
Delegate and Conquer: An LP-based
approximation algorithm for Minimum Degree

MSTs?

R. Ravi and Mohit Singh

Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213
{ravi,mohits}@andrew.cmu.edu

Abstract. In this paper, we study the minimum degree minimum span-
ning tree problem: Given a graph G = (V, E) and a non-negative cost
function c on the edges, the objective is to find a minimum cost spanning
tree T under the cost function c such that the maximum degree of any
node in T is minimized.
We obtain an algorithm which returns an MST of maximum degree at
most ∆∗+k where ∆∗ is the minimum maximum degree of any MST and
k is the distinct number of costs in any MST of G. We use a lower bound
given by a linear programming relaxation to the problem and strengthen
known graph-theoretic results on minimum degree subgraphs [3, 5] to
prove our result. Previous results for the problem [1, 4] used a combina-
torial lower bound which is weaker than the LP bound we use.

1 Introduction

The minimum spanning tree problem is a fundamental problem in combinatorial
optimization. It also has various applications, especially in network design. A
favorable property of a connecting network is not only to have the lowest possible
cost but also to have small load on all nodes. A natural way to formulate this
problem is via the minimum degree minimum spanning tree (MDMST) problem.
In an instance of the MDMST problem, we are given a graph G = (V, E) and a
non-negative cost function c on the edges, and the objective is to find a minimum
cost spanning tree T under the cost function c such that the maximum degree of
T is minimized. Here, the maximum degree of T is the maximum degree among
all vertices in T .

The MDMST problem is closely related to the Hamiltonian path problem.
If the maximum degree of an MST in an unweighted graph is at most 2, we
get a Hamiltonian path. Since we do not assume that the costs are metric, no
approximation is possible unless we relax the degree constraints [6]. Hence, for
the MDMST problem, the natural criterion for approximation is the maximum
degree of the minimum spanning tree.
? Tepper School of Business, Carnegie Mellon University. Supported by NSF ITR

grant CCR-0122581 (The ALADDIN project) and NSF grant CCF-043075. Email:
{ravi,mohits}@andrew.cmu.edu

1.1 Previous Work

For the MDMST problem, Fischer [4] gave a polynomial time algorithm which
returns a minimum spanning tree with maximum degree b∆∗+logb n for any b >
1 where ∆∗ is the maximum degree of the optimal MST based on the techniques
on Furer and Raghavachari [5]. A generalization of the MDMST problem is the
bounded degree minimum spanning tree problem (BDMST) in which one is given
degree bounds (Bv for vertex v) in an undirected graph with edge costs c and
we demand a minimum cost tree satisfying the degree bounds. The BDMST
problem is closely related to the well-studied Travelling Salesman Problem [8].
In particular, if we set Bv = 2 for each vertex v, the BDMST problem reduces
to the Travelling Salesman Path Problem which has been studied by Lam and
Newman [11].

For the BDMST problem, Konemann and Ravi [9, 10] gave bi-criteria ap-
proximation algorithms which return a spanning tree with O(Bv + log n) bound
on the degree of vertex v and cost O(copt). Here n is the number of vertices in
the input graph and copt is the minimum cost of a spanning tree obeying the
degree bounds. Chaudhuri et al [1, 2] gave a quasi-polynomial time algorithm for
the MDMST problem which returns a tree of maximum degree O(∆∗+ log n

log log n)
and a polynomial time algorithm that returns a tree of maximum degree O(∆∗).
They also generalize both their algorithm for the BDMST problem giving algo-
rithms with similar bounds on the degree as in the MDMST problem and cost
O(cOPT). All these results [9, 1, 2] for the BDMST problem are derived from
results for the MDMST problem [4, 1, 2], thus motivating us to concentrate on
the latter. Subsequent to our work, Goemans [7] has shown an algorithm for the
BDMST problem which returns a tree of optimal cost and degree of vertex v at
most Bv + 2 for each v ∈ V .

An interesting restriction of the MDMST problem arises when all costs are
in {1,∞}. Then, as every spanning tree of cost 1 edges is an MST, the MDMST
problem reduces to finding a spanning tree in the undirected graph induced by
the cost one edges with minimum maximum degree. Fürer and Raghavachari [5]
gave an algorithm which returns a tree with maximum degree within ∆∗ + 1,
where ∆∗ is the degree of the optimal tree.

1.2 Our Work and Contributions

All previous algorithms for the MDMST problem worked with a combinatorial
lower bound given by a witness set. The major contribution in this paper is
working with a stronger lower bound given by a natural linear programming
relaxation of the problem. Also, we strengthen the existing results of Fürer and
Raghavachari [5] and Ellingham and Zha [3]. This helps us prove our main
theorem below. Here, the maximum degree restriction can be generalized to
specify separate bounds on individual nodes.

Theorem 1. Given an instance of the minimum degree minimum spanning tree
problem on a graph G = (V, E) with a cost function c on the edges and a degree

bound Bv on vertex v for each v ∈ V , there exists a polynomial time algorithm
which shows either that the degree upper bounds are infeasible for any minimum
spanning tree of G or returns an MST in which the degree of each vertex v is at
most Bv + k where k is the number of distinct costs in any MST.

Note that our Theorem 1 strictly generalizes the result of [5] since k = 1 in
an unweighted graph. We introduce the following new ideas to prove Theorem 1:

– We use linear programming relaxation as a check for infeasibility instead of
the witness set that has been used previously [4, 1]. If the degree bounds
are feasible for a fractional MST, we use the optimal LP solution to divide
the total degree bound of a vertex v into k parts, each assigned to a set of
incident edges of a particular cost.
Our strategy is to deal with edges of distinct costs separately. We use the
known results for the unweighted case of the problem given by Fürer and
Raghavachari [5] and its generalizations by Ellingham and Zha [3] to prove
a weaker version of theorem 1 with degree guarantees of Bv +2k− 1 instead
of Bv + k as claimed in the theorem. This we prove in Section 3.

– We strengthen the existing results of [5] in Theorem 4, by showing that when
we do not find a witness for infeasibility we can obtain a solution where the
degree bound is strictly satisfied for one chosen vertex while still ensuring
that the violation of this bound is at most one for any other vertex. Similarly,
we strengthen the results of Ellingham and Zha [3] in Theorem 5 (Section 4).
We believe that these improvements are interesting in their own right.

– We use the strengthened guarantees in Theorem 4 and Theorem 5 to prove
Theorem 1. We do this by applying the methods of Theorem 5 on different
unweighted subgraphs, each naturally defined by edges of a particular cost
that are used in an MST. This application proceeds in the top-down order
by considering subgraph of progressively decreasing costs. At each step, we
assign vertices to cost classes in which they can exceed their degree bound
by at most one. We then inductively ensure that any such vertex does not
exceed its bound in any other cost class. The resulting delegate-and-conquer
algorithm is presented in Section 5, along with a proof of our main result.

2 Structure of MSTs

In this section, we prove some properties of MSTs. We then show the implica-
tion of these properties on the structure of the optimal solution to the linear
programming relaxation to the MDMST problem.

2.1 Forest over Forest Problem

We define a new problem which will be used later for the MDMST problem.
Given a forest F of a graph G, we call H a F -tree of G if H does not contain

any edge e = {u, v} such that both u and v are in the same component of F and
F ∪ H is a spanning tree over each connected component of G. Note that for

any F -tree H of G, |H| = (number of connected components in F) − (number
of connected components of G).

In an instance of the forest over forest problem, we are given an unweighted
graph G = (V,E) a forest F with connected components C(F) = {C1, . . . , Ck}
and a degree bound Bv for each vertex v ∈ V . The problem is to find a F -tree
H of G such that degH(v) ≤ Bv.

We also define a notion of witness set which forms the basis of the algorithms
of Ellingham and Zha [3] and Fürer and Raghavachari [5]. Given a set W ⊂ V
and partition P of connected components of F , we say (W,P) is a witness if each
edge e with endpoints in different sets of P must have at least one endpoint in
W . The following lemma is straightforward and proved in [3].

Lemma 1. [3] If (W,P) is a witness, then
∑

w∈W degH(w) ≥ |P| − κ(G) for
any F -tree H of G, where κ(G) is the number of connected components of G.

The following theorem was proved by Ellingham and Zha [3] for the forest
over forest problem.

Theorem 2. [3] There exists a polynomial time algorithm which given an in-
stance of the forest over forest problem over a graph G = (V, E) and a forest F
with degree bound Bv for each vertex v ∈ V , returns a F -tree H and a witness
(W,P) such that:

1. If W 6= φ, then the witness (W,P) shows that
∑

w∈W degH′(w) ≥ (
∑

w∈W Bw)+
1 for each F -tree H ′ of G, i.e., the degree bounds are infeasible for any F -tree
of G.

2. If W = φ, then degH(v) ≤ Bv + 1 for each v ∈ V .

The MDST problem (unweighted MDMST problem) is a special case when
F = φ. Then the problem reduces to finding a spanning tree of G and the
guarantees of the above theorem are exactly the same as those of Fürer and
Raghavachari [5].

2.2 Laminar Structure of an MST

Given a graph G = (V, E) with cost function c on the edges, let the cost function
c take at most k different values on the edges of the MST. Without loss of
generality, we can delete all edges of G of other costs since they do not occur
in any MST. We also assume, without loss of generality, that the range of c is
{1, . . . , k} as the particular values do not change the structure of any MST.

Let G≤i denote the graph over V (G) with only those edges of E(G) that cost
at most i. We let G≤0 denote the graph over vertex set V (G) with no edges. Let
Gi denote the graph with vertex set V (G) and edges in E(G) which cost exactly
i. The following lemma is a standard result about minimum spanning trees.

Lemma 2. T is a minimum spanning tree of a graph G iff T i is a G≤i−1-tree
of G≤i for each i.

Hence, we also delete all edges e of cost i or higher which have both endpoint
of G≤i−1 without affecting any MST T of G. More importantly, Lemma 2 implies
that we can independently select the edges of each cost class one at a time and
solve the appropriate unweighted forest over forest problem to form an MST.
The main issue is to manage the degree of any vertex across different cost classes.

2.3 LP Relaxation

We formulate the following integer program MSTIP for the problem considered
in Theorem 4 which is a generalization of the MDMST problem.

optB = min
∑

e∈E cexe (1)
s.t. x(δ(v)) ≤ Bv ∀v ∈ V, (2)

x ∈ SPG, (3)
x integer. (4)

Here SPG is the spanning tree polyhedron, i.e., a linear description of the
convex hull of all spanning trees of G. It is well known that optimization over
SPG can be achieved in polynomial time [12]. We then relax the integrality
conditions to obtain MSTLP . If the optimum value of MSTLP is more than the
cost of an MST of G, then clearly the problem is infeasible.

Let x∗ denote an optimal basic feasible solution to MSTLP . The following
lemma follows directly from LP duality and is implicit in [9].

Lemma 3. [9] The optimal basic feasible solution x∗ to MSTLP can be writ-
ten as a convex combination of spanning trees, i.e, there exists spanning trees
T0, . . . , Tn and constants λ0, . . . , λn such that x∗ =

∑n
i=0 λiTi,

∑n
i=0 λi = 1 and

λi > 0 for each 0 ≤ i ≤ n. Here n is the number of vertices in the graph G.

The following corollary to Lemma 3 is straightforward.

Corollary 1. If c(x∗) = cMST then each of the spanning trees T0, . . . , Tn ob-
tained from Lemma 3 are minimum spanning trees.

Proof. As x∗ =
∑n

i=0 λiTi, we have cMST = c(x∗) =
∑n

i=0 λic(Ti) ≤
∑n

i=0 λicMST =
cMST

∑n
i=0 λi = cMST . Hence, each of the inequalities cMST ≤ c(Ti) must hold

at equality. ut

2.4 LP relaxation for Forest over Forest problem

Given a forest over forest problem of constructing a F -forest of graph G with
degree bound Bv for each vertex v ∈ V , we formulate the following natural IP
formulation for the forest over problem which we call the IPFOR(F, G). Ob-
serve that this a feasibility problem as a forest over forest problem is over an
unweighted graph.

opt = min 0 (5)
s.t. x(δ(v)) ≤ Bv ∀v ∈ V, (6)

x ∈ SF (G/F), (7)
x ∈ {0, 1}, (8)

Here G/F denotes the graph formed when we shrink components of each
component of F in to a single vertex in G and SF (G) denote the natural linear
formulation for the incidence vectors of all maximal spanning forests of G gener-
alized from [12, 9] (This is the same as the formulation for the incidence vectors
of the bases of the graphic matroid of G). If we relax the integrality constraints,
we get a LP relaxation which we denote by LPFOR(F, G). Later in Lemma 5,
we show that if there exists a witness showing infeasibility of the degree bounds
then the above LP relaxation is also infeasible.

2.5 Decomposing MSTs into Forests over Forests

To obtain any minimum spanning tree on an edge-weighted graph G, we need
to solve the LPFOR(G≤i, G≤i+1) for each i = 0, . . . , k−1 where k is the number
of distinct edge-costs in any minimum spanning tree of G. Now, we show that
MSTLP actually solves each of these forest over forest problems with appropriate
degree bounds.

Let Bi
v =

∑
e∈δ(v),c(e)=i x∗e. Observe that

∑k
i=1 Bi

v ≤ Bv. Let yi
e = x∗e if

c(e) = i else yi
e = 0 for each i = 1, . . . , k and e ∈ E. Then we have the following

lemma.

Lemma 4. For each 1 ≤ i ≤ k, yi is a feasible solution to the linear program-
ming relaxation of the forest over forest problem of finding a G≤i−1-tree of G≤i

with degree bound Bi
v for each vertex v ∈ V .

Proof. Let x∗ =
∑n

j=0 λjTj as in Lemma 3. Let Hi
j be the forest formed by

cost-i edges in tree Tj . Clearly, each of the forests Hi
j is a valid G≤i−1-tree of

G≤i but may violate the degree bounds. By definition, yi =
∑n

j=0 λjH
i
j and

hence is a valid fractional solution to LPFOR(G≤i−1, G≤i). Also, it satisfies the
degree constraints by definition as

∑
e∈δ(v) yi(e) =

∑
e∈δ(v),c(e)=i xe = Bi

v. ut
The following lemma shows that the LP gives a stronger notion of infeasibility

than any witness.

Lemma 5. If there exists a witness (W,P) showing that the degree bounds are
infeasible then the LPFOR(F, G) is infeasible.

Proof. If (W,P) is a witness showing that the degree bounds are infeasible then
for any F -tree H,

∑
v∈W degH(v) ≥ ∑

v∈W Bv + 1. Hence, the above holds for
F -trees H0, . . . , Hn. For any convex combination, we get

∑

v∈W

n∑

i=0

αidegHi(v) ≥
n∑

i=0

αi(
∑

w∈W

Bw + 1) ≥
∑

v∈W

(
n∑

i=0

αiBv) + 1 =
∑

v∈W

Bv + 1

since
∑n

i=0 αi = 1. Since any feasible solution to LPFOR(F, G) dominates a
convex combination of F -trees (variant of Lemma 3), the degree constraint for
at least one node in W must be violated. ut

3 Weaker Algorithm

As a warm-up, we describe an algorithm which uses the linear programming
relaxation for the MDMST problem and the algorithm of Ellingham and Zha [3]
as stated in Theorem 2 to obtain a weaker guarantee than claimed in Theorem 1.

Given an instance of MDMST problem over G = (V, E), cost function c and
degree bound Bv on vertex v, the algorithm Alg-Weak is as follows:

1. Find x∗ the optimum solution to the linear programming relaxation to the
problem. If c(x∗) > cMST , declare the problem infeasible.

2. Define Bi
v =

∑
e∈δ(v),c(e)=i x∗e. For each i, we construct G≤i−1-tree Hi of

G≤i with degree bounds dBi
ve for each vertex v ∈ V using the algorithm

described in Theorem 2.
3. Return the MST T = ∪iH

i.

Theorem 3. Algorithm Alg-Weak for the MDMST problem on graph G with
a degree bound Bv on vertex v for each v ∈ V and a cost function c returns an
MST such that the degree of any vertex v is at most Bv + 2k − 1 or shows that
the degree bounds are infeasible for any MST of G.. Here, k is the number of
distinct edge costs in any MST.

Proof. The algorithm declares the degree bounds infeasible only if c(x∗) > cMST .
Clearly, then the degree bounds are infeasible for any MST. We only need to
argue that if the c(x∗) = cMST , then the tree returned satisfies the claimed
degree bounds and is an MST.

First, observe the tree T returned is an MST as it is a union of G≤i−1-tree
Hi of G≤i for each i (see Lemma 2).

We only need to show that the algorithm in Theorem 2 returns a F -tree
and not a witness set showing infeasibility of the degree bounds. However, this
directly follows from Lemma 5.

Observe that the degree of any vertex v in tree T is exactly degT (v) =∑k
i=1 degHi(v) ≤ ∑k

i=1(dBi
ve + 1) <

∑k
i=1(B

i
v + 2) ≤ Bv + 2k. Here the last

inequality follows from the fact that
∑k

i=1 Bi
v ≤ Bv. which proves the degree

bound as claimed. This proves Theorem 3. ut

4 A refined characterization of witnesses

In this section, we strengthen Theorem 2 which will help us obtain improved
guarantees for the MDMST problem. However, to illustrate the strengthening
without getting mired in notation, we first state and prove the strengthening of
the result of Fürer and Raghavachari [5] for spanning trees rather than for forests

over forests. Recall however that Theorem 2 is a generalization of the result of
Fürer and Raghavachari [5], so the ideas in this strengthening generalize with
some extra work allowing us to prove Theorem 5 in the the spirit of Theorem 4
(that is described in extended version of this paper [13]).

4.1 Improving Unweighted Minimum Degree Spanning Trees

Fürer and Raghavachari [5] present an algorithm which returns a tree of maxi-
mum degree ∆∗ + 1 where ∆∗ is the minimum maximum degree of any tree.

We prove a stronger version of their theorem which is useful for the weighted
version of the problem. The algorithm is similar to the algorithm of Fürer and
Raghavachari [5] but our stopping criterion is more stringent.

Given a tree T and an edge f /∈ T , let Cycle(T, f) denote the set of vertices
on the unique cycle in T ∪ f .

Theorem 4. Given a connected graph G = (V, E), degree bound Bv for each
vertex v ∈ V , there is a polynomial time algorithm which returns a spanning tree
T and witness set W ⊂ V (possibly empty) such that

1. Infeasibility: If W 6= φ, then for any tree T ′,
∑

w∈W degT ′(w) ≥ ∑
w∈W Bw+

1, i.e., the degree bounds are infeasible for any spanning tree of G.
2. Solution: If W = φ, then for each node v ∈ V , degT (v) ≤ Bv + 1.
3. Strong Solution: If W = φ, then for each node in v ∈ V , there exists a tree

Tv such that degTv (v) ≤ Bv and for each u ∈ V \ {v}, degTv (u) ≤ Bu + 1.

While the algorithm of Fürer and Raghavachari [5] results in a tree satisfy-
ing conditions 1 and 2 only, we continue to improve the solution until we satisfy
condition 3 or find a new witness for infeasibility.

Algorithm Alg-Unweighted

1. Find any spanning tree T .
2. Initialize Ugly(T) = {v|degT (v) ≥ Bv +2}, Bad(T) = {v|degT (v) = Bv +1},

Good(T) = {v|degT (v) ≤ Bv}, MakeGood(u) = (u) for each u ∈ Good(T).
Return (T, φ) if Bad(T) ∪ Ugly(T) = φ.

3. If there exists edges e = (u1, u2) ∈ T and f = (v1, v2) ∈ E\T , such that e and
f are swappable (i.e., e lies in the cycle closed by f in T), v1, v2 ∈ Good(T)
and either u1 or u2 /∈ Good(T), then do for each w ∈ Cycle(T, f)∩(Ugly(T)∪
Bad(T)):
(a) Good(T) ← Good(T) ∪ {w}
(b) Ugly(T) ← Ugly(T) \ {w}, Bad(T) ← Bad(T) \ {w}.
(c) Makegood(w) ← (v1, v2).

4. If any w is shifted from Ugly(T) to Good(T) in Step 3, then T ← Improve(w, T)
and Return to Step 2.

5. Return (T, W = Ugly(T) ∪Bad(T))

The procedure Improve(w, T) is implemented as follows:

1. If MakeGood(w) = w, then return T .
2. If MakeGood(w) = (u, v), let Tu and Tv be the subtree containing u and

v in T \ W where W = Bad(T) ∪ Ugly(T). Here, Bad(T) and Ugly(T)
are as defined by the algorithm before w is shifted to Good(T). Let T ′u =
Improve(u, Tu) and T ′v = Improve(v, Tv). Return T ′ = T ∪T ′u∪T ′v∪{u, v}\
(Tu ∪ Tv ∪ e) where e ∈ Cycle({u, v}, T) and is incident at w.

The procedure Improve(w) ensures that the degree of one ugly vertex reduces
by at least 1 while no new ugly vertices are introduced in the resulting swaps.
This is ensured by the following Lemma from [5]. A vertex v is called non-blocking
in T if degT (v) ≤ Bv.

Lemma 6. [5] Suppose that w ∈ Bad is marked Good in iteration i, when edge
(u, v) is scanned in Step 3c of the algorithm. Then w can be made non-blocking
by applying improvements to the components of Fi containing u and v where Fi

is the subgraph of T generated by nodes marked good in iteration i.

Now, we prove Theorem 4.

Proof. Suppose W 6= φ. Let C1, . . . , Cr be the components formed after removing
W from T . Clearly, there does not exist any edge from Ci to Cj for any i, j
else we would have found it in Step 3. Also number of components is at least
r ≥ ∑

w∈W degT (w)−2(|W |−1) ≥ ∑
w∈W (Bw+1)−2(|W |−1), since degT (w) ≥

Bw + 1 for each w ∈ Bad(T) and degT (w) > Bw + 1 for each w ∈ Ugly(T). Let
W = {w1, w2, . . . , wp}. Then, (W,P = {C1, . . . , Cr{w1}, . . . , {wp}}) is a witness
as there is no swap edge wrt to W . Hence by Lemma 1 since G is connected, there
must be at least r + |W | − 1 edges incident at vertices in W in any tree T ′,i.e.,∑

w∈W degT ′(w) ≥ ∑
w∈W Bw + |W | − 2(|W | − 1) + |W | − 1 =

∑
w∈W Bw + 1.

This proves (1) in the theorem.
Suppose now that W = φ. Algorithm Alg − Unweighted returns a spanning

tree T and set W = Ugly(T)∪Bad(T) = φ. Hence every vertex has been marked
Good implying that for any vertex v ∈ V , degT (v) ≤ Bv + 1, proving (2).

Now, we prove (3). Assume that W = φ. Take any v ∈ V . Hence, v ∈ Good(T)
where T is the final tree returned by the algorithm. Either degT (v) ≤ Bv in which
case Tv = T suffices. Else degT (v) = Bv + 1 and v was shifted from Bad(T) to
Good(T) in step 3b. Then by Lemma 6, there exist a series of swaps which do not
increase the degree of any vertex u ∈ V above Bu + 1 and make v non-blocking.
The tree Tv obtained after performing these swaps by invoking Improve(v, Tv)
suffices for proving (3). ut

4.2 Forests over Forests Revisited

In this section, we obtain strengthening of the results of Ellingham and Zha [3]
on the lines of the results in Section 4.1. We are given an instance of forest over
forest problem to construct a F -tree of G satisfying the degree bounds Bv for
each vertex v ∈ V . We first begin with a few definitions.

Let C(F) be set of connected components of F . We will refer these con-
nected components as supernodes. For any vertex v, we will denote Fv to be the
supernode containing v.

We present the following theorem in the spirit of Theorem 4.

Theorem 5. Given a graph G = (V, E), a forest F , a degree bound Bv for
each vertex v ∈ V , there exists a polynomial time algorithm StrongForest which
returns a F -tree H of G and witness set (W, CW) where W ⊂ V and CW is a
partition of C(F) such that

1. Infeasibility: If W 6= φ, then
∑

w∈W degH′(w) ≥ ∑
w∈W Bw + 1 ∀ F -trees

H ′, i.e, the degree bounds are infeasible for any F -tree of G.
2. Solution: If W = φ, then for each v ∈ V , degH(v) ≤ Bv + 1 and in each su-

pernode Fi ∈ C(F) there is at most one vertex for which the above inequality
is satisfied at equality.

3. Strong Solution: If W = φ then for each supernode Fi ∈ C(F) there exists a
F -tree Hi which satisfies the condition (2) above. Moreover, for each vertex
u ∈ Fi we have degHi

(u) ≤ Bu.

Ellingham and Zha [3] prove the above theorem with conditions 1 and a
weaker version of condition 2 and we strengthen it proving condition 3. Due to
space considerations we omit the algorithm and the proof of the theorem since
they are very similar to that for trees, only more notationally tedious. They
are included in the technical report [13]. Note that the above theorem strictly
generalizes Theorem 4, by setting F = ∅.

Another point to note here is that the strong solution guarantee can be
applied to each connected component of G, i.e., we can choose one supernode
from each connected component of G when obtaining the strong solution. This
follows from the fact the F -tree problem over each connected component of G
is independent and can be treated separately. We use this fact critically later in
the algorithm for the MDMST problem.

5 Delegating Vertices using Refined Witnesses

We now describe an algorithm, which given an MDMST problem on graph G =
(V, E) with cost function c and degree bounds Bv gives a better guarantee than
one in Section 2. We use the algorithm StrongForest of Theorem 5 instead of
the algorithm forest over forest to obtain a improved guarantee for the MDMST
problem.

Algorithm Delegate-and-Conquer:

1. Step 1: Initialization
Solve the LP relaxation for the MDMST problem to obtain the optimal
solution x∗ and if c(x∗) > cMST , we declare the instance infeasible. Let
Bi

v =
∑

e∈δ(v),c(e)=i x∗e for each v ∈ V and for each i = 1, . . . , k. Observe

that
∑k

i=1 Bi
v ≤ Bv for each v ∈ V . Observe that by Lemma 5, invoking

the algorithm StrongForest of Theorem 5 to construct a G≤i−1-tree of G≤i

with degree bounds dBi
ve will always result in an empty witness set.

2. Step 2: Using StrongForest
Find a G≤k−1-tree Hk of G≤k with degree bounds dBk

v e for each vertex v
using the algorithm described in Theorem 5. Let Sk = {v|degHk(v) = dBk

v e+
1}. Observe that at most one vertex of any connected component of G≤k−1

lies in Sk. This follows from condition (2) of Theorem 5 as each connected
component of G≤k−1 is a supernode in the forest-over-forest problem solved.
Also, let Mk = Hk.

3. Step 3: Delegating the vertices to cost classes
For i = k − 1 down to 1, repeat
(a) From each connected component of G≤i there is at most one vertex in

Si+1 (proved in Lemma 7). Apply algorithm StrongForest of Theorem 5
to each component Gi

j of graph G≤i. Apply condition (3) of Theorem 5
by selecting from each component Gi

j the supernode containing v where
v ∈ Si+1 to obtain G≤i−1-tree M i of G≤i.

(b) Define Si = {v|deg∪k
r=iM

r (v) = (
∑k

j=idBj
ve) + 1}

Return T = ∪k
i=1M

i.

Theorem 6. Given an instance of the MDMST problem over a graph G =
(V, E), cost function c and degree bound Bv for vertex v ∈ V , Algorithm Delegate-
and-Conquer returns either an MST T such that degT (v) ≤ Bv +k or shows that
the degree bounds are infeasible for any MST. Here k is the number of different
costs in any MST.

Proof. We declare the problem infeasible when c(x∗) > cMST in which case the
problem is clearly infeasible. The Step 2 of the algorithm returns G≤k−1-tree
Hk of graph G≤k satisfying the conditions of Theorem 5. First we prove the
following claim.

Lemma 7. There is at most one vertex of Si in each connected component of
G≤i−1 for each 1 ≤ i ≤ k.

Proof. The proof of the claim is by induction for i = k down to 1. Clearly, this
is true for Sk from condition (2) of Theorem 5. Suppose it is true for Si+1 such
that 2 ≤ i + 1 ≤ k. We claim that it is true for Si. Observe that the candidate
vertices for Si are vertices in Si+1 or vertices which exceed their corresponding
degree bound dBi

ve in M i.
Take any connected component Gi−1

j of G≤i−1. If there is some vertex v in
Gi−1

j that is in Si+1, then Gi−1
j is chosen in Step 3(a) of the algorithm as the

selected supernode. Hence, no vertex in this connected component exceeds the
degree bound dBi

ve in M i by condition (3) of Theorem 5. Hence, v remains the
only vertex that might exceed its total degree bound in ∪k

r=iM
i. Else, if the

connected component of G≤i−1 is such that there is no vertex of Si+1 in it,
then we introduce at most one vertex which exceeds the degree bound in M i by
condition (2) of Theorem 5. In either case there is at most one vertex of Si in
each component of G≤i−1. Hence, the property holds for each 1 ≤ i ≤ k. ut

Hence, we obtain degT (v) =
∑k

i=1 degMi(v) ≤ (
∑k

i=1dBi
ve)+1 <

∑k
i=1(B

i
v +

1) + 1 = Bv + k + 1. This implies that degT (v) ≤ Bv + k for each v ∈ V . ut
Observe that in the above proof, if each Bi

v were integral, then we would
have obtained that degT (v) ≤ Bv + 1 as we would ”save” k − 1 in rounding of
fractional values.

References

1. Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar. What
would Edmonds do? Augmenting Paths and Witnesses for degree-bounded MSTs.
In Proceedings of 8th. International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, 2005.

2. Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar. Push
Relabel and an Improved Approximation Algorithm for the Bounded-degree MST
Problem. In To Appear in ICALP, 2006.

3. Mark Ellingham and Xiaoya Zha. Toughness, trees and walks. J. Graph Theory,
33:125–137, 2000.

4. T. Fischer. Optimizing the degree of minimum weight spanning trees. Technical
report, Department of Computer Science, Cornell University, 1993.

5. Martin Furer and Balaji Raghavachari. Approximating the minimum degree span-
ning tree to within one from the optimal degree. In SODA ’92: Proceedings of
the third annual ACM-SIAM symposium on Discrete algorithms, pages 317–324,
Philadelphia, PA, USA, 1992. Society for Industrial and Applied Mathematics.

6. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

7. Michel Goemans. Personal Communication.
8. G. Gutin and A P Punnen eds. Traveling salesman problem and its variations.

Kluwer Publications, 2002.
9. J. Könemann and R. Ravi. A matter of degree: Improved approximation algorithms

for degree-bounded minimum spanning trees. In STOC ’00: Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pages 537–546,
New York, NY, USA, 2000. ACM Press.

10. Jochen Könemann and R. Ravi. Primal-dual meets local search: Approximating
MST’s with nonuniform degree bounds. In STOC ’03: Proceedings of the thirty-
fifth annual ACM symposium on Theory of computing, pages 389–395, New York,
NY, USA, 2003. ACM Press.

11. Fumei Lam and Alantha Newman. Traveling salesman path perfect graphs.
Preprint, 2006.

12. George L. Nemhauser and Laurence A. Wolsey. Integer and combinatorial opti-
mization. Wiley-Interscience, New York, NY, USA, 1988.

13. R. Ravi and Mohit Singh. Delegate and Conquer: An LP-based approximation
algorithm for Minimum Degree MSTs. Technical report, Tepper School of Business,
Carnegie Mellon University, 2006.

A Algorithm StrongForest

In this section, we give the algorithm claimed in Theorem 5 and prove its cor-
rectness.

We assume in the sequel that G is connected since the same argument can
be used independently for each connected component of G.

A.1 Definitions

We first begin with a few definitions.
Given a forest F of graph G and a F -tree H and degree bounds Bv for each

vertex v, a vertex v is called Ugly if degH(v) ≥ Bv +2, Bad if degH(v) = Bv +1
and Tight if degH(v) = Bv and Good if degH(v) ≤ Bv − 1. We will also use
Ugly to denote the set of vertices which are called Ugly. Also, we let C(F)
denote the components of F . For each component Fi ∈ C(F)(we will also refer
them as ”supernodes”). A super node Fi is called Clean if Fi ⊂ Good ∪ Tight,
Dangerous if |Fi ∩Bad| = 1 and Fi ∩Ugly = φ. If a supernode is not Clean or
Dangerous, then it is called a Mob. Observe that, Fi is a Mob iff Fi∩Ugly 6= φ or
|Fi∩Bad| ≥ 2. Loosely, the definitions of Clean, Dangerous and Mob supernodes
are intended to generalize those of Tight/Good, Bad and Ugly nodes. Let C(F)
be set of connected components of F . We will refer these connected components
as supernodes. Given a edge e /∈ H for F -tree H, we let Cycle(H, e) denote the
set of all the vertices which have an edge of H incident on them in the cycle
formed by e in H ∪F . For any vertex v, we will denote Fv to be the component
of F containing v.s

A vertex v in a F -tree H is called non-blocking if either v ∈ Good or v ∈ Tight
and Fv ∈ Clean. In the first case, v is called non-blocking of Type I and in the
latter case, v is called non-blocking of Type II.

A.2 Algorithm

The algorithm StrongForest is as follows:

1. Initialize with any F -tree H.
2. Let WitC = {Ci ∈ C(F)|excessH(Ci) > 0}

Horrendous = {v|v is Bad or Ugly and Fv ∈ Mob},
Awful = {v|v is Bad and Fv ∈ Dangerous or v ∈ Tight and Fv ∈ Dangerous∪
Mob}.
Fine = V \ (Horrendous∪Awful). Makefine(u) = {u} for each u ∈ Fine.
If Horrendous ∪Awful = φ then return (H, φ, φ)

3. If there exist an edge e = (u, v) /∈ E(H) such that w ∈ Cycle(H, e) ∩
Horrendous and u, v ∈ Fine, then let T ′u = Improve(H,Tu, u), T ′v =
Improve(H, Tv, v), H ← H ∪ T ′u ∪ T ′v ∪ {u, v} \ (Tu ∪ Tv ∪ {f}) where f
is the edge incident at w in Cycle(H, e). Goto Step 2. Else

4. If there exist edges e = (u, v) /∈ H such that w′ ∈ Cycle(H, e)∩Awful such
that both u and v ∈ Fine, do for each w ∈ Cycle(H, e) ∩Awful:
(a) Awful ← Awful \ {w}, Fine ← Fine ∪ {w}
(b) Makefine(w) = {u, v}.
(c) If Fw ∈ Dangerous and w ∈ Bad then for each x ∈ Awful ∩ Fw do

//Bad Vertex takes responsibility for all tight vertices in its supernode

i. Awful ← Awful \ {x}, Fine ← Fine ∪ {x}
ii. Makefine(x) = {w}

and WitC ← WitC \ {Fw}
and goto Step 2. Else

5. Return (H,W, CW) where W = Horrendous ∪ Awful and CW is the set of
connected components of G formed after removing all edges of H incident
at vertices of W .

Here, the procedure, Improve(H,T,w) is defined as follows:

1. Good: If Makefine(w) = w, return H.
2. Tight: If Makefine(w) = x, return Improve(H, Tx, x) where Tx is the sub-

tree containing x in H\(Awful∪Horrendous) where Awful and Horrendous
are as defined by the Algorithm before w was was included to Fine.

3. Bad: If Makefine(w) = (u, v), then let T ′u = Improve(H,Tu, u) and T ′v =
Improve(H, Tv, v) where Tu, Tv are the subtrees containing u and v in H \
(Awful ∪ Horrendous) at the time u and v were shifted to Fine. Return
H ′ ← H ∪T ′u∪T ′v ∪{u, v}\ (Tu∪Tv ∪{e}) where e ∈ δ(w)∩Cycle(T, {u, v})

w

v1

v2

u1

u2
u3 u4

w

v1

v2

u1

u2
u3 u4

Makefine(w)

Fig. 1. In the above example, Bv = 1 for each v ∈ V . The algorithm returns W = φ.
Improve(w) returns the tree such that deg(w) = Bw. Here, Makefine(w) = {v1, v2},
Makefine(v1) = {u1, u2}, Makefine(v2) = {u3, u4} and Makefine(ui) = ui for each
i.

For the purpose of clarity, let us fix an iteration of the algorithm for the
following definition and Lemma 8. For each vertex v that is included in Fine in
this iteration, let Awful(v) and Horrendous(v) denote the sets as defined by
the algorithm exactly after v is included in Fine.

Before we prove Theorem 5, we prove the following lemma.

Lemma 8. Let H be a F -tree and w be a vertex which is included in set Fine by
the algorithm in some iteration. Then, a call to Improve(H, T, w) where T is the
subtree containing v in H \ (Awful(w) ∪Horrendous(w)) returns a subtree T ′

such that w is non-blocking in H ′. Moreover, if w ∈ Bad then w is non-blocking
of Type II. Also, no new supernodes are included in Mob.

Proof. Structural Induction on Makefine(w).

– Makefine(w) = {w}: Then w ∈ Good in Step 2 of the algorithm and
degH(w) ≤ Bw−1. Hence, w is non-blocking in H and the Improve(H, T, w)
return T . Clearly, H satisfies all the conditions of the Lemma.

– Makefine(w) = {v}: then v ∈ Bad and Fv = Fw is Dangerous.(This assign-
ment takes place in Step 4c of the algorithm. Both v and w are in the same
supernode with v the only vertex which exceeds its degree). Since v ∈ Fine,
by induction hypothesis we have T ′v = Improve(H, Tv, v) such that v is non-
blocking of type II in H ′ = H ∪ T ′v \ Tv. Hence, in H ′, Fv is clean. But
as Fv = Fw, we have that w is non-blocking in H ′. Also observe that Tv

is a subset of T follows from the fact that v was included in Fine before
w in this iteration. Moreover, no new mob supernodes are introduced by
induction hypothesis.

– Makefine(w) = (u, v) and w ∈ Tight. Observe that w ∈ Awful(u) ∪
Awful(v). Using the fact that algorithm only decreases the sets Awful in
any iteration, we have that both Tu and Tv lie in different component of
H \ (Awful(w) ∪ Horrendous(w) ∪ {w}). Hence, T ′u and T ′v do not share
any nodes. If H ′′ = H ∪ T ′u ∪ T ′v \ (Tu ∪ Tv), then we have both u and v are
non-blocking in H ′′. Then H ′ = H ∪ {u, v} \ e where e is an edge incident
at w in Cycle(H, {u, v}) satisfies that w ∈ Good and hence, non-blocking.
Clearly, we did not introduce any new mob nodes in H ′′ by induction. Since,
both u and v were non-blocking in H ′′, the inclusion of edge {u, v} does not
introduce any new mobs in H ′.

– Makefine(w) = (u, v) and w ∈ Bad. Observe that w is the only vertex
from Fw which is Bad else Fw would have been a mob and we would have
decreased the degree of w in Step (3). Following the same notation as in the
previous case, we can argue that w is non-blocking of Type II in H ′. Consider
H ′′ = H∪T ′u∪T ′v \(Tu∪Tv) as defined in the previous case. Clearly, v ∈ Bad
in H ′′ as w ∈ Awful(v) ∪ Awful(u). Since, no new mobs are introduced in
H ′′, we have that Fw is Dangerous and w is the only vertex in Fw which
exceeds its degree bound. Introduction of the edge {u, v} and removal of e
reduces the degree of w and w is a tight vertex in H ′. Moreover, if any of u
or v are in Fw then they must be Good in H ′′. This implies that inclusion
of edge {u, v} in H ′′ does not introduce any Bad vertex in Fw. Hence, w is
non-blocking of Type II in H ′. The fact that no mobs are introduced in H ′

follows directly from induction hypothesis.

Proof of Theorem 5:
Proof of property (1): Suppose W 6= φ is returned along with forest H.

Clearly, there does not exist any edge between two components of H \W else

it would have been found in Step 3 or 4. Root the forest H at any compo-
nent Ci containing a vertex of W . Remove the edges incident at vertices of W
in H. Now, we count the number of components generated after removing W
from H. Traversing down the rooted tree, the number of extra components after
removing vertices of W from a supernode Fi is exactly (

∑
v∈Fi∩W degH(w)) ≥

(
∑

v∈Fi∩W Bv)+1 for the root node and at least for all other nodes (
∑

v∈Fi∩W degH(w))−
1 ≥ ∑

v∈Fi∩W Bv for (An extra component for each edge incident at any of the
nodes in W ∩ Fi except for one parent edge). Hence, the total number of com-
ponents in H \ W is at least

∑
w∈W Bw + 2. Hence, there must be at least∑

w∈W Bw + 1 edges incident at any F -tree H ′ of G.
Proof of property (2): Suppose W = φ and forest H is returned. Then there

are no Mob supernodes in H else we would have Horrendous 6= φ. Hence, there
can be at most one vertex in each supernode which exceeds its degree.

Proof of Property (3): Suppose W = φ and forest H is returned. Let Fi be
any supernode. By (2), there is at most 1 vertex in Fi which exceeds its degree by
one. If there is no such vertex then Hi = H suffices. Else, let v ∈ Bad∩Fi. Then,
as Awful = φ, v must be included in Fine from Awful in the last iteration of
the algorithm. Hence, by Lemma 8, v can be made non-blocking in of Type II
in H ′ without introducing any mobs. H ′=Hi satisfies all the requirements of
condition (3).

Now, we analyze the running time of the algorithm. For that we need to define
an appropriate potential function which measures the progress of the algorithm.

Let excessH(v) = max{0, degH(v) − Bv}. Let excess of supernode Fi be
excessH(Fi) =

∑
v∈Ci

excessH(v,B). Let normalized excess of a supernode Fi

be nexcessH(Fi) = max{excessH(Fi,B) − 1, 0}. Let normalized excess of the
F -tree H be

nexcess(H,B) =
∑

Fi∈C(F)

nexcessH(Fi,B).

Normalized excess of the F -tree will be the measure of the progress of our
algorithm. Clearly, nexcess(H) in the beginning of the algorithm is at most n2.
In each improvement of Step 3, we reduce the normalized excess of the current
F -tree by at least one. Hence, there can at most n2 improvements in Step 3.

Between two consecutive improvements of Step 3, there can be at most n calls
of Step 4, as we reduce the size of Awful each time we call Step 4. Hence, there
are at most n3 calls of Step 3 or Step 4. Also, all these steps can be implemented
in polynomial time proving Theorem 5.

