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We present new approximation algorithms for both these problems. Our main algorith-mic tool is semi-de�nite programming. Using a simple semi-de�nite relaxation we derive anO(qnb logn) approximation for the minimum bandwidth on an n-node graph with band-width b. A re�nement of this relaxation allows us to get an O(log2 n) approximation forthe minimum-length linear ordering problem1.Recently (and independently) Feige [6] introduced the notion of a volume-respectingembedding of an undirected graph, and used it to achieve a poly-logarithmic approximationfor the bandwidth problem. Interestingly there are many similarities between the twoapproaches. Speci�cally, the rounding procedure of our algorithm, projection to a randomline, is also a key step in his algorithm. Our relaxation for the minimum-length orderingproblem was developed after Feige's results were announced, and was inspired by his work.Early interest in these kinds of ordering problems in the 1950's was fueled by researchin the area of solvers for sparse symmetric linear systems of equations, using Gaussianelimination (such as in the �nite element analysis of steel frameworks). As a heuristicto minimize the space, time and total work in the elimination procedure, it is desirableto reorder the rows (and columns) of the matrix so as to collect all the non-zero entrieswithin a band of small width centered at the diagonal. When the (symmetric) non-zeroelements of the matrix are viewed as vertex adjacencies in an undirected graph, then thereordering problem is the minimum bandwidth problem on this graph. Another applicationof bandwidth minimization is in search algorithms, where the minimum-bandwidth orderingof the vertices of the problem's constraint graph can be used as a branching order thatreduces backtracking. For a survey on the bandwidth problem and early approaches, see [2].The minimum bandwidth problem was �rst shown to be NP-hard in 1976 [15], and latereven for trees of degree at most three and for caterpillars [7, 13]. Approximations algorithmshave been known only for some special families of graphs, such as caterpillars or asteroidaltriple-free graphs [11, 12].2 The Semi-De�nite RelaxationOur approximation algorithm begins with an SDP (Semi-De�nite Programming) relaxation.First we motivate and describe the relaxation for the bandwidth problem and then therelaxation for the minimum-length linear ordering problem.Semide�nite programming is the optimization of a linear function over variables drawnfrom a symmetric matrix subject to linear constraints on these variables and the addedrequirement that this symmetric matrix be positive semide�nite. Semide�nite programscan be solved to within an arbitrarily small additive error in polynomial-time [8] - formore background, see the description in [9]. Our semide�nite relaxation for the bandwidthproblem is inspired by the pioneering work of Goemans and Williamson [9] on the MaximumCut problem, and is based on the following observation that their work motivates and uses:An n � n symmetric positive semide�nite matrix A can be decomposed into A = BTBwhere B is an m � n matrix of full row rank (hence m � n) via an incomplete Choleskyfactorization (see, e.g., [10]). Moreover, if we insist that aii = d for all i, then the matrixA corresponds via the decomposition to a set of equal-length vectors b1; b2; : : : ; bn in Rm1The preliminary version of this paper [1] erroneously claimed an O(log 32 n)-approximation ratio for thisproblem. We thank Se� Naor [16] for bringing the error in the analysis to our attention.2



(each of Euclidean length pd), namely, bi is the ith column of B, where aij = bi � bj (the dotproduct of bi and bj). This allows us to view the solution to a SDP equivalently as a set ofvectors in Rm for some m � n, obeying some extra linear constraints that we stipulate onthe dot products of these vectors.2.1 BandwidthThe minimum bandwidth problem on an undirected graph G = (V;E) is equivalent to thefollowing geometrical embedding problem: Assign the nodes of the graph to distinct equi-spaced points along a quarter-circle of radius n in the positive quadrant of a 2-dimensionalplane, such that the maximum value of the Euclidean length of any edge of the graph isminimized. The projection of this ordering on either of the co-ordinate axes bounding thisquadrant recovers the optimal bandwidth ordering since the objective functions (Euclideandistance in the quarter-circle and linear distance in the line) are monotonically related.The following is then a non-convex quadratic programming formulation for the bandwidthproblem. We use x̂ and ŷ to denote the basis vectors along the x and y co-ordinatesrespectively. Also jvj is used to denote the Euclidean length of a vector v.minimize b (1)jvij = n 8i 2 f1; : : : ; ng (2)jvi � vj j � b 8(i; j) 2 E (3)and the vi's are two-dimensional vectors each distinctly assigned to a point of the formn cos(�j2n)x̂+ n sin( �j2n)ŷ for some positive j.The last set of constraints cannot be enforced if we wish to carry out the optimization inpolynomial time, so we relax the dimensionality of the vectors vi and add more constraints tostrengthen the resulting program. The extra constraints we add are \spreading" constraints,in the spirit of Even, Naor, Rao and Schieber [5]. With only constraints such as (2) and(3), the program will simply produce one single vector as its solution to all the vi. We wantinstead that the vectors be spread out as in a line. For instance, on a line, for any pointp there are at most 2k other points within distance k of p. We add some new constraints((8) in the formulation below) to enforce this condition. We �nally arrive at the followingsemide�nite programming formulation,minimize b (4)vi � vj � 0 8i; j 2 f1; : : : ; ng (5)jvij = n 8i 2 f1; : : : ; ng (6)jvi � vj j � b 8(i; j) 2 E (7)1jSjXj2S(vi � vj)2 � 16 � jSj2 + 1� (jSj+ 1) 8S � f1; : : : ; ng; 8i 2 f1; : : : ; ng (8)The goal of the above constraints is to enforce a near-linear embedding of the vertices whileminimizing the value of b, which is the maximum dilation of any edge in the relaxation.3



Formally, constraint set (7) states that for any edge in the graph, the distance betweenthe corresponding vectors should be at most the optimal bandwidth. From our discussionabove, it is perhaps easier to see that (7) is a legal SDP constraint if we rewrite it as(vi � vj) � (vi � vj) � b2.Constraints (5) are primarily for ease of analysis. Constraints (8) are the spreadingconstraints motivated earlier. These constraints are useful in the analysis of the roundingalgorithm where we bound the probability that two given points in the vector representationof the solution fall into an interval of �xed width in a random projection to a line (i.e.,when all the points are projected to their dot product with a random unit vector2 passingthrough the origin). This probability is inversely proportional to the distance between thepoints (Lemma 5) and the spreading constraints allow us to upper bound this probabilitye�ectively.Although there are exponentially many constraints in (8), it is not hard to constructa separation oracle for them, and hence the SDP can be solved in polynomial time (seeGr�otschel, Lov�asz, Schrijver [8]). To answer the separation problem for (8) for a given nodei, simply sort the vertices j 6= i in increasing order of (vi � vj)2 and check for violationeach of the n � 1 sets that occur as pre�xes in this order. It is easy to see that if any setS violates (8) for vertex i, then the pre�x of vertices in this order of size jSj also violates(8) for i. This is also the same separation oracle used by Even et al. [5] in their work onspreading metrics.Let us refer to the above formulation as the bandwidth SDP. Suppose b� is the optimalbandwidth. Then by lifting the optimal bandwidth ordering to the equi-spaced embeddingin the quarter-circle described above, it is easy to verify that all the constraints are satis�edto give an objective function value of at most �2 b�.2.2 Minimum-length orderingThe SDP formulation for the Minimum-length ordering problem is similar to the bandwidthSDP. Technically, the analysis in this case will require bounding the probability that threepoints fall into a �xed width interval in a random projection (instead of just two points asin the bandwidth analysis). This probability can be shown to be inversely proportional tothe area of the triangle formed by the three points (Lemma 6). For this reason, we addconstraints in this case that lower bound the areas of triangles formed by points in the vectorrepresentation of the solution. Speci�cally, if we let A(i; j; k) denote the area of the triangleformed by vi; vj; vk, our SDP relaxation of the minimum-length linear ordering problem isthe following. (The fact that it is indeed a relaxation will be established in Lemma 8.)minimize X(i;j)2E(vi � vj)2vi � vj � 0 8i; j 2 f1; : : : ; ng1jSjXj2S(vi � vj)2 � 16 � jSj2 + 1� (jSj+ 1) 8S � f1; : : : ; ng; 8i 2 f1; : : : ; ng2Here and henceforth, we use the term \unit vector" to denote a vector of unit length, not only thosealong the co-ordinate axes. 4



1jSjXk2SA2(i; j; k) � �jvi � vj j2jSj2 8S � f1; : : : ; ng; 8i; j 2 f1; : : : ; ng (9)The �rst two sets of constraints are identical to (5), (8) above. Instead of constrainingthe length of each individual edge as in (7), we minimize the squared length of the ordering(sum of squares of edge lengths). This is a linear function of the vi �vj . The constraint set (9)was motivated earlier and will be useful in the analysis; � is a constant greater than 0 thatcan be calculated from Lemma 11 in the Appendix. We address below the incorporation ofconstraints (9) in the semide�nite formulation.Fact 1 For two vectors vi; vj, the square of the area of the triangle they form with the originis given by 14 ����� vi � vi vi � vjvi � vj vj � vj ����� :Hence, for any three vectors, vi; vj; vk, the area A(i; j; k) of the triangle formed by them,which is the same as the area of the triangle formed by vj � vi; vk � vi and the origin, canbe computed usingA2(i; j; k) = 14 ����� (vj � vi) � (vj � vi) (vj � vi) � (vk � vi)(vj � vi) � (vk � vi) (vk � vi) � (vk � vi) ����� :Further, the constraint, A2(i; j; k) � c for a real number c is a convex constraint. Notethat for an arbitrary matrix X , the constraint DET (X) � c may not be convex; howeverwhen X is restricted to being positive semi-de�nite (as in our case), it becomes convex.(See, e.g., [14], pp. 239.)3 The AlgorithmGiven an undirected graph G = (V;E), the approximation algorithm for both problems isas follows. The only di�erence between the two problems is in the SDP formulations.1. Solve the SDP relaxation for G. Let the solution obtained be v1; : : : ; vn.2. Pick a random line through the origin, i.e., a random unit vector `.3. Project v1; : : : ; vn on to the line `.4. Output the vertex-ordering along this line, i.e., in increasing values of vi � `.We show that the algorithm with the bandwidth SDP �nds an ordering of bandwidthat most O(qnb log n) times the optimum with high probability. For the minimum-lengthordering problem we will show that this algorithm gives an ordering of length at mostO(log2 n) times the optimum, with high probability.5



3.1 Overview of Bandwidth analysisThe outline of the analysis for the Bandwidth performance guarantee is as follows. Imagineslicing up the ball of radius n into strips orthogonal to ` of width b=pn. The �rst claim isthat with high probability, no edge in G crosses more than O(plogn) strips. The reasonis that for any edge (i; j) we have jvi � vj j � b (by constraint 7) and since ` was chosenrandomly, with high probability we have j(vi�vj) � `j � cjvi�vj jplogn=pn (i.e., the vectorvi � vj is \nearly orthogonal" to the line `; see Lemma 3). So, to prove an ~O(pn) approxi-mation for the minimum bandwidth it su�ces to prove that with \reasonable" probability,every strip has at most ~O(pn) points inside.For a given strip s (say, the strip corresponding to the interval [ib=pn; (i+ 1)b=pn] online `), the probability over the choice of ` that a given point v 2 G falls into s is at mostO(b=n). (This is because there are O(npn=b) strips total, and the middle n=b of themroughly equally divide up most of the probability.) Thus, the expected number of points inany given strip is only O(b).What about the variance? To calculate this we need to upper-bound the probabilitythat a given pair of points vi; vj both fall into a given strip s. This is roughly equal toPr[vi falls into s] �Pr[jvi� vj j � ` � b=pn]. The �rst quantity, as described above, is O(b=n),while the latter quantity is O(b=d) if jvi � vj j � d. At this point, we use constraints (8) toshow that there cannot be too many pairs of points vi; vj that are too close together. Thisallows us to bound the variance which then yields the �nal results. For slightly improvedbounds, we use strips of width �(bplogn=pn) instead of b=pn.3.2 Overview of Minimum-length Ordering analysisThe analysis is very similar to the analysis of the bandwidth guarantee. The �rst step isto show that the optimal ordering can be turned into a solution for the SDP formulationwithout much worsening in the objective function. We do this in Lemma 8 by using a liftedembedding of the optimal solution in logn-dimensions so as to obey the triangle lower-boundconstraints.The proof of the rounding guarantee relies on bounding the expected value of the dif-ferent terms in the objective function, one for each edge (i; j) in the graph G. This termfor the edge (i; j) is the square of the number of points that fall between i and j in therandom projection. Algebraic simpli�cation shows that what is required to be bounded isthe probability that a pair of other points k and l both fall between i and j in the ran-dom projection. As before, since ` was chosen randomly, with high probability we havej(vi � vj) � `j � cjvi � vj jplogn=pn, and so we are left to bound the probability that thethree vectors vi; vk and vl all fall in an interval of width cjvi�vj jplogn=pn. We accomplishthis by relating this inversely to the area of the triangle A(i; k; l) formed by these vectorsand using the lower bounds on the triangle areas.We present the formal analyses in the next section.4 Approximation GuaranteesWe start with a useful lemma about any set of vectors satisfying the constraint set (8).6



Lemma 1 Let v1; : : : ; vn 2 Rn satisfy the constraint set (8). Then for any ball B of radiusr � 1 in Rn (not necessarily centered at the origin)jB \ fv1; : : : ; vngj � O(r):Proof. Let S = fj : vj 2 Bg and suppose for contradiction that jSj > 7r. Pick anarbitrary i 2 S. By constraint set (8), the average value of (vi � vj)2 over j 2 S is atleast 16(jSj=2+ 1)(jSj+ 1) > 16(7r=2)(7r)> 4r2. But, this is clearly impossible because themaximum value of jvi � vj j is at most the diameter 2r. 2Next, we make a few observations regarding random projections.Lemma 2 Let v1; v2; v3 2 Rn. Let ` be a random unit vector. Let yi = vi � `. Let � be theangle between the vectors (v2 � v1) and (v3 � v1). Then the probability that y1 lies betweeny2 and y3 is exactly �=�.Proof. The probability that v1 when projected to ` falls in between the projections ofv2 and v3 is Pr[v2 � ` � v1 � ` � v3 � `] + Pr[v3 � ` � v1 � ` � v2 � `]which is the same as Pr[((v1 � v2) � `)((v3 � v1) � `) � 0]which is exactly the angle between the vectors (v1 � v2) and (v3 � v1) divided by �. 2Fact 2 The volume of the n-dimensional ball of radius r is equal to 2rn�n=2n�(n=2) and its surfacearea is 2rn�1�n=2�(n=2) .Here �(x) is Euler's Gamma function; for a positive integer x, �(x) = (x� 1)!.Lemma 3 Let v 2 Rn. For a random unit vector `,Pr �jv � `j � cpn jvj� � 1� e�c2=4:Proof. The desired probability is the surface of a central band of thickness 2c=pn ona unit sphere, divided by the surface area of the whole sphere. Denote the surface areaof the n-dimensional sphere of radius r by An(r). Then the area of the region outside thecentral band is less than the area of an n-dimensional sphere of radius p1� c2=n (sincethe remaining portions of the unit ball after slicing out the central band is a convex bodythat can be inscribed in a ball of the smaller radius). Using An(r) = Knrn�1, for Kn asin fact 2, we can lower bound the area of the central band as the area of the unit sphereminus the area of a sphere of radius p1� c2=n. Thus the desired probability is at leastAn(1)�An�q1� c2n �An(1) = 1� �1� c2n �n=2� 1� e�c2=4: 27



Lemma 4 Let v 2 Rn. For a random unit vector `,Pr[jv � `j � 1cpn jvj] = O�1c� :Proof. The desired probability can be upper-bounded by 4=cpn times the surface areaof the (n � 1)-dimensional unit ball, divided by the surface area of the n-dimensional unitball. The factor of 4 is due to loosely upper-bounding the curvature of the n-dimensionalball within a width of 1=cpn in both directions above and below the origin. This is at most4An�1cpnAn � 4cpn� �(n+12 )�(n2 ) � O�1c� : 2We consider the following event: two points x; y on the surface of the ball of radius n,at a distance d from each other are projected on to a random line. What is the probabilitythat x and y fall in any �xed interval of width W on the line? The following lemma, crucialto our analysis, bounds this probability.Lemma 5 Let x; y be arbitrary vectors of length n in Rn such that jx�yj = d and x �y � 0.Let ` be a random unit vector. Then, for any �xed � and width W ,Pr[� � x � `; y � ` � �+W ] = O�W 2d �:Proof. For convenience, rotate the sphere so thatx = (�d=2;qn2 � d2=4; 0; : : :)and y = (d=2;qn2 � d2=4; 0; : : :):Let vector v = y�x = (d; 0; : : :), and let ` = (`1; `2; : : :) be our randomly chosen unit vector.Note that in order for the event in question to occur, it must be the case that jv � `j � W .Therefore,Pr[� � x � `; y � ` � � +W ] � Pr[jv � `j � W ] � Pr[� � x � ` � � +W j jv � `j � W ]:Since jv � `j = j`1j � d, we have Pr[jv � `j � W ] = Pr[j`1j � W=d], which is O(Wpn=d) byLemma 4.Given the event that j`1j � W=d, the inequality � � x � ` � � +W can be relaxed to� �W=2 � x0 � `0 � � + 3W=2, where x0 and `0 are n � 1-dimensional vectors consisting ofthe last n � 1 components of x and `. Since xi = 0 for all i > 2, this is equivalent to� �W=2 � `2qn2 � d2=4 � �+ 3W=2:The probability of this last event can be upper-bounded by computing the area of thelargest possible strip of this widthW (the one centered around the equator). By assumption,x � y � 0, implying that d � np2, so pn2 � d2=4 � n=p2. We can now bound the fraction8



of the sphere covered by this strip by O(W=pn) as in the proof of Lemma 4. Thus, we�nally get Pr[� � x � `; y � ` � �+W ] = O Wpnd � Wpn!= O W 2d ! : 2The following lemma will be useful in the analysis for the minimum length orderingproblem.Lemma 6 Let v1; v2; v3 be vectors in Rn. Then on projection to a random line, the proba-bility that there exists an interval of width W that all three fall into isO� W 2nA(1; 2; 3)�Proof. Consider the triangle v1v2v3. Assume without loss of generality that its smallestangle is the one at v3, and that jv1 � v3j � jv2 � v3j. Notice that the event in question isinvariant under translation of the space; thus we may also assume without loss of generalitythat v3 is the origin.In order for all three points to fall into an interval of width W , it must be the case thatv1 and v2 both fall into the interval [�W;W ]. We bound the probability of the latter eventusing Lemma 5. Speci�cally, let v01 = nv1=jv1j, let v02 = nv2=jv2j, and let d0 = jv02� v01j. Theevent that v1 and v2 both fall into the interval [�W;W ] implies the event that v01 and v02both fall into the interval [�Wn=jv1j;Wn=jv1j] since jv1j � jv2j. Since v01 and v02 are bothlength n (and v01 � v02 � 0 by the assumption that the smallest angle is at v3), Lemma 5bounds the probability of this event byO W 2n2jv1j2d0! :Since v3 is the smallest angle of the triangle v1v2v3, the area of v1v2v3 is at most twicethe area of v1v002v3 where v002 = v2jv1j=jv2j. This area equals (jv1j=n)2 times the area of v01v02v3,and that area is at most nd0=2. Thus, A(1; 2; 3)� jv1j2d0=n, and the desired probability isO W 2n2jv1j2d0! = O W 2nA(1; 2; 3)! : 24.1 BandwidthWe begin with the following lemma.Lemma 7 Suppose v1; : : : ; vn satisfy the constraint set (5), (6), and (8). For a randomline `, let X be the random variable denoting the number of points vi whose projection onto` falls into a given interval I of width W . Then,E[X ] = O(Wpn) and E[X2] = O(W 2n logn):9



Proof. De�ne Xi to be the random variable that is 1 if the projection of vi onto ` fallsin I and 0 otherwise. Then from Lemma 4, E[Xi] = O(W=pn); which impliesE[X ] = O(Wpn):Now consider pairs vi; vj . By Lemma 5 we have E[XiXj ] = O(W 2=dij); where dij = jvi�vj j.Therefore, E[X2] = E[XX2i + 2XXiXj ]= O�Wpn+Xi;j W 2dij �= O(W 2n log n);where the last line follows from Lemma 1, since Lemma 1 implies that for any �xed i,Pj 1=dij = O(logn). 2Theorem 1 The algorithm �nds an ordering whose bandwidth is at most O(pn=b logn)times the minimum bandwidth with high probability.Proof. Let v1; : : : ; vn be the set of vectors of length n found by solving the SDP.First, using Lemma 3 we have that every edge of G, of length at most b in the SDP,when projected down to a random line has length no more than W = 8bplogn=pn withhigh probability.Let ` be a random line and partition ` into intervals of width W . Using Lemma 3 onemore time, with high probability, all vertices on projection fall within the middle n=b inter-vals (since these have total width 8pn logn). Since each edge spans at most two intervals(with high probability), it su�ces now just to prove that with reasonable probability, noneof these n=b intervals has more that O(pnb log n) vertices that project into it.At this point we simply use Lemma 7. By Lemma 7, the random variable X denotingthe number of vertices that on projection fall into a given interval of width W satis�esE[X2] = O(W 2n logn). Therefore, by Chebychev's inequalityb4n � Pr[X > q4n=bqW 2n log n]= Pr[X > 16pbn logn]:Thus, with reasonable probability (3/4), each of the n=b intervals has only O(pnb logn)vertices that project into it, proving the theorem. 24.2 Minimum-length orderingLet e = (i; j) 2 E, and upon projection to a random line, let Yij be the random variablewhose value is the dilation of e in the ordering on the line, i.e., the number of points thatfall in the span of the edge.First, we use Lemmas 1 and 2 to show that the expectation of Yij is at most jvi�vj j lognas follows. Let P denote the center of the geodesic joining vi and vj , and let l = jvi � vj j.Consider balls with radii l, 2l, 4l; : : : centered at P . Let xk be at distance rl from P . By10



lemma 2 the probability that xk is projected between xi and xj is at most 2r . By lemma 1,the number of points at a distance of between rl and 2rl from P is O(rl). So the expectednumber of vertices that fall in between the projections of xi and xj is at most12 lognXm=1 O(2ml) 12m = O(l logn):However we need to bound the second moment, E(Y 2ij). For this we need to bound theprobability that a pair of vertices falls in the span of e. Lemma 6 bounds this probabilityas at most 1 over the area of the triangle formed by the two points and any one of theendpoints of the edge. So, on the whole we would like to ensure that the sum of the inverseareas of the triangles formed by every pair with one endpoint of e is small. This is preciselywhat the triangle constraints (9) achieve. Just the spreading constraints (8) do not su�cefor this.Below we describe this formally. First we show that the SDP is indeed a near-relaxation(there exists a solution to the SDP with value � OPTplogn). Then we give the approxi-mation guarantee for the rounding step.Lemma 8 Let OPT be the value of the minimum length ordering, and OPTSDP be theobjective value found by the SDP. Then,OPT 2SDP � OPT 2 lognProof. Without loss of generality, let 0; : : : ; n � 1 be the minimum length ordering ofG. Let the value of this ordering be OPT, i.e.,OPT = s X(i;j)2E(i� j)2We will now construct an embedding of the vertices as vectors u0; : : : ; un�1 2 Rblognc+1such that jui � uj j � ji� jjqblog nc+ 1and further u0; : : : ; un�1 satisfy the constraints of the minimum length ordering SDP. Thelemma follows from these facts.First, an example. For n=17 points, the embedding is:(0; 0; 0; 0; 0)(1; 1; 1; 1; 1)(2; 2; 2; 2; 0)(3; 3; 3; 1; 1)(4; 4; 4; 0; 0)(5; 5; 3; 1; 1)(6; 6; 2; 2; 0)11



(7; 7; 1; 1; 1)(8; 8; 0; 0; 0)(9; 7; 1; 1; 1)(10; 6; 2; 2; 0)(11; 5; 3; 1; 1)(12; 4; 4; 0; 0)(13; 3; 3; 1; 1)(14; 2; 2; 2; 0)(15; 1; 1; 1; 1)(16; 0; 0; 0; 0)The �rst coordinate is just i. The second coordinate is i for i � n=2 and n � i afterthat. The third coordinate goes up to n=4, down to zero, back up to n=4 and back downto zero again. And so on.In general, let d be the smallest integer such that 2d > n. Then i is mapped to(i; jimod 2d�1 � 2(imod 2d�2)j; : : : ; jimod 2d�l+1 � 2(i mod 2d�l)j; : : : ; imod 2):That is, the lth coordinate of ui is ji mod 2d�l+1 � 2(imod 2d�l)j, for l = 1; : : : ; d.Since the lth coordinate of ui di�ers from the lth coordinate of uj by at most ji � jj,we have (ui � uj)2 � d(i � j)2. So, we have jui � uj j � ji � jjpblognc + 1 as desired.Constraints (8) are satis�ed because the construction of the �rst coordinate ensures thatfor any i; j, jui � uj j � ji� jj.Finally, we just need to show that constraints (9) are satis�ed. This follows from thefact, given as Lemma 11 in the appendix, that for any i < j < k the area of the triangleformed by ui; uj ; uk is 
(jj � ijjk� jj).These observations imply that u0; : : : ; un�1 satisfy the SDP, and their objective value isO(OPTplogn). 2Let v1; : : : ; vn be the set of vectors found by solving the SDP.Lemma 9 E(Y 2ij) = O(jvi � vj j2 log3 n)Proof. Fix some edge (i; j). De�ne the random variable Xk for each k = 1; : : : ; n,k 6= i; j to be 1 if on random projection vk is projected in between vi and vj (falls in thespan of the edge) and 0 otherwise. ThenYij = Xk 6=i;jXkandE(Y 2ij) = Xk 6=i;jE(X2k) + Xk;l6=i;jE(XkXl)= Xk 6=i;jE(Xk) + Xk;l6=i;j Pr[k; l fall between i; j]12



� E(Yij) + Xk;l6=i;j Pr �k; l; i fall in an interval of width 4plognpn jvi � vj j, or i; j do not�� jvi � vj j logn+ 1+ Xk;l6=i;j 16 lognjvi � vj j2A(k; l; i) (by Lemmas 3 and 6)= O(jvi � vj j2 log3 n):The last step above follows from the constraint set (9) as follows:Xk;l6=i 1A(k; l; i) =Xk 6=i Xl6=i;k 1A(i; k; l)For each pair i; k the inner sum is O((logn)=jvk � vij). To see this, order the remainingvertices according to their distance from i (say) and then the constraints imply that thetriangle induced by the pth point in this order has area at least 
(pjvi � vkj). HenceXk 6=i Xl6=i;k 1A(i; k; l) � cXk 6=i 1jvi � vkj X1�p�n 1p� c lognXk 6=i 1jvi � vkj= O(log2 n):Here c is a constant. The last step is implied by the constraint set (8). 2Theorem 2 The expected length of the ordering found by the algorithm is O(log2 n) timesthe optimum.Proof. The expected value of the square of the length of the ordering found by ouralgorithm is E( X(i;j)2E Y 2ij) = X(i;j)2EE(Y 2ij)� X(i;j)2EO(jvi � vj j2 log3 n)� O(OPT 2SDP log3 n)= O(OPT 2 log4 n);where OPTSDP is the objective value of the SDP and hence (within a factor of plogn) alower bound on the minimum length of any linear ordering The result on the length of theordering follows with high probability using Markov's inequality and taking square roots.25 How good is the SDP?What is the integrality gap of our �rst SDP? While our rounding procedure for the �rstSDP gives us an upper bound on the gap, it is possible that the gap is much smaller in13



reality. Note that our analysis is tight only for the speci�c rounding procedure we used, notthe SDP itself.Here we give some facts that indicate that the gap might be much smaller. One of theknown lower bounds for the bandwidth of a graph is called the density lower bound [4]. Itis de�ned as Bd = maxH jH j � 1diam(H) ;where the maximum is taken over all connected subgraphs of G.It is interesting to note that the density lower bound is approximately computable(within a factor of 2) in polynomial time as follows: Imagine picking a center node in thesubgraph H� achieving the bound, and consider the breadth-�rst tree rooted at this centertruncated at level ddiam(H)2 e. The bound achieved by this subgraph is at least half thedensity lower bound. We can now search for the best such bound by looking over all choicesof the root at all truncated breadth-�rst trees, for the best such subgraph.The exact strength of the density lower bound is an open problem, but the largestknown gap is O(logn) for an n-vertex graph. One of the known constructions of graphswhich achieve this gap, the so-called Cantor combs, was described by Chung and Seymour[3]. The following lemma says that the integrality gap of our simple relaxation is no largerthan the gap between the density lower bound and the optimum.Lemma 10 Let (x; b) be the optimal solution of the bandwidth SDP. Then b = 
(Bd).Proof. Let H be the subgraph of G that achieves the maximum density. Sincethe average distance dij between points in the solution corresponding to vertices of H is
(jH j), there is a vertex v of H such that the total sum of distances between xv and theother points in H is 
(jH j2). But this sum is at the same time at most bjH jdiam(H), andso bjH jdiam(H) = 
(jH j2): That is,b = 
� jH jdiam(H)�: 2The results of Feige [6] imply that the optimum bandwidth is at most a poly-logarithmicfactor higher than the density bound, thus implying a similar integrality gap for our SDPformulation of the bandwidth problem. This leaves open the tantalizing possibility of betterrounding schemes of the SDP solution to the problem.6 Conclusions and further workAlong the lines of the constraint set (9), and Feige's result [6], it is possible to re�ne thesemi-de�nite relaxation further (by using the spreading constraints on k-simplices instead ofjust edges and triangles). This yields poly-logarithmic approximations for any L2k norm inO(n2k) time and also a poly-logarithmic approximation for minimum bandwidth in quasi-polynomial time (nO(logn)) by considering subsets of size logn. It is an open question as towhether we can solve this latter relaxation in polynomial time.14
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[14] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex pro-gramming, SIAM Studies in Applied Math. Vol. 13 (1994).[15] C. H. Papadimitriou, The NP-completeness of the bandwidth minimization problem,Computing, 16: 263-270, 1976.[16] J. Naor, personal communication, July 1998.AppendixLemma 11 If u1; : : : ; un are the points in the (blognc + 1)-dimensional space de�ned inthe proof of lemma 8, there is a constant c � 0:02 such that A(i; j; k) � c(j � i) � (k� j) forall i < j < k.Proof. The idea of the proof is as follows: for a triangle de�ned by ui, uj and uk , weconsider its projection on a two-dimensional plane P` spanned by the coordinate vectors e1and e`, for di�erent values of `. Clearly, the area of each such projection is a lower boundon the area of the original triangle. The area of a triangle can be calculated as 12ab sin�where a and b are two sides of the triangle and � is the angle between them. If u0iu0ju0k isthe projection of uiujuk onto P`, then ju0i � u0j j � (j � i) and ju0j � u0k j � (k � j). Thus, ifwe can show that for each triple i; j; k there exists a coordinate ` such that the angle at u0j(the projection of uj onto P`) is bounded above by some universal constant �, we will bedone. In what follows we use an inductive case analysis to show that we can always ensure� < 177:5� (sin� � 0:04).We assume without loss of generality that j � n=2 and k > n=2. (If k � n=2 or i � n=2then we can work with n=2 instead of n and the claim holds by induction. The two cases,j � n=2 and j � n=2 are the same by symmetry so we only work with the �rst one.) Ifk � 9n=16 then after projecting to P2, the angle at u0j is at most sin�1(1=8) < 173�, so wecan assume n=2 < k < 9n=16.If j � n=4, then projecting onto P3 works since the slope of the line through u0j andu0k is at most 1=16, so the angle at u0j is roughly 135� (precisely, the angle is at most135� + tan�1(1=9) < 142�). If i � n=4 the claim holds by induction.Now there are four cases left.1. If i � n=8 and n=4 � j � 3n=8, then the angle at u0j in P3 is at most 180� �tan�1(1=3) < 162�.2. If n=8 � i � n=4 and n=4 � j � 3n=8 we consider two subcases:(a) (j � n=4) � 5=3(n=4� i): Project onto P3. The slope of the line through u0i andu0j is � �1=4 and the slope of the line through u0j and u0k is � �1=3. So, theangle at u0j is at most 176�.(b) (j � n=4) � 5=3(n=4� i): Project onto P4. The slope of the line through u0i andu0j is � 1=4 and the slope of the line through u0j and u0k is � 1=5, so the angle atu0j is at most 177:5�. 16



3. If i � n=8 and 3n=8 � j � n=2, then note that the slope in P3 of the line betweenu0i and u0j is � �1=3. So, if the slope of the line through u0j and u0k in P3 is � �1=2then the angle at u0j � 172�. Otherwise, it must be the case that the slope of the linethrough u0j and u0k in P2 is � 1=2 (and the slope of the line through u0i and u0j in P2is 1), so in P2 the angle at u0j � 162�.4. Finally, if n=8 � i � n=4 and 3n=8 � j � n=2 then this is analogous to the previouscase but using P4 instead of P3. In other words, in P4, the slope of the line betweenu0i and u0j is � �1=3. So, if the slope of the line through u0j and u0k in P4 is � �1=2then the angle at u0j � 172�. Otherwise the slope of the line in P2 between u0j and u0kmust be � 1=2 so in P2 the angle at u0j � 162�. 2
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