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Abstract

We study the distance constrained vehicle routing problem (DVRP) [1, 2]: given a set

of vertices in a metric space, a specified depot, and a distance bound D, find a minimum

cardinality set of tours originating at the depot that covers all vertices, such that each

tour has length at most D. This problem is NP-complete, even when the underlying

metric is induced by a weighted star.

We design efficient approximation algorithms for distance constrained vehicle routing,

and also study the integrality gap of a natural set-covering based LP relaxation for the

problem. We present a 2-approximation algorithm for the problem on tree metrics, and

an O(log D) approximation algorithm on general metrics. This algorithm can also be

used to obtain a continuous trade-off between the violation of the distance bound and the

number of tours in the approximate solution. Our methods can incorporate additional

capacity bounds on the vehicles with a slight loss in the performance ratio. We extend

our analysis to show a constant factor integrality gap for DVRP on tree metrics, and an

O(log D) integrality gap in general. The unrooted version of the problem (where tours

need not originate at the same depot) is known to have a constant factor approximation
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guarantee [3]; we obtain a constant integrality gap for this case.

Keywords: Vehicle Routing, Traveling Salesman Problem, Approximation Algorithms,

Linear Programming relaxations.

1 Introduction

1.1 Motivation

At the core of logistics operations facing modern firms is the problem of routing materi-

als to and from manufacturing or consolidating depots at minimum cost [4, 5]. The most

common constraints on such problems involve the capacity of the vehicles and deadlines on

delivery/pickup of materials. Typical cost objectives are the total mileage of all the routes

or more coarsely, the number of vehicles deployed to satisfy the demands. In this paper, we

study the problem with distance constraints on each route where the objective is to minimize

the number of vehicles, called the Distance Constrained Vehicle Routing Problem (DVRP) in

the literature [4, 1, 2].

A bound on the distance traveled by any vehicle arises commonly, e.g., in scheduling daily

routes for courier carriers or milkruns from manufacturing facilities. The distance bound

translates to a quality of service guarantee for all customers to be served on the day they are

scheduled. Minimizing the number of vehicles over a period of typical demands also allows

for better fleet and driver planning and management. However, these problems generalize the

classical TSP and are NP-complete.

In this paper, we obtain approximation algorithms for distance constrained vehicle routing

problems. We use the well studied notion of approximation guarantees [6, 7] to measure the

performance of heuristics. An approximation algorithm for a minimization problem is said to

achieve an approximation ratio α (which may be a function of the input instance), if on every

instance, the cost of the solution obtained by the algorithm is at most α times the cost of an

optimal solution. Such an algorithm is also referred to as an α-approximation algorithm.

2



1.2 Problem formulation

We model demand locations as vertices in a finite metric space (V, d), with |V | = n. The

distance function d : V ×V → N is symmetric and satisfies the triangle inequality. Throughout

this paper we assume that all distances are integral: this can be ensured by a suitable scaling.

The input to the distance constrained vehicle routing problem (DVRP) is specified by a metric

space (V, d), a depot r ∈ V , and a distance constraint D. The objective is to find a minimum

cardinality set of tours originating from r (corresponding to routes for vehicles), that covers

all the vertices in V . Each tour is required to have length at most D (the distance constraint).

Tours originating from r are referred to as r-tours. The maximum distance of any vertex from

the depot is denoted by ∆. We assume that ∆ ≤ D
2 , as otherwise there is no feasible solution.

We consider the natural set covering formulation of distance constrained vehicle routing.

This is a special case of the set partitioning model for vehicle routing with time windows,

studied in [8]. There is a binary variable xτ for every r-tour τ of length at most D. The

constraints require that every vertex be covered by at least one such r-tour. The LP relaxation

is obtained by dropping the integrality on the variables and is as follows.

min
∑

τ xτ

s.t.

(LP)
∑

τ :v∈τ xτ ≥ 1 ∀v ∈ V \ r

xτ ≥ 0 ∀τ : r-tour of length at most D

Although this LP has an exponential number of variables, it can be solved approximately

in polynomial time. The dual to this linear program has a variable for every vertex and an ex-

ponential number of constraints; the separation routine for these dual constraints is the orien-

teering problem: given profits on vertices, root r, and length bound D, find an r-tour of length

at most D that collects the maximum profit. There is a polynomial time 3-approximation

algorithm [9] for orienteering. This implies that we can obtain a 3-approximation to LP in

polynomial time, using the ellipsoid algorithm on its dual (see eg., Carr and Vempala [10],

Section 2.1 for a rigorous argument).
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The unrooted DVRP [3] is defined as follows: given a metric space (V, d) and a distance

constraint D, find a minimum cardinality set of paths (each of length at most D) that covers

all the vertices. Note that in this version, the vehicle routes are paths that are allowed to

start and end at any two vertices. The unrooted version can be reduced to DVRP by adding

a root vertex that is located at some large distance L À diameter(V ) from all vertices in V ,

and setting the distance constraint to D + 2L.

1.3 Our Results

First we study the DVRP on metrics induced by an underlying edge-weighted tree (Section 2).

In this case, we obtain a 2-approximation algorithm. This algorithm can be implemented in a

single depth first search of the tree and runs in linear time. We note that distance constrained

vehicle routing is NP-complete even in the special case when the tree is a star, via a reduction

from 3-Partition [11]. For DVRP on general metrics, we obtain an O(log D)-approximation

algorithm (Section 3), which has a running time of O(n2 log n · log D). Our algorithm can

also be adapted to give for any ε > 0, an (O(log 1
ε ), 1 + ε) bi-criteria approximation: If the

vehicles are allowed to violate the distance constraint by a small factor ε, then we obtain a

solution using at most O(log 1
ε ) times the optimal number of vehicles that do not violate the

distance constraint. As shown in Jothi and Raghavachari [12] the tour-partitioning algorithm

of Li et al. [2] gives an (O(1
ε ), 1 + ε) bi-criteria approximation for DVRP. We improve upon

the approximation ratio on the number of vehicles significantly.

Next we consider the set-covering based LP-relaxation for DVRP (LP). We show constant

factor integrality gaps for two special cases: DVRP on tree metrics has integrality gap at most

20 (Section 4.1), and unrooted DVRP has integrality gap at most 17 (Section 4.2). We note

that a 3-approximation algorithm for unrooted DVRP is known due to Arkin et al. [3], however

this algorithm is not LP-based. Combining our algorithm for DVRP on general metrics with

the integrality gap for unrooted DVRP, we also obtain an O(min{log D, log n}) bound on the

integrality gap of general DVRP. Our LP-relaxation LP is a special case of the set-partitioning

model for vehicle routing with time windows [8] (i.e. when all time windows are identical and

have width equal to the distance bound). Although it has been observed computationally in
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Desrochers et al. [8] that this LP-relaxation provides excellent bounds on the optimal value,

there are no theoretical upper bounds on the integrality gap. Our results provide worst case

bounds on the integrality gap, for the special case of distance constrained vehicle routing.

Finally, we close with some observations on closely related problems in Section 5. These

extensions involve adding capacity constraints to DVRP and the variant where tours are re-

placed by paths originating at the depot.

Remark: It is immediate to see that the integrality gap of LP is at most O(log n), by means

of randomized rounding applied to the optimal fractional solution (as in set cover, c.f. [7]). In

fact this observation holds for much more general classes of problems such as vehicle routing

with time-windows; however this argument is non-constructive (since it assumes that a near-

optimal solution to the linear relaxation is available). Our results on the integrality gap for

DVRP improve upon this näıve bound and are also constructive.

1.4 Related Work

Vehicle routing problems (VRPs) are surveyed in [4, 5]. Practical applications of DVRP can

be found in Assad [4] and Laporte et al. [1]. Exact approaches for the objective of minimizing

total distance were studied in Laporte et al. [1]. They gave two algorithms using an integer

programming formulation: one based on Gomory cuts and the other using branch-and-bound.

Li et al. [2] studied DVRP under the objective functions of total distance and number of

vehicles. They showed that the optimal solutions under both objectives are closely related,

and any approximation guarantee for one objective implies a guarantee with an additional

loss of factor 2, for the other objective. They also studied a tour-partitioning heuristic for

this problem, which was shown to achieve a worst case performance guarantee of D.

Although there is a large body of work on both exact and heuristic approaches for VRPs,

there is relatively less work on proving performance guarantees of heuristics. There has been

some interesting work on approximating the related orienteering problem (defined earlier).

Improving on work by Blum et al. [13] and Bansal et al. [9], Chekuri et al. [14] presented a

2 + ε approximation algorithm (for any constant ε > 0) for the orienteering problem. Using
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this as a greedy subroutine within a set-covering framework, it is straightforward to design

an O(log n) approximation for DVRP.

The distance constrained VRP was also studied by Bazgan et al. [15], where the authors

gave a constant-factor differential approximation algorithm. However, bounds in the dif-

ferential measure do not imply any bounds in the standard (multiplicative) approximation

measure, which we consider in this paper.

Related to the tree metric version we study, Labbe et al. [16] and Karuno et al. [17] discuss

some practical situations where tree shaped networks are encountered in VRPs. In the case

of capacitated VRP (only capacity constraints), Labbe et al. [16] gave a 2-approximation

algorithm on trees when demands are unsplittable. When demands are splittable, Hagamochi

and Katoh [18], and Asano et al. [19] gave improved approximation algorithms; the currently

best known guarantee is ≈ 1.35. Many other vehicle routing problems on trees have been

studied in [20, 21, 17].

The vehicle routing problem with time windows [8, 22] is a generalization of DVRP, where

each demand location can only be served in a particular time window. The set covering

formulation for DVRP that we study is a special case of a more general formulation for VRP

with time windows. Desrochers et al. [8] considered a natural set partitioning formulation for

VRP with time windows, which was solved optimally in a branch-and-bound algorithm. The

LP relaxation of this integer program was solved using column generation, and the authors

noted that this LP relaxation was generally an excellent lower bound. We are not aware of

any worst-case bounds on the integrality gap of this LP, even in special cases of VRP with

time windows.

2 DVRP on tree metrics

In this section, we consider the special case of DVRP when the metric space is induced by a

weighted tree T = (V, d). Even in the special case of a star, the problem remains NP-complete

(by a reduction from 3-Partition). Here we present a 2-approximation for DVRP on trees.

The main ingredient in this is proving a lower bound on the optimal number of vehicles, which
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is based on forming clusters of vertices that can not be covered by a single r-tour (Lemma 2).

For ease of description, we assume (without loss of generality) that the tree T is binary,

and rooted at the depot r. This can be ensured by splitting high degree vertices, and adding

zero-length edges. Algorithm minTVR for DVRP on trees is as follows.

1. Initialize T ′ = T .

2. While (T ′ 6= {r}) do

(a) Pick a deepest vertex v ∈ T ′ s.t. the subtree T ′v below v can not be covered by just one

r-tour, of length at most D. If no such v exists, add an r-tour covering T ′, and END.

(b) Let w1 and w2 be the two children of v. For i = 1, 2, set Wi to be the minimum length

r-tour traversing the subtree below wi.

(c) Add r-tours W1 and W2 to the solution.

(d) T ′ = T ′ \ T ′v.

Note that the minimum length r-tour covering all the vertices of a subtree is just an Euler tour

of the subtree (including the path from r), traversing each edge twice. Thus the condition in

step 2a can be checked efficiently.

Theorem 1 Algorithm minTVR obtains a 2-approximation to DVRP on trees.

Proof: It is not hard to see that algorithm minTVR can be implemented in a single depth-

first search of the tree; so the time complexity is linear in the input size. From the choice

of vertex v in step 2a, each r-tour added in step 2c (corresponding to the children of v), has

length at most D. So algorithm minTVR indeed produces a feasible solution.

A heavy cluster is defined to be a set of vertices C ⊆ V such that the subgraph T [C]

induced by C on tree T is connected, and the vertices in C can not all be covered by a single

r-tour of length at most D. Note that all the subtrees T ′v seen in step 2a of algorithm minTVR

are heavy clusters in tree T . Suppose, in its entire execution, the algorithm finds k heavy

clusters C1, · · ·Ck (these vertex sets will be disjoint). Then algorithm minTVR produces a

solution using at most 2k + 1 r-tours. The key lemma is the following, which shows that the

optimal solution requires at least k + 1 vehicles, and thus proves Theorem 1.
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Lemma 2 If there are k disjoint heavy clusters C1, · · ·Ck ⊆ V in the tree T , the minimum

number of r-tours (of length at most D) required to cover
⋃k

i=1 Ci is more than k.

Proof: The proof of this lemma is by induction on k. For k = 1, the lemma is trivially

true. Suppose k > 1, and assume that the lemma holds for all values up to k − 1. Suppose,

for contradiction, that the minimum number of r-tours required to cover all these clusters,

OPT ≤ k. Note that OPT can not be smaller than k: taking any k−1 of these k clusters, we

would get a contradiction to the induction hypothesis with k− 1 clusters. So we may assume

OPT = k. In the rest of the proof, fix an optimal solution consisting of r-tours t1, · · · , tk.

From the definition of a heavy cluster, each Ci forms a connected subtree in T . It will be

convenient to think of the lengths associated with Ci in the following parts (see Figure 1a):

the path from r to the highest vertex in Ci (external part); and the induced subgraph T [Ci]

(internal part). The length of the external part of a cluster Ci is denoted d(r, Ci). We now

define a bipartite graph H = (Γ, C, E) where Γ = {t1, · · · , tk} is the set of r-tours in the

optimal solution, and C = {C1, · · · , Ck} is the set of the k heavy clusters (see Figure 1b).

There is an edge (tj , Ci) ∈ E iff r-tour tj visits some vertex of cluster Ci.

(a) Lengths associated with heavy cluster

r

Ci

Thick line: external part

Solid lines: internal part

(b) The graph H

Optimal solution ΓClusters C

C2

C1

Ck

E

tk

t1

t2

Figure 1: DVRP on trees

We claim that H must have a perfect matching between C and Γ. Suppose not - then

by Hall’s Theorem, we get a set S ⊆ C such that S has fewer than |S| neighbors in Γ. Note
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that S 6= C, as C has OPT = |C| neighbors. This implies that the clusters in S are visited

completely by fewer than |S| r-tours, which contradicts the induction hypothesis with the set

of heavy clusters S (as |S| < k). Thus H has a perfect matching π : C → Γ.

Let l1, l2, · · · , lk denote the lengths of the r-tours in Γ; clearly each li ≤ D. We assign a

capacity to each edge e ∈ T : cape = 2
∑k

j=1 Ie(tj), where Ie(tj) = 1 iff edge e is traversed in

r-tour tj , and 0 otherwise. Note that if an edge is traversed in an r-tour, it is traversed at

least 2 times; so each edge in T has capacity at least 2 (as each vertex is visited). Now, the

total weighted capacity over all edges is exactly
∑

e∈T de · (2
∑k

j=1 Ie(tj)) ≤
∑k

i=1 li ≤ kD.

We will now charge each edge an amount at most its capacity, and show that the total

weighted charge over all edges is larger than kD, which would be a contradiction. Corre-

sponding to every cluster Ci, charge each edge in its external part (the path from r to Ci)

two units against the capacity on that edge attributed to r-tour π(Ci); note that tour π(Ci)

visits Ci and hence traverses all the edges from r to Ci. Since π is a perfect matching, no

edge has a charge more than its capacity. The total weighted charge after this step is exactly

2
∑k

i=1 d(r, Ci). Now we will further assign a charge of 2 units to each edge in the internal

part of every cluster C1, · · · , Ck.

Consider any edge e on the internal part of some cluster Ci. Let m denote the number

of clusters that appear below e in tree T (this does not include Ci). If m = 0, this edge has

never been charged so far, and thus has at least 2 units of residual capacity. If 0 < m ≤ k−1,

then applying induction on the set of m clusters below e, there are at least m+1 r-tours that

traverse e. So e has a capacity of at least 2m + 2. But we have charged e exactly 2m units

so far, 2 units corresponding to each cluster below it. So again we have at least 2 units of

residual capacity, and we can charge this edge an extra 2 units. The total weighted charge

over all edges can now be written as follows:

k∑

i=1

[
2d(r, Ci) + 2 · d(internal part of Ci)

]

The i-th term above corresponds to an r-tour covering Ci. Since each Ci is a heavy cluster,

this is more than D. So the total weighted charge is more than kD ≥ the total capacity,
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which is a contradiction. Thus OPT > k, and the lemma is proved.¥

3 DVRP on general metrics

In this section, we study DVRP on general metrics, and present an approximation algorithm

achieving a guarantee of O(log D
D−2∆+2) ≤ O(log D). The approximation guarantee of the

tour-partitioning heuristic of Li et al. [2] was D
D−2∆+2 . As mentioned, using orienteering as a

subproblem in a greedy algorithm, one can obtain an O(log n) approximation algorithm for

this problem (even though there is a constant factor approximation algorithm for orienteering,

the greedy framework only gives an O(log n) guarantee). However, due to the large running

time of the algorithm for orienteering [9], this approach also has a large running time. On

the other hand, the algorithm that we present here has a much smaller running time of

O(n2 · log n · log D). We note that the approximation guarantees from our algorithm and the

orienteering-based algorithm are incomparable in general.

Our algorithm uses as a subroutine, the unrooted DVRP (Section 1.2), and the 3-approximation

algorithm for this problem from Arkin et al. [3]. The basic idea of the algorithm for DVRP is

the following: if an r-tour visits some vertices a “large” distance from the root, it resembles

an unrooted path (with smaller length) when restricted to just those vertices. So we parti-

tion the vertices of the graph into O(log D) parts, according to their distance from the root,

and solve the unrooted DVRP (with appropriate distance bounds) in each part. Algorithm

minVR for DVRP on general metrics is described below. Below, the slack between the dis-

tance constraint and the farthest vertex from the depot is denoted δ = D
2 −∆ + 1; note that

δ ≥ 1.

1. Define vertex sets V0, V1, · · · , Vt as follows (where t = dlog2(D/2δ)e):

Vj =





{v : D
2 − δ < d(r, v) ≤ ∆} if j = 0

{v : D
2 − 2j · δ < d(r, v) ≤ D

2 − 2j−1 · δ} if 1 ≤ j ≤ t− 1

{v : 0 < d(r, v) ≤ D
2 − 2t−1 · δ} if j = t

2. For j = 0, · · · , t do:
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(a) Run the algorithm for unrooted DVRP [3], for the vertex set Vj , with distance constraint

2j · δ − 1. Let Πj denote the set of paths obtained.

(b) For every path in Πj , append both its end points with edges from the depot r, to obtain

the r-tours {r · π · r | π ∈ Πj}.

Theorem 3 Algorithm minVR obtains a 6(dlog2
D

D−2∆+2e+ 1)-approximation to DVRP.

Proof: We first show that all the r-tours Π produced by algorithm minVR satisfy the distance

constraint. For j = 0, each r-tour added in step 2 consists of two direct edges from r to V0

and a path of length at most δ−1; so such a tour has length at most 2·∆+δ−1 = ∆+ D
2 ≤ D.

Now consider the r-tours corresponding to vertex sets Vj (1 ≤ j ≤ t). Each path π ∈ Πj has

length at most 2j · δ− 1, and every vertex of Vj (and hence the end points of π) is at distance

at most D
2 − 2j−1 · δ from r. So each r-tour (r · π · r) added in this step has length at most

2j · δ − 1 + 2(D
2 − 2j−1 · δ) ≤ D. Thus algorithm minVR produces a feasible solution to the

DVRP instance.

We now prove the performance guarantee of this algorithm. Below OPT denotes the

optimal number of r-tours for the DVRP instance.

Claim 4 For each j = 0, · · · , t, the optimal value of the unrooted DVRP instance defined in

step 2a is at most 2 ·OPT .

Proof: Fix any j ∈ [0, t]. Let Γ denote an optimal solution to the original DVRP instance.

Consider any r-tour σ ∈ Γ, and let σj denote the path induced by σ on the vertices in Vj .

The length of σj is at most D − 2(D
2 − 2j · δ + 1) = 2j+1 · δ − 2. This is because every point

in Vj (hence the end points of σj) is located at distance at least D
2 − 2j · δ + 1 from r. So the

path σj can be split into two (unrooted) paths, each of length at most 2j · δ − 1. Splitting

each tour in Γ in this manner gives us a set Θ of at most 2|Γ| = 2 ·OPT unrooted paths over

Vj , that together cover all vertices of Vj . So Θ is a feasible solution to the unrooted DVRP

instance on Vj with length bound 2j · δ − 1. Thus we have the claim. ¥

Using Claim 4 and the 3-approximation to unrooted DVRP [3], we get |Πj | ≤ 6 ·OPT , for

all j = 0, · · · , t. Thus the total number of r-tours in the solution is at most 6(t + 1) · OPT ,

giving the Theorem. ¥
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As a consequence of this algorithm, we also obtain a bi-criteria approximation algorithm

for DVRP: if we are allowed to violate the distance bound D by a small factor ε > 0, then we

can cover all the vertices using O(log 1
ε ) · OPT r-tours. Here OPT is the minimum number

of r-tours of length at most D, required to cover all vertices.

Corollary 5 For every 0 < ε < 1, there is an (O(log 1
ε ), 1 + ε) bi-criteria approximation

algorithm for distance constrained vehicle routing.

Proof: Given an 0 < ε < 1 that denotes the allowed violation of the length bound, the

claimed bi-criteria guarantee is achieved by algorithm minVR when the parameter δ is set

to εD. It is easy to see that Claim 4 holds for any value of δ, and since t = dlog2(D/2δ)e =

dlog 1
2εe, the algorithm produces at most O(log 1

ε ) · OPT r-tours. One can also verify (as in

Theorem 3) that the lengths of r-tours resulting from vertex-sets V1, · · · , Vt are at most the

length bound D. For vertex-set V0, any r-tour has length at most 2∆+δ−1 ≤ D+ εD. Thus

the r-tours in the solution satisfy the length bound within a 1 + ε factor.¥

We note that the above bicriteria approximation was obtained independently in the prelimi-

nary version of this paper [23] and in Khuller et al. [24].

4 Integrality gaps

4.1 DVRP on trees

In this section, we study the LP relaxation LP (defined in Section 1.2) of the set covering

formulation of DVRP on trees, and show that its integrality gap is a constant. This is achieved

by showing that the lower-bound of Lemma 2 holds for all fractional solutions to LP; Lemma 2

proved this for integral solutions. The next Lemma 7 is essentially a strengthening of Lemma 2

to fractional solutions of LP. We first prove the following claim that gives a profit distribution

scheme used in Lemma 7.

Claim 6 For any tree H with root s and length function w on edges, it is possible to distribute

a total profit of 1 among the leaves of H such that the profit contained in any rooted (at s)

subtree F of H is at most w(F )
w(H) .
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Proof: We assume, without loss of generality, that H is binary. Our distribution scheme is

top-down. Initially the root s has profit 1. If p is the profit at a vertex v (obtained from its

parent), it is distributed as follows:

• If v is a leaf, the profit p stays at v.

• If v is an internal vertex, it has at most two children u1, u2. For j = 1, 2, let cj denote

the length of the subtree at uj plus the edge (v, uj). Then the profit at uj is cj

c1+c2
· p.

It is clear that this distribution places profits only at leaves of H. For any vertex v, we

denote the subtree of H rooted at v by Hv. We claim that for all vertices v ∈ H, the profit

contained in any subtree F ′ of Hv rooted at v is at most w(F ′)/w(Hv) times the total profit

of Hv (setting 0/0 to be 1). We prove this claim by induction on the depth of subtree Hv.

This is trivially true when vertex v is a leaf. Consider an internal vertex v with p being the

total profit in Hv, such that this claim is true at both its children u1 and u2. For j = 1, 2,

let ej = w(v, uj), bj = w(Huj ), and cj = ej + bj the length of the subtree at uj plus its

parent edge. Let F ′ be any tree rooted at v. First consider the case that v has degree 1 in

F ′, say only edge (v, u1) is present. In this case, the length of F ′ restricted to the subtree

under u1 is w(F ′)− w(v, u1); applying induction on u1, the profit contained in F ′ is at most
w(F ′)−e1

b1
c1

c1+c2
p ≤ w(F ′)

b1+e1

c1
c1+c2

p = w(F ′)
w(Hv)p. Next consider the case that v has degree 2 in F ′,

i.e. both edges (v, u1) and (v, u2) are present. For j = 1, 2, let aj be the length of F ′ in the

subtree Huj ; it is clear that aj ≤ bj . By induction on u1 and u2, the total profit in F ′ can be

bounded as follows (again we set 0/0 to be 1).

≤ a1
b1
· c1

c1+c2
p + a2

b2
· c2

c1+c2
p = p

c1+c2
[a1(1 + e1

b1
) + a2(1 + e2

b2
)]

≤ p
c1+c2

[a1 + e1 + a2 + e2] = w(F ′)
w(Hv)p

which proves the inductive step.¥

Recall the definition of a heavy cluster from Section 2.

Lemma 7 If C1, · · · , Ck are k disjoint heavy clusters in the tree, then the optimal value of

LP is at least k
10 .
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Proof: The dual of LP is the following.

max
∑

v∈V \r pv

s.t.

∑
v∈τ pv ≤ 1 ∀τ : r-tour of length at most D

pv ≥ 0 ∀v ∈ V \ r

We will construct an appropriate dual solution which has value at least k
10 . Then the lemma

would follow by weak duality. Recall the definitions of the internal and external parts of a

heavy cluster from Lemma 2. The internal part (see Figure 1a) of each Ci is further divided

into two parts: the edges that also lie on the external part of some other cluster constitute

the through part of Ci (length denoted by ti); and all other edges constitute the local part

of Ci (length denoted by li). For any cluster Ci, traversing all the edges in its internal and

external parts twice constitutes an r-tour covering it; and as Ci is a heavy cluster, its length

2(d(r, Ci) + ti + li) > D. We partition the k heavy clusters into two sets: A consisting of

clusters Ci with li ≥ ti, and B consisting of clusters Ci with li < ti. We consider the following

two cases.

Case 1: |A| ≥ k/5. In this case, we assign dual-values to vertices of clusters in A.

The dual solution is constructed as follows: for each cluster Ci ∈ A, consider the subtree

T [Ci] induced by it, contract all vertices in its through part to a root-vertex, and distribute

a total profit of 1/2 among the vertices in its local part using Claim 6 below. The dual

value of this solution is |A|/2 ≥ k
10 . To show that this dual solution is feasible, we argue

that any r-tour with profit more than 1 has length more than D. In the following, an r-

tree is a subtree of T containing the root r. We will show that any r-tree π with profit

more than 1 has d(π) > D/2; this suffices since any r-tour on the tree T corresponds to

traversing edges of some r-tree twice. For each cluster Ci, let αi denote the fraction of the

local part of Ci used in r-tree π. From Claim 6, we have 1
2

∑
αi ≥ (total profit of π) > 1.

Let Cm ∈ A denote the cluster of minimum local length that is visited by π. Note that the

path from r to Cm is disjoint from the local parts of all clusters that π visits; so we have

d(π) ≥ d(r, Cm) +
∑

αi · li > d(r, Cm) + 2lm ≥ d(r, Cm) + lm + dm > D/2.
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1

r

a + aj + 2 · t′j > D
2
, for j = 1, 2.
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1
and C ′

2
are in B.

v

a = d(r, v); aj = d(v, C ′

j) & t′j = through length of C ′

j, for j = 1, 2.

Figure 2: r-tree π in case 2.1

Case 2: |A| < k/5. Let L denote all the leaf-clusters (one that has no cluster below

it in tree T ); clearly L ⊆ A since leaf-clusters have through length 0. Define a tree F as

follows: first contract each cluster in B ∪ L to form cluster vertices and let F ′ be the subtree

of T induced by r and these cluster vertices (F ′ may contain other non-cluster vertices from

T ); then shortcut edges over all degree 2 non-cluster vertices in F ′ to get tree F . Note that

every vertex (other than r) in F is either a cluster vertex or a non-cluster vertex that has

degree at least 3. Also every leaf in F is a cluster vertex of some cluster in L. A cluster

C ∈ B is called high-degree if it has has degree at least 3 in F . A cluster C ∈ B is called

marked if its parent in tree F is r or has degree at least 3. Observe that the number of

high degree clusters is at most the number of leaves in F , which is at most |A|; similarly

the number of marked clusters is at most twice the number of leaves in F i.e. 2|A|. Let

C = {Ci ∈ B | Ci is neither high-degree nor marked}, clearly |C| ≥ |B| − 3|A| > k
5 . Note that

for every C ∈ C, its parent in F has degree 2 and hence is a cluster vertex from B. The dual

solution here assigns a profit of 1/2 to each cluster in C, distributing it over the local part of

the cluster using Claim 6 (as in case 1). The dual value is 1
2 |C| ≥ k

10 . To show that this is

a feasible dual solution, as in case 1 we argue that any r-tree π with profit more than 1 has

length d(π) > D/2. There are two cases to consider:
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1. π visits some two clusters C1, C2 ∈ C that are incomparable in tree F (one is not a

descendant of the other). Let C ′
1, C

′
2 ∈ B be the parents (in F ) of C1 and C2 respectively.

From the definition of C, it follows that the cluster vertices C ′
1 and C ′

2 have degree 2 in

F : combined with the fact that C1 and C2 are incomparable, π contains a subtree as

shown in Figure 2. We have D < 2(d(r, C ′
j)+t′j +l′j) = 2(a+aj +t′j +l′j) ≤ 2(a+aj +2t′j)

for j = 1, 2. So d(π) ≥ a + a1 + t′1 + a2 + t′2 ≥ a + 2min{a1 + t′1, a2 + t′2} > D/2.

2. π does not visit any pair of incomparable clusters in F . Let C ′ ∈ C denote the lowest

cluster according to the ancestor-descendant relation in F , that is visited by π. Note

that every cluster in C has degree 2 in F ; together with the fact that all other clusters

visited by π are ancestors of C ′, we obtain that π contains the through part of all clusters

it visits other than C ′. Ignoring profit from the cluster C ′, π gets a profit of at least

1/2 from clusters whose through parts are completely contained in it. As in case 1, if αi

denotes the fraction of the local part of Ci used in π, we have 1
2

∑
αi ≥ 1

2 . So
∑

αi ≥ 1,

where the summation is only over clusters whose through parts are completely contained

in π. Considering the cluster with the smallest local length, we have d(π) > D/2.

In both cases above, we have a feasible dual solution of value k
10 .¥

Algorithm minTVR finds k∗ disjoint heavy clusters such that there is an integral solution

of value at most 2k∗ + 1. Using Lemma 7 on these k∗ clusters, we obtain that the optimal

value of LP is at least k∗
10 , so its integrality gap is most 20. The worst example we are aware

of has an integrality gap of 2. Thus we have the following theorem.

Theorem 8 The integrality gap of LP on trees is Θ(1).

4.2 Unrooted DVRP

In the unrooted version of DVRP, the goal is to cover all vertices in the metric using the

minimum number of paths, each of length at most the bound D. As mentioned earlier, this

problem was considered in Arkin et al. [3] where a 3-approximation was given. In this section,

we show that the integrality gap of LP for unrooted instances is a constant. This will also be

used in Section 4.3 to bound the integrality gap of LP on general metrics. We consider the
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following LP relaxation of the problem, which is a weakening of LP (restricted to unrooted

DVRP).

min
∑

τ xτ

s.t.

(LP ′)
∑

τ :v∈τ xτ ≥ 1 ∀v ∈ V

xτ ≥ 0 ∀τ : tree of length at most D

Note that the variables in (LP ′) correspond to unrooted trees and not just paths. However,

this is only a weaker relaxation that LP, so the integrality gap of LP is at most that of LP ′.

We give an algorithm that rounds any fractional solution x to (LP ′) to an integral set of

paths, that has a small cardinality. We assume (without loss of generality) that all trees in

the support of the fractional solution (i.e. any tree τ with xτ > 0) are maximal: i.e., addition

of any vertex to the tree makes its length more than D. We also assume that any tree in

the support is a minimum spanning tree on the set of vertices that it covers. We construct a

weighted graph G, with each edge e having weight ye =
∑

τ3e xτ , the sum of x-values of all

trees containing e. Clearly
∑

e ye · de ≤ D ·∑τ xτ . For disjoint subsets of vertices A,B ⊆ V ,

y(A,B) will denote the total y-weight of all edges having one end point in A and the other

in B. For any subset S ⊆ V , G|S will denote the graph obtained from G by contracting the

vertices of S into a single supernode. The rounding algorithm is as follows.

1. Initialize S = φ.

2. While G|S has a cut of value less than 1, do:

(a) Let S′ ⊂ V \ S be a minimal set such that y(S′, V \ S′) < 1.

(b) Set S = S ∪ S′.

3. Let S1, · · · , St denote the vertex sets S′ added in step 2b, over all iterations.

4. Compute an MST M on the contracted graph H = G|S , and uncontract the supernode S in

tree M to get a forest M ′ on G.

5. For each i = 1, · · · , t, compute an MST Mi on Si.

6. Construct the forest F = M ′ ∪ (∪t
i=1Mi) on G.

7. For each tree in F , take an Euler tour and split it into a set of maximal paths of length ≤ D.
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Note that the sets S′ in step 2a can be easily obtained from the Gomory-Hu tree repre-

senting minimum cuts of G|S . At the end of the while loop, S = ∪t
i=1Si and H = G|S is the

final graph with a supernode s consisting of all vertices in S. By the termination condition,

y(C, V \C) ≥ 1 for all C ⊆ V \S. So y induces a feasible fractional solution to the cut-based

linear program for minimum spanning trees on H. Since the integrality gap of this LP relax-

ation is 2, the MST M in H has length at most 2 ·∑e∈H ye · de. Note that none of the edges

induced on S are included in this summation (in particular edges in any set Si).

For each i = 1, · · · , t, we have y(Si, V \ Si) < 1. By the minimality of Si, for any

φ ( C ( Si, y(C, V \ C) ≥ 1 and y((Si \ C), V \ (Si \ C)) ≥ 1. It is easy to verify that this

implies y(C, Si \ C) ≥ 1/2 for all φ ( C ( Si. Thus 2y induces a feasible solution to the

cut-based LP for minimum spanning trees on Si. So the MST Mi in Si has length at most

4 ·∑e∈Si
ye · de (for each i = 1, · · · , t).

Now consider uncontracting the supernode s in tree M , and adding the trees M1, · · · ,Mt,

to get forest F . Clearly F contains exactly t trees, say T1, · · · , Tt (with Ti ⊇ Mi for all i).

The preceding arguments imply that the length of forest F is
∑

i d(Ti) ≤ 2
∑

e∈H ye · de +

4
∑t

i=1

∑
e∈Si

ye · de ≤ 4 ·∑e ye · de. In step 6 of the rounding algorithm, each tree Ti is split

into a set of paths having length ≤ D. The length of an Euler tour on Ti is at most 2 ·d(Ti); so

the number of paths used to cover Ti is at most 2·d(Ti)
D +1. Thus the total number of (integral)

paths generated by this rounding algorithm is l ≤ 2
P

i d(Ti)
D + t ≤ 8

P
e ye·de

D + t ≤ 8
∑

T xT + t.

In order to bound t, we partition the sets S1, · · · , St into two groups: group 1 has all sets

Si such that the minimum edge length between Si and V \Si is at most D/3, and group 2 has

all the remaining sets. Let t1 and t2 denote the number of sets in groups 1 and 2 respectively.

Suppose (for contradiction) that for some set Si in group 1, the length of MST Mi is

less than 2D/3. Then due to maximality of trees in the support of x, none of them can be

completely contained in Si: the D/3 length edge leaving Si can be added to the MST in Si

while still satisfying the distance constraint. So all the trees containing any vertex in Si cross

the cut (Si, V \Si). Since the total weight of trees containing any particular vertex is at least

1, y(Si, V \ Si) ≥ 1, contradicting the choice of Si. So for every Si in group 1, MST Mi has

length at least 2D/3, and d(Ti) ≥ d(Mi) ≥ 2D/3. So t1 ≤ 3
P

i d(Ti)
2D ≤ 6

∑
T xT .
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Now consider the sets in group 2; pick one vertex from each of these sets, say v1, · · · , vt2 .

Note that the pairwise distance between any two of these vertices is greater than D/3. So any

D length tree may visit at most 3 of these vertices; i.e. any tree in the support contributes

to covering at most 3 of the vis. Since each of the vertices vis is covered to an extent 1,

we have the total coverage t2 ≤ 3
∑

T xT . Using these expressions for t1 and t2, we get

l ≤ 8
∑

T xT + 6
∑

T xT + 3
∑

T xT = 17
∑

T xT . i.e., the integrality gap for unrooted DVRP

is at most 17.

Theorem 9 The integrality gap of LP for unrooted DVRP is Θ(1).

4.3 General metrics

We now observe that algorithm minVR can also be used to bound the integrality gap of LP on

general metrics. Let x be any feasible fractional solution to LP, for an instance I of DVRP.

We consider groups of vertices {Vj}t
j=0 according to their distance from the root r (recall the

definition from algorithm minV R). For each group Vj , we use x to obtain a feasible solution

y(j) to the LP relaxation LP ′ of the unrooted DVRP instance on Vj (where the length bound

is 2j · δ− 1). Solution y(j) is as follows: for each r-tour π in the support of x (i.e. xπ > 0), let

σ′ and σ′′ be the unrooted paths on Vj derived from π as in Claim 4, and set y
(j)
σ′ = y

(j)
σ′′ = xπ.

Note that for each group Vj , the LP-value
∑

σ y
(j)
σ = 2

∑
π xπ. For each solution y(j), running

the rounding algorithm from Section 4.2, we obtain a set of at most 34
∑

π xπ unrooted paths

(each satisfying the length bound) covering Vj . Finally we append each of the unrooted paths

(from all groups) with edges from r, as in step 2b to obtain an integral solution to I using at

most 34t = O(log2
D

D−2∆+2) r-tours. Combined with the O(log n) upper bound implied by a

straightforward randomized rounding, we have the following.

Theorem 10 The integrality gap of LP for general metrics is at most O(min{log D
D−2∆+2 , log n}).

5 Extensions

In this section, we mention two natural extensions of DVRP, to which our algorithms apply

and give similar performance guarantees.
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5.1 Vehicle Routing with distance and capacity constraints

As defined, the distance constrained VRP does not consider vehicle capacities. However, it

turns out that capacity constraints can be easily added to the formulation, and this incurs

only a small increase in the approximation guarantee. An instance of the VRP with distance

and capacity constraints consists of a metric space (V, d), a depot r ∈ V , a weight qu ∈ N
for each vertex u ∈ V \ {r}, a distance bound D, and a vehicle capacity Q. The objective

is to find a minimum cardinality set of tours originating from r, that covers all the vertices

V \ {r}, such that each tour has length at most D (the distance constraint), and serves a

total demand weight at most Q (the capacity constraint). As in the capacitated VRP, there

are two variants of this problem depending on whether or not demands can be split across

vehicles: splittable or unsplittable demands.

Theorem 11 An α-approximation algorithm for DVRP implies an (α + 2)-approximation

algorithm for the unsplittable demands version of VRP with distance and capacity constraints,

and an (α + 1)-approximation algorithm for the splittable demands version.

Proof: Let A denote the α-approximation algorithm for DVRP, I any instance of the VRP

with distance and capacity constraints, and OPT (I) the optimal value of the splittable de-

mands version of I. Note that the optimal value of the unsplittable demands version of I
is at least OPT (I). Dropping the capacity constraints, we get a DVRP instance J corre-

sponding to I; note that OPT (J ) ≤ OPT (I). The approximate solution A(J ) consists of

t ≤ α ·OPT (J ) r-tours that satisfy the distance constraint (but not necessarily the capacity

constraint). For every r-tour τ ∈ A(J ) that does not satisfy the capacity constraint, a simple

bin-packing algorithm (see eg. Vazirani [7]) can be used to partition the demands served by

τ into pieces, each having total weight at most Q. It can also be ensured that the number

of additional r-tours introduced in satisfying the capacity constraint is at most 2
Q

∑
u∈V−r qu

(when demands are unsplittable), and 1
Q

∑
u∈V−r qu (when demands are splittable). Note

that the capacity constraints alone imply that OPT (I) ≥ 1
Q

∑
u∈V−r qu, even in the case

of splittable demands. So the number of r-tours in the final feasible solution is at most

t + 2 ·OPT (I) ≤ (α + 2)OPT (I) in the case of unsplittable demands, and (α + 1)OPT (I) in
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the case of splittable demands. Observing that the optimal value of the unsplittable version

is at most that of the splittable version, we obtain the result for both versions.¥

5.2 Distance Constrained Vehicle Routing using paths

In the definition of DVRP, the objective is to find bounded length tours as vehicle routes.

There are also situations where the objective is to find a set of bounded length paths (each

starting at the depot) as the vehicle routes. An example is the common deadline special case

of the VRP with time windows: all the demand locations have a common deadline D, and

each location has to be served by some vehicle from the depot before this deadline. In this

case, it is not important for vehicles to return to the depot before the deadline D, but only to

serve all demands by this deadline. Here the problem of minimizing the number of vehicles

is the following: find a minimum cardinality set of paths that covers all the locations, such

that each path originates at r and has length at most D. A path originating at the depot r is

referred to as an r-path. We refer to this problem (vehicle routes being paths) as path-DVRP,

and the original DVRP (vehicle routes being tours) as tour-DVRP. The next theorem shows

that both these problems are closely related.

Theorem 12 An α-approximation algorithm for tour-DVRP implies a 2α-approximation al-

gorithm for path-DVRP. Conversely, an α-approximation algorithm for path-DVRP implies

a 2α-approximation algorithm for tour-DVRP

Proof: The argument for both directions is similar, so we only prove one direction. Let A
be an α-approximation algorithm for tour-DVRP. Given any instance I of path-DVRP with

distance constraint D, we consider a tour-DVRP instance J with distance constraint 2D.

Note that by doubling each r-path in any solution to I, we obtain a feasible solution to J
(with the same number of vehicles). So OPT (J ) ≤ OPT (I). Also, any 2D length r-tour

can be split in the middle to obtain two D length r-paths that together cover the same set

of vertices. Applying this procedure to each r-tour in the α-approximate solution A(J ), we

obtain a solution to I using at most 2α ·OPT (J ) ≤ 2α ·OPT (I) vehicles.¥
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Remark: OPT = 1 promise problem for path-DVRP. We note that on instances of

path-DVRP that are known to have an optimal solution using a single r-path, there is a

simple polynomial-time algorithm that finds a solution using at most two r-paths. Note that

even testing whether all vertices can be covered by one r-path is NP-complete (c.f. TSP). So

unless P=NP, it is not possible to find in polynomial time, a single r-path that covers all the

vertices, even if we know that there exists one such path. The following algorithm finds a

solution covering all the vertices using at most two r-paths. Compute a minimum spanning

tree on V , and obtain an Euler tour τ of this tree; note that the length of the MST is at most

D (as there is a D length Hamilton path), and so d(τ) ≤ 2D. Now, as mentioned in the proof

of Theorem 12, this r-tour τ can be split in the middle to obtain two r-paths (each of length

at most D) that together cover all the vertices.
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