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An Approximation Algorithm for Minimum-Cost 
Vertex-Connectivity Problems 

R. Ravi I and D. R Wil l i amson  2 

Abstract. We present an approximation algorithm for solving graph problems in which a low-cost set 
of edges must be selected that has certain vertex-connectivity properties, in the survivable network design 
problem, a value ri) for each pair of vertices i and j is given, and a minimum-cost set of edges such that 
there are ri.i verlex-disjoint paths between vertices i and j must be found. In the case for which r 0 E 10. 1.2} 
for all i, j ,  we can find a solution of cost no more than three times the optimal cost in polynomial time. In 
the case in which r i j  = k for all i. j ,  we can find a solution of cost no more than 2~(k) times optimal, 
where 7~(nl = 1 + �89 + ... + ~.. No approximation algorithms were previously known for these problems. 
Our algorithms rely on a primal~lual approach which has recently led to approximation algorithms for many 
edge-connectivity problems. 
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1. I n t r o d u c t i o n .  Let  G ---- (V, E)  be an undirected graph with nonnegat ive  costs 

c ,  > 0 on all edges  e E E.  In the survivable network design problem, a nonnegat ive  

integer rij for each pair o f  vert ices i, j is given, and a min imum-cos t  set o f  edges 

E '  c E must be found such that for every i, j pair there are at least rij vertex-disjoint  

paths be tween i and j in the graph (V, E').  The  minimum-cost  k-vertex-connectivi~. 
problem is a special case o f  the survivable  ne twork  design problem in which rij = k for 

all pairs of  vert ices i, j .  

The survivable  ne twork  design p rob lem has rece ived  a good deal of  attention in the 

literature recently, as it can be used to model  the design of  low-cost  te lephone networks 

that can "surv ive"  certain types of  edge and node failures. An edge cost  ce denotes  the 

cost o f  laying a fiber-optic cable be tween the endpoints  of  edge e, and a value rij denotes  

the number  of  edge and node failures that must  occur  in the network before  i and j are 

comple te ly  disconnected.  In practice, the values o f  rij tend to be quite low, usually no 

more than 2 for all vertex pairs, since failures are assumed to be isolated accidents,  such 

as fires at nodes [151, [20]. We call the problem in which rij E {0, 1,2] the {0, 1,2}- 

survivable network design problem. The survivable network design problem is known 

to be NP-hard even in the case of  the min imum-cos t  2-ver tex-connect iv i ty  problem [2], 

even if the edge costs are ei ther 1 or  2. Because  o f  this, many heurist ics have been devised 
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to find solutions to the survivable network design problem; see Chapter 3 of  [20] for a 
survey. In particular, Monma and Shallcross [15] devised local improvement heuristics 
for a special case of the {0, I, 2}-survivable network design problem arising from Bellcore 
network design problems: these heuristics were used in a Bellcore software package. 
Grrtschel et al. [5] implemented a branch-and-cut algorithm for the same problem. 

A difficulty with such heuristics for the survivable network design problem, however, 
is that the solution produced may not have cost guaranteed to be close to the cost of  
the optimal solution. For this reason, we consider approximation algorithms for special 
cases of the survivable network design problem. An a-approximation algorithm is a 
polynomial-time algorithm that produces a solution of cost no more than c~ times the 
value of  an optimal solution. We give the first known approximation algorithm for the 
most practical variant of the survivable network design problem in which rij G {0, 1,2} 
for all pairs of vertices i, j .  The algorithm produces solutions of  value no more than three 
times the optimal value. Furthermore, we give the first known approximation algorithm 
for the minimum-cost k-vertex-connectivity problem. Our algorithm produces solutions 
of value no more than 27-/(k) times optimal, where ~ ( n )  = 1 + _~ + . . .  + - .  Our 
techniques also provide approximation algorithms for the problem of augmenting an 
/-vertex-connected graph to a k-vertex-connected graph using edges of minimum cost. 
We give solutions for this problem of value no more than 27-/(k - l) times optimal. 

Our work flows out of a recent line of research on designing approximation algo- 
rithms for edge-connectivity problems [1 ], [4], [3], [12]. [24]. This research has led 
to a 2~(maxi. j  rii)-approximation algorithm for the survivable network design prob- 
lem in which there must be rij edge-disjoint paths between vertices i and j .  In fact, 
very general types of connectivity problems can be approximated in which, for each 
subset of vertices S, there must be at least f ( S )  edges selected from ,~(S) where 
,~(S) = {(u,v) c E �9 u ~ S ,v  ~ S} and f ( S )  is a function f : 2  v ~ N o f a c e r -  
tain form. We follow the approach of  these algorithms, and their proofs, particularly 
those given in [24] and [31. The algorithms in these papers break down the problem 
into a number of phases. In each phase we specify certain vertex sets S that must be 
augmented; that is, we must select an additional edge from a(S) of each specitied set 
S. This augmentation problem is formulated as an integer programming problem, and 
the problem is solved by using a variant of  the primal-dual method. For a more detailed 
presentation of the algorithm and an overview of this line of research, see [22]. 

Implementations of the edge-connectivity algorithms have shown that they work well 
in practice [23], [141, coming within a few percent of  optimal. We expect that the same 
will also be true of  our new vertex-connectivity algorithms. We further observe that the 
solutions given by our algorithm can be used as a good starting point for improvement 
heuristics like those of Monma and Shallcross [151 or as a bounding routine within a 
branch-and-bound scheme. 

Very few optimal or approximation algorithms were known for solving minimum-cost 
vertex-connectivity problems prior to our work. Khuller and Thurimella [11] give a 3- 
approximation algorithm for the minimum-cost 2-vertex-connectivity problem. Khuller 
[I0] shows a 2(1 + I/n)-approximation algorithm for the same problem in an n-vertex 
graph. After the appearance of  an extended abstract of our paper [18], Khuller and 
Raghavachari [10] gave a (2 + 2(k - l)/n)-approximation algorithm for the minimum- 
cost k-vertex-connectivity problem for graphs with edge costs that obey the triangle 
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inequality. Our results do not require the triangle inequality assumption. Most of the 
known results for vertex-connectivity problems are for the restricted case in which the 
graph G is complete and all edge costs are identical. In this case, Harary [6] has shown 
how to find an optimal solution for the k-vertex-connectivity problem. In this setting, 
Jord~in [9] has shown how to augment any k-vertex-connected graph to a (k + l)-vertex- 
connected graph using at most k - 2 more edges than necessary. Optimal algorithms 
are known to augment any starting graph to a 2-vertex-connected graph [2] or to a 3- 
vertex-connected graph [21 I, [8]. Hsu [7] has shown how to augment optimally any 
3-vertex-connected graph to a 4-vertex-connected graph. 

The rest of the paper is structured as follows. Section 3 describes the approximation 
algorithms by showing how they can be reduced to an augmentation algorithm. Section 4 
proves that the algorithms provide near-optimal solutions. Section 5 tells how the algo- 
rithms can be implemented in polynomial  time, and we conclude in Section 6 with a few 
remarks. We first begin with some preliminary definitions and concepts in Section 2. 

2. Nota t ion  and  Basic Definit ions.  Given a set of edges I and a set of vertices S, we 
define F t ( S )  to be the "vertex neighborhood" of  S with respect to I;  that is, r t ( s )  = 
{v e V - S �9 (u, v) ~ I for some u ~ S}. The "vertex complement" of S, ( t (S ) ,  is 
defined to be V - S - rx (s) .  Occasionally we drop the subscript 1 when it is clear from 
the context. 

We need some facts about F and ( .  First, F~(S) is submodular for any edge set 1. 
That is, for any edge set I and any two sets of vertices A and B, IFt(A)I  + II ' / (B)[  > 
I r t ( A  tJ B)I + IFI(A N B)I. We also observe that F t ( A  fq B) - A - B c F I (A)  A F / (B) .  
Finally, for any vertex set A, A c r 

For a set of  edges / and a set of vertices S, the cobounda~ of S is denoted ~/(S) 
and defined to be {(u, v) c f lu ~ S, v r S}. We define 6t(S " T) to be the set of  edges 
{(u, v) c l lu  ~ S, v ~ T}. 

Given a set of edges I c E of a graph G = (V, E),  a set C c V is a outset of / if 
there are fewer connected components in (V, I)  than in the graph induced by removing 
the vertices in C and adjacent edges from 1. If C = {v} is a cutset for some vertex v, the 
vertex is called a cutvertex. A cutset C separates two vertices s and t if s and t are in the 
same connected component of (V. I ) ,  and removing C causes s and t to be in different 
connected components. 

We use the following theorem of Menger I 13]. 

THEOREM 2. I (Menger). Let s and t be two nonadjacent vertices in a connected graph 
G. Then there exist at least k vertex-disjoint paths between s and t (f and only if  there is 

no cutset o f  size k - I or less separatiug s and t. 

.Menger's theorem has thc following simple corollary. 

COROLLARY 2.2. Given a connected graph G with at least k + 1 vertices, the graph is 

not k-vertex-connected if  and only if  there exists a cutset of  size k - I or less separating 
a pair of  nonadjacent vertices. 
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Notice that any graph that contains a k-vertex-connected subgraph must contain at least 
k + 1 vertices; we assume that the graphs given as input to our k-vertex-connectivity 
algorithm have at least k + 1 vertices. Therefore, if a connected graph on k + 1 vertices 
has no nonadjacent vertices with a cutset of size k - 1 or smaller separating them, then 
every pair of vertices will have k-vertex-disjoint paths between them. 

3. The  Algor i thms ,  In this section we give the basic high-level structure of the algo- 
rithms. We show how the {0. 1,2}-survivable network design problem and the k-vertex- 
connectivity problem can both be reduced to an augmentation problem. Given a set of 
edges F to augment, we specify sets of  vertices S such that we must select at least one 
additional edge l~rom 3(S : (~.(S)) for each S. Intuitively speaking, this will increase the 
size of  the vertex neighborhood of S by at least one. We then give an algorithm AUGMENT 
which is able to find a low-cost solution to this problem under certain conditions. 

3.1. The Algorithm for the Minimum-Cost k-Vertex-Connectivity Problem. We begin 
by giving the high-level structure of  the algorithm for the minimum-cost  k-vertex- 
connectivity problem, which we call APPROX-k-VERTEX-CONN. The algorithm consists 
of k phases, and each phase adds edges to the current solution, starting initially with the 
empty set of edges at the beginning of  phase 1. The idea is that at the end of  phase p, 
our set of  edges should form a p-vertex-connected graph on the set of  vertices of  the 
input graph. We denote our set of  edges at the end of phase p as Fp. In phase p we must 
augment the (p  - l )-vertex-connected edge set Fp_l to the p-vertex-connected Fj,. 

In order to perform this augmentation, we call the augmenting subroutine AUGMENT. 
AUGMENT takes as input the edge set Fp_l and a function h: 2 v --+ {0, 1}, and returns a 
set of  edges F' c E - Fp-i such that i f h (S )  = 1, then I~-, (S : r , (S))I > 1. The idea 
is that adding F '  to b~_ i will increase the size of the vertex neighborhood of  S by at least 
1 for each S such that h(S) = 1. The function h has exponential size in the number of 
vertices, so we would never be able to write the function down when calling AUGMENT, 

but we will see in Section 5 that we will be able to answer AUGMENT's queries about h 
in polynomial  time. 

In phase p of APPROX-k-VERTEX-CONN, we set h(S) = 1 exactly when the vertex 
neighbors of  S are a size p - 1 cutset of  Fp_ l, and S is the smaller of the two halves of 
the graph induced by removing the vertex neighborhood of S, FF, , (S). Thus h(S) = 1 
in phase p iff IF~;,_, (S)[ = p - 1, and 0 < ISI _< I.(n - (p  - 1))/2].  We claim then 
that Fp ~ Fp_l U F' is p-vertex-connected. Because Fp_l is (p  - 1)-vertex connected, 
there can be no cutsets of  size p - 2 or smaller, and by the definition o f h  and AUGMENT, 
we increase the size of  the vertex neighborhood of any set S which has a size p - 1 
cutset in the edge set bp - i .  Thus kp is p-vertex-connected. 

The overall algorithm is given in Figure 1. 

3.2. The Algorithm,3~r the {0, 1,2}-Survivable Network Design Problem. In this sec- 
tion we present the high-level algorithm for solving the survivable network design prob- 
lem when ri) E {0, 1, 2}. The algorithm here will have two phases. In the first phase we 
find a solution for the network design problem with requirements r~j = m a x ( r i . / -  1,0). 
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APPROX-k-VIgRTEx-CONN (V, E, c, k) 

1 Fo .-- 0 
2 forp,--  1 to k 
3 Comment: Begin phase p 

1 if IFFp_~(S)I = p-- 1 and 0 < ISI <_ ['~-(~-U] 
4 h(S) +- 0 otherwise 

5 F ~ 4--AoG~IP, NT(V,E, Fp_bc, h) 

6 Fp*--F'UFp_l 

7 return Fk 

Fig. I. The algorithm for k-vertex-connectivity. 

In the second phase we augment this solution to find a feasible solution for the original 
problem. Essentially the first phase finds a set of  edges to connect all pairs of vertices 
i, j for which rij ~ 2 ,  and the second phase finds a second vertex-disjoint path for these 
pairs of  vertices, as well as edges to connect all pairs i, j for which r i j  ~ -  1. 

Notice that when finding a set of  edges to solve the problem of the first phase, there is 
no difference between edge-connectivity and vertex-connectivity. Hence we can use an 
approximation algorithm for the edge-connectivity survivable network design problem 
in which r !  ~ {0, 1 }. As was mentioned in the Introduction, such algorithms are already 

~J 
known; the first such algorithm for this problem is due to Agrawal et al. [ 1]. For the sake 
of our analysis, we use the algorithm of Goemans and Williamson [4]. Let F1 denote the 
set of  edges returned by this algorithm. 

To find an augmenting set of  edges in the second phase, we once again use the 
subroutine AUGMENT. We call AUGMENT on a modified graph G'  ---- (V', E') .  For every 
edge (i, j )  6 F1 such that rij ---- 2, we create a new vertex u that subdivides the edge 
(i, j ) .  That is, for each such edge (i, j ) ,  we add u to V, remove (i, j )  from E, and add 
edges (i, u) and (u, j) .  Our reason for doing this is so that i and j are no longer adjacent 
in the modified graph, and so that we will be able to apply Menger's theorem. 3 Note that 
there is a solution F( in G'  corresponding to Fi in G. 

To use AUGMENT, we set h(S )  ---- 1 exactly when there exist i 6 S, j E (F[(S) (in 
the modified graph G') such that I FF[ (S)I < rij. This can happen in one of  two ways. If 
r i j  = 2,  then i and j need to be 2-vertex-connected but are separated by a cutvertex. If 
Fij ~--- 1, then i and j need to be connected, but are in different connected components. As 
before, AUGMENT will return a set of edges F '  _ E '  - F~ such that 13F' (S : (~-[ (S))I > 1 
whenever h(S )  = 1. By the definition o fh  and F[, for any two i, j such that rij = 2 ,  the 
set of  edges F~ tJ F '  will contain no cutvertex separating i and j in the modified graph. 
Similarly, for any two i, j such that rij ----- 1,  there will exist a path in F~ U F '  from i to j 
in the modified graph. Notice that since there are no edges in E'  - F~ involving the new 
vertices of  the modified graph, the set of  edges F '  is a subset of  edges of the original 
graph. Thus F2 +-- Fl U F '  is a feasible solution to the original problem in the original 
graph: the nonexistence of a cutvertex separating any i, j with r i j  ~--- 2 in the modified 

3 We do not need to subdivide edges in APPROX-k-VERTEX-CONN because of Corollary 2.2. 
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APPROX-0,1 ,2-SNDP ( V , E , c , r )  

1 r~) ~ max(r , j  - 1,0) for all i , j  

2 F1 ~--EDG~.-SNDP(V,E,c ,r  ~) 

3 Modify V, E and F1 by creating for every edge ( i , j )  ~ Fi such that  rij : 2 a new vertex u 
tha t  subdivides the edge ( i , j ) .  Call the  resulting sets V ~, E I and F~ respectively. 

t if ~i e S , j  6 ~F;(S) such tha t  [FF;(S)[ < r,j 
4 h(S)  ~-- 0 otherwise 

5 F I * -AuGMENT(V ' ,E ' ,F~ ,c ' ,h )  

6 F 2 * - F ' U F 1  

7 r e t u r n  F2 

Fig. 2. The algorithm for the {(I, 1,2}-survivable network design problem. 

graph implies that there are two vertex-disjoint paths between i and j in the edge set b), 
and similarly that i and j are connected in F2 if rij = 1. 

The overall algorithm is given in Figure 2. 

3.3. The AUGMENT Algori thm.  The augmentation algorithm AUGMENT is given in 
Figure 3. It is adapted from the algorithm of  Williamson et al. [24] used in the edge- 
connectivity survivable network design algorithms. Given a graph (V, E),  a set of  edges 
I ,  and an input function h meeting three conditions, the algorithm produces a low-cost 
set of  edges F'  c_ Eh -- E - I such that IrF,(S " ~'/(S))I > h(S )  for all nontrivial 
subsets S. Before discussing the conditions on h, we first introduce some definitions. 

DEFINITION 3.1. A vertex set S is violated with respect to a set of edges F '  if h (S) = 1 
but 6F'(S " ( t ( S ) )  = 0. 

Thus F '  is a feasible solution for the augmentation problem if there are no violated 
sets with respect to F ' .  

DEFINITION 3.2. A vertex set S is active with respect to a set of edges F '  if it is violated 
and minimal with respect to inclusion. 

DEFINITION 3.3. T w o  sets o f  venices  A ,  B are crossing (or A crosses B)  i f  A A B Ts O 
and neither A c B nor B c A. 

We can now state the first two conditions on h. 

CONDITION 1. For any edge set F c Eh, it must be the case that no violated set with 
respect to F crosses any active set with respect to F.  

CONDITION 2. For any edge set F c Ej,, the active sets of  h with respect to F can be 
computed in polynomial  time. 
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AIJGUI~NT ( V , E , I , c , h )  

1 i , - - 0  

2 d(e) e - O f o r a . l l e E E h =  E - I  

3 F ~ - O  

4 {7 ~-- active sets with respect to F 

2 i r e  E 6(C1 :(I(C1))M6(C2 : ( I (C2 ) )  for C1,C2 E C,C1 ~ C~ 
5 ~(e)  , -  0 if e ~t 6(c :  Cr(c)) for any C C C 

1 otherwise 

6 w h i l e  ICl > 0 
7 i , - - - i + l  

8 Comment: Begin iteration i 

9 Find edge ei = (u,  v), a(e,) ~ 0, tha t  minimizes e -= 

10 For all e E Eh 
11 d(e) ,--- d(e) + a (e ) . e  

12 Comment: Implicitly set Yc ~ Yc + �9 for all C E C 

13 F ~ F U {ei} 

14 Upda te  6' 

15 Upda te  a(e) 

16 Comment: End iteration i 

17 Comment: Edge deletion stage 

18 F ~ ~ F 

19 fo r  j ~-- i d o w n t o  1 

20 If F '  - {ej} is feasible 

21 F' ~ F'  .- {e~} 

22 r e t u r n  F ~ 

Fig. 3. The augmenting algorithm AUGMEN~I ". 

Notice that the first condition implies that all active sets are disjoint. The third condi- 
tion on h is a more technical one which we will introduce in the analysis of  the algorithm. 
We prove that the first condition holds for the functions h from the algorithms at the end 
of  the section. We show that the second condition holds for our algorithms in Section 5. 
The three conditions are summarized at the end of Section 4.3. 

The algorithm AUGMENT works in two stages. In the first stage the algorithm starts 
with an empty set of  edges F and goes through a sequence of iterations. In each iteration 
an edge is added to F.  The first stage terminates when F is a feasible solution (that is, 
there are no violated sets). To be more specific, we denote the collection of active sets 
with respect to the current set of edges F by C. In each iteration the algorithm selects 
an edge from 3~:,(C : ~I(C)) for some active set C E C, and adds this edge to F .  
Clearly when there are no longer any active sets, the set of edges F is a feasible solution. 
The second stage deletes redundant edges from F to obtain F ' .  To do this, we con- 
sider all the edges of F in the reverse of the order in which they were added to F .  If 
removing the edge from F does not affect the feasibility of  the remaining edge set, 
we discard it. 
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We use duality to guide the addition of  edges to F,  in order to ensure that we find a 
low-cost solution. In effect, we would like to solve the following integer program: 

(AUG) Min CeXe 
eeEh 

Z xe > h(S) ,  0 ~ S C  V, 
subject to eE~eh(S:(l(S)) 

xe 6 {0,1}, e E Eh. 

Consider the dual of  the linear programming relaxation of (AUG): 

(D) Max Z h(S )y s  
S 

(1) Z Ys < c~, e E Eh, 
subject to S:e~6(S:(t(SD 

Ys > 0 .  

Our algorithm will maintain a feasible solution for (D).  At the beginning of the algorithm 
we set Ys = 0 for all S C V. In each iteration we increase the dual variables Yc uniformly 
for all currently active sets C until one of  the packing constraints (1) becomes tight; that 
is, for some e E Eh, 

Ce = Z Ys. 
S:e~_~(S:r-,I(S)) 

In particular, the constraint must become tight for some edge e E S~:,,(C �9 O ( C ) )  for 
some C E C. We choose to add this edge e to F in this iteration. 

In the description of  AUGMENT given in Figure 3, we only use the dual variables Ys 
implicitly. Instead, we maintain variables a(e) and d(e) such that in each iteration a(e) 
indicates the number of active sets C such that e ~ ~E,, (C " 0 (C)) (note that this can be 
either 0, 1, or 2) and 

d(e) = Z Ys. 
S:eeS~S:r 

Thus in each iteration we can increase each Yc for the active sets C by e as long as 

d(e) + a(e) �9 s < co. 

Therefore, the largest e can be is the minimum of  (c~ - d (e ) ) /a (e )  taken over all 
e ~ 8(C " O ( C ) )  over all active sets C. An edge e that attains this minimum will be 
added to F.  Notice that the implicit  dual solution remains feasible for (D).  It is initially 
feasible since, for any edge e, Y~.s:~s(s:~,(s)) Ys = 0 <_ c~. Once an edge e is selected, 
~S:ec6(S:z,(S)) YS does not increase because no S such that e E 8(S " (1(S)) will be 
violated. 

We now turn to showing that active sets do not cross any violated sets for the functions 
h used by the algorithms of  the preceding sections. We begin with functions h of  APPROX- 
k-VERTEX-CONN. 

LEMMA 3.4. Let h be a function f i r m  phase p o f  APPROX-k-VFRTEX-CONN, let Fp_I 
be the edges found in the first p - I phases of  APPROX-k-VERTEX-CONN, and let F c_ 
E - Fp_ 1. I f  A and B are crossing violated sets with respect to the edge set F, then 
A fq B is a violated set and either A U B or (ruG_ , (A U B) is a violated set. 
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........ ~(A UB) 

~ . ~ F ( A  U B) 

Fig. 4. Cases in the proof of Lemma 3.4. Note that both ((A U B) 7~ 0 and ((A N B) r ~I. The candidate 
uncrossed sels are drawn in thin broken lines. A N B and the smaller of A U B and ((A U B) are the uncrossed 
sets. 

PROOF. Recall that in this case a set S is violated iff 8F(S : ~ 'F t ,_ , (S))  = 0 ,  and 
h(S)  = 1, which is equivalent to (~-u~-p_,(S) ~- 0, IFFuFp ~(S)] = p -- l, 0 < ISI < 
L(n - (p -- 1))/2J. We use this equivalent definition in the proof. For the remainder of 
the proof we drop the subscript F U Fp-l  from the 5, ( ,  and F functions. 

The strategy of the proof is to show that both IF(A A B)I > p - I and If'(A U B)I _> 
p - I. Hence by submodularity and the fact that ]F(A)I = IF(B)I = p - l, we have 
that ]F(A n B)I = IF(A U B)[ = p - 1, immediately implying that A n B is violated 
and, a little less immediately (as we will show), that the smaller of A U B and ( (A U B) 
is violated. In order to show that IF(A n B)I > p - l and IF(A U B)I >_ p - l, we show 
that ((A N B) and ((A U B) are nonempty. Then the fact that / '~-1 is (p - l)-vertex- 
connected implies that [F(A M B)I >_ p - I in order for there to be p - I vertex-disjoint 
paths between the vertices in A n B and ( (A O B). Similarly, ( (A U B) -~ 0 implies 

IF(A U B) I >_ p -  1. 
Now to begin the proof. Because A and B are violated and cross, we know that 

IA U BI _< n - (p - 1) - 1. We claim that ( ( A n  B) ~ 0. Using the relation from 
Section 2 that F(A n B) - A - B c_c_ F(A) n F(B) ,  we see that I(A ~ B) U V(A N B)I _< 

IA U B U (F(A) n V(B))I _< n - 1, implying that ( (A n B) ~ 0. By the logic of 
the preceding paragraph, it follows that IV(A n B)I >_ p -- 1. By the submodularity 
of IF(S)I, it follows that IF(A U B)I _< p - 1. Then IA U B U F(A U B)I _%< n - 1, 
or ((A U B) r 0. Then IF(A U B)I >_ p - 1. Thus it follows by submodularity that 
IF(A U B)I ---- IF(A n B)I --- p - 1. Thus A N B is certainly violated. Also, we claim 
that the smaller of A U B or ((A U B) must be violated. Certainly the smaller of them 

must have size no greater than L(n - (p - l ) ) /2J .  If A U B is smaller, then we are 
done, as we have already shown that ( (A U B) -r ~ and IF(A U B)I ---- p - 1. If 
( (A U B) is smaller, then, since A U B c_ ( ( ( ( A  U B)), we know ( ( ( ( A  U B)) :/: 0. 
In addition, IF(((A U B))I = p - 1 since I ' ( ( (A  U B)) _ F(A U B), and since the 
( p -  1)-vertex-connectivity of Fp_l implies that IF(f (A U B))I _> p -  1. [] 

THEOREM 3.5. Let h be a function from phase p o f  APPROX-k-VERTEX-CONN, and let 
F be any set o f  edges. The active sets with respect to the edge set F do not cross any 
violated set. 
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PROOF. Suppose there is an active set A that crosses a violated set B. Then by L e m m a  3.4, 

A n B is also a violated set, with A N B C A, contradict ing the minimal i ty  o f  A. [] 

Now we consider  the case o f  the survivable  network design problem. Let  h be the 

funct ion from APPROX-0,1,2-SNDP, let Fj be the set of  edges found in Step 2 o f  APPROX- 

0 ,1 ,2-SNDP,  and let F C E - F l .  In this case a set S is violated i f f (1)  there exist  i 6 S, 

j ~ fF~(S) such that IF~ ,ur (S) l  = I and rij = 2; or (2) there exist i 6 S, j ~ fir ,(S) 

such that IFF, o~(S)]  = 0 and rij = 1. 

LEMMA 3.6. Let h be the function from APPROX-0,1,2-SNDP, let F 1 be the set o f  edges 
found in Step 2 of  APPROX-O,I,2-SNDP, and let F c_ E - FI. I f  A and B are crossing 

violatedsets, then either A N B  and AUB are violated, A - (  BU F( B) )  and B - ( A U F ( A ) )  
are violated, or A - B and B - A are violated. 

PROOF. Not ice  that if  neither A nor B is a violated set of  type (1), then the set A 

(or B) is violated iff g(A) = m a x ( h ( A )  - I~r~u~'(A)l, 0) = 1. Goemans  et al. [3] 

have shown that this funct ion is uncrossable;  i.e., if  g(A) = g(B)  = I, then either 

g ( A -  B) = g ( B -  A) = 1 o r g ( A  U B) = g(A N B) = 1. Thus if A and B are violated 
sets o f  type (2), then so are ei ther  A - B and B - A, or A N B and A U B. 

We must  show what  happens if one of  the two sets is of  type (1). Suppose  B is a 

violated set of  type (1). Let  i and j be the pair of  vertices separated by A and let i '  and 

j '  be the pair separated by B, where i c A and i' ~ B. The different cases are depicted 
in Figure  5. 

Casel .  A is also of  type (1). Not ice  that the single vertex ne ighbor  o f  A can be in ei ther 

B - A or V - (A U B).  Similar ly  the vertex neighbor  of  B can be in ei ther A - B or 

V - (A U B). We cons ider  the various cases. First suppose that both A and B have their 

vertex ne ighbor  in V - (A U B).  This  case has two subcases. First, if  there is an edge  from 

A n B to V - (A U B),  then there can be no edges  f rom A - B to A N B or B -- A to A N B, 

since then A a n d / o r  B would  have more than one vertex neighbor  (Figure 5(a)). Thus in 

order  for FI to be feasible for the requirements  ri~j, it must be the case that i, i '  c A N B 

and j ,  j '  ~ V - (A U B). Since F ( A )  = F ( B )  = F (A  U B) = F ( A  n B) in this subcase, 

it fol lows that A n B and A U B are violated. The  other  subcase is that in which there is 

no edge f rom A N B to V - (A U B). Then it fo l lows that there is an edge with endpoints  

in A - B and V - (A U B), and another  with endpoints  in B - A and V - (A U B). It 

also fol lows that i E A - B, i '  c B - A, and j ,  j '  ~ V - (A U B) (Figure 5(b)). Since 

then F ( A )  ---- F (A  - B) and F ( B )  = F ( B  - A), it fo l lows that A - B and B - A are 
violated. 

Next,  we suppose that the vertex neighbor  o f  A is in B - A and the vertex neighbor  

o f  B is in V - (A U B). It fol lows that i e A N B (since otherwise  B has more than 

one vertex neighbor  or  Fl is not feasible) and j '  E V - (A U B) (Figure 5(c)). Then 

F ( A )  = F ( A  N B), F ( B )  = F (A  U B),  and A n B and A U B are violated. The  case in 

which the vertex ne ighbor  of  B is in A - B and the vertex ne ighbor  o f  A is in V - (A U B) 

is parallel  to this one. 

The only remaining case is when the vertex neighbor  of  A is in B - A and the 

vertex neighbor  o f  B is in A -- B. Then it must be the case that j E B -- (A U F ( A ) )  



An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems 31 

i i ~ i  ' " " ' " "  " "'"".. ,..... 

(a) Case I 

A .. ......... . ..- e 

�9 ... . . . . . . . . . . .  . 

(b) Case I 

�9 ......... . . . . . .  

(c) Case I 

A , ....... ~ .... B 

(e) Case  2 

A . . . . . . . . . . .  ............. B 

" " ' . . . .  . . . .  . . .  �9 . . . . . . . .  . . . .  

(g) Case 2 

(d) Case I 

.... ! 

(f) Case 2 

(h) Case2 

Fig. 5. Cases in the proof of Lemma 3.6. The uncrossed sets are drawn in thin broken lines while the paths in 
b'l are depicted by thick lines. 
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and j '  ~ A - (B tO F(B))  (Figure 5(d)). Since F(A) = F(B - (A tO F(A)))  and 
F(B)  = FiA - (B tO F(B))) ,  then A - (B tO FIB))  and B - (A tO F(A)) are violated. 

Case 2. A is of type (2). Here the vertex neighbor of B can be in either A - B or 
V - (A U B). If the vertex neighbor of B is in A - B, then there are two cases. By 
reasoning similar to that above, it must be the case that i '  E A N B. If j ~ V - (A tO B), 
then F(A) = F(AtOB), F(B) = F(AAB),  and A A B  and AtOB are violated (Figure 5(e)). 
If j ~ B - A, then F(A) = F ( B -  (A tO F(A))) = ~, F(B) = F(A - (B tO FIB))) ,  and 
A - (BU F(B))  and B - (AU F(A)) are violated (Figure 5(f)). Now if the vertex neighbor 

of B i s i n  V -  ( A to B j, there are two possibilities, l f i  ~ AMB, thenFiAr- IB)  = F(A) = ~, 
F(A tO B) = FiB) ,  and A f-1B and A tO B are violated iFigure 5(g)). I f /  E A - B, then 
F ( A - B )  = F ( A ) = V I ,  F ( B - A )  = F ( B ) , a n d t h u s A -  B a n d B  - A a r e v i o l a t e d  
(Figure 5(h)). [] 

The lemma implies the following theorem. 

THEOREM 3.7. Let h be the function from APPROX-0,1,2-SNDP, let Fj be the set o f  
edges found in Step 2 of AeeRox-0,1.2-SNDP, and let F g E - Fi. The active sets with 
respect to the edge set F do not cross any violated set. 

PROOF. As in Theorem 3.5. [] 

4. Analysis of the Algori thms.  We now turn to the proofs that the algorithms of the 
previous section provide solutions whose cost is close to the optimal cost. At the heart 
of our proofs is a theorem about the solutions produced by AUGMENT. 

THEOREM 4. I. For the functions h used in APPROX-k-VERTEX-CONN and APPROX- 

0,1,2-SNDP, AUGMENT produces a feasible set o f  edges F' and a feasible dual solution 
y to (D) such that 

~--~ c~ _< 2 ~--~ h(S) �9 ys. 
e~/"' S 

We first show how this theorem implies that APPROX-k-VERTEX-CONN is a 27-/(k)- 
approximation algorithm and that APPROX-0,1,2-SNDP is a 3-approximation algorithm, 
before proving the theorem itself. 

4.1. Analysis o f  APPROX-k-VERTEX-CONN. We now prove the following theorem, 
where Z~v c is the value of an optimal solution to the given instance of the minimum-cost 
k-vertex-connectivity problem. 

THEOREM 4.2. The algorithm AI,PROX-k-VERTEX-CONN produces a k-vertex-connected 
set o f  edges b'k such that 

c~ < 2 ~ ( k ) Z ; v  c. 
ecl ' t  
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PROOF. Fix an optimal solution to the instance of  the k-vertex-connectivity problem, 
and let x e = 1 if edge e is in the solution, and Xe* = 0 otherwise. The key observation 
needed for the theorem is that in phase p of  the algorithm, (1 / (k  - p + 1 ))x* is a feasible 
solution to the linear programming relaxation of (AUG) for the function h used in phase 
p. In phase p, any S for which h(S) = 1 has IFF~.,(S)I ---- p -- 1. Thus it must be the 
case that x* has at least k - (p  - 1) edges between S and (F, , (S), otherwise x* is not 
k-vertex-connected. In other words, 

Z x* > [k - (p  - I ) ] - h ( S ) ,  
eE6K ~t,-I (S:(rp I (S)) 

so that ( 1 / ( k  - p + 1 ) )x*  is a feasible solution to the linear programming relaxation of 
(AUG). 

Therefore, for any feasible solution y to (D) in phase p, by weak duality, it must be 
the case that 

h(S) . Ys < Zkvc. 
s - k - p + l  

By Theorem 4.1, the cost of  edges added in phase p is no more than 2/(k - p + l)Z~,vc. 
Summing over all phases we have that 

k 2 
eEFx p=l k -- p + 1 Zkvc = 2~(k)Z*kvc" [] 

COROLLARY 4.3. A modification of  APPROX-k-VERTEX-CONN gives a 2 ~  (k-l)-approx- 
imation algorithm for the problem of  adding a minimum-cost set of edges to an l-vertex- 
connected subgraph to make it k-vertex-connected, l < k. 

PROOF. We modify APPROX-k-VERTEX-CONN by changing lines 1 and 2 of  Figure 1. 
In line 1 we set Ft to the edges of the l-vertex-connected subgraph of  G = (V, E).  In 
line 2 we iterate p from l + l to k. By a proof  similar to that of  Theorem 4.2, the solution 
returned by the AUGMENT routine in the phase p has cost at most 2 / ( (k  - l) - p + l)  
times that of  an optimal augmentation. Summing over the phases gives the claimed 
performance guarantee. [] 

4.2. Analysis of APPROX-0,1,2-SNDP. Let Z~N denote the cost of  an optimal solution 
to the given instance of the {0, 1,2}-survivable network design problem. We prove the 
following theorem in a manner similar to the previous theorem. 

THEOREM 4.4. 
that 

The algorithm APPROX-0,1,2-SNDP produces a set of  edges F2 such 

Z ce <_ 3Z*sn. 
e~F2 

PROOF. As in the previous theorem, let x* denote an optimal solution to the problem. 
To prove the result, we show two things: first, that the cost of the edges returned by the 
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Goemans-Williamson algorithm is no more than Z*SN, and, second, that the cost of the 
augmenting edges is no more than 2Z~N. These two results imply the theorem. 

The Goemans-Williamson algorithm finds a feasible solution to the following integer 
program: 

(IP) Min Z CeXe 

eEE 

Z X e > max r f ,  0 #- S C V, 
--  iES,jq~S t] subject to eEr(S) 

X~ E {0, 1}, e E E. 

As in the algorithm AUGMENT, the construction of the (IP) solution is guided by the 
construction of a solution to the dual of the linear programming relaxation. Goemans and 
Williamson [4] show that the cost of  the (IP) solution constructed is no more than twice 
the cost of the solution to the dual of  the linear programming relaxation. Thus Y~ecF~ Ce is 
no more than twice the value of  the optimal solution to the linear programming relaxation. 

I , is a feasible solution for the linear programming relaxation of  (IP). From Note that ~x 
this it follows that Y~e~F, Ce < Z~N. 

We now show that Y~e~" Ce < 2Z*sN for the function h used by APPROX-0,1,2-SNDP. 
Notice that given an optimal solution x*, there is a corresponding solution x '  to the same 
problem for the modified graph G'  of the same cost. Observe that x '  is a feasible solution 
for (AUG) for the function h. Then, by Theorem 4.1, we are done. [] 

4.3. Analysis of AUGMENT. We wish to prove Theorem 4.1, and show that 

~--~ce < 2Zh(S)  "Ys. 
e~F'  S 

The proof is similar to the proof in Section 5 of  [24]. Recall that I is a set of  edges given 
as input to AUGMENT, and F '  is the set of edges output by the algorithm. Notice that, 
for every edge e E F', ce = Y~s:e~(s:~,~s~) Ys, and Ys > 0 only if h(S) = 1, so that the 
inequality can be rewritten as 

ecF'  S:e~3(S:~I (S)) S 

Rewriting again gives 

Z ys �9 IrF,(S �9 ~t(S))l <_ 2 Z y s .  
S S 

We can prove this statement by induction over the iterations of the algorithm. Initially 
Ys = 0 for all S c_ V, and the statement is true. At each iteration, if C is the current 
collection of  active sets, then the left-hand side of  the inequality increases by 

E . Z ! r F ' ( C  " ~ I ( C ) ) } ,  
r 



An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems 35 

while the right-hand side increases by 2elCI. Hence if we can prove that in any iteration, 

I~F'(C " p ( C ) ) I  _< 21CI, 
c e c  

then the theorem will be proved. 
We now fix some particular iteration of the algorithm, which we call the "current 

iteration." Let F denote the set of  edges chosen in iterations up to (but not including) the 
current iteration. For convenience, we implicitly assume that all S, F, and ~ functions 
have a subscript of  I U F unless otherwise noted. Define Y = U c c c  ~i~-,(C : ~'(C)). 
Notice that all the edges in Y must have been added during or after the current iteration. 

LEMMA 4.5. For each edge e E Y there exists a witness set Se C V such that: 

(1) ~"(Se  : ( (Se))  : {e}. 
(2) Se is violated in the current iteration. 
(3) For each C E C either C c_c_ S e o r  C n S~ = ~. 

PROOF. Any edge e 6 Y is also in F ' ,  and thus during the edge deletion stage the 
removal o f e  causes there to exist some violated set; call this set S. In other words, there 
can exist no other e'  ~ F '  that is also in 6F,(S : ( (S ) ) .  This set S will be the witness 
set for e, and clearly satisfies (1). Now let F be all the edges added before the current 
iteration. To show (2) and (3), notice that when considering edge e in the edge deletion 
stage, no edge in F had yet been removed. Hence Se is violated even if all the edges of  
F are included; that is, Se is violated in the current iteration. Property (3) follows by the 
fact that no active set crosses any violated set Se. [] 

Consider a collection of  sets Se satisfying the conditions of  the preceding lemma, 
taken over all the edges e in Y. We call such a collection a witness family.  A family of  
sets is called laminar if no two sets of the family are crossing. 

We can now state the final condition we require on h (the three conditions are sum- 
marized at the end of  this section). The additional technical restriction we require on the 
function h in order for Theorem 4.1 to hold is the following. 

CONDITION 3. There exists a laminar witness family. 

At the end of  the section we show that this condition holds for the functions h 
used by APPROX-k-VERTEX-CONN and APPROX-0,1,2-SNDP. The remaining proof  of  
the inequality is essentially identical to the proof of Will iamson et al., but we include 
it here for the sake of  completeness. Let S be a laminar witness family. Augment  the 
family with the vertex set V. The family can be viewed as defining a tree H with a vertex 
vs for each S ~ S and edge (Vs, or) if T is the smallest element of  S properly containing 
S. To each active set C ~ C we associate the smallest set S ~ S that contains it. We color 
the vertices of  the tree H:  a vertex vs is colored red if S is associated with some active 
set C and colored blue otherwise. Let s  be the collection of  active sets associated 
with a red vertex Vs. 
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LEMMA 4.6. The tree H has at most one blue leaf. 

PROOF. Only V and the minimal (under inclusion) witness sets can correspond to 
leaves. Any minimal witness set is a violated set, and thus must contain an active set 
which corresponds to it. Thus only V can correspond to a blue leaf. [] 

LEMMA 4.7. kbr any red vertex vs in H, the degree o f  vs is at least ~c~c<vs~ lSF,(C " 
~(C))l. 

PROOE Note that the one-to-one mapping between the edges of  Y and the witness 
sets implies a one-to-one mapping between the edges of Y and the edges of H:  each 
witness set S defines a unique edge (Vs, vr) of H, where T contains S. Consider any 
edge e c 3r,(C : ~(C))  for some C ~ C. Let (vs,, vr)  be the edge defined by the witness 
set S~. The active set C must be associated with either Vs, or yr .  By summing over all 
edges e 6 3r,(C : ~'(C)) for all active sets C corresponding to a red vertex of  H (that is, 
all C ~ s  we obtain the lemma. [] 

Let Hr denote the set of  red vertices in H and let d,, denote the degree of a vertex v 
in H. Then 

d,, : ff-~dv - ~ d,, < 2 ( I n l -  1) - 2 ( [ n l  - I H r l -  1) - ~ = 21H,-i 1. 
1 

vEHr vE H v~H-H, 

This inequality holds since H is a tree with Itll - 1 edges, and since all vertices of  
H - Hr except for possibly one have degree at least 2. The lemma above implies that 

V~c~ c iSF,(C " r  < Y ~ t t ,  d,., while clearly IHrl _< ICl. Thus 

y~  I6F'(C " ~'(C))l _< 21el, 
CeC 

as desired. 
We now recall the three necessary conditions on h. 

CONDITIONS ON h. 

1. For any edge set F c Eh, no violated set with respect to F crosses any active set 
with respect to F. 

2. For any edge set F c_ Eh, the active sets with respect to F can be computed in 
polynomial time. 

3. In any iteration of AUGMENT, there exists a laminar witness family, 

We can now state the following corollary to Theorem 4.1. 

COROLLARY 4.8. For any function h such that the first and third conditions are obeyed, 
AUGMENT produces a set o f  edges F' and a dual feasible solution y such that 

Z Ce <_ 2 )--~ h(S)  " ys. 
e~F' S 
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In Section 5 we also show that if the second condition is obeyed, then AUGMENT 
runs in polynomial time. Together with Corollary 4.8, this implies that AUGMENT is a 
2-approximation algorithm for the integer program (AUG) for any function h that obeys 
the three conditions. 

4.4. Laminar Witness Families for APPROX-k-VERTEX-CONN. We now turn to proving 
Condition 3 for the function h used by APPROX-k-VERTEX-CONN; in the next subsection 
we prove it for the function h of APPROX-0,1,2-SNDP. In both cases we show that there 
exists a laminar witness family by "uncrossing" pairs of sets using Lemmas 3.4 and 3.6. 

For the algorithm APPROX-k-VERTEX-CONN, we first need the following lemmas. 

LEMMA 4.9. I f  A is a violated set with respect to the function h in phase p of  APPROX- 
k-VERTEX-CONN, then ( ( ( (A) )  = A. 

PROOF. It is not hard to see that A c_ ( ( ( (A)) .  Suppose there exists a vertex v 
( ( ( (A) ) - -A .  Then it must be the case that v c F(A), ((AU{v}) ---- ((A),  and F(AU{v}) = 
F(A) - {v}. Since A is violated, ( (A)  ~ 0 and [F(A)I = p - 1. However, then 
( (A U {v}) :fi ~ and [F(A U {v})[ < p - 1, which contradicts the feasibility of the edge 
set Ft,_ 1. [] 

LEMMA 4.10. I f A  and B are crossing violated sets, then F(A) M F(B) ___ F(A n B) 
and F(A) n B c F(A n B). 

PROOF. In general I"(A n B) ___ F(A) U I ' (B)  and F(A U B) c F(A) U V(B). If A and 
B are crossing violated sets, then we know that 

IF(A)I + I r (B) l  = IF(A n B)I + IF(A U B)I, 

so that any vertex appearing k times in the sets on the right-hand side of  the equation 
(k = 0, 1, 2) must appear exactly k times in the sets on the left-hand side, and vice versa. 
This immediately implies F(A) O F(B)  _c F(A n B). Also, since no vertex in F(A) M B 
canbe  in F(A U B), then F(A) n B c F(A fq B). [] 

LEMMA 4.1 1. Let S be a collection of  violated sets with respect to the function h in 
phase p of APPROX-k-VERTEX-CONN. Then there exists a laminar family of violated sets 
formed by successively replacing a crossing pair of sets A and B with an appropriate 
choice of A n B and A t_) B, or A n B and ( ( A U B ). 

PROOF. We use a potential function 

qb(S) = ~-~(ISI 2 -q-I((S)I 2) 
S 6 S  

to prove the lemma. If  A and B cross and are both violated sets, then by Lemma 3.4 
either A n B and A U B, or A n B and ( (A U B) are both violated. Let S '  be the collection 
of sets formed by replacing A and B with the pair of  violated sets. We will show that 
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~,(A u B) 
d 

Fig. 6. Two crossing sets A and B. 

~ ( S ' )  - ~ ( $ )  > 0. Since uncrossing pairs of sets does not increase the number of sets 
in the collection, q~ can never grow larger than 21S] �9 n 2. Thus the uncrossing process 
must terminate with a laminar family. 

Let 

a = IA n BI, b = IA - F(B) - BI, c = IB - F(A) - AI, 
x = IA N F(B)I,  y = IB n F(A)I, z = I F ( A ) n  F(B)I,  

p = IF(A) - F(B)  - BI, q = IF(B) - F ( A ) -  AI, d = I((A U B)I 

(see Figure 6). The initial contribution of A to qb (S) is (a + x  + b) 2 d- (c q-q + d) 2, and the 
initial contribution of B is (a + y + c) z + (b -t- p + d) 2. After uncrossing, the contribution 
of A N B is at least a 2 + (b Jr p + d + q + c) 2 and the contribution of A U B (or ff (A U B), 
which we treat symmetrically by Lemma 4.9) is at least d 2 + (a + b + c + x + y)2. Since 
all other sets in S '  stay the same, q~ (S') - q~ (S) is at least the difference between these 
two quantities, which, by algebraic manipulation, is 2((b + p ) ( c + q) + ( x § b ) (y + c ) ). 
Since A and B are crossing, I A - B I > 0 and I B - A I > 0, which implies that x + b > 0 
and y + c > 0. Thus qb (S') - qb (S) > 0. [] 

We can now prove Condition 3 for the function h used by APPROX-k-VERTEX-CONN. 

LEMMA 4.12. For the function h given in phase p of  APPROX-k-VERTEX-CONN, there 
exists a laminar witness family. 

PROOF. By Lemma 4.5, there exists a witness family. From this collection of sets we can 
form a laminar collection of sets as follows. We maintain that all sets S in the collection 
are violated. If the collection is not laminar, there exists a pair of sets A, B that cross. 
We "uncross" A and B by replacing them in the collection with either A U B and A n B 
or with ff(A U B) and A N B. By Lemma 3.4, we know that at least one of these two 
uncrossings yields two violated sets. This procedure terminates with a laminar collection 
by Lemma 4.11. 

We claim that the resulting laminar collection forms a witness family. This claim can 
be proven by induction on the uncrossing process. Recall that each set in the witness 
family must obey three properties: 

(1) a F , ( S  e " ~ ( S e ) )  = {e}. 
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(2) S~ is violated in the current iteration. 
(3) For each C c C either C ~ S~ or C n S~ = 0. 

Obviously property (2) holds. Property (3) continues to hold because the uncrossed sets 
are violated sets for the current iteration, and must either contain or be disjoint from the 
minimal violated sets. Now we must prove (1). Suppose we have two crossing witness 
sets Si and $2 corresponding to edges el and e2, and, without loss of generality (by 
Lemma 4.9) suppose we uncross them into S] N $2 and S~ U Sz. We claim that 

I6F'(SI : ~'(Sl))[-k-1r : ~($2))1 

!~v'(Si U 52 : C(St U Sz))l + I~F,(St n 52 : ~'(Si n S2))l. 

We want to show that each edge counted on the right-hand side is accounted for by the 
same edge on the left-hand side. If an edge is in 6F, ($1 U $2 : ff (Sj U $2)), then certainly it 
is in either 3v, ($1 : ff (SI)) or 6r '  ($2 : ~" ($2)); it is possibly in both, and certainly in both 
if it is also in 3F,($I n $2 : r n $2)). Consider an edge in 3v,(St O $2 : ff(S~ N $2)). If  
its endpoint in if(S1 N $2) is in V - (SI U $2), then the edge is in either 3F'(SI : ~(Sl)) 
or 8r,($2 : ~'($2)): the endpoint cannot be in both F(SI )  and F(S2), since we know 
F(SI )  n F(S2) c F(SI N $2) by Lemma 4.10. Suppose that the endpoint in r O $2) 
is in SI - $2. By Lemma 4.10, F(S~) n Sl c F(SI  n $2), implying that the endpoint 
cannot be in F(S2) and must be in ~'($2). Thus the edge is also in ~F,(S2 : if(S2)). A 
similar argument holds if the endpoint is in $2 - SI. 

Because F '  covers all violated sets, we know that I3F'(S~ U $2 : ff(Sl U S2))I > 1 
and 13~,($1 n $2 : ~($1 N $2))1 >_ 1, and so it must be the case that I6F'(S1 U $2 : 
~'(Si US2))I -- [6F,(SIAS2 : ~'($1 AS2))] ---= 1.Then ei therel  E (~F,(SIUS2 : ~'(S1 US2)) 
and e2 E 6F,(SI n S 2 ; ~'(SI n 82)), or vice versa. [] 

4.5. Laminar Witness Families for APPROX-0,1,2-SNDP. In this section we prove that 
Condition 3 is obeyed by the function h used by APPROX-0,1,2-SNDP. 

LEMMA 4.13. For the function h given by APPROX-0,1,2-SNDP, there exists a laminar 
witness family. 

PROOF. As before, we know a witness family exists, and our strategy is to show that 
we can form a laminar witness family by uncrossing any crossing pairs of  sets. By 
Lemma 3.6, whenever two violated sets A and B cross, then either A N B and A U B are 
violated, or A - (B U F (B) )  and B - (A U F(A) )  are violated, or A - B and B - A 
are violated. We replace any pair of crossing witness sets with the appropriate pair of 
violated, noncrossing sets. This process terminates, since the number of pairs of crossing 
sets decreases. If any set X crosses both A and B, uncrossing A and B does not increase 
the number of  sets X crosses. If X crosses A and either contains B or is disjoint from B, 
then it cannot cross A n B, B - A, or B - (A U F(A)) .  If X crosses A and is contained 
in B, then it cannot cross A U B, A - B, or A - (B U I-'(B)). Thus the total number of 
pairs of crossing sets does not increase, and must decrease by at least one since A and 
B no longer cross. 

As before, we prove that the resulting laminar family of sets is a witness family by 
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induction on the uncrossing process. Each set in the witness family must obey three 
properties: 

(1) a,,,(Se : ~'(S~)) = {e}. 
(2) Se is violated in the current iteration. 
(3) For e a c h C E C e i t h e r C _ C & o r C N & = 0 .  

As before, properties (2) and (3) follow straightforwardly, and we must show that (1) 
holds. Suppose we have two crossing witness sets Sl and $2 corresponding to edges el 
and e2. The proof of  Lemma 3.6 shows that if Sl and $2 are uncrossed into Si -- & and 
$2 - &,  then r ( &  ) = r (s l  - $2), F(S2)  = F(S2 - SI ), and F(S1), P ( & )  C V - (Sl  U S 2 )  

(Figure 5(b) and (h)). Therefore, by a simple counting argument, 

l aF ' (S l  : r + laF,(S2 : ~'($2))] 

> l a F ' ( S l -  $2 : r  -- S2))I 4-I,S,-,(s2 - 51 : r - Sl)) l ,  

and property (1) holds in the same way as shown in Lemma 4.12. The proof of  Lemma 3.6 
shows that if  $1 and 52 are uncrossed into Si - ($2 tO F(S2)) and $2 - (& U r ( s l ) ) ,  then 
F ( & )  = F ( S 2 -  (51 U F ( & ) ) )  C 5 2 - - S i  and V(S2) = F ( & -  (52 U F(S2)))  C S i -  $2 
(Figure 5(d) and (f)). In this case we claim a counting argument shows that 

l a v , ( & :  r  +- laF ' (& : r 

>_ lar ' (& -- (52 U r ( s 2 ) )  : if(& - ($2 U F(S?))))I  

+ IaF'(Se -- (& U r ( & ) )  : r - (51 u F (&) ) ) ) I .  

The only tricky case is when an edge in ~F'(S1 -- ($2 U F ( & ) )  : r  -- (& U r ( & ) ) ) )  
has an endpoint of F ( & ) ,  since then the edge is not in ~$F'(Sj : ( (SI ) ) .  However, in this 
case the edge must be in ~ , ( $ 2  : ~ ($2)). So we can again infer that property (1) holds. 
Likewise, if Si and $2 are uncrossed into S I N  $2 and S, U Sz, then a similar counting 
argument shows that 

I~r'(SI : ~ '(SI))[-k [~F'(S2 : ~'(S2))I 

>_ I~F'(S1 U 52 : if(St U 52))1 -t- ICSF,(SI n 52 : ~'($1 n S2))l. 

Again, property (1) holds as was argued in Lemma 4.12. [] 

5. Imp lemen ta t i on .  We now turn to the problem of  implementing the algorithm AUG- 
MENT. We must show how to find active sets for the algorithms APPROX-k-VERTEX-CONN 

and APPROX-0 ,1 ,2 -SNDP,  how to select the edge minimizing e in each iteration, and how 
to remove edges. 

As in the case of  the edge-connectivity approximation algorithms, active sets can be 
found using network flow theory, although it is slightly more complicated in this case. 
Suppose that there is a active set S (i.e., a minimal violated set) with respect to the 
edge set I U F. In both the case of  APPROX-k-VERTEX-CONN and APPROX-0,1,2-SNDP 
this is because IF /u r (S) l  < r~, for some s e S, t 6 PuF(S) .  We can determine S as 
follows. Construct a directed graph G '  = (V',  E ')  from the graph (V, I U F )  by making 
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two copies 0% v" for each v e V, adding directed edges (u", v') and (v", u') of  infinite 
capacity for each (u, v) e I U F,  and adding an edge (v',  v") of  unit capacity for each 
v E V. It is known that the value of a maximum s" - t '  flow in G '  corresponds to the 
number of  vertex-disjoint paths between s and t in G [16, p. 458]. Furthermore, the 
minimal mincut in G '  will correspond to S. The minimal mincut is given by the vertices 
reachable from s in the residual graph of the flow. In particular, the vertices v in S are 
those such that both v' and v" are on the source side of  the directed cut, the vertices v in 
r (S) are those for which both v' and v" are on the sink side of  the cut, and the vertices 
in F (S)  are those for which v' is on the source side and v" is on the sink side. 

Thus a straightforward way of  finding active sets is to calculate an s - t  maximum 
flow for all pairs of  vertices s, t ~ V, find all the minimal mincuts, check if the mincut 
value is less than r~, to see if the set is violated, then extract all the minimal violated sets 
from this collection. There will be O(n 2) candidate sets, and we claim that the minimal 
violated sets can be extracted from the candidates in O(n 3) time. For each vertex, we 
calculate the set of  smallest cardinality containing it, and the minimal violated sets will 
be all the sets of smallest cardinality. 

We can cut down the total time used by keeping track of the residual graphs for each 
network flow problem. Whenever the algorithm AUGMENT adds an edge to F ,  we add 
the edge to each s - t  residual graph, and see if it makes any more vertices reachable from 
s. Given the active sets from the previous iteration, we can then extract the new active 
sets in O (n 2) time. Let rmax = maxi. j  Fij (SO for APPROX-k-VERTEX-CONN, rmax = k and 
for APPROX-0,1,2-SNDP, rmax = 2) and let m' = min(m, rmaxn). It will take O(rmaxm') 
total time per vertex pair to solve the initial flow problem at the beginning of  AUGMENT: 
there are at most m' edges in I and we need to find at most rmax augmenting paths. If 
there are more than rmax augmenting paths, then the flow value is greater than rmax and 
there will be no violated set associated with the s - t  flow. As we update the residual 
graph of  the s - t  flow over the course of the algorithm AUGMENT, if we find an additional 
augmenting path, then there will be no further violated sets associated with the s - t  flow. 
Hence the total time taken to update the residual graph for an s - t  pair is O(m')  time. 
Thus finding active sets will take O(rm~xm'n 2 4- n 3 "~- m'n 2) = O(rmaxm'n 2) time per 
call to AUGMENT. 

To implement the edge selection step, we keep track of a variable d(e) --- 

Y-~,s:e~(s:~,o, cs)~ Ys for each edge e. Let a(e) denote the number of  sets C E C for 
which e 6 &(C : ~%uF(C)). Then in each iteration we search for the edge that minimizes 
e = (Ce - d ( e ) ) /a  (e). Because of  Theorems 3.5 and 3.7, we can prove that the active sets 
over all iterations of  a phase form a laminar family: an active set in a future iteration can- 
not cross an active set in the present iteration since an active set in the future is violated in 
the present iteration. Thus we can use a union-find structure to keep track of  the vertices 
in the current collection C of  active sets. Whenever a new active set C is formed, we 
use O(m'cl(n,  n)) time to find the vertices in Ft  (C). Then in each iteration we examine 
each edge to compute (ce - d (e ) ) /a (e ) .  This takes O(ot(n, n) + rmax) time per edge: 
O(a (n ,  n)) time to determine the C e C to which its endpoints belong and O(rmax) time 
to check if the edge is in & (C : ~tuF (C)).  It takes O (n~ (n, n)) time per call to AUGMENT 
to maintain the union-find structure on the active sets. Thus the overall running time of  
the edge selection process is O(mn(et(n,  n) + rmax) ) per call to AUGMENT. 

Every time an edge is removed in the edge deletion stage, we must verify that the 
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remaining graph is still a feasible solution. In the case of the function h corresponding 
to phase p of APPROX-k-VERTEX-CONN, we  must simply determine whether the graph 
is still p-vertex-connected. Steiglitz et al. [19] have shown that this can be done with 
O(pn) network flows. Since each flow is in a graph with m' edges, and we need only 
p augmenting paths per flow, the time needed to compute each flow is O(pm'). We 
check O(n) edges for deletion per call to AUGMENT, SO that the total time used for 
the edge deletion step is O(kem'n 2) per call to AUGMENT. In the case of  the function 
h corresponding to the A P P R O X - 0 , 1 , 2 - S N D P  algorithm, we can use the dynamic data 
structure of  Rauch [17]. Given a graph, Rauch's data structure allows an edge insertion 
or deletion to occur in amortized O ( ~  log n) time, and can answer queries on pairs of 
vertices i, j in O(1) time. The queries can be either "Are there two vertex-disjoint paths 
between i and j ? "  or "Are i and j connected?" Thus we can perform the edge deletion 
stage of  APPROX-0,1,2-SNDP in O (n (w/m log n + n2)) = O (n 3) time. 

Putting all of  these bounds together, we can implement a call to AUGMENT in 
0 (kZm'n 2) time for APPROX-k-VERTEX-CONN, and O (n 3 +m no~ (n, n)) time for APPROX- 
0,1,2-SNDP. The call in A P P R O X - 0 , 1 , 2 - S N D P  to the EDGE-SNDP algorithm can be im- 
plemented in O (n ~- log n) time [4]. Thus the overall running time for APPROX-k-VERTEX- 
CONN is O(k3m'n 2) time, and for APPROX-0,1,2-SNDP is O(n 3 +mnot(n, n)) time. This 
yields the following theorem. 

THEOREM 5.1. For undirected graphs G = (V, E) with nonnegative edge costs, 
APPROX-k-VERTEX-CONN is a 27-[(k)-approximation algorithm for the minimum-cost 
k-vertex-connectivity problem running in 0 (k3m'n 2) time, and APPROX-0,1,2-SNDP is 
a 3-approximation algorithm for the {0,1,2}-survivable network design problem run- 
ning in O(n 3 + mnet(n,n)) time, where n = IVI, m = IE[, m' = min(kn,m), 

1 I 7-[(k) = 1 + ~ + . . .  + ~, and et(n, n) is the inverse Ackermann function. 

6. Concluding Remarks .  It would be very interesting to extend these results to the 
general survivable network design problem. However, our results here depend quite heav- 
ily on either the uniformity of the problem (for the k-vertex-connectivity problem) or the 
structure inherent in low-connectivity graphs (for the {0, 1, 2}-survivable network design 
problem). We do not know how an uncrossing lemma along the lines of Lemma 3.6 can 
be proven in the general case. Of course, it is possible that some entirely new technique 
will succeed where these primal-dual techniques fail to work. It is a testimony to the 
power of  these techniques, however, that they extend to vertex-connectivity problems. 
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