
The Directed Minimum Latency Problem

Viswanath Nagarajan∗ R. Ravi∗

Abstract

We study the directed minimum latency problem: given an n-vertex asymmetric metric (V, d)
with a root vertex r ∈ V , find a spanning path originating at r that minimizes the sum of
latencies at all vertices (the latency of any vertex v ∈ V is the distance from r to v along
the path). This problem has been well-studied on symmetric metrics, and the best known
approximation guarantee is 3.59 [3]. For any 1

log n < ε < 1, we give an nO(1/ε) time algorithm
for directed latency that achieves an approximation ratio of O(ρ · nε

ε3), where ρ is the integrality
gap of an LP relaxation for the asymmetric traveling salesman path problem [13, 5]. We prove
an upper bound ρ = O(

√
n), which implies (for any fixed ε > 0) a polynomial time O(n1/2+ε)-

approximation algorithm for directed latency.
In the special case of metrics induced by shortest-paths in an unweighted directed graph,

we give an O(log2 n) approximation algorithm. As a consequence, we also obtain an O(log2 n)
approximation algorithm for minimizing the weighted completion time in no-wait permutation
flowshop scheduling. We note that even in unweighted directed graphs, the directed latency
problem is at least as hard to approximate as the well-studied asymmetric traveling salesman
problem, for which the best known approximation guarantee is O(log n).

1 Introduction

The minimum latency problem [17, 6, 14, 2] is a variant of the basic traveling salesman problem,
where there is a metric with a specified root vertex r, and the goal is to find a spanning path starting
from r that minimizes the sum of arrival times at all vertices (it is also known as the deliveryman
problem or traveling repairman problem). This problem can model the traveling salesman problem,
and hence is NP-complete. To the best of our knowledge, all previous work has focused on symmetric
metrics– the first constant-factor approximation algorithm was in Blum et al. [2], and the currently
best known approximation ratio is 3.59 due to Chaudhuri et al. [3]. In this paper, we consider the
minimum latency problem on asymmetric metrics.

Network design problems on directed graphs are often much harder to approximate than their
undirected counterparts– the traveling salesman and Steiner tree problems are well known examples.
The currently best known approximation ratio for the asymmetric traveling salesman problem
(ATSP) is O(log n) [9, 7], and improving this bound is an important open question. On the other
hand, there is a 1.5-approximation algorithm for the symmetric TSP.

The orienteering problem is closely related to the minimum latency problem that we consider–
given a metric with a length bound, the goal is to find a bounded-length path between two specified
vertices that visits the maximum number of vertices. Blum et al. [1] gave the first constant factor
approximation for the undirected version of this problem. Recently, Chekuri et al. [4] and the

∗Tepper School of Business, Carnegie Mellon University, Pittsburgh USA. Supported by NSF grant CCF-0728841.

1

authors [15] independently gave O(log2 n) approximation algorithms for the directed orienteering
problem.

1.1 Problem Definition

We represent an asymmetric metric by (V, d), where V is the vertex set (with |V | = n) and
d : V × V → R+ is a distance function satisfying the triangle inequality. For a directed path (or
tour) π and vertices u, v, dπ(u, v) denotes the distance from u to v along π; if v is not reachable
from u along π, then dπ(u, v) = ∞. The directed minimum latency problem is defined as follows:
given an asymmetric metric (V, d) and a root vertex r ∈ V , find a spanning path π originating at
r that minimizes

∑
v∈V dπ(r, v); the quantity dπ(r, v) is the latency of vertex v in path π. Another

possible definition of this problem would require a tour covering all vertices, where the latency of
the root r is defined to be the distance required to return to r (i.e. the total tour length); note
that in the previous definition of directed latency, the latency of r is zero. The approximability of
both these versions of directed latency are related as below (the proof is deferred to Appendix A).

Theorem 1 The approximability of the path-version and tour-version of directed latency are within
a factor 4 of each other.

In this paper, we work with the path version of directed latency.
For a directed graph G = (V,E) and any S ⊆ V , we denote by δ+(S) = {(u, v) ∈ E | u ∈

S, v 6∈ S} the arcs leaving set S, and δ−(S) = {(u, v) ∈ E | u 6∈ S, v ∈ S} the arcs entering set S.
When dealing with asymmetric metrics, the edge set E is assumed to be V × V unless mentioned
otherwise. Given an asymmetric metric and a special vertex r, an r-path (resp. r-tour) is any
directed path (resp. tour) originating at r.

Asymmetric Traveling Salesman Path (ATSP-path). The following problem is closely re-
lated to the directed latency problem. In ATSP-path, we are given a directed metric (V, d) and
specified start and end vertices s, t ∈ V . The goal is to compute the minimum length s − t path
that visits all the vertices. It is easy to see that this problem is at least as hard to approximate
as the ATSP (tour-version, where s = t). Lam and Newmann [13] were the first to consider this
problem, and they gave an O(

√
n) approximation based on the Frieze et al. [9] algorithm for ATSP.

This was improved to O(log n) in Chekuri and Pal [5], which extended the algorithm of Kleinberg
and Williamson [12] for ATSP. Subsequently Feige and Singh [7] showed that the approximability
of ATSP-tour and ATSP-path are within a constant factor of each other. We are concerned with
the following LP relaxation of the ATSP-path problem.

min
∑

e de · xe

s.t.
x(δ+(u)) = x(δ−(u)) ∀u ∈ V − {s, t}
x(δ+(s)) = x(δ−(t)) = 1

(ATSP − path) x(δ−(s)) = x(δ+(t)) = 0
x(δ−(S)) ≥ 2

3 ∀{u} ⊆ S ⊆ V \ {s}, ∀u ∈ V
xe ≥ 0 ∀ arcs e

The most natural LP relaxation for ATSP-path would have a 1 in the right-hand-side of the cut
constraints, instead of 2

3 as above. The above LP further relaxes the cut-constraints, and is still a
valid relaxation of the problem. The precise value in the right-hand-side of the cut constraints is
not important: we only require it to be some constant strictly between 1

2 and 1.

2

1.2 Results and Paper Outline

Our main result is a reduction from the directed latency problem to the asymmetric traveling
salesman path problem (ATSP-path) [13, 5], where the approximation ratio for directed latency
depends on the integrality gap of an LP relaxation for ATSP-path. We give an nO(1/ε) time
algorithm for the directed latency problem that achieves an approximation ratio of O(ρ · nε

ε3
) (for

any 1
log n < ε < 1), where ρ is the integrality gap of an LP relaxation for the ATSP-path problem.

The best upper bound we obtain is ρ = O(
√

n) (Section 3); however we conjecture that ρ = O(log n).
In particular, our result implies a polynomial time O(n1/2+ε)-approximation algorithm (any fixed
ε > 0) for directed latency. We study the LP relaxation for ATSP-path in Section 3, and present the
algorithm for latency in Section 2. Our algorithm for latency first guesses a sequence of break-points
(based on distances along the optimal path) and uses a linear program to obtain an assignment of
vertices to segments (the portions between consecutive break-points), then it obtains local paths
servicing each segment, and finally stitches these paths across all segments.

We also consider the special case of metrics given by shortest paths in an underlying unweighted
directed graph, and obtain an O(log2 n) approximation for minimum latency in this case (Section 4).
This algorithm is essentially based on using the directed orienteering algorithm [15, 4] within the
framework for undirected latency [10]. On the hardness side, we observe that the directed latency
problem (even in this ‘unweighted’ special case) is at least as hard to approximate as ATSP, for
which the best known ratio is O(log n).

We note that ideas from the ‘unweighted’ case, also imply an O(log2 n) approximation algo-
rithm for minimizing weighted completion time in the no-wait permutation flowshop scheduling
problem [20, 18]– this can be cast as the latency problem in a special directed metric. We are not
aware of any previous results on this problem.

2 The Directed Latency Algorithm

For a given instance of directed latency, let π denote an optimal latency path, L = d(π) its length,
and Opt its total latency. For any two vertices u, v ∈ V , recall that dπ(u, v) denotes the length
along path π from u to v; note that dπ(u, v) is finite only if u appears before v on path π. The
algorithm first guesses the length L (within factor 2) and l = d1ε e vertices as follows: for each
i = 1, · · · , l, vi is the last vertex on π with dπ(r, vi) ≤ niε L

n . We set v0 = r and note that vl is the
last vertex visited by π. Let F = {v0, v1, · · · , vl}. Consider the linear program (MLP) in Figure 1

Basically this LP requires one unit of flow to be sent from vi to vi+1 (for all 0 ≤ i ≤ l − 1)
such that the total extent to which each vertex u is covered (over all these flows) is at least 1. In
addition, the i-th flow is required to have total cost (under the length function d) at most n(i+1)ε · Ln .
It is easy to see that this LP can be solved in polynomial time for any guess {vi}li=1. Furthermore
the number of possible guesses is O(n1/ε), hence we can obtain the optimal solution of (MLP) over
all guesses, in nO(1/ε) time.

Claim 1 The minimum value of (MLP) over all possible guesses of {vi}li=0 is at most 2nε · Opt.

Proof: This claim is straightforward, based on the guesses from an optimal path. Recall that
π is the optimal latency path for the given instance. One of the guesses of the vertices {vi}li=0

satisfies the condition desired of them, namely each vi (for i = 1, · · · , l) is the last vertex on π with
dπ(s, vi) ≤ niε L

n . For each i = 0, · · · , l−1, define Oi to be the set of vertices that are visited between

3

min
∑l−1

i=0 n(i+1)ε L
n (

∑
u/∈F yi

u)
s.t.

zi(δ+(u)) = zi(δ−(u)) ∀u ∈ V \ {vi, vi+1}, ∀i = 0, · · · , l − 1
zi(δ+(vi)) = zi(δ−(vi+1)) = 1 ∀i = 0, · · · , l − 1
zi(δ−(vi)) = zi(δ+(vi+1)) = 0 ∀i = 0, · · · , l − 1
zi(δ−(S)) ≥ yi

u ∀{u} ⊆ S ⊆ V \ {vi}, ∀u ∈ V \ F,
∀i = 0, · · · , l − 1∑

e de · zi(e) ≤ n(i+1)ε · L
n ∀i = 0, · · · , l − 1∑l−1

i=0 yi
u ≥ 1 ∀u ∈ V \ F

zi(e) ≥ 0 ∀ arcs e, ∀i = 0, · · · , l − 1
yi

u ≥ 0 ∀u ∈ V \ F, ∀i = 0, · · · , l − 1

Figure 1: Linear program (MLP) for directed latency.

vi and vi+1 in path π. Let zi denote the (integral) edge values corresponding to path π restricted
to the vertices Oi ∪ {vi, vi+1}; note that the cost of this flow d · zi ≤ dπ(r, vi+1) ≤ n(i+1)ε L

n .
Also set yi

u = 1 for u ∈ Oi and 0 otherwise, for all i = 0, · · · , l − 1. Note that each vertex
in V \ {vi}li=0 appears in some set Oi, and each zi supports unit flow from vi to all vertices in
Oi; hence this (integral) solution {zi, yi}l−1

i=0 is feasible for (MLP). The cost of this solution is∑l−1
i=0 n(i+1)ε L

n · |Oi| ≤ nεL + nε
∑l−1

i=1 niε L
n · |Oi| ≤ 2nε · Opt, since |O0| ≤ n, L ≤ Opt, and each

vertex u ∈ Oi (for i = 1, · · · , l − 1) has dπ(r, u) > niε L
n .

We now assume that we have an optimal fractional solution {zi, yi}l−1
i=0 to (MLP) over all guesses

(with objective value as in Claim 1), and show how to round it to obtain vi − vi+1 paths for each
i = 0, · · · , l − 1, which when stitched give rise to one r-path having a small latency objective. We
say that a vertex u is well-covered by flow zi if yi

u ≥ 1
4l . We partition the vertices V \ F into two

parts: V1 consists of those vertices that are well-covered for at least two values of i ∈ [0, l], and V2

consists of all other vertices. Note that each vertex in V2 is covered by some flow zi to the extent
at least 3

4 . We first show how to service each of V1 and V2 separately using local paths, and then
stitch these into a single r-path.

Splitting off: A directed graph is called Eulerian if the in-degree equals the out-degree at each
vertex. In our proofs, we make use of the following ‘splitting-off’ theorem for Eulerian digraphs.

Theorem 2 (Frank [8] (Theorem 4.3) and Jackson [11]) Let D = (U + r, A) be an Eulerian
directed multi-graph. For each arc f = (r, v) ∈ A there exists an arc e = (u, r) ∈ A so that after
replacing arcs e and f by arc (u, v), the directed connectivity between every pair of vertices in U is
preserved.

Note that any vector x̃ of rational edge-capacities that is Eulerian (namely x̃(δ−(v)) = x̃(δ+(v))
at all vertices v) corresponds to an Eulerian multi-graph by means of a (sufficiently large) uniform
scaling of all arcs. Based on this correspondence, one can use the above splitting-off theorem
directly on fractional edge-capacities that are Eulerian.

4

2.1 Servicing vertices V1

We partition V1 into l parts as follows: Ui (for i = 0, · · · , l − 1) consists of those vertices of V1

that are well-covered by zi but not well-covered by any flow zj for j > i. Each set Ui is serviced
separately by means of a suitable ATSP solution on Ui ∪ {vi} (see Lemma 1): this step requires a
bound on the length of back-arcs from Ui-vertices to vi, which is ensured by the next claim.

Claim 2 For each vertex w ∈ Ui, d(w, vi) ≤ 8l · niε L
n .

Proof: Let j ≤ i − 1 be such that yj
w ≥ 1

4l ; such an index exists by the definition of V1 and
Ui. In other words, arc-capacities zj support at least 1

4l flow from w to vj+1; so 4l · zj supports
a unit flow from w to vj+1. Thus d(w, vj+1) ≤ 4l(d · zj) ≤ 4l · n(j+1)ε L

n . Note that for any
0 ≤ k ≤ l, zk supports a unit flow from vk to vk+1; hence d(vk, vk+1) ≤ d · zk ≤ n(k+1)ε L

n . Now,
d(w, vi) ≤ d(w, vj+1) +

∑i−1
k=j+1 d(vk, vk+1) ≤ 4lL

n

∑i−1
k=j n(k+1)ε ≤ 8l · niε L

n .
We now show how all vertices in Ui can be covered by a vi-tour.

Lemma 1 For each i = 0, · · · , l − 1, there is a poly-time computable vi-tour covering vertices Ui,
of length O(1

ε2
n(i+1)ε log n · L

n).

Proof: Fix an i ∈ {0, · · · , l−1}; note that the arc capacities zi are Eulerian at all vertices except
vi and vi+1. Although applying splitting-off (Theorem 2) requires an Eulerian graph, we can apply
it to zi after adding a dummy (vi+1, vi) arc of capacity 1, and observing that flows from vi or flows
into vi+1 do not use the dummy arc. So using Theorem 2 on vertices V \ (Ui ∪ {vi, vi+1}) and
triangle inequality, we obtain arc capacities α on the arcs induced by Ui ∪ {vi, vi+1} such that:
d · α ≤ d · zi ≤ n(i+1)ε · L

n and α supports yi
u ≥ 1

4l flow from vi to u and from u to vi+1, for every
u ∈ Ui. Below we use B to denote the quantity n(i+1)ε · Ln . Consider adding a dummy arc from vi+1

to vi of length B in the induced metric on Ui ∪ {vi, vi+1}, and set the arc capacity α(vi+1, vi) on
this arc to be 1. Note that α is Eulerian, has total cost at most 2B, and every non-trivial cut has
value at least min{yi

u : u ∈ Ui} ≥ 1
4l . So scaling α uniformly by 4l, we obtain a fractional feasible

solution to ATSP on the vertices Ui∪{vi, vi+1} (in the modified metric), having cost at most 8l ·B.
Since the Frieze et al. [9] algorithm computes an integral tour of length at most O(log n) times
any fractional feasible solution (see Williamson [19]), we obtain a vi-tour τ on the modified metric
of length at most O(l log n) · B. Since the dummy (vi+1, vi) arc has length B, it may be used at
most O(l log n) times in τ . So removing all occurrences of this dummy arc gives a set of O(l log n)
vi−vi+1 paths in the original metric, that together cover Ui. Ignoring vertex vi+1 and inserting the
direct arc to vi from the last Ui vertex in each of these paths gives us the desired vi-tour covering
Ui. Finally note that each of the arcs to vi inserted above has length O(l · niε)L

n = O(l) · B (from
Claim 2), and the number of arcs inserted is O(l log n). So the length of this vi-tour is at most
O(l log n) ·B + O(l2 log n) ·B = O(1

ε2
n(i+1)ε log n · L

n).

2.2 Servicing vertices V2

We partition vertices in V2 into W0, · · · ,Wl−1, where each Wi contains the vertices in V2 that are
well-covered by zi. As noted earlier, each vertex u ∈ Wi in fact has yi

u ≥ 3
4 > 2

3 . We now consider
any particular Wi and obtain a vi − vi+1 path covering the vertices of Wi. Vertices in Wi are
covered by a fractional vi − vi+1 path as follows. Splitting off vertices V \ (Wi ∪ {vi, vi+1}) in the
fractional solution zi gives us edge capacities β in the metric induced on Wi ∪{vi, vi+1}, such that:

5

β supports at least 2
3 flow from vi to u and from u to vi+1 for all u ∈Wi, and d · β ≤ d · zi (this is

similar to how arc-capacities α were obtained in Lemma 2.1). Note that β is a fractional feasible
solution to the LP relaxation (ATSP − path) for the ATSP-path instance on the metric induced
by Wi ∪ {vi, vi+1} with start-vertex vi and end-vertex vi+1. So if ρ denotes the (constructive)
integrality gap of (ATSP − LP), we can obtain an integral vi-vi+1 path that spans Wi of length
at most ρ(d · β) ≤ ρ(d · zi) ≤ ρn(i+1)ε L

n . This requires a polynomial time algorithm that computes
an integral path of length at most ρ times the LP value; However even a non-constructive proof
of integrality gap ρ′ implies a constructive integrality gap ρ = O(ρ′ log n), using the algorithm in
Chekuri and Pal [5]. So we obtain:

Lemma 2 For each i = 0, · · · , l − 1, there is a poly-time computable vi-vi+1 path covering Wi of
length at most ρ · n(i+1)ε L

n .

2.3 Stitching the local paths

We now stitch the vi-tours that service V1 (Lemma 1) and the vi − vi+1 paths that service V2

(Lemma 2), to obtain a single r-path that covers all vertices. For each i = 0, · · · , l−1, let πi denote
the vi-tour servicing Ui, and let τi denote the vi − vi+1 path servicing Wi. The final r-path that
the algorithm outputs is the concatenation τ∗ = π0 · τ0 · π1 · · ·πl−1 · τl−1. From Lemmas 1 and 2, it
follows that for all 0 ≤ i ≤ l − 1, d(πi) ≤ O(1

ε2
log n) · n(i+1)ε L

n and d(τi) ≤ O(ρ) · n(i+1)ε L
n . So the

length of τ∗ from r until all vertices of Ui ∪Wi are covered is at most O(ρ + 1
ε2

log n) · n(i+1)ε L
n (as

ε ≥ Ω(1
log n)). This implies that the total latency of vertices in Ui ∪Wi along path τ∗ is at most

O(ρ + 1
ε2

log n) · n(i+1)ε L
n · (|Wi|+ |Ui|).

Moreover, the contribution of each vertex in Ui (resp., Wi) to the LP objective is at least
1
4l · n

(i+1)ε L
n (resp., 3

4 · n
(i+1)ε L

n). Thus the contribution of Ui ∪Wi to the LP objective is at least
1
4l ·n

(i+1)ε L
n ·(|Wi|+ |Ui|). Using the upper bound on the latency along τ∗ for Ui∪Wi, and summing

over all i, we obtain that the total latency along τ∗ is at most O(1
ε ρ + 1

ε3
log n) times the optimal

value of (MLP). From Claim 1, it now follows that the latency of τ∗ is O(1
ε ρ + 1

ε3
log n)nε · Opt.

Theorem 3 For any Ω(1
log n) < ε < 1, there is an O(ρ+log n

ε3
· nε)-approximation algorithm for

directed latency, that runs in time nO(1/ε), where ρ is the integrality gap of the LP (ATSP − path).
Using ρ = O(

√
n), we have a polynomial time O(n

1
2
+ε) approximation algorithm for any fixed ε > 0.

We prove the bound ρ = O(
√

n) in the next section. A bound of ρ = O(log n) on the integrality
gap of (ATSP − path) would imply that this algorithm is a quasi-polynomial time O(log4 n) ap-
proximation for directed latency.

Remark: The (ATSP − path) rounding algorithm in Section 3 can be modified slightly to obtain
(for any 0 < δ < 1), an (O(nδ log n), b1δ c) bi-criteria approximation for ATSP-path. This implies
the following generalization of Theorem 3.

Corollary 1 For any Ω(1
log n) < ε < 1 and 0 < δ < 1, there is an nO(1/ε) time algorithm for directed

latency, that computes b1δ c paths covering all vertices, having a total latency of O(log n
ε3
·nε+δ) ·Opt,

where Opt is the minimum latency of a single path covering all the vertices.

6

3 Bounding the integrality gap of ATSP-path

We prove an upper bound of O(
√

n) on the integrality gap ρ of the linear relaxation (ATSP −path)
(c.f. Section 1.1). Even for the seemingly stronger LP with 1 in the right-hand-side of the cut
constraints, the best bound on the integrality gap we can obtain is O(

√
n): this follows from the

cycle-cover based algorithm of Lam and Newmann [13]. As mentioned in Chekuri and Pal [5], it is
unclear whether their O(log n)-approximation can be used to bound the integrality gap of such a
linear program. In this section, we present a rounding algorithm for the weaker LP (ATSP −path),
which shows ρ = O(

√
n). Our algorithm is similar to the ATSP-path algorithm of Lam and

Newmann [13] and the ATSP algorithm of Frieze et al. [9]; but it needs some more work as we
compare the algorithm’s solution against a fractional solution to (ATSP − path).

Let x be any feasible solution to (ATSP −path). We now show how x can be rounded to obtain
an integral path spanning all vertices, of total length O(

√
n)(d · x). Let N denote the network

corresponding to the directed metric with the cost of each arc equal to its metric length, and an
extra (t, s) arc of cost 0. The capacity of this extra (t, s) arc is set to 3, and all other capacities are
set to ∞. The rounding algorithm for x is as follows.

1. Initialize the set of representatives R← V \ {s, t}, and the current integral solution σ = ∅.

2. While R 6= ∅, do:

(a) Compute a minimum cost circulation C in N [R ∪ {s, t}] that sends at least 2 units of
flow through each vertex in R (note: C can be expressed as a sum of cycles).

(b) Repeatedly extract from C all cycles that do not use the extra arc (t, s), to obtain
circulation A ⊆ C. Let R′ ⊆ R be the set of R-vertices that have degree at least 1 in A.

(c) Let B = C \ A; note that B is Eulerian and each cycle in it uses arc (t, s).

(d) If |R′| ≥
√

n, do:

i. Set σ ← σ ∪ A.
ii. Modify R by dropping all but one R′-vertex from each strong component of A.

(e) If |R′| <
√

n, do:

i. Take an Euler tour on B and remove all (at most 3) occurrences of arc (t, s) to
obtain s-t paths P1, P2, P3.

ii. Restrict each path P1, P2, P3 to vertices in R \R′ by short-cutting over R′-vertices,
to obtain paths P̃1, P̃2, P̃3.

iii. Take a topological ordering s = w1, w2, · · · , wh = t of vertices (R\R′)∪{s, t} relative
to the arcs P̃1 ∪ P̃2 ∪ P̃3.

iv. Set σ ← σ ∪ {(wj , wj+1) : 1 ≤ j ≤ h− 1}.
v. Repeat for each vertex u ∈ R′: find an arc (w,w′) ∈ σ such that x supports 1

6 flow
from w to u and from u to w′, and modify σ ← (σ \ (w,w′)) ∪ {(w, u), (u, w′)}.

vi. Set R← ∅.

3. Output any spanning s-t walk in σ.

We now show the correctness and performance guarantee of the rounding algorithm. We first
bound the cost of the circulation obtained in Step 2a during any iteration.

7

Claim 3 For any R ⊆ V \ {s, t}, the minimum cost circulation C computed in step 2a has cost at
most 3(d · x).

Proof: The arc values x define a fractional s− t path in network N . Extend x to be a (fractional)
circulation by setting x(t, s) = 1. We can now apply splitting-off (Theorem 2) on each vertex in
V \ R, to obtain capacities x′ in network N [R ∪ {s, t}], such that every pairwise connectivity is
preserved and (by triangle inequality) d · x′ ≤ d · x. Note that the extra (t, s) arc is not modified in
the splitting-off steps. So x′ supports 2

3 flow from s to each vertex in R; this implies that 3x′ is a
feasible fractional solution to the circulation instance solved in step 2a (note that x′(t, s) remains
1, so solution 3x′ satisfies the capacity of arc (t, s)). Finally, note that the linear relaxation for
circulation is integral (c.f. Nemhauser and Wolsey [16]). So the minimum cost (integral) circulation
computed in step 2a has cost at most 3d · x′ ≤ 3d · x.

Note that each time step 2d is executed, |R| decreases by at least
√

n/2 (each strong component
in A has at least 2 vertices); so there are at most O(

√
n) such iterations and the cost of σ due to

additions in this step is O(
√

n)(d · x) (using Claim 3). Step 2e is executed at most once (at the
end); the next claim shows that this step is well defined and bounds the cost incurred.

Claim 4 In step 2(e)iii, there exists a topological ordering w1, · · · , wh of (R \ R′) ∪ {s, t} w.r.t.
arcs P̃1 ∪ P̃2 ∪ P̃3. Furthermore, {(wj , wj+1) : 1 ≤ j ≤ h− 1} ⊆ P̃1 ∪ P̃2 ∪ P̃3.

Proof: Note that any cycle in P1∪P2∪P3 is a cycle in B that does not use arc (t, s), which is not
possible by the definition of B (every cycle in B uses arc (t, s)); so P1∪P2∪P3 is acyclic. It is clear
that if P̃1∪ P̃2∪ P̃3 contains a cycle, so does P1∪P2∪P3 (each path P̃i is obtained by short-cutting
the corresponding path Pi). Hence P̃1 ∪ P̃2 ∪ P̃3 is also acyclic, and there is a topological ordering
of (R \ R′) ∪ {s, t} relative to arcs P̃1 ∪ P̃2 ∪ P̃3. We now prove the second part of the claim. In
circulation C, each vertex of R has at least 2 units of flow through it; but vertices R \ R′ are not
covered (even to an extent 1) in the circulation A. So each vertex of R \R′ is covered to extent at
least 2 in circulation B, and hence in P1 ∪ P2 ∪ P3. In other words, each vertex of R \ R′ appears
on at least two of the three s− t paths P1, P2, P3. This also implies that (after the short-cutting)
each R \R′ vertex appears on at least two of the three s− t paths P̃1, P̃2, P̃3. Now observe that for
each consecutive pair (wj , wj+1) (1 ≤ j ≤ h− 1) in the topological order, there is a common path
P̃k (for some k = 1, 2, 3) that contains both wj and wj+1. Furthermore, in P̃k, wj and wj+1 are
consecutive in that order (otherwise, the topological order would contain a back arc!). Thus each
arc (wj , wj+1) (for 1 ≤ j ≤ h− 1) is present in P̃1 ∪ P̃2 ∪ P̃3, and we obtain the claim.

We also need the following claim to bound the cost of insertions in step 2(e)v.

Claim 5 For any two vertices u′, u′′ ∈ V , if λ(u′, u′′;x) (resp. λ(u′′, u′;x)) denotes the maximum
flow supported by x from u′ to u′′ (resp. u′′ to u′), then λ(u′, u′′;x) + λ(u′′, u′;x) ≥ 1

3 .

Proof: If either u′ or u′′ is in {s, t}, the claim is obvious since for every vertex v, x supports 2
3

flow from s to v and from v to t. Otherwise {s, t, u′, u′′} are distinct, and define capacities x̂ as:

x̂(v1, v2) =
{

x(v1, v2) for arcs (v1, v2) 6= (t, s)
1 for arc (v1, v2) = (t, s)

Observe that x̂ is Eulerian; now apply Theorem 2 to x̂ and split-off all vertices of V except
T = {s, t, u′, u′′}, and obtain capacities y on the arcs induced on T . We have λ(t1, t2; y) = λ(t1, t2; x̂)
for all t1, t2 ∈ T . Note that since neither t nor s is split-off, their degrees in y are unchanged

8

from x̂, and also y(t, s) ≥ x̂(t, s) = 1. Since the out-degree of t in x̂ (hence in y) is 1 and
yt,s ≥ 1, we have y(t, u′) = y(t, u′′) = 0 and y(t, s) = 1. The capacities y support at least 2

3 flow
from s to u′; so y(s, u′) + y(u′′, u′) ≥ 2

3 . Similarly for u′′, we have y(s, u′′) + y(u′, u′′) ≥ 2
3 , and

adding these two inequalities we get y(u′, u′′) + y(u′′, u′) + (y(s, u′) + y(s, u′′)) ≥ 4
3 . Note that

y(s, u′) + y(s, u′′) ≤ y(δ+(s)) = x̂(δ+(s)) = 1 (the degree of s is unchanged in the splitting-off).
So y(u′, u′′) + y(u′′, u′) ≥ 1

3 . Since y is obtained from x̂ by a sequence of splitting-off operations,
it follows that x̂ supports flows corresponding to all edges in y simultaneously. In particular, the
following flows are supported disjointly in x̂: F1 that sends y(u′, u′′) units from u′ to u′′, F2 that
sends y(u′′, u′) units from u′′ to u′, and F3 that sends y(t, s) = 1 unit from t to s. Hence the flows F1

and F2 are each supported by x̂ and do not use the extra (t, s) arc (since x̂(δ+(t)) = x̂(t, s) = 1).
This implies that the flows F1 and F2 are both supported by the original capacities x (where
x(t, s) = 0). Hence λ(u′, u′′;x) + λ(u′′, u′;x) ≥ y(u′, u′′) + y(u′′, u′) ≥ 1

3 .
From Claim 4, we obtain that the cost addition in step 2e(iv) is at most d(P̃1)+d(P̃2)+d(P̃3) ≤

d(P1) + d(P2) + d(P3) ≤ 3(d · x) (from Claim 3). We now consider the cost addition to σ in
step 2(e)v. Claim 5 implies that for any pair of vertices u′, u′′ ∈ V , x supports 1

6 flow either from
u′ to u′′ or from u′′ to u′. Also for every vertex u, x supports 2

3 flow from s to u and from u to t.
Since σ always contains an s− t path in step 2(e)v, there is always some position along this s− t
path to insert any vertex u ∈ R′ as required in step 2(e)v. Furthermore, the cost increase in any
such insertion step is at most 12(d · x). Hence the total cost for inserting all the vertices R′ into
σ is at most 12|R′|(d · x) = O(

√
n)(d · x). Thus the total cost of σ at the end of the algorithm is

O(
√

n)(d · x). Finally note that σ is connected (in the undirected sense), Eulerian at all vertices in
V \ {s, t} and has outdegree 1 at s. This implies that σ corresponds to a spanning s− t walk. This
completes the proof of the following.

Theorem 4 The integrality gap of (ATSP − path) is at most O(
√

n).

4 Unweighted Directed Metrics

In the special case where the metric is induced by shortest paths in an unweighted directed graph,
we obtain an improved approximation guarantee for the minimum latency problem. This draws
on ideas from the undirected latency problem, and the O(log2 n) approximation ratio for directed
orienteering ([15] and [4]). The directed orienteering problem is as follows: given a starting vertex
r in an asymmetric metric and length bound L, find an r-path of length at most L covering the
maximum number of vertices. We note that the reduction from ATSP to directed latency also
holds in unweighted directed metrics, and the best known approximation ratio for ATSP even on
this special class is O(log n). Here we show the following.

Theorem 5 An α-approximation algorithm for directed orienteering implies an O(α + γ) approx-
imation algorithm for the directed latency problem on unweighted digraphs, where γ is the best
approximation ratio for ATSP. In particular there is an O(log2 n) approximation.

Let G = (V,A) denote the underlying digraph that induces the given metric, and r the root
vertex. We first argue (Section 4.1) that if G is strongly connected, then there is an O(α)-
approximation algorithm. Then we show (Section 4.2) how this can be extended to the case when
G is not strongly connected.

9

4.1 G is strongly connected

In this case, the distance from any vertex to the root r is at most n = |V |. The algorithm and
analysis for this case are identical to those for the undirected latency problem [2, 10, 3]. Details
are given in Appendix B.

Remark: This ‘greedy’ approach does not work in the general directed case since it is unclear
how to bound the length of back-arcs to the root r (which is required to stitch the paths that are
computed greedily). In the undirected case, back-arcs can be easily bounded by the forward length,
and this approach results in a constant approximation algorithm. In the unweighted strongly-
connected case (considered above), the total length of back-arcs used by the algorithm could be
bounded by roughly n2 (which is also a lower bound for the latency problem). By an identical
analysis, it also follows that there is an O(α)-approximation for the directed latency problem on
metrics (V, d) with the following property: for every vertex v ∈ V , the back-arc length to r is within
a constant factor of the forward-arc length from r, i.e. d(v, r) ≤ O(1) · d(r, v). As a consequence,
we obtain an O(α) = O(log2 n) approximation for no-wait flowshop scheduling with the weighted
completion time objective (n is the number of jobs in the given instance); this seems to be the first
approximation ratio for the problem. The no-wait flowshop problem can be modeled as a minimum
latency problem in an appropriate directed metric [20, 18], with the property that all back-arcs to
the root r have length 0; hence the above greedy approach applies.

4.2 G is not strongly connected

In this case, we show an O(γ+β)-approximation algorithm, where γ is the approximation guarantee
for ATSP and β is the approximation guarantee for the minimum latency problem on unweighted
strongly-connected digraphs. From Section 4.1, β = O(α), where α is the approximation ratio for
directed orienteering. Consider the strong components of G, which form a directed acyclic graph. If
the instance is feasible, there is a Hamilton path in G from r; so we can order the strong components
of G as C1, · · · , Cl such that r ∈ C1 and any spanning path from r visits the strong components in
that order. For each 1 ≤ i ≤ l, let ni = |Ci|, and pick an arbitrary vertex si ∈ Ci as root for each
strong component (setting s1 = r).

Lemma 3 There exists a spanning r-path τ∗ having latency objective at most 7 · Opt such that
τ∗ = τ1 · (s1, s2) · τ2 · (s2, s3) · · · (sl−1, sl) · τl, where each τi (for 1 ≤ i ≤ l) is an si-tour covering all
vertices in Ci.

Proof: Consider the optimal latency r-path P ∗: this is a concatenation P1 · P2 · · ·Pl of paths in
each strong component (Pi is a spanning path on Ci). For each 1 ≤ i ≤ l, let Lat(Pi) denote the
latency of vertices Ci just along path Pi, and Di =

∑i−1
j=1 d(Pj) be the distance traversed by P ∗

before Pi. Then the total latency along P ∗ is Opt =
∑l

i=1(ni ·Di + Lat(Pi)).
For each 1 ≤ i ≤ l, let τi denote a spanning tour on Ci, obtained by adding to Pi the direct

arcs: from si to its first vertex and from its last vertex to si. Each of these extra arcs in τi

has length at most ni − 1 (since Ci is strongly connected), and d(Pi) ≥ ni − 1 (it is spanning
on Ci); so d(τi) ≤ 3d(Pi). Let Lat(τi) denote the latency of vertices Ci along τi; from the above
observation we have Lat(τi) ≤ ni · (ni − 1) + Lat(Pi). Now we obtain τ∗ as the concatenation
τ1 · (s1, s2) · τ2 · · · (st−1, sl) · τl. Note also that for any 1 ≤ i ≤ l − 1, d(si, si+1) ≤ ni + ni+1. So the

10

latency in τ∗ of vertices Ci is:

ni ·
∑i−1

j=1(d(τj) + d(sj , sj+1)) + Lat(τi)
≤ ni ·

∑i−1
j=1(3d(Pj) + nj + nj+1) + ni · (ni − 1) + Lat(Pi)

≤ ni ·
∑i−1

j=1(3d(Pj) + 2nj) + n2
i + ni · (ni − 1) + Lat(Pi)

≤ ni ·
∑i−1

j=1 7d(Pj) + n2
i + ni · (ni − 1) + Lat(Pi)

≤ 7ni ·Di + 2n2
i + Lat(Pi)

≤ 7ni ·Di + 5 · Lat(Pi)

The last inequality follows from the fact that Lat(Pi) ≥ n2
i /2 (Pi is a path on ni vertices in an

unweighted metric). So the total latency of τ∗ is at most 7
∑l

i=1(ni ·Di + Lat(Pi)) = 7 · Opt.
The algorithm for directed latency in this case computes an approximately minimum latency

si-path for each Ci separately (using the algorithm in Section 4.1); by adding the direct arc from
the last vertex back to si, we obtain Ci-spanning tours {σi}li=1. We now use the following claim
from [2] to bound the length of each tour σi.

Claim 6 ([2]) Given Ci-spanning tours σi and πi, there exists a poly-time computable tour σ′i on
Ci of length at most 3 · d(πi) and latency at most thrice that of σi.

Proof: Tour σ′i is constructed as follows: starting at si, traverse tour σi until a length of d(πi),
then traverse tour πi from the current vertex to visit all remaining vertices and then return to si.
Note that tour πi will have to be traversed at most twice, and so the length of σ′i is at most 3d(πi).
Furthermore, the total latency along σ′i for vertices visited in the σi part is at most Lat(σi) (the
latency along σi). Also the latency along σ′i of each vertex v visited in the πi part is at most 3d(πi),
which is at most thrice its latency in σi. Hence the total latency along σ′i is at most 3 · Lat(σi).

This implies that by truncating σi with a γ-approximate TSP on Ci, we obtain another spanning
tour σ′i of length 3γ · Li and latency 3 · Lat(σi) (where Li is length of the minimum TSP on Ci).
The final r-path is the concatenation of these local tours, π = σ′1 · (s1, s2) · σ′2 · · · (sl−1, sl) · σ′l.

Claim 7 The latency of r-path π is at most O(γ + β) · Opt.

Proof: Consider the near-optimal r-path τ∗ given by Lemma 3. For 1 ≤ i ≤ l, let Opti denote
the latency of the Ci-spanning tour τi, and D̃i =

∑i−1
j=1(d(τj) + d(sj , sj+1)) denote the length of τ∗

before Ci. Then the total latency of τ∗ can be written as
∑l

i=1(ni · D̃i + Opti) ≤ 7 · Opt.
Now consider the r-path π output by the algorithm. The si-tour τi is a feasible solution to

the minimum latency instance on Ci; so the latency of tour σi is at most β · Opti, since we use
a β-approximation for each such instance. So for each 1 ≤ i ≤ l, the truncated tour σ′i has
latency Lat(σ′i) ≤ 3β · Opti, and length d(σ′i) ≤ 3γLi. Again, the latency of π can be written as∑l

i=1(ni ·D′
i + Lat(σ′i)), where D′

i =
∑i−1

j=1(d(σ′j) + d(sj , sj+1)) is the length of π before Ci. So the
latency of vertices Ci in π is:

ni ·
∑i−1

j=1(d(σ′j) + d(sj , sj+1)) + Lat(σ′i)
≤ ni ·

∑i−1
j=1(3γ · Lj + d(sj , sj+1)) + 3β · Opti

≤ ni ·
∑i−1

j=1(3γ · d(τj) + d(sj , sj+1)) + 3βOpti
≤ 3γni ·

∑i−1
j=1(d(τj) + d(sj , sj+1)) + 3βOpti

= 3γni · D̃i + 3βOpti
≤ 3(γ + β)(ni · D̃i + Opti)

11

So the total latency of π is at most 3(γ + β)
∑l

i=1(ni · D̃i + Opti) ≤ O(γ + β) · Opt.
Theorem 5 now follows.

References

[1] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation
Algorithms for Orienteering and Discounted-Reward TSP. In FOCS, pages 46–55, 2003.

[2] Avrim Blum, Prasad Chalasani, Don Coppersmith, William R. Pulleyblank, Prabhakar Ragha-
van, and Madhu Sudan. The minimum latency problem. In STOC, pages 163–171, 1994.

[3] Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. Paths, Trees, and
Minimum Latency Tours. In FOCS, pages 36–45, 2003.

[4] Chandra Chekuri, Nitish Korula, and Martin Pal. Improved Algorithms for Orienteering and
Related Problems. In SODA, pages 661–670, 2008.

[5] Chandra Chekuri and Martin Pal. An O(log n) Approximation Ratio for the Asymmetric
Traveling Salesman Path Problem. Theory of Computing, 3:197–209, 2007.

[6] C. H. Papadimitriou G. Papageorgiou N. Papakostantinou F. Afrati, S. Cosmadakis. The
complexity of the traveling repairman problem. Informatique Theorique et Applications, 20:79–
87, 1986.

[7] Uriel Feige and Mohit Singh. Improved Approximation Ratios for Traveling Salesperson Tours
and Paths in Directed Graphs. In APPROX-RANDOM, pages 104–118, 2007.

[8] A. Frank. On Connectivity properties of Eulerian digraphs. Annals of Discrete Mathematics,
41:179–194, 1989.

[9] A. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some algorithms for
the asymmetric travelling salesman problem. Networks, 12:23–39, 1982.

[10] Michel Goemans and Jon Kleinberg. An improved approximation ratio for the minimum
latency problem. Mathematical Programming, 82:111–124, 1998.

[11] B. Jackson. Some remarks on arc-connectivity, vertex splitting, and orientation in digraphs.
Journal of Graph Theory, 12(3):429–436, 1988.

[12] Jon Kleinberg and David Williamson. Unpublished note. 1998.

[13] Fumei Lam and Alantha Newman. Traveling salesman path problems. Mathematical Program-
ming, online, 2006.

[14] Edward Minieka. The delivery man problem on a tree network. Annals of Operations Research,
18:261–266, 1989.

[15] Viswanath Nagarajan and R. Ravi. Poly-logarithmic approximation algorithms for directed
vehicle routing problems. In APPROX-RANDOM, pages 257–270, 2007.

[16] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. 1999.

12

[17] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM, 23:555–
565, 1976.

[18] Maxim Sviridenko. Makespan Minimization in No-Wait Flow Shops: A Polynomial Time
Approximation Scheme. SIAM J. Discret. Math., 16(2):313–322, 2003.

[19] David Williamson. Analysis of the held-karp heuristic for the traveling salesman problem.
Master’s thesis, MIT Computer Science, 1990.

[20] D.A. Wismer. Solution of the flowshop sheduling problem with no intermediate queues. Op-
erations Research, 20:689–697, 1972.

A Relation between ATSP and directed latency

Proposition 6 An α-approximation for directed latency (path version) implies a 4α-approximation
for ATSP. This reduction also holds in the special case of metrics induced by unweighted digraphs.

Proof: We only present the reduction for unweighted metrics (the general case is identical). Let
A be an α-approximation algorithm for the (path version) directed latency on unweighted metrics,
and G = (V,E) be any n-vertex directed graph. We show how A can be used to obtain a 4α
approximation for ATSP on G. Pick some root r ∈ V and modify G by adding to it a directed
path of n new vertices U originating at r: let H be the graph so obtained. A candidate solution
for latency on H first visits the vertices V along the optimal ATSP tour on G and then visits
U along the new path: this implies that the optimal latency on H, Lat∗(H) ≤ 2n(Tsp∗(G) + n)
where Tsp∗(G) is the optimal value of ATSP on G. Note that Tsp∗ ≥ n (G has n vertices), and
so Lat∗(H) ≤ 4nTsp∗(G). Note also that any spanning r-path in H must first visit all the vertices
V in a tour (on graph G) and then the vertices U along the new path. Since there are n vertices
(those in U) that appear after the spanning tour on G, we have Lat∗(H) ≥ n · Tsp∗(G). Thus we
have 1

4nLat∗(H) ≤ Tsp∗(G) ≤ 1
nLat∗(H), which implies the proposition.

We now prove Theorem 1, which shows the equivalence (up to a constant factor) of approxi-
mating the path and tour versions of directed latency.
Proof of Theorem 1. Recall the definitions of the two versions of directed latency on asymmetric
metric (V, d) with root vertex r ∈ V . Path latency: find a spanning path π originating at r that
minimizes

∑
v∈V dπ(r, v) (here dπ(r, r) = 0). Tour latency: find a spanning tour τ originating at r

that minimizes
∑

v∈V dτ (r, v) (here dτ (r, r) = d(τ)).
We first show that any approximation algorithm for path-latency implies the same guarantee

for tour-latency. Modify the given metric (V, d) (for tour-latency) by adding a new vertex r′ with
distances to vertices V as follows: d(v, r′) = d(v, r) and d(r′, v) =∞ for all v ∈ V . It is clear that
optimal value of tour-latency on (V, d) equals the optimal value of path-latency on the modified
metric, which implies the first direction.

For the reverse direction, let A be any α-approximation algorithm for tour-latency (we assume
α ≤ n). Set β = d4αe + 1 and define metric (Ṽ , d̃) which is obtained from (V, d) by making β
copies of each vertex in V \ r. Let ˜pLat (resp. pLat) denote the optimal value of path-latency on d̃
(resp. d); note that ˜pLat = β · pLat. We assume (by scaling) that the smallest non-zero distance in
d is 1, and that there is a finite length spanning r-path in metric d (otherwise the latency problem

13

is trivial); so pLat ≤ n2dmax where dmax is the maximum finite distance in d. We further modify
metric d̃ by adding dummy arcs of length L (value to be set later) from each v ∈ V \r to r, and let l
denote the shortest path metric on this modified graph. Note that the optimal value of tour-latency
on metric l is tLat ≤ 2 · ˜pLat + L. The algorithm for path-latency on d is as follows.

• For each 0 ≤ i ≤ lg(βn2dmax) do:

1. Set L← 2i and l to be the metric as defined above.

2. Run algorithm A for tour-latency on l to get tour τ . Let π denote the portion of τ until
the first usage of a dummy arc.

3. If π visits at least one copy of each vertex in V , consider this as a feasible solution to
path-latency on d; otherwise skip this iteration.

• Output the best path-latency solution encountered in Step 3 above.

Note that since 1 ≤ ˜pLat ≤ βn2dmax, there is an iteration where ˜pLat ≤ L = 2i ≤ 2 · ˜pLat.
We now argue that in this iteration i, the above algorithm gets a feasible solution in Step 3 with
path-latency value (on metric d) at most 4α · pLat. The tour τ found by algorithm A has latency
(in metric l) Lat(τ) ≤ α · tLat ≤ α(2 · ˜pLat + L) ≤ 4α · ˜pLat. If x denotes the number of unvisited
vertices of Ṽ in π (i.e. when a dummy arc is used for the first time in τ) then Lat(τ) ≥ L ·x; hence
x ≤ Lat(τ)/L ≤ 4α · ˜pLat/L ≤ 4α < β. Since Ṽ has β copies of each vertex of V , π visits at least
one copy of each V -vertex: so Step 3 records π as a potential solution. We modify τ so that it
visits all copies of each V -vertex the first time some copy is visited: this only reduces the latency
of τ . After this modification, note that dummy arcs are used in τ only after all vertices Ṽ are
visited: in other words, τ (and also π) induces a path-latency solution on metric (Ṽ , d̃) of latency
value at most Lat(τ) ≤ 4α · ˜pLat. Hence the corresponding solution in metric (V, d) has latency at
most 1

β 4α · ˜pLat = 4α · pLat. Thus the best solution to path-latency on d obtained by the above
algorithm has value at most 4α · pLat, and it is a 4α approximation algorithm.

B Directed latency on unweighted strongly connected graphs

The algorithm for the unweighted strongly connected case is as follows.

1. Set current length bound L = n, and current tour τ = φ.

2. While not all vertices covered, do:

(a) Run the directed orienteering algorithm α times, each time obtaining a path of length
≤ L from r that covers (approximately) the maximum number of remaining vertices.

(b) Stitch the α paths into an r-tour by adding arcs from the end of each path back to r,
and append this tour to the end of τ .

(c) Set length bound L← 2 · L.

3. Output tour τ .

In the optimal latency r-path, let Ni (for i = 0, 1, · · ·) be the number of vertices having latency
at most 2in. Then one can verify that the optimal latency Opt ≥ 1

2

∑
i≥0 2i−1n · (n −Ni). In the

14

r-path returned by the algorithm, let Ri (for i ≥ 0) denote the number of vertices left uncovered
at the end of iteration i (where length bound is 2in). Note that each back arc to r has length at
most n; so the increase in the length of the r-path in iteration i is at most α · (2in + n) ≤ 2i+1αn.

Claim 8 For all i ≥ 1, either Ri ≤ n−Ni or Ri ≤ 1
eRi−1 + (1− 1

e)(n−Ni). Hence for all i ≥ 1,
Ri ≤ max{n−Ni,

1
eRi−1 + (1− 1

e)(n−Ni)} ≤ 1
eRi−1 + (2− 1

e)(n−Ni).

Proof: If Ri−1 ≤ n − Ni, then Ri ≤ Ri−1 ≤ n − Ni. Suppose Ri−1 > n − Ni; then there is an
r-path (of length 2in) in iteration i containing at least Ni − (n− Ri−1) new vertices (the optimal
path restricted to uncovered vertices & this length bound). Since we use an α-approximation for
directed orienteering in step 2a (repeatedly α times), the resulting set of r-paths cover at least
(1− 1/e)(Ri−1 − n + Ni) new vertices- this follows from a standard maximum-coverage argument.
In other words, Ri ≤ Ri−1 − (1− 1/e)(Ri−1 − n + Ni) = 1

eRi−1 + (1− 1
e)(n−Ni).�

If m0 is the number of vertices covered in the first iteration (when length bound is n), we can
upper bound the latency Alg of the r-tour τ by m0 ·2αn+

∑
i≥0 2i+2αn ·Ri; recall that the increase

in length of τ in iteration i is at most 2i+1αn. Since m0 ≤ n and Opt ≥
(
n
2

)
in any n-vertex

unweighted metric, it suffices to bound T =
∑

i≥0 2i+2αn ·Ri. From Claim 8, we have:

T ≤ 4αnR0 + αn
∑

i≥1 2i+2[1eRi−1 + (2− 1
e)(n−Ni)]

= 4αnR0 + 2
eαn

∑
i≥0 2i+2Ri + 4(2− 1

e)αn
∑

i≥1 2i(n−Ni)
= 4αnR0 + 2

eT + 8(2− 1
e)αn

∑
i≥1 2i−1(n−Ni)

≤ 4αn2 + 2
eT + 8(2− 1

e)αOpt
≤ 2

eT + 8(3− 1
e)αOpt

So T ≤ O(1)α · Opt, and Alg ≤ O(α) · Opt.

15

