The Power of Loca Optimization: Approximation
Algorithms for Maximum-Leaf Spanning Tree

Hsueh-I Lu* R. Ravi'

Brown University, Providence, RI 02912

Abstract

Given an undirected graph G, finding a spanning tree of G with the maximum number of
leavesis NP-complete [5]. We use the simple technique of local optimization to provide the first
approximation algorithms for this problem. Our algorithms run in polynomial time to produce
locally optimal solutions. We provethat suchlocally optimal solutionsto this problem areglobally
near-optimal. In particular, we prove that two such algorithms have performanceratios of 5 and 3.
The latter algorithm employs more powerful local-improvement steps than the former and hence
hashigher running time. Thismay indicatean interesting trade-off betweenthe performanceratios
and the running times of the series of algorithms we describe.

1 Introduction

Givenasimple, undirected graph G = (V, E), suppose we wish to find aspanning tree of G withthe
maximum number of leaves. This problem finds applications in communication networks, circuit
layouts and in other graph-theoretic problemg[17]. An interesting application is mentioned in [12]:
In[3], E. W. Dijkstrastudied the problem of self-stabilizing a set of processorsin spite of distributed
control and proposed a solution based on mutua exclusion. A variant of this solution [18] seeks a
spanning tree of a graph such that the product of the degrees of al the nodes in the treeis minimum.
We can use a spanning tree with the maximum number of leaves as a heuristic solution for the latter
problem.

The maximum-leaf spanning tree problem is NP-complete [5]. This suggests that there might
be no polynomial time agorithmsfor this problem. So we seek fast approximation algorithms that
provide agood worst case performance ratio on the quality of the solution. In this paper, we present
thefirst such approximation a gorithmsfor this problem. These algorithms use the simple technique
of local optimization: perform a series of local-improvement steps until aloca optimum is reached.
This notion of applying loca -improvement heuristicsto hard optimization problemswas around [2]
even long before the invention of NP-completeness [8]. It has been applied heuristically to solve
avariety of NP-hard problems in combinatoria optimization [14]. Among al such applications of
this technique, there were no positive results which proved that this technique yielded an efficient
approximation algorithm with an acceptable performance guarantee until the recent work of Furer
and Raghavachari [4]. They showed that avariation of thistechniqueapplied to the minimum-degree
spanning tree problem runs in polynomia time to produce near-optimal solutions. Our work is
inspired by that of Furer and Raghavachari. We demonstrate that local optimization can be used to
design polynomial -time approximation a gorithmsfor the maximum-leaf spanning tree problemwith
constant performance ratios.

*Research supported by a Graduate Fellowship from the Ministry of Education, Taiwan R. O. C. Additional support
provided by NSF PY| award CCR-9157620 and DARPA contract N00014-91-J-4052 ARPA Order No. 8225.

Research supported by an IBM Graduate Fellowship. Additional support provided by NSF PY| award CCR-9157620
and DARPA contract NO0014-91-3-4052 ARPA Order No. 8225.



We propose algorithms that perform local changes that increase the number of leaves in the
resulting spanning tree. For the problem at hand, there is a natura notion of such alocal change,
namely, swapping a tree edge for a non-tree edge. This notion can also be extended to include
swapping many tree edges for an equal number of non-tree edges in a single local-change operation.
Our agorithms perform such local changes that increase the number of leaves until no improvement
in the solution is possible and output alocally optimal solution as the approximate solution.

By varying the limit on the number of tree edges that can participate in a single local-change
operation, we derive a series of approximation algorithms. Increasing this limit corresponds to
allowing for more powerful local-improvement steps. Thus, the higher is this limit, the higher is
the running time of the corresponding agorithm. A local-change operation involving at most k tree
edges istermed a k-change. Intuitively, k-changes are costlier to implement than (¥ — 1)-changes.
However we expect an agorithm using k-changes to yield a better solution than an algorithm using
only (k — 1)-changes. In this paper, we corroborate this intuition and prove that local -improvement
algorithmsthat use 1-changes and 2-changes have performance ratios of 5 and 3 respectively. The
following are the main results of this paper.

Theorem 1 There isan O(n*) algorithmusing 1-changes for finding a spanning tree of any undi-
rected graph G with n nodes such that the number of leaves in this spanning treeis at least as many
as a fifth of the number of leaves in any spanning tree of .

Theorem 2 Thereisan O(n’) algorithmusing 2-changes for finding a spanning tree of any undi-
rected graph G with n nodes such that the number of leaves in this spanning treeis at least as many
asathird of the number of leaves in any spanning tree of 5.

We provethat the running time of the approximation algorithm using %-changesincreases with k
asfollows.

Lemmal The running time of the approximation algorithm using k-changes on a graph with n
nodesis O(n3+1).

The pattern exhibited in Theorems 1 and 2 leads us to conjecture that there is a trade-off between the
running times and the performance ratios exhibited in the series of agorithmswe have defined.

Conjecture 1 The performance ratio of the approximation algorithm using k-changes is strictly
better than that of the algorithmusing (¥ — 1)-changes.

Inthe next section, wediscussrel ated work. Then we present the algorithmformally and describe
the basic properties of locally optimal solutions. We then derive a rough bound on the performance
guarantee of solutions optimal under 1-changes and use these ideas to prove the bound in Theorem
1. We omit the proof of the performance guarantee in Theorem 2 in this abstract. We close with
suggestions for future work.

2 Related work

The idea of applying local improvements to obtain good solutions to hard optimization problems
is not new [2]. It has been applied to provide heuristic solution for a variety of hard problemsin
combinatorial optimization. Chapter 19 of [14] examines afew applications of thistechnique. Some
notable examples are its applications to the graph partitioning [9] and the Traveling Salesperson
problems[11]. A number of complexity resultsrelating to the paradigm of local optimality and the
time compl exity of computing alocally optimal solutionare presented in[7, 13]. Inthispaper, weare
interested in the application of local-search techniques to design efficient approximation algorithms,
namely, those that run in polynomial time and provide provably good solutionswith values close to
that of the optimum.

Furer and Raghavachari [4] showed such an application of local search to the problem of com-
puting a spanning tree of a given graph whose maximum degree is minimum. This is termed the



minimum-degree spanning tree problem and is NP-compl ete [5]. Furer and Raghavachari show that
local optimization can beapplied to produce spanning trees and even Steiner trees of nearly minimum
degree. They prove that the degree of the resulting solutionsis within an additive logarithmic error
of optimum. Their techniques have been generalized recently to obtain approximation algorithms
for avariety of minimum-degree network design problemsin [16]. In this paper, we add to the list
of problemsthat are amenabl e to good approximate sol utions by local-search methods.

Previouswork on finding spanning trees with many |eaves have focused on graphswith minimum
degree at least k for somefixed k£ > 3. For such graphs, good lower bounds on the number of leaves
achievable in a spanning tree are derived in [10, 6, 12, 17]. These lower bounds are typically
proved agorithmically by constructing a spanning tree with the desired number of leaves. Thus
these a gorithmscan beinterpreted as approximation algorithmsfor the maximum-leaf spanning tree
problem for specia classes of graphsin which the minimum degree of anodeisat least k. However,
to the best of our knowledge, no previous approximation agorithms for this problem are known in
the genera case that we consider inthis paper. The current best lower bound for the number of leaves
achievable in a spanning tree of a n-node graph with minimum degree £ is (1 — bInk/k)n where
b isany constant exceeding 2.5 and £ is sufficiently large[10]. The best lower bounds for the cases
k =3and4are Q(n/4) and Q(2n/5) respectively [10].

3 Definitions

In this section, we introduce some definitions that we use throughout the paper. The following
definitions are relevant to any spanning tree of the input graph . Henceforth we shall use the term
degree of a node to refer to its degree in the tree under consideration. So leaves are just nodes of
degree one. A nodeisinternal if itisnot aleaf. We cal a node of degree greater than two a high
degree node. A ledf is special if it isadjacent to a high degree node. All other leaves are termed
normal. Thus normal leaves are exactly the leaves that are adjacent to nodes of degree two in the
tree. A tree path containing only nodes of degree two is called a 2-path. Its length is the number
of nodesinit. A 2-pathisshort if itslength is one; otherwise it islong. We shall refer to an edge
e = (u, v) asan edge between « and v.

For aspanning tree 7', we use A(7') to denote the number of leavesin 7. We omit the T where
it is understood. We use n; to denote the number of nodes of degree i. Suppose the input graph &G
has n nodes. We define N; = n — >, ., n;, the number of nodes with degree at least i. Thus
for instance, N3 is the number of high degree nodes. The number of short and long 2-paths are
represented by P, and P; respectively. Let A; and ), be the number of specia and normal leaves
respectively. We have the following observations.

Observation 1 The number of high degree nodesin atreeisat most the number of leavesin thetree
minus 2. In other words, N3 < A — 2.

Observation 2 The number of 2-pathsin any tree is at most twice the number of leavesin thetree.

P4+ P, <Nz+X,—1<2\-3. 1)

4 TheAlgorithm

In this section, we formally define k-changes and describe the approximation algorithms.

4.1 EdgeChanges, Improvementsand LOTs

Our algorithm starts with an arbitrary spanning tree 7" of the given graph G. Let e = (u, v) bean
edgein G — 1" and f be an edge in the unique tree path of 7" connecting « and v. We call making
e atree edge and f a non-tree edge an (edge) change (e; f) with respect to 7. The spanning tree



(©)

Figure 1: Examples of local improvements. In (a), thetree 7" isshown in dark linesand the non-tree
edges are dotted. The change (e; f) isal-improvement on T resulting in 71 with one more leaf as
shownin (b). 71 does not admit any 1-improvement but admitsthe 2-improvement (e1, e2; f1, f2) to
givel, shownin ().

obtained by applying change (e; f) on T' is denoted by T'(e; f). If T'(e; f) has more leaves than T,
then we call the change (¢; f) an improvement.

We can generalize the notion of performing single edge swaps to alow for multiple edge swaps
in asingle change step. Suppose eg = ¢, fo = f, and Ty = T. Let T;41 denote T;(e;; fi), where
(es; f;) isachange with respect to 7; for 0 < ¢ < j. WeuseT (e, e1,...,e;-1; fo, f1,..., fj—1) tO
denote7;. For any k& > j, wedefine

(60, €1y0n, 6]'_1; fo, f]_, ceey f]'_]_)

to bea k-changewith respect to I". A k-change with respect to a spanning tree 7" is a k-improvement
if the resulting spanning tree on applying the k-change has more leaves than 7.

Notethat a k-changeis more powerful than k 1-changes. It isabatched version of any sequence
of k 1-changes. In Figure 1, we illustrate a spanning tree 7' that admits a 1-improvement. On
applying the 1-improvement we get a spanning tree 73 that does not admit a 1-improvement but has
a 2-improvement.

A k-locally optimal tree (k-LOT) of agiven graph (& is a spanning tree that does not admit any
k-improvement. By definition, an ¢-LOT is aso a j-LOT for any j < 7. Since a spanning tree
has exactly n — 1 edges, an optimal spanning tree with the maximum number of leaves is just a
(n—1)-LOT.

4.2 Thealgorithm and termination

Our ideais simply to use k-LOTs to approximate the maximum-leaf spanning tree for small values
of k. We start with an arbitrary spanning tree and keep applying %-improvements on the current
spanning tree until we obtain a k-LOT. Clearly, the second step dominates the time complexity.
Whether a spanning tree is a k-LOT can be decided in polynomia time for constant k, since a
spanning tree cannot have more than ((Z)_k”“) x ("71) k-changes. Theagorithmitself hasno more
than n — 3 iterations because the number of leaves should be at least 2 to begin with and at most
n — 1, and thisnumber increases with every iteration. Therefore, the runningtimeto obtaina k-LOT
isO(n®+1) which isapolynomial in n for constant k. This provesLemma 1.

Our major concern in this paper is the performance guarantee of this approximation agorithm.
In other words, how much less can the number of leavesin a k-LOT be from that of the optimum?
In the following sections we shall prove that the performance ratio of 1-L OTsisb5.



violates P1 violates P2

Figure 2: lllustrating properties P1 and P2 for 1-LOTs. In the above figure, dark edges represent
tree edges and the dashed edge is a non-tree edge violating the property P1 or P2. In both the above
cases, a 1-improvement (e; f) can be identified.

5 Basicpropertiesof 1-LOTsand a rough bound

In thissection, we illustrate our proof method by proving a rough bound on the performance ratio of
1-LOTs. We begin by examining a few basic propertiesthat are useful in proving the bounds.

5.1 Basic Properties
By definition, a 1-LOT has the following properties (See Figure 2).

P1 Inal-LOT T, any cycle formed by adding a non-tree edge between a leaf and an interna node
does not contain two adjacent nodes of degree two.

P2 Ina1-LOT 7', any cycle formed by adding a non-tree edge between two internal nodes does not
contain a node of degree two.

The following lemma shows that P1 and P2 together are necessary and sufficient conditionsfor
1-optimality.

Lemma?2 Atreeisa1-LOT if and only if it satisfies P1 and P2.

Proof (=) If P1 or P2 were not true for a tree ", then it is straightforward to identify a 1-
improvement for 7" showing that 7" isnot a 1-LOT.

(«<=) We prove the contrapositive and show that if a spanning tree isnot a1-LOT then it violates
either P1 or P2. If aspanning treeisnot a1-LOT then there existsa 1-improvement for this spanning
tree. It is easy to see that any non-tree edge incident on two leaves cannot be involved in any
1-improvement. So any non-tree edge involved in a 1-improvement must be an edge between an
internal node and a leaf or an edge between two internal nodes. In the first case, the tree violates
property P1 and in the second case, it violates P2. |

Using Lemma 2, it is easy to derive the following corollaries.

Lemma3 Ina1-LOT 7', there is no non-tree edge between a normal leaf and an internal node.

Any 2-pathinaspanning tree partitionsthe remaining nodes of thetreeinto two piecesonitsremoval.
We refer to the sets of nodes representing these two pieces as the two sides of the 2-path.

Lemma4 Inal1l-LOT T, only thefirst two nodes on a long 2-path, counting from a particular side,
have non-tree edges to nodes in that side. Furthermore, both the endpoints of any non-tree edge
between nodes in two sides of a long 2-path must be leaves.

Lemma5 Ina 1-LOT, there is no non-tree edge between two nodes in the same long 2-path.



U@ g, g

L R

Figure 3: Proof of Lemma 6 by contradiction: The dark edges are edges of 7’ and the dashed edges
areedges of T If there are five leaves of 7" in path P, then the middleleaf must be connected in 7"
to one of the two sides via a non-tree edge e as shown above. This edge e violates the assumption
that thetree 7" isa1-LOT (Lemma 4).

5.2 Thestrategy: Proving arough bound

In this subsection, we illustrate the basic strategy used in proving Theorem 1 by proving a weaker
version of it. For this, we prove the following lemma.

Lemma6 Let G bean undirected graph and let 7' be a 1-LOT of G. Then for any spanning tree 7’
of G and any 2-path P of T', the number of leaves of 7" in P isat most four.

Proof The proof is by contradiction. Assume for a contradiction that there are no less than five
leaves of 77 in P. Let five of them be w1, wo, w, w3, and w4, where w is the middlie one along P,
and w; and w, are onthe same side of w (See Figure 3). Notethat by Lemma 5 there are no non-tree
edges between nodesin P. Let v be the node closest to w in 77 that isnot in P. Let the last edge
in the path from w to v in 7" be e = (u, v) where v € P. Since w isthe middle leaf in 7" along
P, the cycle closed by e contains at |east two nodes of degree two, i.e., either w; and w, or w3 and
wq. Without loss of generality, let these two nodes be w; and w,. Since they are both in P, the
nodes between them in P, if any, also have degreetwo in 7. Thisimpliesthat the cycle closed by e
contains at least two adjacent nodes of degree two, which contradicts the fact that 7" isa 1-LOT by
Lemma4. |
Recall that A(7") denotes the number of leavesinatree 7.

Theorem 3 Let G be an undirected graph. Let 7™ be a maximum-leaf spanning tree of G and let 7"
bea 1-LOT of G. Then A(T™) < 10- A(T).

Proof Consider any spanning tree 7" of G. We bound the number of leaves of 7" that are (a)
leaves, () high degree nodes, and (¢) nodes in 2-paths in 7" independently. Note that these three
categories account for every nodein (. Thetotal number of leavesin T is A(T") by definition. Also,
the total number of high degree nodesin 7" isat most A(7") by Observation 1. Also, we can bound
the number of 2-pathsin 7' by 2X(T") using Observation 2. Using Lemma 6, we can bound the
number of leaves of T” in each 2-path of T' by four. Thusthe total number of leavesin T” is at most
ATY+ A(T) +2X(T) - 4 = 10A(T). Sincethisbound holdsfor any tree 7", it also holds for 7 in
particular and our theorem is proved. |

6 Performance Guarantee of 1-LOTs

In this section we provethe following restatement of Theorem 1.

Theorem 4 Let (o be a given simpleundirected graph. Let 7 be a maximum-leaf spanning tree of
Goand let To bea 1-LOT of Go. Then A(75) < 5- A(Tp).



6.1 Augmentation

In order to prove Theorem 4, we augment (o together with 75 as follows. For every normal lesf in
To adjacent to a short 2-path, we subdivide the tree edge incident on the normal leaf by inserting a
new node of degree 2 in thisedge. We have the followinglemma.

Lemma?7 Let G and T' be the augmented versions of G and Ty respectively. If Ty isa 1-LOT of
GothenT" isa 1-LOT of (. Furthermore, if 73 isa maximum-leaf spanning tree of Go and 7™ isa
maximum-leaf spanning tree of G, then A(7") = A(Tp) < A(TF) < A(T™).

Proof-sketch We can prove that 7" is a 1-LOT of & by contradiction using Lemma 3. Now
we consider the relations among A(7), A(7p), A(7g), and A(T*). The equality is trivia since
augmentation does not change the number of leaves. The first inequality follows from the definition
of Tg. Thelast inequality can be proved by constructing a spanning tree of GG with at least A(73)
leaves. |

6.2 Partitionintoregions

For the sake of proof, based on the 1-LOT 7', we partition the nodes in G depending on whether
they occur in along 2-path in 7". We further partition the nodes of ¢ that are not in any long 2-path
in7" into regions. These regions are exactly the connected components of ‘1" obtained on removing
the nodes in long 2-paths from 7". A region is special if it contains at least one special leaf of 7
otherwise it isnormal. Let ususe S and R to stand for the number of special and normal regions,
respectively. The degree of aregionisthe number of long 2-pathsincident onit. Notethat as aresult
of augmentation, each normal leaf is a single-node normal region by itself. So a norma region is
either asingleleaf or aset of high degree nodesinterconnected via short 2-paths. We term these two
kindsof normal regions external and internal, respectively. It iseasy to prove thefollowing relation
foral-LOT T Recall that P, isthe number of long 2-pathsin 7.

P, = S+R-1 2

6.3 Accountingfor leavesin long 2-paths

Thekey observation which hel ps proving thetighter boundin Theorem 4 isthat not every long 2-path
inI" contributes four leaves in any spanning tree as proved in Lemma 6. The following lemmaisa
refined version of Lemma 6 and is proved in a similar manner.

Lemma8 Let 7" be a spanning tree of G and P be along 2-path of a 1-LOT 7" of . SupposeP is
incident on two regions £ and R in 7. The number of nodesin P which are leaves of 7" is at most
(7) four, if £ and R are both special, (i7) three, if only one of £ and R is special, and (7i¢) two, if £
and R are both normal.

We can think of the above lemma as providing an upper bound on the number of leaves of 77 in
any long 2-path P of 7" in the following way. Assume that a normal region contributes a charge of
one and a specia region a charge of two to the upper bound for any incident long 2-path. Then the
upper bound on the number of leaves of 7’ in any long 2-path P is exactly the sum of the charge
contributions of both its adjoining regions.

6.4 Invalid regionsand better bounding

Even the careful counting of the leaves of 7" in long 2-paths in the above lemmais not sufficient to
prove Theorem 1. For example, consider an internal normal region. To connect any nodein such a
regionin7” to any region outside, we must use one of thelong 2-pathsincident on it since there are
no non-tree edges going from this region to any other region. Thisimplies that this normal region



cannot charge a contribution of one to all itsincident long 2-paths. To capture this we define the
notion of an invalid region.

Definition: A regionof T isinvalidin 7" if it is either an internal normal region or it is a specia
region and every specia leaf inthisregionisasoaleaf in 7”. We now define long 2-paths for which
the bounds on the number of leaves of 7’ is more stringent than those stated in Lemma 8. Let P
be a long 2-path of 7". We call P deficient in 7" if the number of nodesin P that are leavesin T’
isat most two less than the upper bound stated in Lemma 8. We can prove the following using the
propertiesof aninvalid region of a1-LOT.

Lemma9 Let k bethe number of regions of a 1-LOT 7" that areinvalid in 7”. Then we can identify
atleast (k£ — 1) distinct long 2-paths of 7" that are deficient in 7”.

Now we prove our final bound on the number of leaves of any spanning tree 7” that are nodesinlong
2-pathsina1-LOT 7.

Lemma10 For any spanning tree 7", the number of leaves of 7" that are nodes of long 2-pathsin
al-LOT 7" isat most
45 + 3\, — A — 25",

where A* isthe number of normal leaves of 7" which are also leaves in 77, and S* is the number of
special regions of 7" that areinvalidin7”.

Proof LetS; and R; denote the number of special and normal regions of degree ¢ for any ¢ > 1,
respectively. Then we have S = >, 5 and R = )", R;. If we regard 7' as a tree of
regions, the sum of degrees of regionsis at most two times the number of long 2-paths. Namely,
Yois1tSi+ Y isq1 - Ry < 2P, Weinterpret Lemma 8 using the notion of charge contributions of
regions to incident long 2-paths. Using this interpretation, the total number of leaves of 77 in long
2-pathsof T'isatmost 2% .o i-S;+ > ;511 Ry < 4P, — 3 .1 R;, by thepreviousinequality.

Note that a single normal leaf is also a normal region. If a normd leaf of 1" is also a leaf
in 7", then we can verify that this normal region cannot contribute any charge in the scheme
above to its incident long 2-path. So we subtract one for each such region to get a bound of
APy — > syt - Ri— Xy =4R+S—-1)—>",,1- Ry — X using (2).

Note that the number of invaidregionsin 77 is precisely sum of the number of internal normal
regionsand invalid special regions. The number of such regionsis R — R, + S*. By Lemma9and
the definition of deficiency, we can then subtract at least 2(R — Rq + S* — 1) from the bound derived
above. Thusthe fina upper bound on the number of leavesin T’ from long 2-pathsin T' is

AR+S) =D i-Ri— X, —2R— R+ 5%).
i>1

Simplifyingusing R = >~,5; R; and R; = A,, provesthelemma |

6.5 Proof of Theorem 4

We alow all high degree nodesin 7" and all nodes in short 2-paths of 7" to be leaves in 7. Using
Lemma 10 with 7" = T*, we infer that the number of leavesin 7™ on long 2-paths of 7" is at most
45 + 33X, — A} — 25*. Theremaining nodesin GG are just specia leaves and normal leaves. Since
exactly A7 normal leaves are still leavesin 7™, and at least S — S* specia leaves are not leavesin
T’, the number of leavesin 7™ is bounded by

N3+ P+ (45 43X, — A, =25")+ (A, — (S =S5")+ Ap).



NSOV SO S N

(@)

N/ N7/ N/ /A

Figure4: (a) An example of 1-LOT. (b) The maximum-leaf spanning tree of the graphin (a).

Note that S < A, because each special region contains at least one special leaf. From (2) and (1),
weget S + Py < N3+ A, — R. It followsthat

< (N3+3X+3%,)+(Ns+ A, = R) usingS < A,
=(2N3+3X\; +3)\,)+ (R1— R) < 2N3+ 33X, + 3A,
< 2n1+4 3ng(since s + A, isjustny) = 5A(T).

By Lemma 7, we know

>

(T5) _ A1)

Therefore, Theorem 4 is proved. |

We concludethis section by showing an example of a1-LOT inwhich thebound of 5in Theorem
1 isapproachable arbitrarily closely. It iseasy to verify that thetreein Figure 4-(a) isa1-LOT. The
maximum-leaf spanning tree for this graph is shown in Figure 4-(b). Clearly, thelonger this1-LOT
is, thecloser tofivetheratiois.

7 Futurework

We believe that the performance ratio of 2-LOTs is better than what we prove in Theorem 2 and
conjecture the following.

Conjecture 2 The performance guarantee of 2-LOTsis 2.5.

Working on the cases k > 3 to obtain better performance guarantees is a direction for future work.

Papadimitriou and Yannakakis [15] identified a class of NP-hard optimization problemsinterre-
ducible to one another using approximation-preserving reductions and thus took a step towards
classifying NP-compl ete problems with respect to the hardness of approximating them. They called
thisclass MAX-SNP. Recent work [1] has shown that problems compl ete for this class do not permit
afully polynomial-time approximation scheme unless P = N P. It isan intriguing open problem to
determine if the maximum-leaf spanning tree problemis complete for MAX-SNP or if it does allow
a(1+ ¢)-approximation. Along thisdirection, it would be interesting to examine if k-LOTs can be
used in deriving such a polynomial-time approximation scheme.

Acknowledgments

We gratefully acknowledge the support, guidance and encouragement of our advisor, Prof. Philip
Klein.



References

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy, “Proof
Verification and Hardness of Approximation Problems,” (to appear in the Thirty-third annual
| EEE Foundations of Computer Science Conference, 1992).

[2] G. A. Croes, “A method for solving traveling-salesman problems,” OR 6, No. 6, (Nov.-Dec.
1958), pp. 791-812.

[3] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Comm. ACM 17, 11
(Nov. 1974), pp. 643-644.

[4] Martin Furer and Balaji Raghavachari, “ Approximating the minimum degree spanning tree to
within one from the optimal degree’, Proceedings of the Third Annual ACM-SAM Symposium
on Discrete Algorithms (1992), pp. 317-324.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of
NP-completeness, W. H. Freeman, San Francisco (1979).

[6] J. R.Griggs, D. J. Kleitman, and A. Shastri, “ Spanning trees with many leavesin cubic graphs,
J. Graph Theory, 13 (1989), pp. 669-695.

[7] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, “How easy isloca search?,” J. Comp.
Syst. i, 37(1988), pp. 79-100.

[8] R. M. Karp, “Reducibility among combinatoria problems,” in R. E. Miller and J. W. Thatcher
(eds.), Complexity of Computer Computations. Plenum Press, New York (1972), pp. 85-103.

[9] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” BSTJ
49 (1970), pp. 291-308.

[10] D. J. Kleitman and D. B. West,” Spanning trees with many leaves,” SSAM J. Disc. Math. Vol.
4, No. 1, (February 1991), pp. 99-106.

[11] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the Traveling-Salesman
Problem,” Oper. Res. 21 (1973), pp. 498-516.

[12] C. Payan, M. Tchuente, and N. H. Xuong, “Arbres avec un nombres maximum de sommets
pendants, Discrete Math., 49 (1984), pp. 267-273.

[13] C. H. Papadimitriou, A. A. Schéffer, and M. Yannakakis, “On the complexity of local search
(Extended Abstract),” in Proc. of the twenty second annual ACM Symposium on the Theory of
Computing, pp. 438-445 (1990).

[14] C.H. Papadimitriouand K. Steiglitz, Combinatorial Optimization: Algorithmsand Complexity,
Prentice-Hall, Inc. (1982).

[15] C. H. Papadimitriou, and M. Yannakakis, “Optimization, Approximation, and Complexity
classes,” in Proc. of the twentieth annual ACM Symposium on the Theory of Computing, pp.
229-234 (1988).

[16] R.Ravi,B.Raghavachari, and P. N.Klein, “ Approximationthroughlocal optimality: Designing
networks with small degree,” in Proceedings, Twelfth annual conference on Foundations of
Software Technology and Theoretical Computer Science (1992), to appear.

[17] J. A. Storer, “Constructing full spanning trees for cubic graphs,” Inform. Process. Lett. 13
(1981), pp.8-11.

[18] M. Tchuente, “Sur |" auto-stabilisation dans un réseau d' odinateurs,” R. A. I. R. O. Informatique
Theorique 15, (1) (1981), pp. 47-66.



