at most 6 components using an acyclic set of edges. Thus, the degree ofv increases by at most6 � 3d(v), since for allv, d(v) � 2.

Combining Propositions 5.2 and 5.3 immediately leads to theperformance guarantee on the de-

gree of a node in the final solution. We now bound the total costof the subgraph added in one iteration.

Lemma 5.4 along with Proposition 5.2 yield the required performance guarantee on the total cost of

the final solution, completing the entire proof.

Lemma 5.4 The cost of the set of nodes added to the solution in each iteration of Step 2 is at mostO(OPT).
First we complete the proof with regard to the the cost added in the last iteration. Recall that at the

beginning of the last iteration, the number of active components is at most 6. For this iteration, our

algorithm reduces to that of Klein and Ravi [18] for node-weighted Steiner trees. Hence using their

result with the number of “terminals” to be connected being at most6, the cost of the nodes added is

at mostO(OPT log 6) = O(OPT).
The proof of the lemma for the remaining iterations is more involved and is described in Sections

5.4 through 5.6. The proof proceeds by deriving a decomposition of an optimal solution and using it as

a witness to the performance of the algorithm in each iteration. In particular, we use the decomposition

to prove an averaging lemma and use this in conjunction with apotential function argument due to

Leighton and Rao [19] to prove Lemma 5.4. We begin by proving abound on the total degree of all

the nodes that are deleted fromG0 in any iteration.

5.4 Bounding the Total Degree of Deleted Nodes

Fix an iterationi. Let the active components in the beginning of this iteration i beC1; C2; : : : ; Cq. At

the beginning of this iteration, we initialize the graphG0 := G. During the course of this iteration,

we may delete nodes fromG0 in Step 11.

Lemma 5.5 In each iteration of Step 2 of the algorithm, the sum of the degrees of all the nodes deleted

fromG0 due to edges added in this iteration is at mostq.
The proof relies on the following observations.

1. The subgraph added in a given iteration is acyclic.

2. The iteration terminates when at mostq12 of the active components are merged using edges

added in a given iteration.

9

Using these observations we can show that a large fraction ofthe degree of the deleted nodes con-

tributes to merging theq active components. This implies an upper bound on the sum of the degrees.

Proof: Letm be the number of components that were merged in this iteration. Note thatm � q12 . We

can assume without loss of generality that them components are merged into a single component. (It

is easy to see that in other cases we obtain better bounds.)

Let R denote the acyclic subgraph added to merge them components. By the working of the

algorithm, the leaves ofR are precisely them components that were merged. By our assumption,d(v) � 2 for all v. Thus, all vertices of degree 2 inR do not contribute to the degree sum of deleted

nodes. Hence we modifyR to obtainR0 as follows: We contract all simple paths in which each

internal node has degree 2 into a single edge. Now each internal node inR0 has a degree of at least 3.

LetN = fw1; w2; : : : ; wP g denote the internal nodes ofR0. Note that some of these nodes might not

have been deleted. LetD(wi), 1 � i � P denote the degree ofwi in R0. We now prove a stronger

statement and show that D = PXi=1D(wi) � q (1)

Note that1 � i � P; D(wi) � 3. ThusD � 3P . But sinceR0 is a tree we know that the number

of edgesjE(R0)j is given byjE(R0)j = P +m� 1. Thus2jE(R0)j = 2(P +m� 1) = D +m � 3P +m (2)

implying thatP � m� 2. This gives an upper bound on the total number of internal nodes inR0.D +m = 2jE(R0)j = 2(P +m� 1) � 2(m� 2 +m� 1) � 3m� 5 (3)

Combining this with the upper bound onm we getD � 2m� 5 � 2 q12 � 5 � q6
proving Equation (1).

5.5 Spider Decompositions and an Averaging Lemma

We employ the notion of spider decompositions introduced byKlein and Ravi [18] in showing that

the each node chosen in Step 9 has small ratio-cost with respect to the optimal solution.

Let G be a graph, and letM be a subset of its nodes. Aspider decompositionof M in G is a set

of node-disjoint nontrivial spiders inG such that the union of the feet and the centers of the spiders

in the decomposition containsM .

Theorem 5.6 ([18]) LetG be a connected graph, and letM be a subset of its nodes such thatjM j �2. ThenG contains a spider decomposition ofM .

Let v be a node chosen in Step 9 of the algorithm. LetC denote the cost of the subgraph added

subsequently in Step 10. Let this subgraph merger trees. We prove the following claim.

10

Claim 5.7 r � 512 CqOPT (4)

Proof: Let T � be a minimum-cost degree-bounded Steiner tree of costOPT . LetC1; : : : ; Cp be the

active components when a spider centered at nodev was chosen by the algorithm. LetT �(v) be the

graph obtained fromT � by contracting eachCj to a supernode of zero cost.T �(v) is connected and

contains all supernodes. We then remove edges fromT �(v) so as to make it acyclic; thusT �(v) is a

tree.

Delete all edges incident on nodes inV � V 0 (the deleted nodes) inT �(v). Consider a nodeu.

By construction ofT �(v), u’s degree inT �(v) (denoted bydT (u)) is at mostd(u). Furthermore,u is

deleted in our algorithm only if its degree, denoted bydi(u), exceeds2d(u) due to the edges added in

a given iteration of Step 2. Thus we have8u 2 V � V 0; di(u) � 2d(u) and dT (u) � d(u)
Combining these observations with Lemma 5.5, we getXu2V�V 0 dT (u) � 12 Xu2V�V 0 di(u) � q=2:
Thus, the total number of edges deleted fromT �(v) is also at mostq2 . Since there werep active

components (and hence supernodes) whenv was chosen, the treeT �(v) hasp supernodes in it. Since

we deleted at mostq2 edges from this tree, at leastp� q2 of the supernodes are in subtrees with at least

two or more supernodes. Sincep � 11q12 , at least5q12 supernodes are in such trees. We summarize this

in the following proposition.

Proposition 5.8 LetM denote the subset of supernodes that are in subtrees with twoor more supern-

odes. ThenjM j � 5q12 .

We apply Theorem 5.6 to each subtree ofT �(v) with at least two supernodes to obtain a spider

decomposition ofM . We now compare the ratio cost of spider chosen by the algorithm with that

of each spider in the decomposition. To do this however, we must ensure that the following two

conditions hold.

(i) the center of each spider in the decomposition must be a real node (not a supernode) and

(ii) the number of legs of each spider must be at mostd(v) + 1.

We achieve this as follows. We further partition a spider centered at a supernode into many

nontrivial spiders each centered at a real nodev contained in this supernode such that the union of

their feet contains the feet of the original spiders and the number of legs of the spider centered atv is

at mostd(v) + 1. To do this, first consider all the real nodes in the central supernode with at least one

leg of the spider incident on them. Each such real node can be made the center of a nontrivial spider

(satisfying (i)) with all the legs incident on it as the legs of the spider, along with a zero cost leg to the

11

supernode that it belongs to. Since the degree of any real node in T � is at mostd(v), the number of

legs of any such spider is at mostd(v) + 1 satisfying (ii).

Let the centers of the resulting spider decomposition satisfying (i) and (ii) be the set of real nodesv1; : : : ; vt. Let `1; : : : ; `t denote the number of nodes ofM (feet) in each of these spiders respectively.

Since every spider in the decomposition is nontrivial and isderived as above, each`j is at least two and

at mostd(v)+1. Moreover, a spider with centervj induces a subset of the current active components,

namely thè j components whose supernodes belong to this spider. Let the cost of the spider centered

at vj (i.e., cost ofvj plus the sum of the node-costs of the paths fromvj to the`j components – ifvj
is already in a supernode, we may assume its cost to be zero since it has already been paid for in the

formation of the supernode) beCostj. Then the ratio cost of the spider centered atvj in the auxiliary

graphH constructed in this loop is at mostCostj`j .

Since the algorithm chooses a spider of minimum ratio-cost in H, for each spider in the decom-

position we haveCostj`j � Cr . Summing over all the spiders in the decomposition yieldstXj=1Costj � Cr tXj=1 `j : (5)

Combining Proposition 5.8 with the observation that the union of the feet of the spiders containsM ,

we get tXj=1 `j � jM j � 5q12 : (6)

Also note that tXj=1Costj � COST (T �(v)) � OPT (7)

since (i) the cost of the nodes in the treeT �(v) is at mostOPT and (ii) each real node inT �(v)
appears in at most one spider. Combining Equations (5), (6) and (7) yields Claim 5.7.

5.6 A Potential Function Argument

Now we are ready to complete the proof of Lemma 5.4. Fix an iteration i and let the set of nodes

chosen in Step 9 of the algorithm in this iteration bev1; : : : vf in the order in which they were chosen.

Let �j denote the number of active components in the solution afterchoosing vertexvj in this

iteration. Thus, for instance,�0 = q, the number of active components at the beginning of this

iteration in(S; F), �f�1 > 11q12 and�f � 11q12 . Let the number of trees merged using vertexvj berj.
Then we have �j = �j�1 � (rj � 1) (8)

LetCj denote the cost of the subgraph added by the algorithm in the step when vertexvj was chosen.

Then by Claim 5.7, we have rj � 512 CjqOPT � 512 Cj�j�1OPT (9)

12

We now use an analysis technique due to Leighton and Rao [19] to complete the proof as in [18].

Substituting Equation (9) into (8) and simplifying usingrj � 2 gives�j � �j�1(1� 524 CjOPT) (10)

Simplifying (10), we obtain �f�1 � �0 f�1Yj=1(1� 524 CrOPT):
Taking natural logarithms on both sides and simplifying using the approximationln(1 + x) � x, we

obtain 245 OPT ln(�0�f�1) � f�1Xj=1 Cj:
Note that�0 = q and�f�1 > 11q12 and so we havef�1Xj=1 Cj < 5 OPT ln 1211 = O(OPT) (11)

Note that the cost of the nodes added in this iteration is exactly the sum
Pfj=1Cj.

To complete the proof, we bound the cost of the subgraph associated withvf , the last node chosen

in this iteration. Using Claim 5.7 and noting thatrf � q we haveCf � 125 OPT:
Using the above equation and (11), we have that the cost of theset of nodes added in this iteration isfXj=1Cj = O(OPT):
This completes the proof of Lemma 5.4.

The performance of our approximation algorithm was summarized in Theorem 3.1.

5.7 Extension to Proper Function Cut Covers

The extension of Theorem 3.1 to construct cut-covers definedby proper 0-1 functions is fairly straight-

forward, and the algorithm for this case follows the same outline as the one above. The reader is

referred to [14, 15] for the definition of proper 0-1 functions. The algorithm begins with the setS
being the set of terminals defined by the proper function. Thedefinition of active components in the

algorithm is now based on thef -values given to cuts by the input proper function. In other words, a

component is deemed active if the cut around it is. Note that when all components are inactive, the

set of edges added by the algorithm until then constitutes a feasible cut-cover.

The only additional issue is that in the proof of the upper bound on the cost of the subgraph added

in each iteration, the optimal solution is a forest instead of a single tree. However, as in [18], we

13

can use the fact that each tree in the forest must contain at least two active components to infer that

this forest contains at least as many edges as half the numberof active components. This observation

is sufficient to prove a modified version of Claim 5.7 with slightly worse constants. The details are

straightforward and omitted to avoid repetition. Thus we have the following theorem.

Theorem 5.9 There is a polynomial-time algorithm that, given an undirected graphG with nonneg-

ative costs on its nodes, a proper functionf defined on the node subsets ofG, and a functiond
assigning a nonnegative valued(v) � 2 to each nodev ofG, constructs a cut-cover for the family of

cuts defined byf in which the maximum degree of any nodev is at mostO(d(v) log k) and the cost of

the cover is at mostO(log k) times that of the “minimum-cost degree-constrained cut cover” for f .

Herek represents the number of terminals defined byf . A degree-constrained cut cover is a subgraph

which covers (i.e., contains at least one edge in) all the cuts defined byf and has degree at mostd(v)
at nodev, for all v.

6 Algorithms Under Triangle Inequality

One way to circumvent the difficulty of approximating the problems studied is to consider more

structured cost functions on the edges. In this direction, we turn to the case where the underlying

graph is assumed to be complete with costs only on the edges and these costs obey the triangle

inequality. Define thebottleneck costof a network to be the maximum cost of any edge in it. In this

case, we present approximation algorithms that strictly conform to the degree restriction in the input

problem and approximate the bottleneck cost of the output network as well. Most of the results in this

section are straightforward and we discuss it here for the sake of completeness.

6.1 Results for Spanning Trees

Proposition 6.1

1. There is a polynomial time approximation algorithm for (N-DEGREE, E-TOTAL COST, SPAN-

NING TREE) problem restricted to edge-weighted graphs that satisfy triangle inequality. Its

performance guarantee is(1; (2 � (dmin(v)�2)(n�1))). Moreover, the bottleneck cost of the tree pro-

duced byALGORITHM-TI-SPANNING-TREE is at most twice that of the minimum-bottleneck

spanning tree. Heredmin(v) denotes the smallest degree constraint.

2. There is a polynomial-time algorithm that, given a undirected graph with edge costs satisfying

the triangle inequality, outputs a TSP tour of total cost at most two times the cost of a MST and

of bottleneck cost at most three times that of a minimum bottleneck-cost spanning tree.

Proof: First we sketch the proof of Part 1. The algorithm starts by constructing an MST. It then

partitions the edges of the MST into claws and sorts the edgesin every claw in the order of non-

decreasing cost. Each claw is short-cut locally by replacing edges from the internal node to its children

(except the very first child) with edges between consecutivechildren. LetT denote the resulting tree.

14

To prove the first part of the proposition, for any setE0 of edges, let
(E0) denote the sum of the

costs of all the edges inE0. We have the following relations.
(MST) = Xv : v is not a leaf of the MST

(
law(v)):

For an internal nodev, let t(v) denote the number of children ofv in the rooted MST. For the solutionT , we have
(T) = Xv : v is not a leaf of the MST
[
(
law(v)) � t(v)�d(v)+2Xi=2
(v; vi) + t(v)�d(v)+2Xi=2
(vi�1; vi)℄:

By triangle inequality on the costs
, we have
(vi�1; vi) �
(vi�1; v) +
(v; vi) � 2
(v; vi)
The last inequality follows from the way we ordered the edgesin each claw in non-decreasing order

of costs. Putting the above three equations together, we getthe following bound on the cost of the

output treeT .
(T)
(MST) � (2� (dmin(v) � 2)(n� 1)):
Since the cost of anyd(v)-bounded spanning tree is at least as much as that of the MST, this gives the

bound on the cost of the tree output by the algorithm.

We now complete proof by proving the bound of two on the bottleneck cost. It is well known that

an MST is also an optimum bottleneck spanning tree. Since each short-cut used in forming the output

treeT is made up of at most two edges, the bottleneck cost ofT is at most twice that of the MST.

Since the bottleneck cost of anyb-bounded spanning tree is at least as much as that of the bottleneck

spanning tree, the resulting tree has bottleneck cost at most twice the optimum.

Part 2 of the proposition follows from standard constructions based on a recursive short-cutting

procedure using edges from the cube of the Minimum Spanning Tree. This is also hinted at in [7] (see

problem 37.2-3 on page 975).

6.2 Extension to Higher Connectivities

Now we are ready to prove our result for networks with higher connectivities. The result is proved by

using short-cuts that induce higher-connected graphs.

Theorem 6.2 There is a polynomial-time algorithm that, given an undirected graph with edge costs

satisfying the triangle inequality, and an integerk � 2 (the vertex-connectivity requirement), outputs

a k-connected spanning subgraph ofG in which the degree of every node is exactlyk, the total cost

of all the edges in the subgraph is at mostk+42 times that of a minimum-costk-connected subgraph,

and the bottleneck cost of the subgraph is at most3 � dk2e times that of a minimum bottleneck-cost

spanning tree.

15

Proof: Let
� and�� denote the cost of an MST and the optimum bottleneck cost of a spanning tree

of the input graph. By Proposition 6.1, we can obtain a TSP tour T of cost
(T) and bottleneck cost�(T) such that
(T) � 2
� and�(T) � 3��. Let the vertices in this tour be numberedv1; v2; : : : ; vn.

Now, we add extra edges to this cycle as follows: For every node, add edges joining it to vertices to

its left in the cycle that are withindk2e edges from it and all vertices to its right in the cycle that are

within bk2
 edges from it. It is not hard to see that this graph isk-vertex-connected (by showingdk2 e
disjoint paths between any pair of nodes going clockwise in the cycle and anotherbk2
 disjoint paths

going counter-clockwise). The degree of every node in this graph is exactlyk. Since each shortcut

employed replaces a path of at mostdk2e edges, the bottleneck cost goes up by this factor. This proves

that the bottleneck cost of this subgraph is within3 � dk2e of optimal.

The total cost of the graph obtained this way can be computed by bounding how many newly

added edges contain a given edge in the TSP tour within their span of k2 or less. We can compute this

for an edgeuv by counting all the added edges that originate atu or to the left of it and end atv or

to its right. The number of such edges originating atu is dk2 e, and the number originating at the node

beforeu crossing overuv is dk2e � 1 and so on, giving a total of at mostk(k+2)8 + 1. Thus the total

cost of this graph is at mostk(k+2)8 + 1 times that of the TSP tourT that we started with. This in turn

is at most(k(k+2)4 + 1)
�. However, we can apply an approximate min-max relation between a MST

and a packing of cuts in the graph that is derived in [1, 14] in proving a better performance guarantee

of k+22 + 1 for the total cost.

In particular, if OPTk denotes the cost of a minimumk-connected subgraph, we show thatOPTk � k
�2 . This would prove that the cost of thek-connected subgraph output by our algorithm is

at most(k+22 + 1)OPTk as claimed in Theorem 6.2.

It remains to prove thatOPTk � k
�2 . We do this in the remainder of this section. Before that

we need some definitions. Given a graphG, recall that an edge cut in the graph can be written as�(W), whereW is a node subset of the graph, and�(W) denotes the set of edges with exactly one

endpoint inW . A fractional packing of cuts is a family of cuts�(W1);�(W2); : : : ;�(Wk), together

with a rationalweightfor each cut. A (fractional)w-packingof cuts is a weighted collection of cuts

that have the following property: for each edge(u; v) of costw(u; v), the sum of the weights of all

the cuts in this collection containing the edge is at mostw(u; v). Thevalue of the packingis the sum

of the weights of all the cuts in the packing. Amaximum packingis one of maximum value. The

following theorem is a consequence of the results in [1, 14].

Theorem 6.3 Given an undirected graph with edge-weights, a minimum-weight spanning tree has

weight at most twice the value of a maximum packing of cuts.

The algorithms in [1, 14] find a greedy packing of cuts and simultaneously build a minimum

spanning tree of weight at most twice the value of this packing.

Note that anyk-connected spanning subgraph must have at leastk edges crossing any cut since

this subgraph hask disjoint connections between every pair of vertices. Thus we have the following

lemma.

Lemma 6.4 The weight of anyk-connected subgraph is at leastk times as much as the value of a

maximum packing of cuts.

16

Applying the above lemma to the optimumk-connected subgraph of costOPTk and combining with

Theorem 6.3 above we conclude thatOPTk � k
�2 .

7 Hardness Results

In this section, we prove hardness results that motivate theneed for bicriteria approximations rather

than approximating only one objective while strictly obeying the budget on the other. We first prove

the results for spanning trees and then strengthen the results for Steiner trees.

7.1 Hardness Results for Spanning Tree Problems

Theorem 7.1 1. UnlessP = NP, for any� > 1, there is no polynomial time(1; �) approximation

algorithm for the problem (U-DEGREE, E-TOTAL COST, SPANNING TREE).

2. UnlessP = NP, for any� > 1, there is no polynomial time(1; �) approximation algorithm for

the problem (U-DEGREE, E-BOTTLENECK-COST, SPANNING TREE).

3. UnlessP = NP, for any1 � � < 2, there is no polynomial time(1; �) approximation algorithm

for the problem (U-DEGREE, E-BOTTLENECK-COST, SPANNING TREE), even when edge

weights satisfy triangle inequality.

Proof: TheNP-hardness of (U-DEGREE, E-TOTAL COST, SPANNING TREE) and (U-DEGREE, E-

BOTTLENECK-COST, SPANNING TREE), follows via a straightforward reduction from the HAMIL -

TONIAN PATH problem in which we add a the right number of distinct leaves to each node of the

original graph.

To prove the third part, we use the cost assignment as in the first part of the proof that obeys the

triangle inequality. Under this assignment, the maximum cost of any edge in anyb-bounded spanning

tree of the resulting graph is at most one if the original graph is Hamiltonian and is at least two

otherwise. Hence an approximation algorithm with performance ratio less than two in this case would

be able to recognize Hamiltonian graphs. This completes theproof of Theorem 7.1.

7.2 Hardness Results for Steiner Tree Problems

Since a spanning tree is a special case of a Steiner tree, it follows from Part 1 of Theorem 7.1 that

unlessP = NP, there is no polynomial time(1; �) or (�; 1) approximation algorithm for the (U-

DEGREE, E-TOTAL-COST, STEINER TREE) problem for any� > 1. Furthermore, since the problem

of computing a Steiner tree of minimum total edge weight (even without any degree constraints on

nodes) isNP-hard, it follows that unlessP = NP, there is no polynomial time(�; 1) approximation

algorithm for the (U-DEGREE, E-TOTAL-COST, STEINER TREE) problem for any� > 1.

These hardness results require either the budget to be satisfied exactly or the cost of the network

to be optimal. We now present a result which points out the difficulty of solving the Steiner version

of the non-uniform degree bounded problem within constant factors. This result is obtained by a

reduction from the SET COVER problem. Recently, Arora and Sudan [3], and independently Raz and

Safra [27] have shown the following non-approximability result for MIN SET COVER.

17

Theorem 7.2 UnlessP = NP, the M IN SET COVER problem, with a universe of sizek, cannot be

approximated to better than alnk factor.

Theorem 7.3 UnlessP = NP, for any " > 0, there is no polynomial time(2 � ")-approximation

algorithm for the non-uniform degree-bounded Steiner treeproblem.

Proof: Suppose there is a polynomial time(2 � ")-approximation algorithmA for the problem. We

will show thatA can be used to obtain a polynomial time 2-approximation for the MIN SET COVER.

In view of Theorem 7.2, the required result would follow.

Given an instance of MIN SET COVER, we construct the natural bipartite graph with one partition

for set nodes (denoted byQ1, Q2, : : :, Qm) and the other for element nodes (denoted byq1, q2, : : :,qn), and edges representing element inclusion in the sets. To this bipartite graph, we add an “enforcer”

node (denoted byx) which is adjacent to each of the set nodes. LetG denote the resulting bipartite

graph. The setR of terminals for the Steiner tree instance is given byR = fx; q1; q2; : : : ; qng.
In this way, we create a sequence ofm instances of the problem (N-DEGREE, E-TOTAL-COST,

STEINER TREE). In all these instances, the degree bound for each element node is chosen as 1 and

the degree bound for each set node is chosen asn + 1. For thejth instance of the (N-DEGREE,

E-TOTAL-COST, STEINER TREE) problem, the degree bound on the enforcer node is chosen asj
(1 � j � m).

Suppose there is an optimal solutionQ0 = fQi1 ; Qi2 ; : : : ; Qikg consisting ofk sets to the MIN

SET COVER instance. Then the Steiner treeT in G consisting ofx, the edges(x;Qij), 1 � j � k,

and one edge from each element node to some set node inQ0 satisfies all the degree constraints. The

cost ofT is equal tok.

Suppose we run the approximation algorithmA successively on instances 1, 2,: : :, m of the

(N-DEGREE, E-TOTAL-COST, STEINER TREE) problem. Note thatA may fail to produce a Steiner

tree on some of these instances since there may be no Steiner tree satisfying the degree constraints,

even after allowing for degree violations by a factor of2 � ". We stop as soon asA produces a

solution. We now argue that from this solution, we can obtaina 2-approximate solution to the MIN

SET COVER instance. To see this, note that when we runA on instancek, A must produce a Steiner

treeT 0, since as argued above, there is a feasible solution to instancek. Since the degree requirement

for each element node is 1 and the violation factor is less than 2, the degree of each element node inT 0 is 1. Similarly, the degree of the enforcer nodex in T 0 is less than2k. The set nodes adjacent tox
must cover all the element nodes since the degree of each element node is 1. We thus have a solution

of size at most2k for M IN SET COVER and this completes the proof.

Corollary 7.4 UnlessP = NP, for any" > 0 and � > 1 , there is no polynomial time(2 � "; �)-
approximation algorithm for the (N-DEGREE, E-TOTAL-COST, STEINER TREE) problem.

8 Concluding Remarks

We have introduced bicriteria approximation algorithms for degree-constrained minimum-cost one-

connected network problems, that allow general degree specifications and node costs. Our results for

18

bicriteria problems can be used to improve previous resultson approximating certain minimum degree

network problems. In particular, Theorem 5.9 implies a polynomial-time approximation algorithm

for a class of minimum-degree forest problems considered byRavi, Raghavachari and Klein [26].

They address the problem of finding one-connected networks that are cut-covers of proper functions

such that the maximum degree of any node in the network is minimum. This is a single criterion

problem without the node weight objective. They provide a quasi-polynomial (nO(log1+� n)-time)

approximation algorithm for these problems on ann-node graph that provides a solution of degree at

most(1 + �) times the minimum with an additive error ofO(log1+� n), for any� > 0. A prototypical

example of the one-connected network problem considered in[26] is the minimum-degree generalized

Steiner forest problem: given an undirected graph with site-pairs of nodes, find a generalized Steiner

forest for the site-pairs in which the maximum degree is minimum. The techniques in [26] can be

adapted to provide polynomial-time approximation algorithms with performance ratio
(nÆ) for any

constantÆ > 0 (by setting� = n 1Æ). By a direct application of Theorem 5.9, an improved (logarithmic)

approximation ratio can be achieved in polynomial time for this problem.

Subsequent Work

In subsequent work, we have used a similar framework to devise approximation algorithms for other

bicriteria problems (see [21, 24]). An obvious open problemresulting from this work is to improve

the performance ratios in all our results; although different techniques than those given seem to be

required. In this context, it would be interesting to investigate whether the primal-dual method [1, 14]

can be applied to provide such better guarantees and also provide a general framework for bicriteria

network-design problems. Another interesting question isto investigate the extension of our work to

higher-connected degree-constrained networks without the triangle inequality.

In other follow-up to our work, the special case of the (U-DEGREE, E-TOTAL COST, SPANNING

TREE) problem in the Euclidean plane was addressed in [17], and improvements to the short-cutting

scheme of Proposition 6.1 using network flow techniques are presented in [10].

Acknowledgments: We thank the referee for several valuable suggestions. We gratefully acknowl-

edge helpful conversations with M. X. Goemans, P. N. Klein, G. Konjevod, S. Krumke, B. Raghavachari,

V. S. Ramakrishnan, S. Subramanian and R. Sundaram.

References

[1] A. Agrawal, P. Klein and R. Ravi, “When Trees Collide: An Approximation Algorithm for the
Generalized Steiner Problem on Networks,”SIAM J. Computing, Vol. 24, pp. 440–456, 1995.

[2] R. Ahuja, T. Magnanti and J. Orlin,Network Flows: Theory and Algorithms, Prentice Hall,
Englewood Cliffs, N.J. 1993.

[3] S. Arora and M. Sudan, “Improved Low-Degree Testing and its Applications,”Proc. 29th Annual
ACM Symposium on Theory of Computing (STOC’97), pp. 485–496, 1997.

19

[4] B. Boldon, N. Deo and N. Kumar, “Minimum Weight Degree Constrained Spanning Tree Prob-
lem: Heuristics and Implementation on a SIMD Parallel Machine,” Parallel Computing, Vol. 22,
No. 3, pp. 369–382, March 1996.

[5] P. M. Camerini, G. Galbiati and F. Maffioli, “The Complexity of Weighted Multi-Constrained
Spanning Tree Problems,”LOVSZEM: Colloquium on the Theory of Algorithms,North-Holland,
1985.

[6] W. Cook, W. Cunningham, W. Pulleybank and A. Schrijver,Combinatorial Optimization, Wiley-
Interscience Series on Discrete Mathematics and Optimization, New York, NY, 1998.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms, McGraw-Hill Book
Co., Cambridge, MA, 1990.

[8] N. Deo and S. L. Hakimi, “The Shortest Generalized Hamiltonian Tree,”Proc. 6th Annual Aller-
ton Conference,pp. 879–888, 1968.

[9] C. W. Duin and A. Volgenant, “Some Generalizations of theSteiner problem in Graphs,”Net-
works, Vol. 17, pp. 353–364, 1987.

[10] S. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari and N. Young, “A Network Flow Tech-
nique for Finding Low-Weight Bounded-Degree Spanning Trees,” J. Algorithms,Vol. 24, No. 2,
pp. 310–324, August 1997.

[11] T. Fischer, “Optimizing the Degree of Minimum Weight Spanning Trees,” Technical Report TR
93-1338, Department of Computer Science, Cornell University, Ithaca, New York, April 1993.

[12] M. Fürer and B. Raghavachari, “Approximating the minimum-degree Steiner tree to within one
of optimal,” J. Algorithms, Vol. 17, No. 3, pp. 409–423, November 1994.

[13] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, CA, 1979.

[14] M. Goemans and D. Williamson, “A General ApproximationTechnique for Constrained Forest
Problems,”SIAM J. Computing, Vol. 24, pp. 296–317, 1995.

[15] D. Hochbaum (Editor),Approximation Algorithms for NP-Hard Problems, PWS Publishing
Company, Boston, MA, 1997.

[16] A. Iwainsky, E. Canuto, O. Taraszow and A. Villa, “Network Decomposition for the Optimiza-
tion of Connection Structures,”Networks, Vol. 16, pp. 205–235, 1986.

[17] S. Khuller, B. Raghavachari and N. Young, “Low-Degree Spanning Trees of Small Weight,”
SIAM J. Computing, Vol. 25 No. 2, pp. 355–368, April 1996.

[18] P. Klein and R. Ravi, “A Nearly Best-Possible Approximation for Node-Weighted Steiner Trees,”
J. Algorithms, Vol. 19, No. 1, pp. 104–115, July 1995.

[19] F. T. Leighton and S. Rao, “An Approximate Max-Flow Min-Cut Theorem for Uniform Multi-
commodity Flow Problems with Application to ApproximationAlgorithms,” Proc. 29th Annual
IEEE Symp. Foundations of Computer Science (FOCS), pp. 422–431, 1988. (Complete version
to appear inJ. ACM.)

20

[20] C. Lund and M. Yannakakis, “On the Hardness of Approximating Minimization Problems,”
J. ACM,Vol. 41, No. 5, pp. 960–981, September 1994.

[21] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz and H. B. Hunt III, “Bicri-
teria Network Design Problems,”J. Algorithms,Vol. 28, No. 1, pp. 142–171, July 1998.

[22] C. Monma and S. Suri, “Transitions in Geometric MinimumSpanning Trees,”Discrete & Com-
putational Geometry, Vol. 8, No. 3, pp. 265–293, 1992.

[23] C. Papadimitriou and U. Vazirani, “On Two Geometric Problems Related to the Traveling Sales-
man Problem,”J. Algorithms, Vol. 4, pp. 231–246, 1984.

[24] R. Ravi, “Rapid Rumor Ramification,”Proc. 35th Annual IEEE Symp. on the Foundations of
Computer Science (FOCS’94), pp. 202–213, November 1994.

[25] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, andH. B. Hunt III, “Many Birds with
One Stone: Multi-Objective Approximation Algorithms,”Proc. 25th Annual ACM Symposium
on Theory of Computing (STOC’93), pp. 438–447, 1993.

[26] R. Ravi, B. Raghavachari and P. N. Klein, “Approximation Through Local Optimality: Design-
ing Networks with Small Degree,”Proc. 12th Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FST & TCS), Springer Verlag, LNCS 652, pp.
279–290, December 1992.

[27] R. Raz and S. Safra, “A Sub-Constant Error-ProbabilityLow-Degree Test and a Sub-Constant
Error-Probability PCP characterization of NP,”Proc. 29th Annual ACM Symposium on Theory
of Computing (STOC’97), pp. 475–484, 1997.

[28] D. J. Rosenkrantz, R. E. Stearns and P. M. Lewis II, “An analysis of Several Heuristics for the
Traveling Salesman Problem,”SIAM J. Computing, Vol. 6, No. 3, pp. 563–581, 1977.

21

