
Algorithmica (1997~ 18:21-43 Algorithmica
O 1997 Springer-Verlag New York Inc.

An Approximation Algorithm for Minimum-Cost
Vertex-Connectivity Problems

R. Ravi I and D. R Wil l i amson 2

Abstract. We present an approximation algorithm for solving graph problems in which a low-cost set
of edges must be selected that has certain vertex-connectivity properties, in the survivable network design
problem, a value ri) for each pair of vertices i and j is given, and a minimum-cost set of edges such that
there are ri.i verlex-disjoint paths between vertices i and j must be found. In the case for which r 0 E 10. 1.2}
for all i, j , we can find a solution of cost no more than three times the optimal cost in polynomial time. In
the case in which r i j = k for all i. j , we can find a solution of cost no more than 2~(k) times optimal,
where 7~(nl = 1 + �89 + ... + ~.. No approximation algorithms were previously known for these problems.
Our algorithms rely on a primal~lual approach which has recently led to approximation algorithms for many
edge-connectivity problems.

Key Words, Approximation algorithm, Vertex connectivity. Survivable network design, Primal-dual method.

1. I n t r o d u c t i o n . Let G ---- (V, E) be an undirected graph with nonnegat ive costs

c , > 0 on all edges e E E. In the survivable network design problem, a nonnegat ive

integer rij for each pair o f vert ices i, j is given, and a min imum-cos t set o f edges

E ' c E must be found such that for every i, j pair there are at least rij vertex-disjoint

paths be tween i and j in the graph (V, E'). The minimum-cost k-vertex-connectivi~.
problem is a special case o f the survivable ne twork design problem in which rij = k for

all pairs of vert ices i, j .

The survivable ne twork design p rob lem has rece ived a good deal of attention in the

literature recently, as it can be used to model the design of low-cost te lephone networks

that can "surv ive" certain types of edge and node failures. An edge cost ce denotes the

cost o f laying a fiber-optic cable be tween the endpoints of edge e, and a value rij denotes

the number of edge and node failures that must occur in the network before i and j are

comple te ly disconnected. In practice, the values o f rij tend to be quite low, usually no

more than 2 for all vertex pairs, since failures are assumed to be isolated accidents, such

as fires at nodes [151, [20]. We call the problem in which rij E {0, 1,2] the {0, 1,2}-

survivable network design problem. The survivable network design problem is known

to be NP-hard even in the case of the min imum-cos t 2-ver tex-connect iv i ty problem [2],

even if the edge costs are ei ther 1 or 2. Because o f this, many heurist ics have been devised

I Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh. PA 15213, USA.
ravi@ andrew.cmu.edu. This research was supported by NSF Grant CCR-91-03937 and a DIMACS postdoctoral
fellowship, and was conducted in part while the author was visiting MIT.
2 IBM TJ Watson Research Center. Room 33-219, P.O. Box 218, Yorktown Heights, NY 10598, USA.
dpw@watson.ibm.com. This research was supported by an NSF Graduate Fellowship and an NSF Post-
doctoral Fellowship, and was conducted in part while the author was a graduate student at MIT and in part
while a postdoc at Cot'nell.

Received October 27, 1994; revised August 14, 1995. Communciated by M. X. Goemans.

22 R. Ravi and D. E Williamson

to find solutions to the survivable network design problem; see Chapter 3 of [20] for a
survey. In particular, Monma and Shallcross [15] devised local improvement heuristics
for a special case of the {0, I, 2}-survivable network design problem arising from Bellcore
network design problems: these heuristics were used in a Bellcore software package.
Grrtschel et al. [5] implemented a branch-and-cut algorithm for the same problem.

A difficulty with such heuristics for the survivable network design problem, however,
is that the solution produced may not have cost guaranteed to be close to the cost of
the optimal solution. For this reason, we consider approximation algorithms for special
cases of the survivable network design problem. An a-approximation algorithm is a
polynomial-time algorithm that produces a solution of cost no more than c~ times the
value of an optimal solution. We give the first known approximation algorithm for the
most practical variant of the survivable network design problem in which rij G {0, 1,2}
for all pairs of vertices i, j . The algorithm produces solutions of value no more than three
times the optimal value. Furthermore, we give the first known approximation algorithm
for the minimum-cost k-vertex-connectivity problem. Our algorithm produces solutions
of value no more than 27-/(k) times optimal, where ~ (n) = 1 + _~ + . . . + - . Our
techniques also provide approximation algorithms for the problem of augmenting an
/-vertex-connected graph to a k-vertex-connected graph using edges of minimum cost.
We give solutions for this problem of value no more than 27-/(k - l) times optimal.

Our work flows out of a recent line of research on designing approximation algo-
rithms for edge-connectivity problems [1], [4], [3], [12]. [24]. This research has led
to a 2~(maxi. j rii)-approximation algorithm for the survivable network design prob-
lem in which there must be rij edge-disjoint paths between vertices i and j . In fact,
very general types of connectivity problems can be approximated in which, for each
subset of vertices S, there must be at least f (S) edges selected from ,~(S) where
,~(S) = {(u,v) c E �9 u ~ S ,v ~ S} and f (S) is a function f : 2 v ~ N o f a c e r -
tain form. We follow the approach of these algorithms, and their proofs, particularly
those given in [24] and [31. The algorithms in these papers break down the problem
into a number of phases. In each phase we specify certain vertex sets S that must be
augmented; that is, we must select an additional edge from a(S) of each specitied set
S. This augmentation problem is formulated as an integer programming problem, and
the problem is solved by using a variant of the primal-dual method. For a more detailed
presentation of the algorithm and an overview of this line of research, see [22].

Implementations of the edge-connectivity algorithms have shown that they work well
in practice [23], [141, coming within a few percent of optimal. We expect that the same
will also be true of our new vertex-connectivity algorithms. We further observe that the
solutions given by our algorithm can be used as a good starting point for improvement
heuristics like those of Monma and Shallcross [151 or as a bounding routine within a
branch-and-bound scheme.

Very few optimal or approximation algorithms were known for solving minimum-cost
vertex-connectivity problems prior to our work. Khuller and Thurimella [11] give a 3-
approximation algorithm for the minimum-cost 2-vertex-connectivity problem. Khuller
[I0] shows a 2(1 + I/n)-approximation algorithm for the same problem in an n-vertex
graph. After the appearance of an extended abstract of our paper [18], Khuller and
Raghavachari [10] gave a (2 + 2(k - l)/n)-approximation algorithm for the minimum-
cost k-vertex-connectivity problem for graphs with edge costs that obey the triangle

An Approximation Algorithm for Minimum-Cost Vertex-Connectivity l:h'oblems 23

inequality. Our results do not require the triangle inequality assumption. Most of the
known results for vertex-connectivity problems are for the restricted case in which the
graph G is complete and all edge costs are identical. In this case, Harary [6] has shown
how to find an optimal solution for the k-vertex-connectivity problem. In this setting,
Jord~in [9] has shown how to augment any k-vertex-connected graph to a (k + l)-vertex-
connected graph using at most k - 2 more edges than necessary. Optimal algorithms
are known to augment any starting graph to a 2-vertex-connected graph [2] or to a 3-
vertex-connected graph [21 I, [8]. Hsu [7] has shown how to augment optimally any
3-vertex-connected graph to a 4-vertex-connected graph.

The rest of the paper is structured as follows. Section 3 describes the approximation
algorithms by showing how they can be reduced to an augmentation algorithm. Section 4
proves that the algorithms provide near-optimal solutions. Section 5 tells how the algo-
rithms can be implemented in polynomial time, and we conclude in Section 6 with a few
remarks. We first begin with some preliminary definitions and concepts in Section 2.

2. Nota t ion and Basic Definit ions. Given a set of edges I and a set of vertices S, we
define F t (S) to be the "vertex neighborhood" of S with respect to I; that is, r t (s) =
{v e V - S �9 (u, v) ~ I for some u ~ S}. The "vertex complement" of S, (t (S) , is
defined to be V - S - rx (s) . Occasionally we drop the subscript 1 when it is clear from
the context.

We need some facts about F and (. First, F~(S) is submodular for any edge set 1.
That is, for any edge set I and any two sets of vertices A and B, IFt(A)I + II ' / (B)[>
I r t (A tJ B)I + IFI(A N B)I. We also observe that F t (A fq B) - A - B c F I (A) A F / (B) .
Finally, for any vertex set A, A c r

For a set of edges / and a set of vertices S, the cobounda~ of S is denoted ~/(S)
and defined to be {(u, v) c f lu ~ S, v r S}. We define 6t(S " T) to be the set of edges
{(u, v) c l lu ~ S, v ~ T}.

Given a set of edges I c E of a graph G = (V, E), a set C c V is a outset of / if
there are fewer connected components in (V, I) than in the graph induced by removing
the vertices in C and adjacent edges from 1. If C = {v} is a cutset for some vertex v, the
vertex is called a cutvertex. A cutset C separates two vertices s and t if s and t are in the
same connected component of (V. I) , and removing C causes s and t to be in different
connected components.

We use the following theorem of Menger I 13].

THEOREM 2. I (Menger). Let s and t be two nonadjacent vertices in a connected graph
G. Then there exist at least k vertex-disjoint paths between s and t (f and only if there is

no cutset o f size k - I or less separatiug s and t.

.Menger's theorem has thc following simple corollary.

COROLLARY 2.2. Given a connected graph G with at least k + 1 vertices, the graph is

not k-vertex-connected if and only if there exists a cutset of size k - I or less separating
a pair of nonadjacent vertices.

24 R. Ravi and D. P. Williamson

Notice that any graph that contains a k-vertex-connected subgraph must contain at least
k + 1 vertices; we assume that the graphs given as input to our k-vertex-connectivity
algorithm have at least k + 1 vertices. Therefore, if a connected graph on k + 1 vertices
has no nonadjacent vertices with a cutset of size k - 1 or smaller separating them, then
every pair of vertices will have k-vertex-disjoint paths between them.

3. The Algor i thms , In this section we give the basic high-level structure of the algo-
rithms. We show how the {0. 1,2}-survivable network design problem and the k-vertex-
connectivity problem can both be reduced to an augmentation problem. Given a set of
edges F to augment, we specify sets of vertices S such that we must select at least one
additional edge l~rom 3(S : (~.(S)) for each S. Intuitively speaking, this will increase the
size of the vertex neighborhood of S by at least one. We then give an algorithm AUGMENT
which is able to find a low-cost solution to this problem under certain conditions.

3.1. The Algorithm for the Minimum-Cost k-Vertex-Connectivity Problem. We begin
by giving the high-level structure of the algorithm for the minimum-cost k-vertex-
connectivity problem, which we call APPROX-k-VERTEX-CONN. The algorithm consists
of k phases, and each phase adds edges to the current solution, starting initially with the
empty set of edges at the beginning of phase 1. The idea is that at the end of phase p,
our set of edges should form a p-vertex-connected graph on the set of vertices of the
input graph. We denote our set of edges at the end of phase p as Fp. In phase p we must
augment the (p - l)-vertex-connected edge set Fp_l to the p-vertex-connected Fj,.

In order to perform this augmentation, we call the augmenting subroutine AUGMENT.
AUGMENT takes as input the edge set Fp_l and a function h: 2 v --+ {0, 1}, and returns a
set of edges F' c E - Fp-i such that i f h (S) = 1, then I~-, (S : r , (S))I > 1. The idea
is that adding F ' to b~_ i will increase the size of the vertex neighborhood of S by at least
1 for each S such that h(S) = 1. The function h has exponential size in the number of
vertices, so we would never be able to write the function down when calling AUGMENT,

but we will see in Section 5 that we will be able to answer AUGMENT's queries about h
in polynomial time.

In phase p of APPROX-k-VERTEX-CONN, we set h(S) = 1 exactly when the vertex
neighbors of S are a size p - 1 cutset of Fp_ l, and S is the smaller of the two halves of
the graph induced by removing the vertex neighborhood of S, FF, , (S). Thus h(S) = 1
in phase p iff IF~;,_, (S)[= p - 1, and 0 < ISI _< I.(n - (p - 1))/2]. We claim then
that Fp ~ Fp_l U F' is p-vertex-connected. Because Fp_l is (p - 1)-vertex connected,
there can be no cutsets of size p - 2 or smaller, and by the definition o f h and AUGMENT,
we increase the size of the vertex neighborhood of any set S which has a size p - 1
cutset in the edge set bp - i . Thus kp is p-vertex-connected.

The overall algorithm is given in Figure 1.

3.2. The Algorithm,3~r the {0, 1,2}-Survivable Network Design Problem. In this sec-
tion we present the high-level algorithm for solving the survivable network design prob-
lem when ri) E {0, 1, 2}. The algorithm here will have two phases. In the first phase we
find a solution for the network design problem with requirements r~j = m a x (r i . / - 1,0).

An Approximation Algorithm for Mininmm-Cost Vertex-Connectivity Problems 25

APPROX-k-VIgRTEx-CONN (V, E, c, k)

1 Fo .-- 0
2 forp,-- 1 to k
3 Comment: Begin phase p

1 if IFFp_~(S)I = p-- 1 and 0 < ISI <_ ['~-(~-U]
4 h(S) +- 0 otherwise

5 F ~ 4--AoG~IP, NT(V,E, Fp_bc, h)

6 Fp*--F'UFp_l

7 return Fk

Fig. I. The algorithm for k-vertex-connectivity.

In the second phase we augment this solution to find a feasible solution for the original
problem. Essentially the first phase finds a set of edges to connect all pairs of vertices
i, j for which rij ~ 2 , and the second phase finds a second vertex-disjoint path for these
pairs of vertices, as well as edges to connect all pairs i, j for which r i j ~ - 1.

Notice that when finding a set of edges to solve the problem of the first phase, there is
no difference between edge-connectivity and vertex-connectivity. Hence we can use an
approximation algorithm for the edge-connectivity survivable network design problem
in which r ! ~ {0, 1 }. As was mentioned in the Introduction, such algorithms are already

~J
known; the first such algorithm for this problem is due to Agrawal et al. [1]. For the sake
of our analysis, we use the algorithm of Goemans and Williamson [4]. Let F1 denote the
set of edges returned by this algorithm.

To find an augmenting set of edges in the second phase, we once again use the
subroutine AUGMENT. We call AUGMENT on a modified graph G' ---- (V', E') . For every
edge (i, j) 6 F1 such that rij ---- 2, we create a new vertex u that subdivides the edge
(i, j) . That is, for each such edge (i, j) , we add u to V, remove (i, j) from E, and add
edges (i, u) and (u, j) . Our reason for doing this is so that i and j are no longer adjacent
in the modified graph, and so that we will be able to apply Menger's theorem. 3 Note that
there is a solution F(in G' corresponding to Fi in G.

To use AUGMENT, we set h(S) ---- 1 exactly when there exist i 6 S, j E (F[(S) (in
the modified graph G') such that I FF[(S)I < rij. This can happen in one of two ways. If
r i j = 2, then i and j need to be 2-vertex-connected but are separated by a cutvertex. If
Fij ~--- 1, then i and j need to be connected, but are in different connected components. As
before, AUGMENT will return a set of edges F ' _ E ' - F~ such that 13F' (S : (~-[(S))I > 1
whenever h(S) = 1. By the definition o fh and F[, for any two i, j such that rij = 2 , the
set of edges F~ tJ F ' will contain no cutvertex separating i and j in the modified graph.
Similarly, for any two i, j such that rij ----- 1, there will exist a path in F~ U F ' from i to j
in the modified graph. Notice that since there are no edges in E' - F~ involving the new
vertices of the modified graph, the set of edges F ' is a subset of edges of the original
graph. Thus F2 +-- Fl U F ' is a feasible solution to the original problem in the original
graph: the nonexistence of a cutvertex separating any i, j with r i j ~--- 2 in the modified

3 We do not need to subdivide edges in APPROX-k-VERTEX-CONN because of Corollary 2.2.

26 R. Ravi and D. P. Williamson

APPROX-0,1 ,2-SNDP (V , E , c , r)

1 r~) ~ max(r , j - 1,0) for all i , j

2 F1 ~--EDG~.-SNDP(V,E,c ,r ~)

3 Modify V, E and F1 by creating for every edge (i , j) ~ Fi such that rij : 2 a new vertex u
tha t subdivides the edge (i , j) . Call the resulting sets V ~, E I and F~ respectively.

t if ~i e S , j 6 ~F;(S) such tha t [FF;(S)[< r,j
4 h(S) ~-- 0 otherwise

5 F I * -AuGMENT(V ' ,E ' ,F~ ,c ' ,h)

6 F 2 * - F ' U F 1

7 r e t u r n F2

Fig. 2. The algorithm for the {(I, 1,2}-survivable network design problem.

graph implies that there are two vertex-disjoint paths between i and j in the edge set b),
and similarly that i and j are connected in F2 if rij = 1.

The overall algorithm is given in Figure 2.

3.3. The AUGMENT Algori thm. The augmentation algorithm AUGMENT is given in
Figure 3. It is adapted from the algorithm of Williamson et al. [24] used in the edge-
connectivity survivable network design algorithms. Given a graph (V, E), a set of edges
I , and an input function h meeting three conditions, the algorithm produces a low-cost
set of edges F' c_ Eh -- E - I such that IrF,(S " ~'/(S))I > h(S) for all nontrivial
subsets S. Before discussing the conditions on h, we first introduce some definitions.

DEFINITION 3.1. A vertex set S is violated with respect to a set of edges F ' if h (S) = 1
but 6F'(S " (t (S)) = 0.

Thus F ' is a feasible solution for the augmentation problem if there are no violated
sets with respect to F ' .

DEFINITION 3.2. A vertex set S is active with respect to a set of edges F ' if it is violated
and minimal with respect to inclusion.

DEFINITION 3.3. T w o sets o f venices A , B are crossing (or A crosses B) i f A A B Ts O
and neither A c B nor B c A.

We can now state the first two conditions on h.

CONDITION 1. For any edge set F c Eh, it must be the case that no violated set with
respect to F crosses any active set with respect to F.

CONDITION 2. For any edge set F c Ej,, the active sets of h with respect to F can be
computed in polynomial time.

An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems 27

AIJGUI~NT (V , E , I , c , h)

1 i , - - 0

2 d(e) e - O f o r a . l l e E E h = E - I

3 F ~ - O

4 {7 ~-- active sets with respect to F

2 i r e E 6(C1 :(I(C1))M6(C2 : (I (C2)) for C1,C2 E C,C1 ~ C~
5 ~(e) , - 0 if e ~t 6(c : Cr(c)) for any C C C

1 otherwise

6 w h i l e ICl > 0
7 i , - - - i + l

8 Comment: Begin iteration i

9 Find edge ei = (u, v), a(e,) ~ 0, tha t minimizes e -=

10 For all e E Eh
11 d(e) ,--- d(e) + a (e) . e

12 Comment: Implicitly set Yc ~ Yc + �9 for all C E C

13 F ~ F U {ei}

14 Upda te 6'

15 Upda te a(e)

16 Comment: End iteration i

17 Comment: Edge deletion stage

18 F ~ ~ F

19 fo r j ~-- i d o w n t o 1

20 If F ' - {ej} is feasible

21 F' ~ F' .- {e~}

22 r e t u r n F ~

Fig. 3. The augmenting algorithm AUGMEN~I ".

Notice that the first condition implies that all active sets are disjoint. The third condi-
tion on h is a more technical one which we will introduce in the analysis of the algorithm.
We prove that the first condition holds for the functions h from the algorithms at the end
of the section. We show that the second condition holds for our algorithms in Section 5.
The three conditions are summarized at the end of Section 4.3.

The algorithm AUGMENT works in two stages. In the first stage the algorithm starts
with an empty set of edges F and goes through a sequence of iterations. In each iteration
an edge is added to F. The first stage terminates when F is a feasible solution (that is,
there are no violated sets). To be more specific, we denote the collection of active sets
with respect to the current set of edges F by C. In each iteration the algorithm selects
an edge from 3~:,(C : ~I(C)) for some active set C E C, and adds this edge to F .
Clearly when there are no longer any active sets, the set of edges F is a feasible solution.
The second stage deletes redundant edges from F to obtain F ' . To do this, we con-
sider all the edges of F in the reverse of the order in which they were added to F . If
removing the edge from F does not affect the feasibility of the remaining edge set,
we discard it.

28 R. Ravi and D. E Williamson

We use duality to guide the addition of edges to F, in order to ensure that we find a
low-cost solution. In effect, we would like to solve the following integer program:

(AUG) Min CeXe
eeEh

Z xe > h(S) , 0 ~ S C V,
subject to eE~eh(S:(l(S))

xe 6 {0,1}, e E Eh.

Consider the dual of the linear programming relaxation of (AUG):

(D) Max Z h(S)y s
S

(1) Z Ys < c~, e E Eh,
subject to S:e~6(S:(t(SD

Ys > 0 .

Our algorithm will maintain a feasible solution for (D). At the beginning of the algorithm
we set Ys = 0 for all S C V. In each iteration we increase the dual variables Yc uniformly
for all currently active sets C until one of the packing constraints (1) becomes tight; that
is, for some e E Eh,

Ce = Z Ys.
S:e~_~(S:r-,I(S))

In particular, the constraint must become tight for some edge e E S~:,,(C �9 O (C)) for
some C E C. We choose to add this edge e to F in this iteration.

In the description of AUGMENT given in Figure 3, we only use the dual variables Ys
implicitly. Instead, we maintain variables a(e) and d(e) such that in each iteration a(e)
indicates the number of active sets C such that e ~ ~E,, (C " 0 (C)) (note that this can be
either 0, 1, or 2) and

d(e) = Z Ys.
S:eeS~S:r

Thus in each iteration we can increase each Yc for the active sets C by e as long as

d(e) + a(e) �9 s < co.

Therefore, the largest e can be is the minimum of (c~ - d (e)) /a (e) taken over all
e ~ 8(C " O (C)) over all active sets C. An edge e that attains this minimum will be
added to F. Notice that the implicit dual solution remains feasible for (D). It is initially
feasible since, for any edge e, Y~.s:~s(s:~,(s)) Ys = 0 <_ c~. Once an edge e is selected,
~S:ec6(S:z,(S)) YS does not increase because no S such that e E 8(S " (1(S)) will be
violated.

We now turn to showing that active sets do not cross any violated sets for the functions
h used by the algorithms of the preceding sections. We begin with functions h of APPROX-
k-VERTEX-CONN.

LEMMA 3.4. Let h be a function f i r m phase p o f APPROX-k-VFRTEX-CONN, let Fp_I
be the edges found in the first p - I phases of APPROX-k-VERTEX-CONN, and let F c_
E - Fp_ 1. I f A and B are crossing violated sets with respect to the edge set F, then
A fq B is a violated set and either A U B or (ruG_ , (A U B) is a violated set.

An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems 29

........ ~(A UB)

~ . ~ F (A U B)

Fig. 4. Cases in the proof of Lemma 3.4. Note that both ((A U B) 7~ 0 and ((A N B) r ~I. The candidate
uncrossed sels are drawn in thin broken lines. A N B and the smaller of A U B and ((A U B) are the uncrossed
sets.

PROOF. Recall that in this case a set S is violated iff 8F(S : ~ 'F t ,_ , (S)) = 0 , and
h(S) = 1, which is equivalent to (~-u~-p_,(S) ~- 0, IFFuFp ~(S)] = p -- l, 0 < ISI <
L(n - (p -- 1))/2J. We use this equivalent definition in the proof. For the remainder of
the proof we drop the subscript F U Fp-l from the 5, (, and F functions.

The strategy of the proof is to show that both IF(A A B)I > p - I and If'(A U B)I _>
p - I. Hence by submodularity and the fact that]F(A)I = IF(B)I = p - l, we have
that]F(A n B)I = IF(A U B)[= p - 1, immediately implying that A n B is violated
and, a little less immediately (as we will show), that the smaller of A U B and ((A U B)
is violated. In order to show that IF(A n B)I > p - l and IF(A U B)I >_ p - l, we show
that ((A N B) and ((A U B) are nonempty. Then the fact that / '~-1 is (p - l)-vertex-
connected implies that [F(A M B)I >_ p - I in order for there to be p - I vertex-disjoint
paths between the vertices in A n B and ((A O B). Similarly, ((A U B) -~ 0 implies

IF(A U B) I >_ p - 1.
Now to begin the proof. Because A and B are violated and cross, we know that

IA U BI _< n - (p - 1) - 1. We claim that ((A n B) ~ 0. Using the relation from
Section 2 that F(A n B) - A - B c_c_ F(A) n F(B) , we see that I(A ~ B) U V(A N B)I _<

IA U B U (F(A) n V(B))I _< n - 1, implying that ((A n B) ~ 0. By the logic of
the preceding paragraph, it follows that IV(A n B)I >_ p -- 1. By the submodularity
of IF(S)I, it follows that IF(A U B)I _< p - 1. Then IA U B U F(A U B)I _%< n - 1,
or ((A U B) r 0. Then IF(A U B)I >_ p - 1. Thus it follows by submodularity that
IF(A U B)I ---- IF(A n B)I --- p - 1. Thus A N B is certainly violated. Also, we claim
that the smaller of A U B or ((A U B) must be violated. Certainly the smaller of them

must have size no greater than L(n - (p - l)) /2J . If A U B is smaller, then we are
done, as we have already shown that ((A U B) -r ~ and IF(A U B)I ---- p - 1. If
((A U B) is smaller, then, since A U B c_ ((((A U B)), we know ((((A U B)) :/: 0.
In addition, IF(((A U B))I = p - 1 since I ' (((A U B)) _ F(A U B), and since the
(p - 1)-vertex-connectivity of Fp_l implies that IF(f (A U B))I _> p - 1. []

THEOREM 3.5. Let h be a function from phase p o f APPROX-k-VERTEX-CONN, and let
F be any set o f edges. The active sets with respect to the edge set F do not cross any
violated set.

30 R. Ravi and D. P. Williamson

PROOF. Suppose there is an active set A that crosses a violated set B. Then by L e m m a 3.4,

A n B is also a violated set, with A N B C A, contradict ing the minimal i ty o f A. []

Now we consider the case o f the survivable network design problem. Let h be the

funct ion from APPROX-0,1,2-SNDP, let Fj be the set of edges found in Step 2 o f APPROX-

0 ,1 ,2-SNDP, and let F C E - F l . In this case a set S is violated i f f (1) there exist i 6 S,

j ~ fF~(S) such that IF~ ,ur (S) l = I and rij = 2; or (2) there exist i 6 S, j ~ fir ,(S)

such that IFF, o~(S)] = 0 and rij = 1.

LEMMA 3.6. Let h be the function from APPROX-0,1,2-SNDP, let F 1 be the set o f edges
found in Step 2 of APPROX-O,I,2-SNDP, and let F c_ E - FI. I f A and B are crossing

violatedsets, then either A N B and AUB are violated, A - (BU F(B)) and B - (A U F (A))
are violated, or A - B and B - A are violated.

PROOF. Not ice that if neither A nor B is a violated set of type (1), then the set A

(or B) is violated iff g(A) = m a x (h (A) - I~r~u~'(A)l, 0) = 1. Goemans et al. [3]

have shown that this funct ion is uncrossable; i.e., if g(A) = g(B) = I, then either

g (A - B) = g (B - A) = 1 o r g (A U B) = g(A N B) = 1. Thus if A and B are violated
sets o f type (2), then so are ei ther A - B and B - A, or A N B and A U B.

We must show what happens if one of the two sets is of type (1). Suppose B is a

violated set of type (1). Let i and j be the pair of vertices separated by A and let i ' and

j ' be the pair separated by B, where i c A and i' ~ B. The different cases are depicted
in Figure 5.

Casel . A is also of type (1). Not ice that the single vertex ne ighbor o f A can be in ei ther

B - A or V - (A U B). Similar ly the vertex neighbor of B can be in ei ther A - B or

V - (A U B). We cons ider the various cases. First suppose that both A and B have their

vertex ne ighbor in V - (A U B). This case has two subcases. First, if there is an edge from

A n B to V - (A U B), then there can be no edges f rom A - B to A N B or B -- A to A N B,

since then A a n d / o r B would have more than one vertex neighbor (Figure 5(a)). Thus in

order for FI to be feasible for the requirements ri~j, it must be the case that i, i ' c A N B

and j , j ' ~ V - (A U B). Since F (A) = F (B) = F (A U B) = F (A n B) in this subcase,

it fol lows that A n B and A U B are violated. The other subcase is that in which there is

no edge f rom A N B to V - (A U B). Then it fo l lows that there is an edge with endpoints

in A - B and V - (A U B), and another with endpoints in B - A and V - (A U B). It

also fol lows that i E A - B, i ' c B - A, and j , j ' ~ V - (A U B) (Figure 5(b)). Since

then F (A) ---- F (A - B) and F (B) = F (B - A), it fo l lows that A - B and B - A are
violated.

Next, we suppose that the vertex neighbor o f A is in B - A and the vertex neighbor

o f B is in V - (A U B). It fol lows that i e A N B (since otherwise B has more than

one vertex neighbor or Fl is not feasible) and j ' E V - (A U B) (Figure 5(c)). Then

F (A) = F (A N B), F (B) = F (A U B), and A n B and A U B are violated. The case in

which the vertex ne ighbor of B is in A - B and the vertex ne ighbor o f A is in V - (A U B)

is parallel to this one.

The only remaining case is when the vertex neighbor of A is in B - A and the

vertex neighbor o f B is in A -- B. Then it must be the case that j E B -- (A U F (A))

An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems 31

i i ~ i ' " " ' " " " "'"".. ,.....

(a) Case I

A- e

�9

(b) Case I

�9

(c) Case I

A , ~ B

(e) Case 2

A B

" " ' �9

(g) Case 2

(d) Case I

.... !

(f) Case 2

(h) Case2

Fig. 5. Cases in the proof of Lemma 3.6. The uncrossed sets are drawn in thin broken lines while the paths in
b'l are depicted by thick lines.

32 R. Ravi and D. P. Wil l iamson

and j ' ~ A - (B tO F(B)) (Figure 5(d)). Since F(A) = F(B - (A tO F(A))) and
F(B) = FiA - (B tO F(B))) , then A - (B tO FIB)) and B - (A tO F(A)) are violated.

Case 2. A is of type (2). Here the vertex neighbor of B can be in either A - B or
V - (A U B). If the vertex neighbor of B is in A - B, then there are two cases. By
reasoning similar to that above, it must be the case that i ' E A N B. If j ~ V - (A tO B),
then F(A) = F(AtOB), F(B) = F(AAB), and A A B and AtOB are violated (Figure 5(e)).
If j ~ B - A, then F(A) = F (B - (A tO F(A))) = ~, F(B) = F(A - (B tO FIB))) , and
A - (BU F(B)) and B - (AU F(A)) are violated (Figure 5(f)). Now if the vertex neighbor

of B i s i n V - (A to B j, there are two possibilities, l f i ~ AMB, thenFiAr- IB) = F(A) = ~,
F(A tO B) = FiB) , and A f-1B and A tO B are violated iFigure 5(g)). I f / E A - B, then
F (A - B) = F (A) = V I , F (B - A) = F (B) , a n d t h u s A - B a n d B - A a r e v i o l a t e d
(Figure 5(h)). []

The lemma implies the following theorem.

THEOREM 3.7. Let h be the function from APPROX-0,1,2-SNDP, let Fj be the set o f
edges found in Step 2 of AeeRox-0,1.2-SNDP, and let F g E - Fi. The active sets with
respect to the edge set F do not cross any violated set.

PROOF. As in Theorem 3.5. []

4. Analysis of the Algori thms. We now turn to the proofs that the algorithms of the
previous section provide solutions whose cost is close to the optimal cost. At the heart
of our proofs is a theorem about the solutions produced by AUGMENT.

THEOREM 4. I. For the functions h used in APPROX-k-VERTEX-CONN and APPROX-

0,1,2-SNDP, AUGMENT produces a feasible set o f edges F' and a feasible dual solution
y to (D) such that

~--~ c~ _< 2 ~--~ h(S) �9 ys.
e~/"' S

We first show how this theorem implies that APPROX-k-VERTEX-CONN is a 27-/(k)-
approximation algorithm and that APPROX-0,1,2-SNDP is a 3-approximation algorithm,
before proving the theorem itself.

4.1. Analysis o f APPROX-k-VERTEX-CONN. We now prove the following theorem,
where Z~v c is the value of an optimal solution to the given instance of the minimum-cost
k-vertex-connectivity problem.

THEOREM 4.2. The algorithm AI,PROX-k-VERTEX-CONN produces a k-vertex-connected
set o f edges b'k such that

c~ < 2 ~ (k) Z ; v c.
ecl ' t

An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems 33

PROOF. Fix an optimal solution to the instance of the k-vertex-connectivity problem,
and let x e = 1 if edge e is in the solution, and Xe* = 0 otherwise. The key observation
needed for the theorem is that in phase p of the algorithm, (1 / (k - p + 1))x* is a feasible
solution to the linear programming relaxation of (AUG) for the function h used in phase
p. In phase p, any S for which h(S) = 1 has IFF~.,(S)I ---- p -- 1. Thus it must be the
case that x* has at least k - (p - 1) edges between S and (F, , (S), otherwise x* is not
k-vertex-connected. In other words,

Z x* > [k - (p - I)] - h (S) ,
eE6K ~t,-I (S:(rp I (S))

so that (1 / (k - p + 1))x* is a feasible solution to the linear programming relaxation of
(AUG).

Therefore, for any feasible solution y to (D) in phase p, by weak duality, it must be
the case that

h(S) . Ys < Zkvc.
s - k - p + l

By Theorem 4.1, the cost of edges added in phase p is no more than 2/(k - p + l)Z~,vc.
Summing over all phases we have that

k 2
eEFx p=l k -- p + 1 Zkvc = 2~(k)Z*kvc" []

COROLLARY 4.3. A modification of APPROX-k-VERTEX-CONN gives a 2 ~ (k-l)-approx-
imation algorithm for the problem of adding a minimum-cost set of edges to an l-vertex-
connected subgraph to make it k-vertex-connected, l < k.

PROOF. We modify APPROX-k-VERTEX-CONN by changing lines 1 and 2 of Figure 1.
In line 1 we set Ft to the edges of the l-vertex-connected subgraph of G = (V, E). In
line 2 we iterate p from l + l to k. By a proof similar to that of Theorem 4.2, the solution
returned by the AUGMENT routine in the phase p has cost at most 2 / ((k - l) - p + l)
times that of an optimal augmentation. Summing over the phases gives the claimed
performance guarantee. []

4.2. Analysis of APPROX-0,1,2-SNDP. Let Z~N denote the cost of an optimal solution
to the given instance of the {0, 1,2}-survivable network design problem. We prove the
following theorem in a manner similar to the previous theorem.

THEOREM 4.4.
that

The algorithm APPROX-0,1,2-SNDP produces a set of edges F2 such

Z ce <_ 3Z*sn.
e~F2

PROOF. As in the previous theorem, let x* denote an optimal solution to the problem.
To prove the result, we show two things: first, that the cost of the edges returned by the

34 R. Ravi and D. P. Williamson

Goemans-Williamson algorithm is no more than Z*SN, and, second, that the cost of the
augmenting edges is no more than 2Z~N. These two results imply the theorem.

The Goemans-Williamson algorithm finds a feasible solution to the following integer
program:

(IP) Min Z CeXe

eEE

Z X e > max r f , 0 #- S C V,
-- iES,jq~S t] subject to eEr(S)

X~ E {0, 1}, e E E.

As in the algorithm AUGMENT, the construction of the (IP) solution is guided by the
construction of a solution to the dual of the linear programming relaxation. Goemans and
Williamson [4] show that the cost of the (IP) solution constructed is no more than twice
the cost of the solution to the dual of the linear programming relaxation. Thus Y~ecF~ Ce is
no more than twice the value of the optimal solution to the linear programming relaxation.

I , is a feasible solution for the linear programming relaxation of (IP). From Note that ~x
this it follows that Y~e~F, Ce < Z~N.

We now show that Y~e~" Ce < 2Z*sN for the function h used by APPROX-0,1,2-SNDP.
Notice that given an optimal solution x*, there is a corresponding solution x ' to the same
problem for the modified graph G' of the same cost. Observe that x ' is a feasible solution
for (AUG) for the function h. Then, by Theorem 4.1, we are done. []

4.3. Analysis of AUGMENT. We wish to prove Theorem 4.1, and show that

~--~ce < 2Zh(S) "Ys.
e~F' S

The proof is similar to the proof in Section 5 of [24]. Recall that I is a set of edges given
as input to AUGMENT, and F ' is the set of edges output by the algorithm. Notice that,
for every edge e E F', ce = Y~s:e~(s:~,~s~) Ys, and Ys > 0 only if h(S) = 1, so that the
inequality can be rewritten as

ecF' S:e~3(S:~I (S)) S

Rewriting again gives

Z ys �9 IrF,(S �9 ~t(S))l <_ 2 Z y s .
S S

We can prove this statement by induction over the iterations of the algorithm. Initially
Ys = 0 for all S c_ V, and the statement is true. At each iteration, if C is the current
collection of active sets, then the left-hand side of the inequality increases by

E . Z ! r F ' (C " ~ I (C)) } ,
r

An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems 35

while the right-hand side increases by 2elCI. Hence if we can prove that in any iteration,

I~F'(C " p (C)) I _< 21CI,
c e c

then the theorem will be proved.
We now fix some particular iteration of the algorithm, which we call the "current

iteration." Let F denote the set of edges chosen in iterations up to (but not including) the
current iteration. For convenience, we implicitly assume that all S, F, and ~ functions
have a subscript of I U F unless otherwise noted. Define Y = U c c c ~i~-,(C : ~'(C)).
Notice that all the edges in Y must have been added during or after the current iteration.

LEMMA 4.5. For each edge e E Y there exists a witness set Se C V such that:

(1) ~"(Se : ((Se)) : {e}.
(2) Se is violated in the current iteration.
(3) For each C E C either C c_c_ S e o r C n S~ = ~.

PROOF. Any edge e 6 Y is also in F ' , and thus during the edge deletion stage the
removal o f e causes there to exist some violated set; call this set S. In other words, there
can exist no other e' ~ F ' that is also in 6F,(S : ((S)) . This set S will be the witness
set for e, and clearly satisfies (1). Now let F be all the edges added before the current
iteration. To show (2) and (3), notice that when considering edge e in the edge deletion
stage, no edge in F had yet been removed. Hence Se is violated even if all the edges of
F are included; that is, Se is violated in the current iteration. Property (3) follows by the
fact that no active set crosses any violated set Se. []

Consider a collection of sets Se satisfying the conditions of the preceding lemma,
taken over all the edges e in Y. We call such a collection a witness family. A family of
sets is called laminar if no two sets of the family are crossing.

We can now state the final condition we require on h (the three conditions are sum-
marized at the end of this section). The additional technical restriction we require on the
function h in order for Theorem 4.1 to hold is the following.

CONDITION 3. There exists a laminar witness family.

At the end of the section we show that this condition holds for the functions h
used by APPROX-k-VERTEX-CONN and APPROX-0,1,2-SNDP. The remaining proof of
the inequality is essentially identical to the proof of Will iamson et al., but we include
it here for the sake of completeness. Let S be a laminar witness family. Augment the
family with the vertex set V. The family can be viewed as defining a tree H with a vertex
vs for each S ~ S and edge (Vs, or) if T is the smallest element of S properly containing
S. To each active set C ~ C we associate the smallest set S ~ S that contains it. We color
the vertices of the tree H: a vertex vs is colored red if S is associated with some active
set C and colored blue otherwise. Let s be the collection of active sets associated
with a red vertex Vs.

36 R. Ravi and D. E Williamson

LEMMA 4.6. The tree H has at most one blue leaf.

PROOF. Only V and the minimal (under inclusion) witness sets can correspond to
leaves. Any minimal witness set is a violated set, and thus must contain an active set
which corresponds to it. Thus only V can correspond to a blue leaf. []

LEMMA 4.7. kbr any red vertex vs in H, the degree o f vs is at least ~c~c<vs~ lSF,(C "
~(C))l.

PROOE Note that the one-to-one mapping between the edges of Y and the witness
sets implies a one-to-one mapping between the edges of Y and the edges of H: each
witness set S defines a unique edge (Vs, vr) of H, where T contains S. Consider any
edge e c 3r,(C : ~(C)) for some C ~ C. Let (vs,, vr) be the edge defined by the witness
set S~. The active set C must be associated with either Vs, or yr . By summing over all
edges e 6 3r,(C : ~'(C)) for all active sets C corresponding to a red vertex of H (that is,
all C ~ s we obtain the lemma. []

Let Hr denote the set of red vertices in H and let d,, denote the degree of a vertex v
in H. Then

d,, : ff-~dv - ~ d,, < 2 (I n l - 1) - 2 ([n l - I H r l - 1) - ~ = 21H,-i 1.
1

vEHr vE H v~H-H,

This inequality holds since H is a tree with Itll - 1 edges, and since all vertices of
H - Hr except for possibly one have degree at least 2. The lemma above implies that

V~c~ c iSF,(C " r < Y ~ t t , d,., while clearly IHrl _< ICl. Thus

y~ I6F'(C " ~'(C))l _< 21el,
CeC

as desired.
We now recall the three necessary conditions on h.

CONDITIONS ON h.

1. For any edge set F c Eh, no violated set with respect to F crosses any active set
with respect to F.

2. For any edge set F c_ Eh, the active sets with respect to F can be computed in
polynomial time.

3. In any iteration of AUGMENT, there exists a laminar witness family,

We can now state the following corollary to Theorem 4.1.

COROLLARY 4.8. For any function h such that the first and third conditions are obeyed,
AUGMENT produces a set o f edges F' and a dual feasible solution y such that

Z Ce <_ 2)--~ h(S) " ys.
e~F' S

An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems 37

In Section 5 we also show that if the second condition is obeyed, then AUGMENT
runs in polynomial time. Together with Corollary 4.8, this implies that AUGMENT is a
2-approximation algorithm for the integer program (AUG) for any function h that obeys
the three conditions.

4.4. Laminar Witness Families for APPROX-k-VERTEX-CONN. We now turn to proving
Condition 3 for the function h used by APPROX-k-VERTEX-CONN; in the next subsection
we prove it for the function h of APPROX-0,1,2-SNDP. In both cases we show that there
exists a laminar witness family by "uncrossing" pairs of sets using Lemmas 3.4 and 3.6.

For the algorithm APPROX-k-VERTEX-CONN, we first need the following lemmas.

LEMMA 4.9. I f A is a violated set with respect to the function h in phase p of APPROX-
k-VERTEX-CONN, then ((((A)) = A.

PROOF. It is not hard to see that A c_ ((((A)) . Suppose there exists a vertex v
((((A)) - -A . Then it must be the case that v c F(A), ((AU{v}) ---- ((A), and F(AU{v}) =
F(A) - {v}. Since A is violated, ((A) ~ 0 and [F(A)I = p - 1. However, then
((A U {v}) :fi ~ and [F(A U {v})[< p - 1, which contradicts the feasibility of the edge
set Ft,_ 1. []

LEMMA 4.10. I f A and B are crossing violated sets, then F(A) M F(B) ___ F(A n B)
and F(A) n B c F(A n B).

PROOF. In general I"(A n B) ___ F(A) U I ' (B) and F(A U B) c F(A) U V(B). If A and
B are crossing violated sets, then we know that

IF(A)I + I r (B) l = IF(A n B)I + IF(A U B)I,

so that any vertex appearing k times in the sets on the right-hand side of the equation
(k = 0, 1, 2) must appear exactly k times in the sets on the left-hand side, and vice versa.
This immediately implies F(A) O F(B) _c F(A n B). Also, since no vertex in F(A) M B
canbe in F(A U B), then F(A) n B c F(A fq B). []

LEMMA 4.1 1. Let S be a collection of violated sets with respect to the function h in
phase p of APPROX-k-VERTEX-CONN. Then there exists a laminar family of violated sets
formed by successively replacing a crossing pair of sets A and B with an appropriate
choice of A n B and A t_) B, or A n B and ((A U B).

PROOF. We use a potential function

qb(S) = ~-~(ISI 2 -q-I((S)I 2)
S 6 S

to prove the lemma. If A and B cross and are both violated sets, then by Lemma 3.4
either A n B and A U B, or A n B and ((A U B) are both violated. Let S ' be the collection
of sets formed by replacing A and B with the pair of violated sets. We will show that

38 R. Ravi and D. P. Williamson

~,(A u B)
d

Fig. 6. Two crossing sets A and B.

~ (S ') - ~ ($) > 0. Since uncrossing pairs of sets does not increase the number of sets
in the collection, q~ can never grow larger than 21S] �9 n 2. Thus the uncrossing process
must terminate with a laminar family.

Let

a = IA n BI, b = IA - F(B) - BI, c = IB - F(A) - AI,
x = IA N F(B)I, y = IB n F(A)I, z = I F (A) n F(B)I,

p = IF(A) - F(B) - BI, q = IF(B) - F (A) - AI, d = I((A U B)I

(see Figure 6). The initial contribution of A to qb (S) is (a + x + b) 2 d- (c q-q + d) 2, and the
initial contribution of B is (a + y + c) z + (b -t- p + d) 2. After uncrossing, the contribution
of A N B is at least a 2 + (b Jr p + d + q + c) 2 and the contribution of A U B (or ff (A U B),
which we treat symmetrically by Lemma 4.9) is at least d 2 + (a + b + c + x + y)2. Since
all other sets in S ' stay the same, q~ (S') - q~ (S) is at least the difference between these
two quantities, which, by algebraic manipulation, is 2((b + p) (c + q) + (x § b) (y + c)).
Since A and B are crossing, I A - B I > 0 and I B - A I > 0, which implies that x + b > 0
and y + c > 0. Thus qb (S') - qb (S) > 0. []

We can now prove Condition 3 for the function h used by APPROX-k-VERTEX-CONN.

LEMMA 4.12. For the function h given in phase p of APPROX-k-VERTEX-CONN, there
exists a laminar witness family.

PROOF. By Lemma 4.5, there exists a witness family. From this collection of sets we can
form a laminar collection of sets as follows. We maintain that all sets S in the collection
are violated. If the collection is not laminar, there exists a pair of sets A, B that cross.
We "uncross" A and B by replacing them in the collection with either A U B and A n B
or with ff(A U B) and A N B. By Lemma 3.4, we know that at least one of these two
uncrossings yields two violated sets. This procedure terminates with a laminar collection
by Lemma 4.11.

We claim that the resulting laminar collection forms a witness family. This claim can
be proven by induction on the uncrossing process. Recall that each set in the witness
family must obey three properties:

(1) a F , (S e " ~ (S e)) = {e}.

An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems 39

(2) S~ is violated in the current iteration.
(3) For each C c C either C ~ S~ or C n S~ = 0.

Obviously property (2) holds. Property (3) continues to hold because the uncrossed sets
are violated sets for the current iteration, and must either contain or be disjoint from the
minimal violated sets. Now we must prove (1). Suppose we have two crossing witness
sets Si and $2 corresponding to edges el and e2, and, without loss of generality (by
Lemma 4.9) suppose we uncross them into S] N $2 and S~ U Sz. We claim that

I6F'(SI : ~'(Sl))[-k-1r : ~($2))1

!~v'(Si U 52 : C(St U Sz))l + I~F,(St n 52 : ~'(Si n S2))l.

We want to show that each edge counted on the right-hand side is accounted for by the
same edge on the left-hand side. If an edge is in 6F, ($1 U $2 : ff (Sj U $2)), then certainly it
is in either 3v, ($1 : ff (SI)) or 6r ' ($2 : ~" ($2)); it is possibly in both, and certainly in both
if it is also in 3F,($I n $2 : r n $2)). Consider an edge in 3v,(St O $2 : ff(S~ N $2)). If
its endpoint in if(S1 N $2) is in V - (SI U $2), then the edge is in either 3F'(SI : ~(Sl))
or 8r,($2 : ~'($2)): the endpoint cannot be in both F(SI) and F(S2), since we know
F(SI) n F(S2) c F(SI N $2) by Lemma 4.10. Suppose that the endpoint in r O $2)
is in SI - $2. By Lemma 4.10, F(S~) n Sl c F(SI n $2), implying that the endpoint
cannot be in F(S2) and must be in ~'($2). Thus the edge is also in ~F,(S2 : if(S2)). A
similar argument holds if the endpoint is in $2 - SI.

Because F ' covers all violated sets, we know that I3F'(S~ U $2 : ff(Sl U S2))I > 1
and 13~,($1 n $2 : ~($1 N $2))1 >_ 1, and so it must be the case that I6F'(S1 U $2 :
~'(Si US2))I -- [6F,(SIAS2 : ~'($1 AS2))] ---= 1.Then ei therel E (~F,(SIUS2 : ~'(S1 US2))
and e2 E 6F,(SI n S 2 ; ~'(SI n 82)), or vice versa. []

4.5. Laminar Witness Families for APPROX-0,1,2-SNDP. In this section we prove that
Condition 3 is obeyed by the function h used by APPROX-0,1,2-SNDP.

LEMMA 4.13. For the function h given by APPROX-0,1,2-SNDP, there exists a laminar
witness family.

PROOF. As before, we know a witness family exists, and our strategy is to show that
we can form a laminar witness family by uncrossing any crossing pairs of sets. By
Lemma 3.6, whenever two violated sets A and B cross, then either A N B and A U B are
violated, or A - (B U F (B)) and B - (A U F(A)) are violated, or A - B and B - A
are violated. We replace any pair of crossing witness sets with the appropriate pair of
violated, noncrossing sets. This process terminates, since the number of pairs of crossing
sets decreases. If any set X crosses both A and B, uncrossing A and B does not increase
the number of sets X crosses. If X crosses A and either contains B or is disjoint from B,
then it cannot cross A n B, B - A, or B - (A U F(A)) . If X crosses A and is contained
in B, then it cannot cross A U B, A - B, or A - (B U I-'(B)). Thus the total number of
pairs of crossing sets does not increase, and must decrease by at least one since A and
B no longer cross.

As before, we prove that the resulting laminar family of sets is a witness family by

40 R. Ravi and D. P. Williamson

induction on the uncrossing process. Each set in the witness family must obey three
properties:

(1) a,,,(Se : ~'(S~)) = {e}.
(2) Se is violated in the current iteration.
(3) For e a c h C E C e i t h e r C _ C & o r C N & = 0 .

As before, properties (2) and (3) follow straightforwardly, and we must show that (1)
holds. Suppose we have two crossing witness sets Sl and $2 corresponding to edges el
and e2. The proof of Lemma 3.6 shows that if Sl and $2 are uncrossed into Si -- & and
$2 - &, then r (&) = r (s l - $2), F(S2) = F(S2 - SI), and F(S1), P (&) C V - (Sl U S 2)

(Figure 5(b) and (h)). Therefore, by a simple counting argument,

l aF ' (S l : r + laF,(S2 : ~'($2))]

> l a F ' (S l - $2 : r -- S2))I 4-I,S,-,(s2 - 51 : r - Sl)) l ,

and property (1) holds in the same way as shown in Lemma 4.12. The proof of Lemma 3.6
shows that if $1 and 52 are uncrossed into Si - ($2 tO F(S2)) and $2 - (& U r (s l)) , then
F (&) = F (S 2 - (51 U F (&))) C 5 2 - - S i and V(S2) = F (& - (52 U F(S2))) C S i - $2
(Figure 5(d) and (f)). In this case we claim a counting argument shows that

l a v , (& : r +- laF ' (& : r

>_ lar ' (& -- (52 U r (s 2)) : if(& - ($2 U F(S?))))I

+ IaF'(Se -- (& U r (&)) : r - (51 u F (&)))) I .

The only tricky case is when an edge in ~F'(S1 -- ($2 U F (&)) : r -- (& U r (&))))
has an endpoint of F (&) , since then the edge is not in ~$F'(Sj : ((SI)) . However, in this
case the edge must be in ~ , ($ 2 : ~ ($2)). So we can again infer that property (1) holds.
Likewise, if Si and $2 are uncrossed into S I N $2 and S, U Sz, then a similar counting
argument shows that

I~r'(SI : ~ '(SI))[-k [~F'(S2 : ~'(S2))I

>_ I~F'(S1 U 52 : if(St U 52))1 -t- ICSF,(SI n 52 : ~'($1 n S2))l.

Again, property (1) holds as was argued in Lemma 4.12. []

5. Imp lemen ta t i on . We now turn to the problem of implementing the algorithm AUG-
MENT. We must show how to find active sets for the algorithms APPROX-k-VERTEX-CONN

and APPROX-0 ,1 ,2 -SNDP, how to select the edge minimizing e in each iteration, and how
to remove edges.

As in the case of the edge-connectivity approximation algorithms, active sets can be
found using network flow theory, although it is slightly more complicated in this case.
Suppose that there is a active set S (i.e., a minimal violated set) with respect to the
edge set I U F. In both the case of APPROX-k-VERTEX-CONN and APPROX-0,1,2-SNDP
this is because IF /u r (S) l < r~, for some s e S, t 6 PuF(S) . We can determine S as
follows. Construct a directed graph G ' = (V', E ') from the graph (V, I U F) by making

An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems 41

two copies 0% v" for each v e V, adding directed edges (u", v') and (v", u') of infinite
capacity for each (u, v) e I U F, and adding an edge (v', v") of unit capacity for each
v E V. It is known that the value of a maximum s" - t ' flow in G ' corresponds to the
number of vertex-disjoint paths between s and t in G [16, p. 458]. Furthermore, the
minimal mincut in G ' will correspond to S. The minimal mincut is given by the vertices
reachable from s in the residual graph of the flow. In particular, the vertices v in S are
those such that both v' and v" are on the source side of the directed cut, the vertices v in
r (S) are those for which both v' and v" are on the sink side of the cut, and the vertices
in F (S) are those for which v' is on the source side and v" is on the sink side.

Thus a straightforward way of finding active sets is to calculate an s - t maximum
flow for all pairs of vertices s, t ~ V, find all the minimal mincuts, check if the mincut
value is less than r~, to see if the set is violated, then extract all the minimal violated sets
from this collection. There will be O(n 2) candidate sets, and we claim that the minimal
violated sets can be extracted from the candidates in O(n 3) time. For each vertex, we
calculate the set of smallest cardinality containing it, and the minimal violated sets will
be all the sets of smallest cardinality.

We can cut down the total time used by keeping track of the residual graphs for each
network flow problem. Whenever the algorithm AUGMENT adds an edge to F , we add
the edge to each s - t residual graph, and see if it makes any more vertices reachable from
s. Given the active sets from the previous iteration, we can then extract the new active
sets in O (n 2) time. Let rmax = maxi. j Fij (SO for APPROX-k-VERTEX-CONN, rmax = k and
for APPROX-0,1,2-SNDP, rmax = 2) and let m' = min(m, rmaxn). It will take O(rmaxm')
total time per vertex pair to solve the initial flow problem at the beginning of AUGMENT:
there are at most m' edges in I and we need to find at most rmax augmenting paths. If
there are more than rmax augmenting paths, then the flow value is greater than rmax and
there will be no violated set associated with the s - t flow. As we update the residual
graph of the s - t flow over the course of the algorithm AUGMENT, if we find an additional
augmenting path, then there will be no further violated sets associated with the s - t flow.
Hence the total time taken to update the residual graph for an s - t pair is O(m') time.
Thus finding active sets will take O(rm~xm'n 2 4- n 3 "~- m'n 2) = O(rmaxm'n 2) time per
call to AUGMENT.

To implement the edge selection step, we keep track of a variable d(e) ---

Y-~,s:e~(s:~,o, cs)~ Ys for each edge e. Let a(e) denote the number of sets C E C for
which e 6 &(C : ~%uF(C)). Then in each iteration we search for the edge that minimizes
e = (Ce - d (e)) /a (e). Because of Theorems 3.5 and 3.7, we can prove that the active sets
over all iterations of a phase form a laminar family: an active set in a future iteration can-
not cross an active set in the present iteration since an active set in the future is violated in
the present iteration. Thus we can use a union-find structure to keep track of the vertices
in the current collection C of active sets. Whenever a new active set C is formed, we
use O(m'cl(n, n)) time to find the vertices in Ft (C). Then in each iteration we examine
each edge to compute (ce - d (e)) /a (e) . This takes O(ot(n, n) + rmax) time per edge:
O(a (n , n)) time to determine the C e C to which its endpoints belong and O(rmax) time
to check if the edge is in & (C : ~tuF (C)). It takes O (n~ (n, n)) time per call to AUGMENT
to maintain the union-find structure on the active sets. Thus the overall running time of
the edge selection process is O(mn(et(n, n) + rmax)) per call to AUGMENT.

Every time an edge is removed in the edge deletion stage, we must verify that the

42 R. Ravi and D. P. Williamson

remaining graph is still a feasible solution. In the case of the function h corresponding
to phase p of APPROX-k-VERTEX-CONN, we must simply determine whether the graph
is still p-vertex-connected. Steiglitz et al. [19] have shown that this can be done with
O(pn) network flows. Since each flow is in a graph with m' edges, and we need only
p augmenting paths per flow, the time needed to compute each flow is O(pm'). We
check O(n) edges for deletion per call to AUGMENT, SO that the total time used for
the edge deletion step is O(kem'n 2) per call to AUGMENT. In the case of the function
h corresponding to the A P P R O X - 0 , 1 , 2 - S N D P algorithm, we can use the dynamic data
structure of Rauch [17]. Given a graph, Rauch's data structure allows an edge insertion
or deletion to occur in amortized O (~ log n) time, and can answer queries on pairs of
vertices i, j in O(1) time. The queries can be either "Are there two vertex-disjoint paths
between i and j ? " or "Are i and j connected?" Thus we can perform the edge deletion
stage of APPROX-0,1,2-SNDP in O (n (w/m log n + n2)) = O (n 3) time.

Putting all of these bounds together, we can implement a call to AUGMENT in
0 (kZm'n 2) time for APPROX-k-VERTEX-CONN, and O (n 3 +m no~ (n, n)) time for APPROX-
0,1,2-SNDP. The call in A P P R O X - 0 , 1 , 2 - S N D P to the EDGE-SNDP algorithm can be im-
plemented in O (n ~- log n) time [4]. Thus the overall running time for APPROX-k-VERTEX-
CONN is O(k3m'n 2) time, and for APPROX-0,1,2-SNDP is O(n 3 +mnot(n, n)) time. This
yields the following theorem.

THEOREM 5.1. For undirected graphs G = (V, E) with nonnegative edge costs,
APPROX-k-VERTEX-CONN is a 27-[(k)-approximation algorithm for the minimum-cost
k-vertex-connectivity problem running in 0 (k3m'n 2) time, and APPROX-0,1,2-SNDP is
a 3-approximation algorithm for the {0,1,2}-survivable network design problem run-
ning in O(n 3 + mnet(n,n)) time, where n = IVI, m = IE[, m' = min(kn,m),

1 I 7-[(k) = 1 + ~ + . . . + ~, and et(n, n) is the inverse Ackermann function.

6. Concluding Remarks . It would be very interesting to extend these results to the
general survivable network design problem. However, our results here depend quite heav-
ily on either the uniformity of the problem (for the k-vertex-connectivity problem) or the
structure inherent in low-connectivity graphs (for the {0, 1, 2}-survivable network design
problem). We do not know how an uncrossing lemma along the lines of Lemma 3.6 can
be proven in the general case. Of course, it is possible that some entirely new technique
will succeed where these primal-dual techniques fail to work. It is a testimony to the
power of these techniques, however, that they extend to vertex-connectivity problems.

Acknowledgments. We thank Michel Goemans for providing many comments on a
previous version of this work. We also thank the referees for their useful comments.

References

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the generalized
Steiner problem on networks. SlAM Journal on Computing, 24:440-456, 1995.

An Approximation Algorithm for Mininmm-Cost Vertex-Connectivity Problems 43

12] K. E Eswaran and R. E. Tarjan. Augmentation problems. SIAM Journal on Computing, 5:653-665,
1976.

[31 M. Goemans. A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and D. Williamson. Improved approxima-
tion algorithms for network design problems. In Proceedings ofihe 5th Annual ACM-SIAM ~'mpositun
on Discrete Algorithms, pages 223-232, 1994.

[4] M.X. Goemans and D. E Williamson. A general approximation technique for constrained forest prob-
lems. SIAM Journal on Computing, 24:296-317, 1995.

[5] M. Grtitschel, C. L. Monma, and M. Stoer. Computational results with a cutting plane algorithm for
designing communication networks with low-connectivity constraints. Operations Research, 40:309-
330, 1992.

[6] F. Harary. The maximum connectivity of a graph. Proceedings of the National Academy of Sciences,
USA, 48:1142-1146, 1962.

[7] T. Hsu. On four-connecting a triconnected graph. In Proceedings of the 33rd Atmual Symposium on
Foundations of Computer Science, pages 70-79, 1992.

181 T. Hsu and V. Ramachandran. A linear time algorithm for triconnectivity augmentation. In Proceedings
of the 32nd Annual Symposium on Foundations of Computer Science, pages 548-559, 1991.

[9] T. Jordfin. On the optimal vertex-connectivity augmentation. Journal of Combinatorial Theory, Series
B, 63:8-20, 1995.

[10] S. Khuller andB.Raghavachari. Improved approximation algorithms for uniform connectivity problems.
Journal of Algorithms, 21:434-450, 1996.

[11] S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation. Journal of Algorithms,
14:214-225, 1993.

[121 P. Klein and R. Ravi. When cycles collapse: A general approximation technique for constrained two-
connectivity problems. In Proceedings ~tf the Third MPS Conference on bzteger Programming and
Combinatorial Optimization, pages 39-55, 1993. Also appears as Technical Report CS-92-30, Brown
University.

[13] K. Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10:96-115, 1927.
[14] M. Mihail, D. Shallcross, N. Dean, and M. Mostrel. A commercial application of survivable network

design: ITP/INPLANS CCS Network Topology Analyzer. In Proceedings of the 7th AnnualACM-SIAM
S~'mposium on Discrete Algorithms, pages 279-287, 1996.

[.151 C.L. Monma and D. E Shallcross. Methods for designing communication networks with certain two-
connected survivability constraints. Operations Research, pages 531-541, 1989.

[16] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: A Igorithms and Complexly. Prentice-
Hall, Englewood Cliffs, NJ, 1982.

[171 M. Rauch, Improved data structures for fully dynamic biconnectivity. In Proceedings of the 26th Annual
ACM Symposium on Theory of Computing, pages 686 695, 1994. Submitted to SlAM Journal on
Computing.

[181 R. Ravi and D. P. Williamson. An approximation algorithm for minimum-cost vertex-connectivity
problems. In Proceedings of the 6th Annual ACM-SIAM S~,'mposium on Discrete Algorithms, pages 332-
341, 1995.

[191 K. Steiglitz, P. Weiner, and D. Kleitman. The design of minimal cost survivable networks. IEEE Trans-
actions on Circuit Theoo', 16:455-460, 1969.

[20] M. Stoer. Design of Survivable Networks. Lecture Notes in Mathematics, volume 1531. Springer-Verlag,
Berlin, 1992.

[21] T. Watanabe and A. Nakamura. A minimum 3-connectivity augmentation of a graph. Journal of Com-
puter and System Sciences, 46:9 I - 128, 1993.

1221 D.P. Williamson. On the design of approximation algorithms for a class of graph problems. Ph.D. thesis,
MIT, Cambridge, MA, September 1993. Also appears as Technical Report MIT/LCS/TR-584.

[23] D.P. Williamson and M. X. Goemans. Computational experience with an approximation algorithm on
large-scale Euclidean matching instances. INFORMS Journal on Computing, 8:29-40, 1996.

[24] D.P. Williamson, M. X. Goemans, M Mihail, and V. V. Vazirani. A primal-dual approximation algorithm
for generalized Steiner network problems. Combinatorica, 15:435-454, 1995.

