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Abstract

We study a general class of bicriteria network design problems. A genaiitem in this
class is as follows: Given an undirected graph and two minimization obgsctivnder different
cost functions), with a budget specified on the first, find a jsubgraph & given subgraph-class
that minimizes the second objective subject to the budget on the firstokgéder three different
criteria - the total edge cost, the diameter and the maximum degree oétiverk. Here, we
present the first polynomial-time approximation algorithms fargé class of bicriteria network
design problems for the above mentioned criteria. The following gemgrak of results are
presented.

First, we develop a framework for bicriteria problems and their axprations. Second,
when the two criteria are the same we present a “black box” parametric searclytexhhhis
black box takes in as input an (approximation) algorithm for the ueigan situation and gen-
erates an approximation algorithm for the bicriteria case with only atanhfactor loss in the
performance guarantee. Third, when the two criteria are the diameter andiahedge costs we
use a cluster-based approach to devise a approximation algorithmssehttiens output violate
both the criteria by a logarithmic factor. Finally, for the class eetvidth-bounded graphs, we
provide pseudopolynomial-time algorithms for a number of tecidt problems using dynamic
programming. We show how these pseudopolynomial-time algosittan be converted to fully
polynomial-time approximation schemes using a scaling technique.
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1 Motivation

With the information superhighway fast becoming a reatityg problem of designing networks ca-
pable of accommodating multimedia (both audio and videaffitr in a multicast (simultaneous
transmission of data to multiple destinations) environtrteas come to assume paramount impor-
tance [Ch9l, FW+85, KJ83, KP+92A, KP+93]. As discussed imidella, Pasquale and Polyzos
[KP+92A], one of the popular solutions to multicast routimgolves tree construction. Two opti-
mization criteria — (1) the minimum worst-case transmisgielay and (2) the minimum total cost
— are typically sought to be minimized in the constructiorthafse trees. Network design problems
where even one cost measure must be minimized, are Dfferhard. (See Section A2 on Network
Design in [GJ79].) But, in real-life applications, it is eft the case that the network to be built is
required to minimize multiple cost measures simultangoweith different cost functions for each
measure. For example, as pointed out in [KP+92A], in the lpratof finding good multicast trees,
each edge has associated with it two edge costs: the cdimtrgost and the delay cost. The con-
struction cost is typically a measure of the amount of bugferce or channel bandwidth used and the
delay cost is a combination of the propagation, transmisai@ queuing delays.

Such multi-criteria network design problems, with separaist functions for each optimization
criterion, also occur naturally in Information RetrievBIH90] and VLSI designs (see [ZP+94] and
the references therein). With the advent of deep micron \MeSigns, the feature size has shrunk to
sizes of 0.5 microns and less. As a result, the interconesidtance, being proportional to the square
of the scaling factor, has increased significantly. An insgein interconnect resistance has led to an
increase in interconnect delays thus making them a domfaatudr in the timing analysis of VLSI
circuits. Therefore VLSI circuit designers aim at findingnimium cost (spanning or Steiner) trees
given delay bound constraints on source-sink connections.

The above applications set the stage for the formal defind@fanulticriteria network design prob-
lems. We explain this concept by giving a formal definitioradficriteria network design problem.
A generic bicriteria network design problen® (B, S), is defined by identifying two minimization
objectives, -A andB, - from a set of possible objectives, and specifying a mestiierrequirement
in a class of subgraphsS- The problem specifies a budget value on the first objecveynder one
cost function, and seeks to find a network having minimum iptessalue for the second objective,
B, under another cost function, such that this network isiwitihe budget on the first objective. The
solution network must belong to the subgraph-clssor example, the problem of finding low-cost
and low-transmission-delay multimedia networks [KP+9&®R+93] can be modeled as the (Diam-
eter, Total cost, Spanning tree)-bicriteria problem: gie& undirected grap&@ = (V, £) with two
weight functionsc, andd, for each edge € E modeling construction and delay costs respectively,
and a bound (on the total delay), find a minimumcost spanning tree such that the diameter of the
tree under thd-costs is at mosP. It is easy to see that the notion of bicriteria optimizatwablems
can be easily extended to the more general multicriterignigdtion problems. In this paper, we will
be mainly concerned with bicriteria network design proldem



In the past, the problem of minimizing two cost measures vien aealt with by attempting to
minimize some combination of the two, thus converting ibiatunicriterion problem. This approach
fails when the two criteria are very disparate. We have amasstead, to model bicriteria problems
as that of minimizing one criterion subject to a budget ondtieer. We argue that this approach is
both general as well as robust. It is more general becausbsumes the case where one wishes to
minimize some functional combination of the two criteridisl more robust because the quality of
approximation is independent of which of the two criteriaim@ose the budget on. We elaborate on
this more in Sections 5.1 and 5.2.

The organization of the rest of the paper is as follows: $adisummarizes the results obtained
in this paper; Section 2 discusses related research woiktjoSe4 contains the hardness results;
Section 5.1 shows that the two alternative ways of formagpti given bicriteria problem are indeed
equivalent; Section 5.2 demonstrates the generality obitriteria approach; Section 6 details the
parametric search technique; Section 7 presents the apyaton algorithm for diameter constrained
Steiner trees; Section 8 contains the results on treevoidtimded graphs; Section 9 contains some
concluding remarks and open problems.

2 Previous Work

2.1 General Graphs

The area of unicriterion optimization problems for netwasign is vast and well-explored (See
[Ho95, CK95] and the references therein.). Ravi et al. [RBH€udied the degree-bounded mini-
mum cost spanning tree problem and provided an approximatgorithm with performance guar-
antee Q(logn), O(logn)).

The (Degree, Diameter, Spanning tree) problem was studiddavi [Ra94] in the context of
finding good broadcast networks. There he provides an appation algorithm for the (Degree,
Diameter, Spanning tree) problem with performance guaeagt(log? n), O(logn))®.

The (Diameter, Total cost, Spanning tree) entry in Tablerfesponds to the diameter-constrained
minimum spanning tree problem introduced earlier. It iskndhat this problem i&NP-hard even
in the special case where the two cost functions are idéikica-89]. Awerbuch, Baratz and Peleg
[AB+90] gave an approximation algorithm witl®(1), O(1)) performance guarantee for this prob-
lem - i.e. the problem of finding a spanning tree that has sanabusly small diameter (i.e., shallow)
and small total cost (i.e., light), both under the same agsttion. Khuller, Raghavachari and Young
[KR+93] studied an extension callddght, approximate Shortest-path Trees (LAST) and gave an
approximation algorithm witfO(1), O(1)) performance guarantee. Kadaba and Jaffe [KJ83], Kom-
pella et al. [KP+92A], and Zhu et al. [ZP+94] considered tBéa(neter, Total cost, Steiner tree)
problem with two edge costs and presented heuristics withoy guarantees. It is easy to con-

5The result in Ravi [Ra94] is actually somewhat stronger egia budgetD, on the degree he finds a tree whose total
cost is at mosD(log n) times the optimal and whose degree is at n@&b log n + log? n).



struct examples to show that the solutions produced by thesastics in [ZP+94, KP+92A], can
be arbitrarily bad with respect to an optimal solution. Asgly related problem is that of finding
a diameter-constrained shortest path between two préfiggecerticess and¢, or (Diameter, To-
tal cost,s-t path). This problem, termed the multi-objective shorteghproblem (MOSP) in the
literature, iSNP-complete and Warburton [Wa87] presented the first fullyypoiial approxima-
tion scheme¥PAS) for it. Hassin [Ha92] provided a strongly polynomiBPAS for the problem
which improved the running time of Warburton [Wa87]. Thisuk was further improved by Phillips
[Ph+93].

The (Total cost, Total cost, Spanning tree)-bicriterigbfgo has been recently studied by Ganley
et al. [GG+95]. They consider a more general problem witharban two weight functions. They
also gave approximation algorithms for the restricted egsen each weight function obeys triangle
inequality. However, their algorithm does not have a bodnulerformance guarantee with respect to
each objective.

2.2 Treewidth-Bounded Graphs

Many NP-hard problems have exact solutions when attention isicesdrto the class of treewidth-
bounded graphs and much work has been done in this area (€e®3AAL+91, BL+87] and the
references therein). Independently, Bern, Lawler and W&hg-87] introduced the notion of de-
composable graphs. Later, it was shown [AC+93] that thesatdsdecomposable graphs and the
class of treewidth-bounded graphs are equivalent. Bi@iteetwork design problems restricted to
treewidth-bounded graphs have been previously studiefilingl, Bo88].

3 Our Contributions

In this paper, we study the complexity and approximabilita@mumber of bicriteria network design
problems. The three objectives we consider are: (i) totat,da) diameter and (iii) degree of the
network. These reflect the price of synthesizing the netwthekmaximum delay between two points
in the network and the reliability of the network, respeelyv TheTotal cost objective is the sum of
the costs of all the edges in the subgraph. Diemeter objective is the maximum distance between
any pair of nodes in the subgraph. Thegree objective denotes the maximum over all nodes in the
subgraph, of the degree of the node. The class of subgrapltens@er in this paper are mainly
Seiner trees (and henceSpanning trees as a special case); although several of our results extend to
more general connected subgraphs such as generalizedrSte#s.

As mentioned in [GJ79], most of the problems considered isghper, are&NP-hard for arbi-
trary instances even when we wish to find optimum solutiontk véispect to a single criterion. Given
the hardness of finding optimal solutions, we concentratgesising approximation algorithms with
worst case performance guarantees. Recall that an ap@taimalgorithm for a minimization prob-
lem IT provides aperformance guaranteeof p if for every instancel of II, the solution value



returned by the approximation algorithm is within a fagtaf the optimal value fod. Here, we ex-
tend this notion to apply to bicriteria optimization protie. An(«, 3)-approximation algorithm for
an (A, B, S)-bicriteria problem is defined as a polynomial-time alguor that produces a solution
in which the first objective A) value, is at mostx times the budget, and the second objectiBg (
value, is at mosg times the minimum for any solution that is within the budget. The solution
produced must belong to the subgraph-class\nalogous definitions can be given whanand/or
B are maximization objectives.

3.1 General Graphs

Table 1 contains the performance guarantees of our appativimalgorithms for finding spanning
trees,S, under different pairs of minimization objectiveA, andB. For each problem cataloged in
the table, two different costs are specified on the edgesediitidirected graph: the first objective is
computed using the first cost function and the second obgeaising the second cost function. The
rows are indexed by the budgeted objective. For exampleritrg & row A, columnB, denotes
the performance guarantee for the problem of minimizingctibje B with a budget on the objective
A. All the results in Table 1 extend to finding Steiner treedwait most a constant factor worsening
in the performance ratios. For the diagonal entries in thietdne extension to Steiner trees follows
from Theorem 6.3. AGORITHM DCST of Section 7 in conjunction with i AsORITHM BICRITERIA-
EQuIVALENCE of Section 5.1 yields the (Diameter, Total cost, Steinax)teand (Total cost, Diameter,
Steiner tree) entries. The other nondiagonal entries cntad extended to Steiner trees and these
extensions will appear in the journal versions of [RM+939&a Our results for arbitrary graphs can
be divided into three general categories.

Cost Measureg Degree Diameter Total Cost
Degree (O(log n), O(log n))" (O(log® n), O(log n))[Ra94] | (O(logn), O(log n))[RM+93]
Diameter (O(log n), O(log? n))[Ra94] (L+9,1+2) (O(log n), O(log n))*
Total Cost | (O(log n), O(log n))[RM+93] (O(log n), O(log )~ (1+7,1+2)°

Table 1. Performance Guarantees for finding spanning treesiian arbitrary graph on n nodes. Asterisks indicate
results obtained in this paper.y > 0 is a fixed accuracy parameter.

First, as mentioned before, there are two natural altemavays of formulating general bicri-
teria problems: (i) where we impose the budget on the firstaiive and seek to minimize the
second and (ii) where we impose the budget on the secondtivbj@and seek to minimize the first.
We show that arfc, 5)-approximation algorithm for one of these formulationsunally leads to a
(8, «)-approximation algorithm for the other. Thus our definitioha bicriteria approximation is
independent of the choice of the criterion that is budgetdtié formulation. This makes it a robust
definition and allows us to fill in the entries for the proble@@s A, S) by transforming the results
for the corresponding problema( B, S).

Second, the diagonal entries in the table follow as a caxotéha general result (Theorem 6.3)
which is proved using a parametric search algorithm. Theydat (Degree, Degree, Spanning tree)



follows by combining Theorem 6.3 with th@(log n2)-approximation algorithm for the degree prob-
lem in [RM+93]. In [RM+93] they actually provide a@(logn)-approximation algorithm for the
weighted degree problem. The weighted degree of a subgsagéfined as the maximum over all
nodes of the sum of the costs of the edges incident on the ndlde subgraph. Hence we actually get
an(O(logn), O(log n))-approximation algorithm for the (Weighted degree, Wetghiegree, Span-
ning tree)-bicriteria problem. Similarly, the entry foriéineter, Diameter, Spanning tree) follows
by combining Theorem 6.3 with the known exact algorithmsnanimum diameter spanning trees
[CG82]; while the result for (Total cost, Total cost, Spamniree) follows by combining Theorem
6.3 with an exact algorithm to compute a minimum spanning f&LR].

Finally, we present a cluster based approximation algoriind a solution based decomposition
technique for devising approximation algorithms for peshs when the two objectives are different.
Our techniques yieldO(log n), O(log n))-approximation algorithms for the (Diameter, Total cost,
Steiner tree) and the (Degree, Total cost, Steiner tred)gms .

3.2 Treewidth-Bounded Graphs

We also study the bicriteria problems mentioned above ferctass of treewidth-bounded graphs.
Examples of treewidth-bounded graphs include trees, sspeeallel graphsk-outerplanar graphs,
chordal graphs with cliques of size at mastbounded-bandwidth graphs etc. We use a dynamic
programming technique to show that for the class of treéwldtunded graphs, there are either
polynomial-time or pseudopolynomial-time algorithms @mtthe problem idNP-complete) for sev-
eral of the bicriteria network design problems studied hekepolynomial time approximation
scheme(PTAS) for problemlI is a family of algorithmsA such that, given an instandeof I1, for

all e > 0, there is a polynomial time algorithzd € A that returns a solution which is within a factor
(1 + €) of the optimal value fod. A polynomial time approximation scheme in which the rugnin
time grows as a polynomial function efis called afully polynomial time approximation scheme
Here we show how to convert these pseudopolynomial-timeriggns for problems restricted to
treewidth-bounded graphs into fully polynomial-time appmation schemes using a general scaling
technique. Stated in our notation, we obtain polynomiaktapproximation algorithms with perfor-
mance of(1, 1 +¢), for all e > 0. The results for treewidth-bounded graphs are summarnz&dhle

2. As before, the rows are indexed by the budgeted objedif@lgorithmic results in Table 2 also
extend to Steiner trees in a straightforward way.

Our results for treewidth-bounded graphs have an integstpplication in the context of find-
ing optimum broadcast schemes. Kortsarz and Peleg [KP92 @Qélog n)-approximation algo-
rithms for the minimum broadcast time problem for seriesaip@l graphs. Combining our results for
the (Degree, Diameter, Spanning tree) for treewidth-bedrgtaphs with the techniques in [Ra94],
we obtain anO(ﬁg”—)—approximation algorithm for the minimum broadcast timelpem for

loglogn
treewidth-bounded graphs (series-parallel graphs haneewidth of2), improving and generalizing

"The result for (Degree, Total cost, Steiner tree) can alsabb&ined as a corollary of the results in [RM+93].



the result in [KP92]. Note that the best known result for fhisblem for general graphs is by Ravi
[Ra94] who provides an approximation algorithm perforneaguaarantee(log? n), O(log n)).

Cost Measures Degree Diameter Total Cost
Degree
polynomial-time| polynomial-time | polynomial-time
Diameter (weakly NP-hard)| (weakly NP-hard)
polynomial-time (1,1+¢€) (1,1 +¢€)
Total Cost (weakly NP-hard)| (weakly NP-hard)
polynomial-time (1,1+¢) (1,1+¢)

Table 2. Bicriteria spanning tree results for treewidth-baunded graphs.

4 Hardness results

The problem of finding a minimum degree spanning tree is gtyolNP-hard [GJ79]. This im-
plies that all spanning tree bicriteria problems, where ainde criteria is degree, are also strongly
NP-hard. In contrast, it is well known that the minimum dianmetpanning tree problem and the
minimum cost spanning tree problems have polynomial tingeréghms (see [CLR] and the refer-
ences therein).

The (Diameter, Total Cost, Spanning tree)-bicriteria obis stronglyNP-hard even in the
case where both cost functions are identical [HL+89]. Heeegive the details of the reduction to
show that (Diameter, Total Cost, Spanning tree) is we2k-hard even for series-parallel graphs
(i.e. graphs with treewidth at mog). Similar reductions can be given to show that (Diameter,
Diameter, Spanning tree) and (Total cost, Total cost, Spgninee) are also weakI)NP-hard for
series-parallel graphs.

We first recall the definition of theARTITION problem [GJ79]. As an instance of tRAR-

TITION problem we are given a sét = {t1,ts,---,t,} Of positive integers and the question is
whether there exists a subsétC Asuchthat " ¢, = > t;=()_ t;)/2.
tieX t;eT—-X t; €T

Theorem 4.1 (Diameter, Total cost, Spanning tree) is NP-hard for series-parallel graphs.

Proof: Reduction from thd?PARTITION problem. Given an instancé = {¢,,t,---,t,} of the
PARTITION problem, we construct a series parallel graplwith n + 1 vertices,vy, vy, - - vp41
and2n edges. We attach a pair of parallel edggsande?, betweenv; andwv; 41, 1 < i < n. We
now specify the two cost functionsandg on the edges of this grapbe}) = t;, c(e?) = 0,d(e}) =

0,d(e?) = t;,1 < i < n. Let Z t; = 2H. Now it is easy to show tha® has a spanning tree
t;eT
of d-diameter at mosH and totalc-cost at mostH if and only if there is a solution to the original

instancel” of the PARTITION problem.
g



We now show that the (Diameter, Total-cost, Steiner treeblpm is hard to approximate within
a logarithmic factor. An approximation algorithm providedSection 7. There is however a gap
between the results of Theorems 4.3 and 7.7. Our non-appatmiity result is obtained by an
approximation preserving reduction from th#N SET COVER . An instance(7', X') of the MIN
SET COVER problem consists of a univergeé = {t,t,,...,t} and a collection of subsefs =
{X1,Xs,..., X}, X; C T, each setX; having an associated cast The problem is to find a
minimum cost collection of the subsets whose unidh.is

Fact 4.2 Recently [AS97, RS97] have independently shown the following non-approximability
result:

It is N P-hard to find an approximate solution to the MIN SET COVER problem, with a uni-
verse of size k, with performance guarantee better than Q(In k).

Corollary 4.3 There is an approximation preserving reduction from MIN SET COVER prob-
lem to the (Diameter, Total Cost, Steiner tree) problem. Thus:

Unless P = NP, given an instance of the (Diameter, Total Cost, Steiner tree) problem
with & sites, there is no polynomial-time approximation algorithm that outputs a Steiner
tree of diameter at most the bound D, and cost at most R times that of the minimum cost
diameter-D Steiner tree, for R < Ink.

Proof: We give an approximation preserving reduction fromMi&l SET COVER problem to the
(Diameter, Total Cost, Steiner tree) problem. Given aramst (7", X) of the MIN SET COVER
problem wherel' = {ty,ts,...,t;} and X = {X1,Xo,..., X}, X; C T, where the cost of
the setX; is ¢;, we construct an instana@ of the (Diameter, Total Cost, Steiner tree) problem as
follows. The graphG has a node; for each element; of 78, a nodez; for each setX;, and an
extra “enforcer-node’.. For each sek;, we attach an edge between nodesndz; of c-costc;, and
d-costl. For each elementt and setX; such that; € X; we attach an edgg;, ;) of c-cost, 0, and
d-cost,1. In addition to these edges, we add a pAtmade of two edges efcost, 0, and/-cost, 1, to

the enforcer node (see Figure 1). The path is added to ensure that all the nodeare connected
to n using a path ofi-cost at most 2. All other edges in the graph are assignedtefiandd-costs.
The nodeg; along withn and the two nodes aP are specified to be the terminals for the Steiner
tree problem instance. We claim th@thas ac-cost Steiner tree of diameter at mdsand cos( if
and only if the original instanc€l’, X') has a solution of cost.

Note that any Steiner tree of diameter at mbshust contain a path frorty to n, for all 4, that
uses an edgér;,n) for someX; such thatt; € X;. Hence any Steiner tree of diameter at mbst
provides a feasible solution of equivalentost to the original Set cover instance. The proof now
follows from Theorem 4.2.

g

8There is a mild abuse of notation here but it should not leahgoconfusion.



Figure 1: Figure illustrating the reduction from th8N SET COVER problem to (Diameter, Total
cost, Steiner tree) problem. The instanc®dil SET COVER is (T, X) whereT' = {t1,tq,...,t7},
X = {.’E17.’1727.’E3,£E4}. Herex; = {t17t27t3}7 T9 = {t37t4,t5}, xr3 = {t5} and:r4 = {tﬁ,t'r}. The
cost on the edges shown in the figure denotes:tbest of the edges. All these edges haveost
=1.

5 Bicriteria Formulations: Properties

In Section 1, we claimed that our formulation for bicritepeoblems is robust and general. In this
section, we justify these claims.

5.1 Equivalence of Bicriteria Formulations: Robustness

In this section, we show that our formulation for bicritepiblems is robust and general.

Let G be a graph with two (integral)cost functions¢ andd (typically edge costs or node costs).
Let A (B) be a minimization objective computed using cost functigd). Let the budget bound on
the c-cost? (d-cost) of a solution subgraph be denoted’ofD).

There are two natural ways to formulate a bicriteria probl@j{ A, B, S) - find a subgraph i1$
whoseA -objective value (under thecost) is at mos€ and which has minimuriB-objective value
(under thed-cost), (i) B, A, S) - find a subgraph 8 whoseB-objective value (under thé-cost)
is at mostD and which has minimurA -objective value (under thecost).

Note that bicriteria problems are generally hard, when W driteria arehostile with respect
to each other - the minimization of one criterion conflictdhnihe minimization of the other. A

°In case of rational cost functions, our algorithms can berekd with a small additive loss in the performance guar-
antee.

1oWe use the term “cost undet or “c-cost” in this section to mean the value of the objective fiomccomputed using
¢, and not to mean the total of all tlkecosts in the network.



good example of hostile objectives are the degree and takddge cost of a spanning tree in an
unweighted graph [RM+93]. Two minimization criteria arerfally defined to be hostile whenever
the minimum value of one objective is monotonically nonéasing as the budget (bound) on the
value of the other objective is decreased.

Let A — APPROX(G,C) be any(«, 5)-approximation algorithm for4, B, S) on graphG
with budgetC under thec-cost. We now show that there is a transformation which preda( s, «)-
approximation algorithm for, A, S). The transformation uses binary search on the range oésalu
of the c-cost with an application of the given approximation algori, A — APPROX, at each
step of this search. Let the minimugrcost of aD-bounded subgraph i be OPT,. LetCy; be an
upper bound on the-cost of anyD-bounded subgraph #. Note thatCy; is at most some polynomial
in n times the maximune-cost (of an edge or a node). Henleg(Cy;) is at most a polynomial in
terms of the input specification. Léfeu. (Heuy) denote the:-cost (-cost) of the subgraph output
by ALGORITHM BICRITERIA-EQUIVALENCE given below.

ALGORITHM BICRITERIA-EQUIVALENCE:

e Input: G - graph,D - budget on criterioB under thei-cost,A — APPROX - an(«, f3)-
approximation algorithm for4, B, S).

e1. LetCy; be an upper bound on thecost of anyD-bounded subgraph 8.
2. Do binary search and findi in [0, Cp,;] such that

(@) A — APPROX(G, (') returns a subgraph witlrcost greater thagD, and
(b) A — APPROX(G,C' + 1) returns a subgraph witrcost at mostD.
3. If the binary search in Step 2 fails to find a valiithen output “NO SOLUTION” els¢
outputA — APPROX(G,C' +1).

e Output: A subgraph fromS such that itsc-cost is at mosty times that of the minimunj
c-costD-bounded subgraph and ifscost is at mostD.

Claim 5.1 If G contains a D-bounded subgraphin S then ALGORITHM BICRITERIA-EQUIVALENCE
outputs a subgraph from S whose c-cost is at most « times that of the minimum c-cost D-
bounded subgraph and whose d-cost is at most 5D.

Proof: SinceA andB are hostile criteria it follows that the binary search infBS2es well defined.
Assume thas contains @&>-bounded subgraph. Then, sindée— APPROX (G, Cp;) returns a sub-
graph withd-cost at mospD, it is clear that AGORITHM BICRITERIA-EQUIVALENCE outputs a
subgraph in this case. As a consequence of Step 2a and tbenpante guarantee of the approxima-
tion algorithmA — APPROX, we get that’ + 1 < OPT.. By Step 2b we have thd cuy < 8D
andHeu,. < a(C' + 1) < aOPT,. Thus ALGORITHM BICRITERIA-EQUIVALENCE outputs a sub-
graph fromS whosec-cost is at mostr times that of the minimuna-costD-bounded subgraph and
whosed-cost is at mostD.

g



Note however that in general the resultifi$y «)-approximation algorithm is, natrongly poly-
nomial since it depends on the range of theosts. But it is golynomial-time algorithm since its
running time is linearly dependent dog C,; the largesic-cost. The above discussion leads to the
following theorem.

Theorem 5.2 Any («, 3)-approximation algorithm for (A, B, S) can be transformed in poly-
nomial time into a (3, a)-approximation algorithm for (B, A, S).

5.2 Comparing with other functional combinations: Generality

Our formulation is more general because it subsumes thevdase one wishes to minimize some
functional combination of the two criteria. We briefly commh@n this next. For the purposes of
illustration letA andB be two objective functions and let us say that we wish to mirénthe sum
of the two objectivesA andB. Call this an A + B, S) problem. LetA — APPROX(G,C) be
any («, #)-approximation algorithm for4A, B, S) on graphG with budgetC under thec-cost. We
show thatve > 0, there is a polynomial tim¢l + ¢) max{a, B}-approximation algorithm for the
(A + B, S) problem. The transformation uses simple linear searctepsf(1 + ¢) over the range
of values of the:-cost with an application of the given approximation altori, A — APPROX,

at each step of this search. Let the optimum value for heH B, S) problem on a grapldé: be
OPT..q = (V. + V), whereV, and V; denote respectively the contribution of the two casts
andd for A andB. Let Heu.(C) (Heuy(C)) denote thec-cost (-cost) of the subgraph output
by A — APPROX(G,C). Finally, let Heu.4(C) denote the value computed byLBORITHM
CONVERT.

ALGORITHM CONVERT:

e Input: G - graph, are > 0, A — APPROX - an(«, 3)-approximation algorithm for4,
B, S).
e1. LetCy; be an upper bound on thecost of any subgraph i8.
2. LetR = [log(11¢) Chil
3. Forj =0to R do
(@ M;=(1+e¢)

(b) Let Heu.(M;), Heuq(M;) denote thec-cost and thel-cost of solution obtained by
A — APPROX(G, M;).

4. Return the minimum over &l < j < R, of F; = Heu.(M;) + Heug(M;).

e Output: A subgraph fronS such that the sum of its-cost and itsi-costs is at mostl +
¢) max{a, B}(OPT,q).

Theorem 5.3 Let A — APPROX(G,C) be any («, §)-approximation algorithm for (A, B, S)
on graph G with budget C under the c¢-cost. Then, for all ¢ > 0, there is a polynomial time
(1 4+ ¢) max{«, B}-approximation algorithm for the (A + B, S) problem.
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Proof Sketch: Consider the iteration of the binary search in which the ldoomthec-cost isR such
thatV, <R < (1 + ¢)V,. Notice that such a bound is considered as a result of dizatien of the
interval [0, C;]. Then as a consequence of the performance guarantee ofitexmpation algorithm
A — APPROX, we get that

Heuc.(R) < aR < (1 +¢€)aV,.

By Step 4, the performance guarantee of the algorithm APPROX, and the hostility ofA and
B, we have that{euy(R) < V. ThusHeucyq4(R) < (14+€)aV,.+pVy < (14¢€) max{a, B} (Ve +
Vq). Since AL.GORITHM CONVERT outputs a subgraph fro® the sum of whose-cost andd-cost
is minimized, we have that

. n[%)ilg | (Heu.(C") + Heuy(C)) < (1 + €) max{c, BHOPT,+q).
e sLhi

A similar argument shows that dw, 3)-approximation algorithmA — APPROX(G,C), for
a (A, B, S) problem can be used to find devise a polynomial time- €)%« approximation algo-
rithm for the (A x B, S) problem. A similar argument can also be given for otherdasictional
combinations. We make two additional remarks.

1. Algorithms for solving {(A, B), S) problems can not in general guarantee any bounded per-
formance ratios for solving theA(, B, S) problem. For example, a solution for the (Total Cost
+ Total Cost, Spanning Tree) problem or the (Total CostfTotst , Spanning Tree) problem
can not be directly used to find a go¢d, 3)-approximation algorithm for the (Total Cost,
Total Cost, Spanning Tree)-bicriteria problem.

2. The use of approximation algorithms fax (B, S)-bicriteria problems, to solvef(A, B), S)
problems { denotes a function combination of the objectives) does mays yield the best
possible solutions. For example problems such as (Total €dstal Cost , Spanning Tree)
and (Total Cost/Total Cost, Spanning Tree) [Ch77, Me83]&geolved exactly in polynomial
time by direct methods but can only be solved approximatsiygiany algorithm for the (Total
Cost, Total Cost , Spanning Tree)-bicriteria probtem.

6 Parametric Search

In this section, we present approximation algorithms for@ad class of bicriteria problems where

both the objectives in the problem are of the same type @th,are total edge costs of some network
computed using two different costs on edges, or both areatensof some network calculated using
two different costs etc.).

"This is true since the (Total Cost, Total Cost, Spanning Jfbémiteria problem isNP-complete and therefore unless
P = NP cannot be solved in polynomial time.
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As before, letG be a graph with two (integral) cost functionsandd. LetC denote the budget
on criteria A. We assume that theandd cost functions are of the same kind; i.e., they are both
costs on edges or, costs on nodes. UAW (G, f) be anyp-approximation algorithm that on input
G produces a solution subgraph $nminimizing criterion A, under the single cost functiofi In
a mild abuse of notation, we also [BEVW (G, f) denote the [-)cost of the subgraph output by
UVW(G, f) when running on inpu€& under cost functiorf. We use the following additional nota-
tion in the description of the algorithm and the proof of iEsformance guarantee. Given constants
andb and two cost functiong andg, defined on edges (nodes) of a grapfi+ bg denotes the com-
posite function that assigns a cagt(e) + bg(e) to each edge (node) in the graph. Ibféf)) denote
the cost of the subgraph, returnedBW W (G, (%)04— d) (under the((?)c + d)-cost function). Let
the minimumd-cost of aC-bounded subgraph i be OPT,. Let Heu. (Heuy) denote the:-cost
(d-cost) of the subgraph output by AORITHM PARAMETRIC-SEARCH given below.

Let v > 0 be a fixed accuracy parameter. In what follows, we devigé€lat+ ), (1 + %))—
approximation algorithm for4, A, S), under the two cost functionsandd. The algorithm consists
of performing a binary search with an application of the gieg@proximation algorithmUVW, at
each step of this search.

ALGORITHM PARAMETRIC-SEARCH:

e Input: G - graph,C - budget on criterigA under thec-cost, UVW - a p-approximation
algorithm that produces a solution subgraptSiminimizing criterion A, under a single
cost function;y - an accuracy parameter.

e1. LetD;; be an upper bound on tlkecost of anyC-bounded subgraph 8.

2. Do binary search and findZ in [0, yDj;] such that

(@) UVW(G, ()c + d) returns a subgraph such tH4£ > (1 + 7)p, and

(b) UVW (G, (B3 )c + d) returns a subgraph such tH%f,%ll)) < (14 7)p.
3. If the binary search in Step 2 fails to find a valiithen output “NO SOLUTION” els¢

outputUVW (G, (25 )c + d).

e Output: A subgraph fron8 such that itg/-cost is at mos¢1+%)p times that of the minimum
d-costC-bounded subgraph and itscost is at mostl + ) pC.

Claim 6.1 The binary search, in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.

Proof: Since(;UVW(G, f)) isthe same a8 VW (G, %), we get thalh%j) = % UVW(G, (%)c—{—

d) =UVW(G, (3)c+ %d). Hence%j) is a monotone nonincreasing functioniof Thus the bi-
nary search in Step 2 of lSORITHM PARAMETRIC-SEARCH is well-defined.

O

Claim 6.2 If G contains a C-bounded subgraph in S then ALGORITHM PARAMETRIC-SEARCH
outputs a subgraph from S whose d-cost is at most (1+ %)p times that of the minimum d-cost
C-bounded subgraph and whose c-cost is at most (1 + +)pC.
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Proof: By claim 6.1 we have that the binary search in Step 2 osARITHM PARAMETRIC-
SEARCH is well-defined.

Assume thatS contains aC-bounded subgraph. Then, SinBEBVW (G, (%)c + d) returns
a subgraph with cost at mogt + y)pDj,;, under the((j%)c + d)-cost function, it is clear that
ALGORITHM PARAMETRIC-SEARCH outputs a subgraph in this case.

As a consequence of Step 2a and the performance guarantee approximation algorithm

UVW, we get that

D+1< OPTy
Y

By Step 2b we have that the subgraph output hyGARITHM PARAMETRIC-SEARCH has the fol-
lowing bounds on the-costs and thd-costs.

1
Heug < (D' +1) <p(1+7)(D' +1) < (1+ ;)POPTd

) S (L )p(D 1) = (14 9)eC.

Thus ALGORITHM PARAMETRIC-SEARCH outputs a subgraph fro® whosed-cost is at most
(1+ %)p times that of the minimurd-costC-bounded subgraph and whaseost is at mostl +y)pC.
g

Note however that the resultirgl +v)p, (1+ %)p)—approximation algorithm for4, A, S) may
not bestrongly polynomial since it depends on the range of éheosts. But it is golynomial-time
algorithm since its running time is linearly dependentlofniD;;. Note thatD;; is at most some
polynomial inn times the maximumi-cost (of an edge or a node). Henleg(Dy,;) is at most a
polynomial in terms of the input specification.

The above discussion leads to the following theorem.

Heu, < ( h(D'+1) < (

Theorem 6.3 Any p-approximation algorithm that produces a solution subgraph in S mini-
mizing criterion A can be transformed into a ((1+)p, (1+ %)p)—approximation algorithm for
(A,A,S).

The above theorem can be generalized from the bicriteria tashe multicriteria case (with
appropriate worsening of the performance guarantees)endiethe objectives are of the same type
but with different cost functions.

7 Diameter-Constrained Trees

In this section, we describel&soRITHM DCST, our(O(log n), O(log n))-approximation algorithm
for (Diameter, Total cost, Steiner tree) or the diametardated minimum Steiner tree problem. Note
that (Diameter, Total cost, Steiner tree) includes (Diamelotal cost, Spanning tree) as a special
case. We first state the problem formally: given an undicegaphG = (V, E), with two cost
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functions ¢ and d defined on the set of edges, diameter boudnhénd terminal sefX C V, the
(Diameter, Total cost, Steiner tree) problem is to find a tfe@inimum c-cost connecting the set of
terminals inK with diameter at mosb under thel-cost.

The technique underlying KlGORITHM DCST is very general and has wide applicability. Hence,
we first give a brief synopsis of it. The basic algorithm wairk$log n) phases (iterations). Initially
the solution consists of the empty set. During each phaseecdlgorithm we execute a subroutine
2 to choose a subgraph to add to the solution. The subgraplerchioseach iteration is required
to possess two desirable properties. First, it must noease the budget value of the solution by
more thanD; second, the solution cost with respecBanust be no more thaf PT,., whereOPT,
denotes the minimum-cost of aD bounded subgraph i8. Since the number of iterations of the
algorithm isO(log n) we get a(log n, log n)-approximation algorithm. The basic technique is fairly
straightforward. The non-trivial part is to devise the tighbroutine2 to be executed in each phase.
2 must be chosen so as to be able to prove the required perfoengararantee of the solution. We
use the solution based decomposition technique [Ra94, BMa%he analysis of our algorithm. The
basic idea (behind the solution based decomposition tqukpis to use the existence of an optimal
solution to prove that the subroutigikefinds the desired subgraph in each phase.

We now present the specifics ot BorRITHM DCST. The algorithm maintains a set of connected
subgraphs oclusters each with its own distinguished vertex @nter. Initially each terminal is in a
cluster by itself. In each phase, clusters are merged is pgiladding paths between their centers.
Since the number of clusters comes down by a factd@ efch phase, the algorithm terminates in
[log, | K|] phases with one cluster. It outputs a spanning tree of thediuster as the solution.
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ALGORITHM DIAMETER-CONSTRAINED-STEINER-TREE (DCST):

e Input: G = (V, E) - graph with two edge cost functions,andd, D - a bound on the
diameter under thé-cost, K C V - set of terminals¢ - an accuracy parameter.

¢ 1. Initialize the set of clustersS; to contain| K| singleton sets, one for each terminalfn
For each cluster i@, define the single node in the cluster to be the center forltiser.
Initialize the phase courit:= 1.

2. Repeat until there remains a single clusteg;in

(a) Let the set of cluster§; = {C; ..., Cy,} at the beginning of thé'th phase (observe

(b) Construct a complete grapty; as follows: The node seV; of G; is {v
v is the center of a cluster }. Let pathP,, be a(1 + ¢)-approximation to the mini-
mum -cost diameteD-bounded path between centegsandv, in G. Between every
pair of nodesv, andwv, in V;, include an edg€v,,v,) in G; of weight equal to the
c-cost of Py,

(c) Find a minimum-weight matching of largest cardinality(;.

(d) For each edge = (v.,vy) in the matching, merge cluste€s, andC,;, for which v,
andwv, were centers respectively, by adding path to form a new clustec’,,,. The
node (edge) set of the clustéy,, is defined to be the union of the node (edge) sets of
C:, Cy and the nodes (edges) ify,,. One ofv, andv, is (arbitrarily) chosen to be the
centerv,, of clusterC,, andC,, is added to the cluster sgf, ; for the next phase.

(e)i:=i+1.
3. LetC’, with centerv’ be the single cluster left after Step 2. Output a shortest fpaé of
C'’ rooted at’ using thed-cost.

e Output: A Steiner tree connecting the set of terminals An with diameter at most
2[logy, n]D under thed-cost and of totat-cost at mos{(1 + ¢€)[log, n] times that of the|
minimum c-cost diameteiD-bounded Steiner tree.

We make a few points aboutt&soRITHM DCST:
1. The clusters formed in Step 2d need not be disjoint.

2. All steps, except Step 2b, in algorithm DCST can be easiyngo have running times indepen-
dent of the weights. We employ Hassin’s strongly polynorBiRIAS for Step 2b [Ha92]. Has-
sin’s approximation algorithm for thB-bounded minimune-cost path runs in timé@ (| £ | (% log 2)).
Thus ALGoRITHM DCST is a strongly polynomial time algorithm.

3. Instead of finding an exact minimum cost matching in Stepn2ccould find an approximate
minimum cost matching [GW95]. This would reduce the runrtinge of the algorithm at the
cost of introducing a factor df to the performance guarantee.

We now state some observations that lead to a proof of thempeshce guarantee of&so-
RITHM DCST. Assume, in what follows, th&t contains a diameteb-bounded Steiner tree. We
also refer to each iteration of Step 2 as a phase.
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Claim 7.1 Algorithm DCST terminates in [log, | K || phases.

Proof: Let k; denote the number of clusters in phas&lote thatk;,; = [%1 since we pair up the
clusters (using a matching in Step 2d). Hence we are leftovithcluster after phaséog, | K|]| and
algorithm DCST terminates.
g

The next claim points out as clusters get merged, the nodbsweach cluster are not too far away
(with respect tad-distance) from the center of the cluster. This intuitivalylds for the following
important reasons. First, during each phase, the graptas as its vertices, the centers of the clusters
in that iteration. As a result, we merge the clusters by igrtheir centers in Step 2d. Second, in
Step 2d, for each pair of clustefs, andC, that are merged, we select one of their centeyr v,
as the centeu,,, for the merged clustet’,,. This allows us to inductively maintain two properties:
() the required distance of the nodes in a cluster to theiters in an iteratior is s.D and (ii) the
center of a cluster at any given iteration is a terminal node.

Claim 7.2 Let C € C; be any cluster in phase 7 of algorithm DCST. Let v be the center of C.
Then any node w in C is reachable from v by a diameter-iD path in C under the d-cost.

Proof: Note that the existence of a diameferbounded Steiner tree implies that all paths added in
Step 2d have diameter at mdstunderd-cost. The proof now follows in a straightforward fashion
by induction oni.

|

Lemma 7.3 Algorithm DCST outputs a Steiner tree with diameter at most 2[log, |K|] - D
under the d-cost.

Proof: The proof follows from Claims 7.1 and 7.2.
g

This completes the proof of performance guarantee withexddp thed-cost. We now proceed
to prove the performance guarantee with respect te-twsts. We first recall the following pairing
lemma.

Claim 7.4 [RM+93] Let T be an edge-weighted tree with an even number of marked nodes.
Then there is a pairing (vy, wy), ..., (v, wg) of the marked nodes such that the v; — w; paths
in T' are edge-disjoint.

Claim 7.5 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPT,
denote its c-cost. The weight of the largest cardinality minimum-weight matching found in
Step 2d in each phase i of algorithm DCST is at most (1 + ¢) - OPT..
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Proof: Consider phasgof algorithm DCST. Note that since the centers at staaye a subset of the
nodes in the first iteration, the centersare terminal nodes. Thus they belong®T. Mark those
vertices inO PT that correspond to the matched vertices,vs, . . . ’U2L%j' of G; in Step 2c. Then
by Claim 7.4 there exists a pairing of the marked verticeg(sa vs), . . ., (U2L%J_1, U2L%J), and a
set of edge-disjoint paths in OPT between these pairs. $iese paths are edge-disjoint their total
c-cost is at mos PT,. Further these paths have diameter at nidsnder thei-cost. Hence the sum
of the weights of the edge®, v2), ..., (sz%Jil,vztk_ﬁ) in G; , which forms a perfect matching
on the set of matched vertices, is at m@st- €¢) - OPT.. But in Step 2c of AGORITHM DCST,

a minimum weight perfect matching in the gra@h was found. Hence the weight of the matching
found in Step 2d in phaseof ALGORITHM DCST is at most1 + ¢) - OPT..

g

Lemma 7.6 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPT.
denote its c-cost. ALGORITHM DCST outputs a Steiner tree with total c-cost at most (1 +
€)[log, |K]] - OPT,.

Proof: From Claim 7.5 we have that thecost of the set of paths added in Step 2d of any phase is
atmost(1 +¢) - OPT,. By Claim 7.1 there are a total ¢fog, |K'|] phases and hence the Steiner tree
output by ALGORITHM DCST has totat-cost at mosf1 + ¢)[log, |K|] - OPT..
g

From Lemmas 7.3 and 7.6 we have the following theorem.

Theorem 7.7 There is a strongly polynomial-time algorithm that, given an undirected graph
G = (V, E), with two cost functions ¢ and d defined on the set of edges, diameter bound D,
terminal set K C V and a fixed ¢ > 0, constructs a Steiner tree of G of diameter at most
2[log,y | K|] D under the d-costs and of total c-cost at most (1 + ¢) [log, | K || times that of the
minimum-c-cost of any Steiner tree with diameter at most D under d.

8 Treewidth-Bounded Graphs

In this section we consider the class of treewidth-boundeglgs and give algorithms with improved
time bounds and performance guarantees for several biarjiteoblems mentioned earlier. We do
this in two steps. First we develop pseudopolynomial-tinge@thms based on dynamic program-
ming. We then present a general method for deriving fullypoimial-time approximation schemes
(FPAS) from the pseudopolynomial-time algorithms. We also destrate an application of the
above results to the minimum broadcast time problem.
A class of treewidth-bounded graphs can be specified usingta fiumber of primitive graphs

and a finite collection of binary composition rules. We usie ttharacterization for proving our
results. A class of treewidth-bounded graphis inductively defined as follows [BL+87].
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1. The number of primitive graphs ihis finite.

2. Each graph if" has an ordered set of special nodes catephinals. The number of terminals
in each graph is bounded by a constant, say

3. There is a finite collection of binary composition ruleattbperate only at terminals, either
by identifying two terminals or adding an edge between teatsi A composition rule also
determines the terminals of the resulting graph, which rhast subset of the terminals of the
two graphs being composed.

8.1 Exact Algorithms

Theorem 8.1 Every problem in Table 2 can be solved exactly in O((n - €)°())-time for any
class of treewidth bounded graphs with no more than k& terminals, for fixed & and a budget
C on the first objective.

The above theorem states that there exist pseudopolyrtimilalgorithms for all the bicriteria
problems from Table 2 when restricted to the class of trethalidunded graphs. The basic idea is to
employ a dynamic programming strategy. In fact, this dyrgonogramming strategy (in conjunction
with Theorem 5.2) yields polynomial-time (not just pseudlgpomial-time) algorithms whenever
one of the criteria is the degree. We illustrate this stratggpresenting in some detail the algorithm
for the diameter-bounded minimum cost spanning tree pnoble

Theorem 8.2 For any class of treewidth-bounded graphs with no more than £ terminals,
there is an O(n - k%+4. DO(")-time algorithm for solving the diameter D-bounded minimum
c-Cost spanning tree problem.

Proof: Let d be the cost function on the edges for the first objective (diam) andc, the cost
function for the second objective (total cost). llebe any class of decomposable graphs. Let the
maximum number of terminals associated with any gré&pm I" be k. Following [BL+87], it is
assumed that a given graghis accompanied by a parse tree specifying liowe constructed using
the rules and that the size of the parse tree is linear in theauof nodes.

Let 7 be a partition of the terminals &f. For every terminad letd; be anumberiq1,2,...,D}.
For every pair of terminalg and j in the same block of the partition let d;; be a number in
{1,2,...,D}. Corresponding to every partition, set{d;} and set{d;;} we associate a cost for
G defined as follows:

OOSt?di},{dij} = Minimum total cost under thefunction of any forest containing
a tree for each block af, such that the terminal nodes
occurring in each tree are exactly the members of the canetipg
block of 7r, no pair of trees is connected, every vertexzin
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appears in exactly one treg, is an upper bound on the maximum
distance (under thé-function) froms to any vertex in the same
tree andf;; is an upper bound the distance (underdHenction)
between terminalsand; in their tree.

For the above defined cost, if there is no forest satisfyiegd¢guired conditions the value 6bst is
defined to bex.

Note that the number of cost values associated with any greptis O(k* - DO**)). We now
show how the cost values can be computed in a bottom-up mahnresr the parse tree far. To
begin with, sincd’ is fixed, the number of primitive graphs is finite. For a priwg@tgraph, each cost
value can be computed in constant time, since the numberedtoto be examined is fixed. Now
consider computing the cost values for a grépbonstructed from subgraplis; andG,, where the
cost values folG; andG4, have already been computed. Notice that any forest regl&iparticular
cost value forG decomposes into two forests, one f6f and one forG, with some cost values.
Since we have maintained the best cost values for all pdiistbifor G; andG,, we can reconstruct
for each partition of the terminals ¢f the forest that has minimum cost value among all the forests
for this partition obeying the diameter constraints. We @atthis in time independent of the sizes of
(G1 and(G2 because they interact only at the terminals to féfpand we have maintained all relevant
information.

Hence we can generate all possible cost valueé&/fby considering combinations of all relevant
pairs of cost values fo&; and G,. This takes timeO(k*) per combination for a total time of
O(k%+4 . DO As in [BL+87], we assume that the size of the given parseftoe€ is O(n).
Thus the dynamic programming algorithm takes tifg: - k2#+4 . DO, This completes the
proof.

g

8.2 Fully Polynomial-Time Approximation Schemes

The pseudopolynomial-time algorithms described in th&iptes section can be used to design fully
polynomial-time approximation schemd@RA S) for these same problems for the class of treewidth-
bounded graphs. We illustrate our ideas once again by dgvaiFPAS for the (Diameter, Total
cost, Spanning tree)-bicriteria problem for the class eéwidth-bounded graphs. The basic tech-
nique underlying our algorithm, KGORITHM FPAS-DCST, is approximate binary search using
rounding and scaling - a method similar to that used by Hds&082] and Warburton [Wa87].

As in the previous subsection, I&t be a treewidth-bounded graph with two (integral) edge-
cost functionsc andd. Let D be a bound on the diameter under theost. Lete be an accuracy
parameter. Without loss of generality we assume%ﬁatan integer. We also assume that there exists
a D-bounded spanning tree @. Let OPT be any minimum:-cost diameteiD-bounded spanning
tree and letOPT, denote itsc-cost. LetTCSTonTW (G, ¢,d,C) be a pseudopolynomial time
algorithm for the (Total cost, Diameter, Spanning tree)ofgm on treewidth-bounded graphs; i.e.,

19



TCSTonTW outputs a minimum diameter spanning tree-ofvith total cost at most’ (under the
c-costs). Let the running time &CSTonTW bep(n, C) for some polynomiap. For carrying out
our approximate binary search we need a testing procecroe POURETEST(V) which we detail
below:

PROCEDURETEST(\):

e Input: G - treewidth bounded graph) - bound on the diameter under tihlecost, \ -
testing parameteTCSTonTW - a pseudopolynomial time algorithm for the (Total cost,
Diameter, Spanning tree) problem on treewidth-boundegiga - an accuracy paramete

=

el Let Lmj denote the cost function obtained by setting the cost of edge

lxere=yl-
2. If there exists & in [0, 2=1] such thatTCSTonTW (G, LWZ_I)J,d, C') produces g

spanning tree with diameter at mdstunder theal-cost then output LOW otherwise output
HIGH.

e Output: HIGH/LOW.

We now prove that ROCEDURETEST(A) has the properties we need to do a binary search.

Claim 8.3 If OPT, < X then PROCEDURETEST(A) outputs LOW. And, if OPT, > A(1 + ¢)
then PROCEDURETEST(A) outputs HIGH.

Proof: If OPT,. < X then since

Ce Ce OPTC n—1
> Lgm0'S 2 S S S

ecOPT ecOPT

€

therefore ROCEDURETEST(\) outputs LOW.
Let 7¢. be thec-cost of any diameteD bounded spanning tree. Then we have> OPT,. If
OPT, > X(1 + ¢) then since

Ce Ce T.
2 5 0 2 2 Smy V 2 xmo

ecT ecT

OPT, _(n_1)>n—1

_(n_l)z)\e/(n—l) €

therefore ROCEDURETEST()\) outputs HIGH.
g

Claim 8.4 The running time of PROCEDURETEST(]) is O(¢p(n, 2)).

7€

Proof: PROCEDURETEST()A) invokesSTCSTonTW only ”7*1 times. And each time the budget
C is bounded by:=1, hence the running time of /®®CEDURETEST()) is O(Zp(n, 2)).
|

We are ready to describel&sorRITHM FPAS-DCST - which usesfR®CEDURETEST()\) to do
an approximate binary search.
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ALGORITHM FPAS-DCST:

e Input: G - treewidth-bounded graphD - bound on the diameter under thkcost,
TCSTonTW - a pseudopolynomial time algorithm for the (Total cost, éder, Span-
ning tree) problem on treewidth-bounded graghsan accuracy parameter.

e1l. Let(C}; be an upper bound on thecost of anyD-bounded spanning tree. LEIB = 0
andU B = C;.
2. WhileUB > 2LB do
(a) LetA=(LB+UB)/2.
(b) If PROCEDURETEST(A) returns HIGH then sek B = ) else seUB = A(1 +¢).
3. RunTCSTonTW (G, Lmjd, C) for all C in [0,2(2=)] and among all the
trees with diameter at mo&? under thai-cost output the tree with the loweastost.

e Output: A spanning tree with diameter at mastunder thed-cost and withc-cost at most
(1 + ¢) times that of the minimuna-costD-bounded spanning tree.

Lemma 8.5 If G contains a D-bounded spanning tree then ALGORITHM FPAS-DCSToutputs
a spanning tree with diameter at most D under the d-cost and with c-cost at most (1 +
€)OPT.,.

Proof: It follows easily from Claim 8.3 that the loop in Step 2 ofLAdORITHM FPAS-DCST
execute) (log Cy;) times before exiting witl.B < OPT. < UB < 2LB.
Since
Ce Ce OPTC n — ]_
I < <2
Z LLBe/(n—l)J - Z LBe/(n—1) — LBe/(n—1) — ( € )

ecOPT ecOPT

we get that Step 3 of AGORITHM FPAS-DCST definitely outputs a spanning tree. Het be the
tree output. Then we have that

Ce

Heu,. = Z CCSLBE/(R—l) Z %SLBG/(H_D( Z LWJ—{_D

ecHeu, ecHeu, ecHeu,

But since Step 3 of AGORITHM FPAS-DCST outputs the spanning tree with minimestost we
have that

C C
Y sl Y )
ecHeuc LBE/(n o 1) ecOPT LBE/(n - 1)
Therefore
Heus < LBe/(n—1) ) L%J +eLB< 3 ¢, +€OPT. < (14 €)OPT..
E —_

ecOPT ecOPT

This proves the claim.
0

Lemma 8.6 The running time of ALGORITHM FPAS-DCSTis O(%p(n, %) log Cp;).
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Proof: From Claim 8.4 we see that Step 2 of @ORITHM FPAS-DCST takes tim@(p(n, ) log Cp;)
while Step 3 takes timé&(2:p(n, 2)). Hence the running time of AGORITHM FPAS-DCST is
O(2p(n, 2)log Ch).
|

Lemmas 8.6 and 8.5 yield:

Theorem 8.7 For the class of treewidth-bounded graphs, there is an FPAS for the (Diame-
ter, Total cost, Spanning tree)-bicriteria problem with performance guarantee (1,1 + ¢).

As mentioned before, similar theorems hold for the otheblams in Table 2 and all these results
extend directly to Steiner trees.

8.3 Near-Optimal Broadcast Schemes

The polynomial-time algorithm for the (Degree, DiametepaBning tree)-bicriteria problem for
treewidth-bounded graphs can be used in conjunction wiéhdbas presented in [Ra94] to obtain
near-optimal broadcast schemes for the class of treewigiimded graphs. As mentioned earlier,
these results generalize and improve the results of Kartsadt Peleg [KP92].

Given an unweighted grapfi and a root-, abroadcast scheme is a method for communicating
a message from to all the nodes of7. We consider a telephone model in which the messages are
transmitted synchronously and at each time step, any nadeittger transmit or receive a message
from at most one of its neighbors. Thenimum broadcast time problemis to compute a scheme that
completes in the minimum number of time steps. Qg7 (G) denote the minimum broadcast time
from rootr and letOPT' (G) = Maxz,ccOPT,(G) denote the minimum broadcast time for the graph
from any root. The problem of computin@P7;.(G) - the minimum rooted broadcast time problem
- and that of computing PT'(G) - theminimum broadcast time problem are bothNP-complete for
general graphs [GJ79]. It is easy to see that any approxdmaitigorithm for the minimum rooted
broadcast time problem automatically yields an approxmnatlgorithm for the minimum broadcast
time problem with the same performance guarantee. We tedeneaders to [Ra94] for more details
on this problem. Combining our approximation algorithm f@iameter, Total cost, Spanning tree)-
bicriteria problem with performance guarantdel + ¢) for the class of treewidth bounded graphs
with the observations in [Ra94] yields the following theore

Theorem 8.8 For any class of treewidth-bounded graphs there is a polynomial-time O(T{;ﬁ)g—n)—

approximation algorithm for the minimum rooted broadcast time problem and the minimum
broadcast time problem.

9 Concluding Remarks

We have obtained the first polynomial-time approximatiagoathms for a large class of bicriteria
network design problems. The objective function we coneidevere (i) degree, (ii) diameter and
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(iii) total cost. The connectivity requirements considereere spanning trees, Steiner trees and (in
several cases) generalized Steiner trees. Our resultsbaseel on the following three ideas:

1. A binary search method to convert @n /3)-approximation algorithm forA, B, S)-bicriteria
problems to 43, a)-approximation algorithm forl, A, S)-bicriteria problems.

2. Aparametric search technique to devise approximatgorghms for (A, A ,S)-bicriteria prob-
lems. We note that Theorem 6.3 is very general. Gargrp-approximation algorithm for min-
imizing the objectiveA in the subgraph-clas$, Theorem 6.3 allows us to producé2w, 2p)-
approximation algorithm for theA(, A, S)-bicriteria problem.

3. Acluster based approach for devising approximationrdtguas for certain categories aA(B,S)-
bicriteria problems.

We also devised pseudopolynomial time algorithms and fodilynomial time approximation
schemes for a number of bicriteria network design probleonstfe class of treewidth-bounded
graphs.

Subsequent work

During the time when this paper was under review, importangess has been made in improving
some of the results in this paper. Recently, Ravi and GoefR@S5] have devised &l, 1 + ¢)
approximation scheme for the (Total Cost, Total Cost, Sipantmee) problem. Their approach does
not seem to extend to devising approximation algorithmsnfiore general subgraphs considered
here. In [KP97], Kortsarz and Peleg consider the (Diam@&tagl Cost, Steiner tree) problem. They
provide polynomial time approximation algorithms for thigoblem with performance guarantees
(2,0(logn)) for constant diameter bount} and (2 + 2¢,»¢) for any fixed0 < e < 1 for general
diameter bounds. Improving the performance guaranteemt®or more of the problems considered
here remains an interesting direction for future research.
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