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Abstract In this paper, we unify several graph partitioning problems including mul-
ticut, multiway cut, and k-cut, into a single problem. The input to the requirement cut
problem is an undirected edge-weighted graph G = (V ,E), and g groups of vertices
X1, . . . ,Xg ⊆ V , with each group Xi having a requirement ri between 0 and |Xi |.
The goal is to find a minimum cost set of edges whose removal separates each group
Xi into at least ri disconnected components.

We give an O(logn · log(gR)) approximation algorithm for the requirement cut
problem, where n is the total number of vertices, g is the number of groups, and R

is the maximum requirement. We also show that the integrality gap of a natural LP
relaxation for this problem is bounded by O(logn · log(gR)). On trees, we obtain an
improved guarantee of O(log(gR)). There is an Ω(logg) hardness of approximation
for the requirement cut problem, even on trees.

Keywords Graph partitioning · Cut problems · Approximation algorithms

1 Introduction

Graph partitioning problems form a fundamental area of the study of approximation
algorithms. The simplest graph partitioning problem is the well known s-t minimum
cut problem, where given an edge weighted graph and two specified vertices s and t ,
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the goal is to find a minimum weight set of edges whose removal disconnects s and t .
The classical result of Ford and Fulkerson [18] proved a max-flow min-cut duality
which related the maximum flow and minimum cut problems.

Multicut Klein et al. [14] considered a generalization of the s-t minimum cut prob-
lem to multiple pairs. In the multicut problem, given a set of source-sink pairs
{(s1, t1), . . . , (sk, tk)} in an edge-capacitated graph, the goal is to find a minimum
capacity set of edges whose removal separates each si from ti . The corresponding
flow problem is maximum multicommodity flow: there is one commodity for each si -
ti pair, and the objective is to maximize the total flow routed (over all commodities)
while respecting the capacities. Klein et al. [14] gave an O(logC · log2 k) approxi-
mation algorithm for multicut, where C is the total capacity over all edges. Garg et
al. [10] improved the approximation guarantee to O(log k), which is currently the
best known. In [10], the authors also proved that the ratio of the minimum multicut
to the maximum multicommodity flow is �(log k).

Multiway Cut In this problem, there is a set X of terminals, and the goal is to re-
move a minimum cost set of edges so that no two terminals are in the same con-
nected component. The first approximation algorithm for this problem was due to
Dahlhous et al. [7], which gave a guarantee of 2(1 − 1

|X| ). Using a clever geometric
LP relaxation [5], the approximation ratio was improved to 1.3438 in the two papers
[5, 11].

Multi-Multiway Cut Recently, Avidor and Langberg [4] extended multiway cut and
multicut to a multi-multiway cut problem. Given g sets of vertices X1, . . . ,Xg , the
goal is to find a minimum cost set of edges whose removal completely disconnects
each of the sets X1, . . . ,Xg . The authors [4] presented an O(logg) approximation
algorithm for multi-multiway cut.

Steiner Multicut Another interesting graph partitioning problem is the Steiner mul-
ticut problem [12]. In this problem, we are given g groups of vertices X1, . . . ,Xg , and
the goal is to find a minimum cost set of edges that separates each group X1, . . . ,Xg .
A set S of vertices is said to be separated, if S is not contained in a single connected
component. Klein et al. [12] presented an O(log3 gt) approximation algorithm for
this problem, where t = maxg

i=1 |Xi | is the maximum size of a group.

k-Cut This is another well studied graph partitioning problem [23], where the goal
is to find a minimum cost set of edges that separates the graph into at least k con-
nected components. Saran and Vazirani [23] gave the first approximation algorithm
for this problem, which achieves a guarantee of 2 − 2/k. Alternate algorithms for
this problem, achieving the same approximation guarantee were given by [21, 22].
More recently, Chekuri and Guha [6] considered the Steiner k-cut problem. This is
a generalization of the k-cut problem, where a subset X of vertices is specified as
terminals, and the objective is to find a minimum cost set of edges whose removal re-
sults in at least k disconnected components, each containing a terminal. Chekuri and
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Fig. 1 Containment of cut
problems

Table 1

Cut problem Modeling as requirement cut Best approximation ratio

Multicut |Xi | = ri = 2 for all i = 1, . . . , g O(logg) [10]

Multiway cut g = 1, r1 = |X1| 1.3438 [11]

Multi-multiway cut ri = |Xi | for all i = 1, . . . , g O(logg) [4]

Steiner multicut ri = 2 for all i = 1, . . . , g O(log3 gt) [12]

O(logn · logg) (this paper)

Steiner k-cut g = 1, k = r1 ≤ |X1| 2(1 − 1
k
) [6]

Requirement cut – O(logn · log(gR)) (this paper)

Guha [6] showed that the greedy algorithm of [23] can be modified to get a 2 − 2/k-
approximation for this problem. They also showed how to round a natural LP relax-
ation to achieve the same bound.

In this paper, we study a common generalization that unifies all the graph partition-
ing problems mentioned above (see Fig. 1). The input to the requirement cut problem
is an n-vertex undirected graph G = (V ,E) with non-negative costs ce on its edges, g
groups of vertices X1,X2, . . . ,Xg ⊆ V with a requirement ri between 0 and |Xi | for
each group Xi . The objective is to find a minimum cost set of edges whose removal
separates each group Xi into at least ri disconnected components (each of which
contains at least one member from the group). In Table 1 we summarize some of the
cut problems in our framework, how requirement cut generalizes them, and the best
known approximation results for each of them.

1.1 Our Results and Paper Outline

We obtain an O(logn · log(gR)) approximation algorithm for the requirement cut
problem on general graphs, where n is the number of vertices in the graph, g is the
number of groups and R = maxg

i=1 ri is the maximum requirement of any group.
We present two algorithms achieving this guarantee. The first (and more interesting)
algorithm is via rounding a natural LP relaxation. This also shows that the integrality
gap of this LP relaxation is at most O(logn · log(gR)). The LP rounding procedure
is described in Sect. 2. The second algorithm is based on the greedy heuristic for
set cover. The greedy step in this approach is an interesting problem in itself, and
has been studied in Klein et al. [12] as the Steiner ratio cut problem. We provide an
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improved approximation algorithm for this problem (when n is at most polynomial
in gt), and show that it yields an O(logn · log(gR)) approximation algorithm for the
requirement cut problem. The greedy algorithm is presented in Sect. 3.

We also show that when restricted to trees, the approximation ratio for requirement
cut can be improved to O(log(gR)). On the other hand, a simple reduction from set
cover shows that this problem is at least Ω(logg) hard to approximate, even on a star
(Sect. 2.2). The LP rounding algorithm on trees generalizes the randomized rounding
for set cover, whereas the second method extends the set cover greedy algorithm.
While the first algorithm relies on the tree structure for rounding and hence incurs
a log-squared overhead, the second method leaves some hope for improvement. The
running time of the first algorithm is better, as it involves solving a single linear
program.

As noted in the introduction, the Steiner multicut problem of Klein et al. is a
special case of the requirement cut problem; so our algorithm implies an improved
approximation ratio of O(logn · logg) for Steiner multicut. However, we note that
using a similar idea even the algorithm in [12] can be shown to achieve this improved
guarantee.

2 LP Based Algorithm

In this section, we present an O(logn · log(gR)) approximation algorithm for require-
ment cut based on rounding a natural linear program. We first formulate requirement
cut as an integer program, and obtain its linear relaxation (Sect. 2.1). Then we con-
sider the case when the input graph is a tree, and show that randomized rounding
gives an O(log(gR)) approximation (Sect. 2.2). Finally we show how requirement
cut on a general graph can be reduced to requirement cut on a tree through the LP, to
obtain an approximation algorithm for the general case (Sect. 2.3).

2.1 IP Formulation and a Linear Relaxation

We consider an integer program for the requirement cut problem, and a linear relax-
ation for it. This formulation is a generalization of that used in Chekuri and Guha [6]
for the Steiner k-cut problem. By adding edges of zero cost, we may assume that
the input graph G = (V ,E) is complete. Our IP has a 0-1 variable de for each edge
e ∈ E, which represents whether or not this edge is cut.

min
∑

e∈E

cede

s.t.

(Steiner-IP)
∑

e∈Ti

de ≥ ri − 1 ∀Ti : Steiner tree on Xi, ∀i = 1, . . . , g,

de ∈ {0,1} ∀e ∈ E.

This integer program is clearly an exact formulation of the requirement cut problem.
However, the LP relaxation of Steiner-IP does not have a polynomial time separation



202 Algorithmica (2010) 56: 198–213

oracle (the separation problem is minimum Steiner tree). So we consider a relaxation
of the Steiner tree constraints, by requiring that all spanning trees on the induced
graph G[Xi] have length at least ri − 1, for each group Xi . Observe that, in any min-
imal solution to (Steiner-IP), the edge variables d satisfy the triangle inequality: i.e.
for any vertices u,v,w ∈ V , if d(u,v) = d(v,w) = 0 then d(u,w) = 0. So addition of the
triangle inequality constraints to (Steiner-IP) does not change the optimal solution.
Relaxing the integrality of d , we obtain the following linear programming relaxation
for requirement cut.

min
∑

e∈E

cede

s.t.

(LP)
∑

e∈Ti

de ≥ ri − 1 ∀Ti : spanning tree in G[Xi], ∀i = 1, . . . , g,

d(u,w) ≤ d(u,v) + d(v,w) ∀u,v,w ∈ V,

0 ≤ de ≤ 1 ∀e ∈ E.

Note that (LP) can be solved in polynomial time using the ellipsoid algorithm (using a
minimum spanning tree algorithm in the separation oracle). Let d∗ denote an optimal
solution to (LP), and define a new length function d as de = min{2 · d∗

e ,1} for all
e ∈ E. Since d∗ is a metric, so is d . It is also clear that edge lengths in both d∗ and d

are in [0,1]. The next claim follows from the MST heuristic for Steiner tree.

Claim 1 For any group Xi (i = 1, . . . , g), the minimum Steiner tree on Xi w.r.t. d

has length at least ri − 1.

Proof We fix a group i for the rest of the proof. Let S = (V (S),E(S)) be the mini-
mum Steiner tree (under metric d) on group Xi . Denote the length of S by d(S). We
will construct a spanning tree S′ on Xi which has d∗-length d∗(S′) ≤ d(S). Since d∗
is a feasible solution to the linear program (LP), the claim would follow. Vertices in
Xi are referred to as terminals, and vertices in V \ Xi are Steiner vertices. Edges in
which both end points are terminals are called terminal edges, and all other edges are
Steiner edges.

We first modify S so that the only length 1 (in metric d) edges in S are terminal
edges. If (u, v) is an edge in S with du,v = 1 and u is a Steiner vertex, then con-
sider removing edge (u, v) from S to obtain 2 subtrees Su and Sv . Clearly there is at
least one terminal in each of Su and Sv . Arbitrarily add an edge (u′, v′) to S where
u′ ∈ Su and v′ ∈ Sv are terminals. It is clear that the length of S does not increase
since du′,v′ ≤ 1. So we may assume that all Steiner edges in S have d-length strictly
less than 1. Now consider the length function d∗: from the preceding argument, any
Steiner edge e ∈ E(S) has length d∗

e = de/2.
We now shortcut over Steiner vertices in S to obtain a spanning tree S′ on Xi ,

as follows. Let Et ⊆ E(S) denote the set of terminal edges in S, and {Tj }lj=1 the
trees in the forest induced by E(S) \ Et . Note that in each tree Tj , all leaves are
terminals and all edges are Steiner edges. Taking an Euler tour of each tree Tj ,
we obtain tree T ′

j over just the terminals spanned by Tj ; since all edges of Tj are
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Steiner edges, d∗(T ′
j ) ≤ 2 · d∗(Tj ) = d(Tj ). We now obtain the spanning tree S′

on Xi as S′ = Et ∪ (
⋃l

j=1 T ′
j ). Since d∗

e ≤ de for all edges, we can bound the

length of S′ as d∗(S′) = ∑
e∈Et

d∗
e + ∑l

j=1 d∗(T ′
j ) ≤ ∑

e∈Et
d∗
e + ∑l

j=1 d(Tj ) ≤∑
e∈Et

de + ∑
e∈E(S)\Et

de = d(S). This proves the claim. �

2.2 LP Rounding for Requirement Cut on Trees

In this section, we consider a special case of requirement cut when the input graph is
a tree. We show how to round the linear program (LP) within a factor of O(loggR),
to obtain an approximation algorithm for requirement cut on trees. We note that even
this restriction is at least as hard to approximate as set-cover. Consider a star with
one edge corresponding to each set in the set-cover instance. For each element j , we
create a group that contains the root, and the leaves of all edges corresponding to
sets containing j . Further, we set the requirement of each group to 2, and all edge
costs to 1. Clearly, there is a one-to-one correspondence of feasible solutions to the
requirement cut instance and the set cover instance, which also preserves the cost.
This shows that requirement cut on trees is at least Ω(logg) hard to approximate [9].

Given a requirement cut instance on a tree T = (V ,E), the algorithm begins by
solving (LP) optimally and obtaining the solution d defined in Claim 1. Let OPT∗
denote the optimal value of (LP). We now describe how d is rounded to an integral
solution. Our algorithm proceeds in phases, and augments the (partial) solution in
each phase. Let Ck ⊆ E denote the partial solution at the start of the phase k; so
C1 = φ. Let Fk = T \Ck denote the forest in phase k, with the edges in Ck removed.
Each phase involves a randomized rounding for all the edges: the rounding in phase k

picks each edge e ∈ Fk independently with probability de , and adds all chosen edges
to the partial solution Ck to get Ck+1. It is clear that the expected cost in each phase
is at most

∑
e∈F cede ≤ 2

∑
e∈E ced

∗
e = 2 · OPT∗.

Let ck
i denote the number of connected components containing Xi in Fk . The

residual requirement of group Xi at the start of phase k is defined to be sk
i =

max{0, ri − ck
i }. The rounding procedure ends when the residual requirement of each

group is 0, and the requirement of each group is completely satisfied at this point.
We show that the expected number of phases in this algorithm is O(loggR), which
gives us the desired approximation guarantee. The main step in this is to show that in
each phase, the total residual requirement (summed over all groups) goes down by a
constant factor in expectation. This technique was also used in the paper of Konjevod
et al. [15] on the covering Steiner problem.

2.2.1 Rounding in a Single Phase

The analysis here is for a single phase, and we drop the superscript k for ease of
notation. For a group Xi , define Fi to be the sub-forest induced by Xi in F . Let Hi

be the forest obtained from Fi by short cutting over all degree two Steiner (non Xi )
vertices. So all Steiner vertices in Hi have degree at least 3. Such a forest is useful
because of the following claim.
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Claim 2 Suppose H = (V (H),E(H)) is a forest with vertices X ⊆ V (H) denoted
terminals, and with each vertex V (H)\X having degree at least 3. Then, the removal
of any m ≥ 1 edges of E(H) results in at least 
m+1

2 � more components containing
terminals.

Proof It suffices to prove the claim when H is a tree. The forest case can be ob-
tained by adding the contributions from its trees (and using the fact that 
a� +

b� ≥ 
a + b�). Consider any set A ⊆ E(H) of m ≥ 1 edges, and the components
C1,C2, . . . ,Cm+1 of H \ A. Denote a component Ci to be terminal, if it contains a
terminal, and non-terminal otherwise. We can think of A as a tree T ′ on the node
set {C1, . . . ,Cm+1}. Suppose that a non-terminal component Ci has l non terminals,
and f edges leaving it. Since each non-terminal has degree ≥ 3, the total degree
in Ci is at least 3l. There are exactly l − 1 internal edges in Ci , so we have a to-
tal degree 2l − 2 + f ≥ 3l, i.e. f ≥ l + 2 ≥ 3. Thus, if we look at the tree T ′,
each non terminal component has degree at least 3. In such a tree, there are at least

 |T ′|

2 � + 1 = 
m+1
2 � + 1 terminal Cis, i.e. H \ A has at least 
m+1

2 � more terminal
components. �

Recall that si is the residual requirement of group Xi at the start of the current
phase. For any subgraph F ′ of F , the length of F ′ is d(F ′) = ∑

e∈F ′ de. For any
pair of vertices u,v ∈ V , let pu,v denote the probability that vertices u and v are
disconnected in this phase of rounding.

Lemma 1 The total probability weight on Hi ,
∑

e∈Hi
pe, is at least (1 − 1

e
) · d(Hi).

Proof For those edges e of Hi which are also edges in F , it is clear that pe = de . Now
consider an edge (u, v) ∈ Hi that is obtained by short cutting a path P in Fi . We claim
that pu,v ≥ (1 − 1

e
)du,v . Since each edge is rounded independently, and u and v are

separated if any of the edges in P is removed, pu,v = 1−�e∈P (1−de) ≥ 1−e−d(P ).
We consider the following 2 cases:

• d(P ) ≤ 1. Note that 1 − e−y ≥ (1 − 1/e)y for y ∈ [0,1]. So in this case, pu,v ≥
(1 − 1/e)d(P ) ≥ (1 − 1/e)du,v , since d is a metric.

• d(P ) ≥ 1. In this case pu,v ≥ 1 − 1/e ≥ (1 − 1/e)du,v , since du,v ∈ [0,1].
Thus, summing pu,v over all edges (u, v) ∈ Hi we get the lemma. �

Now consider adding edges to forest Hi to make it a Steiner tree on Xi . If Xi

appears in ci connected components in F , we need to add ci − 1 edges. Since every
edge has d-length at most 1, adding ci − 1 edges increases the length of Hi by at
most ci − 1. But from Claim 1, every Steiner tree on Xi has length at least ri − 1.
So we get d(Hi) + (ci − 1) ≥ (ri − 1), i.e., d(Hi) ≥ ri − ci = si (assuming that
group Xi has residual requirement si ≥ 1). Lemma 1 then implies that

∑
e∈Hi

pe ≥
(1 − 1/e)si ≥ si

2 .
Consider a 0-1 random variable Zi

e for each edge e = (u, v) ∈ Hi , which is
1 iff vertices u and v are disconnected in this phase, and 0 otherwise; note that
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Pr[Zi
e = 1] = pe. The edges in forest F corresponding to each e ∈ Hi are dis-

joint; so the random variables Zi
e (for e ∈ Hi ) are independent. Let Yi = ∑

e∈Hi
Zi

e,
which is the number of edges cut in forest Hi . Although Hi is not a subgraph of
F , disconnecting vertices in Hi is equivalent to disconnecting them in F . Now,
E[Yi] = ∑

e∈Hi
E[Zi

e] = ∑
e∈Hi

pe ≥ si
2 . We make use of the following version of

the Chernoff bound (see e.g., Motwani and Raghavan [19], Theorem 4.2).1

Lemma 2 (Chernoff bound) Let I1, . . . , In be independent 0-1 random variables,
I = ∑n

j=1 Ij , and E[I ] = μ. Then for any 0 < δ < 1, Pr[I < (1 − δ) · μ] < e−μδ2/2.

Since Yi is the sum of independent 0-1 random variables Zi
e , and E[Yi] ≥ si

2 ,
Lemma 2 implies the following for any group Xi with positive residual requirement
(si ≥ 1):

Pr

[
Yi <

si

4

]
≤ Pr

[
Yi <

1

2
E[Yi]

]
< e−E[Yi ]/8 ≤ e−si/16 ≤ e−1/16.

Let Ni be the increase in the number of components of group Xi in this phase. Since
Hi is a forest that satisfies the conditions of Claim 2, we have Ni ≥ Yi/2. Thus we
have:

Pr

[
Ni <

si

8

]
≤ Pr

[
Yi <

si

4

]
≤ e−1/16. (1)

2.2.2 Bounding the Number of Phases

Let random variable Sk
i denote the residual requirement of group Xi at the start of

phase k, and Nk
i the increase in the number of components of group Xi in phase k.

Note that Sk+1
i = max{Sk

i −Nk
i ,0}. The analysis in Sect. 2.2.1 holds for any phase k.

Rewriting inequality (1), we have q = Pr[Sk+1
i > 7

8 si |Sk
i = si] = Pr[Nk

i <
si
8 |Sk

i =
si] ≤ e−1/16 (although (1) requires si ≥ 1, note that this inequality is trivial when
si = 0). Thus,

E[Sk+1
i |Sk

i = si] ≤ si · q + 7si

8
· (1 − q) = 7 + q

8
si .

So unconditionally, E[Sk+1
i ] ≤ α · E[Sk

i ], where α = 7+q
8 ≤ 7+e−1/16

8 is a constant
less than 1. Now let Sk = ∑g

i=1 Sk
i be the total residual requirement at the start of

phase k. By linearity of expectation, E[Sk+1] = ∑g

i=1 E[Sk+1
i ] ≤ α

∑g

i=1 E[Sk
i ] =

α · E[Sk]. Applying this inequality recursively, we have that after k phases,
E[Sk+1] ≤ αkE[S1] ≤ αk · gR, since the total residual requirement at the start of
the algorithm S1 = ∑g

i=1 ri ≤ gR. So if we choose k∗ = log2(gR)+2
log2(1/α)

= O(log(gR)),

E[Sk∗+1] ≤ 1/4. Using the Markov inequality, Pr[Sk∗+1 ≥ 1] ≤ 1/4. Recall that the

1In the preliminary version of this paper [20], we used only linearity of expectation in the analysis, which
is incorrect. This stronger deviation bound is required for the rounding analysis to work.
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expected cost in each phase is at most 2 · OPT∗; so after k∗ phases the expected total
cost is at most 2k∗ · OPT∗. Again applying the Markov inequality, with probability
at least 3

4 , the total cost after k∗ phases is at most 8k∗ · OPT∗. So with probabil-
ity at least 1

2 , this rounding algorithm produces a feasible solution of cost at most
8k∗ · OPT∗ = O(log(gR)) · OPT∗. Thus, we have proved the following.

Theorem 1 There is a polynomial time randomized rounding algorithm for require-
ment cut on trees, that obtains a solution of cost O(log(gR)) times the optimal value
of (LP).

This also shows that the integrality gap of (LP) on trees is O(log(gR)). A lower
bound of Ω(logg) on the integrality gap of (LP) follows from the integrality gap
example for the set cover linear program. So the analysis in this section is almost
tight.

Remark: An Alternate Rounding Algorithm The rounding algorithm that was an-
alyzed above can be summarized as follows: if there are k∗ phases, the final (ran-
domized) solution S is obtained by including each edge e of tree T independently
with probability qe = 1 − (1 − de)

k∗
. The proof of Theorem 1 implies that when

k∗ ≥ c · log(gR) (for a sufficiently large constant c), the solution S is feasible to the
requirement cut instance with probability at least 3

4 .
A related rounding procedure involves picking each edge e of T independently

with probability q̃e = min{k∗ · de,1} (for a suitable value of k∗); let S̃ denote
the resulting randomized solution. Observe that for any e ∈ T , qe ≤ 1 and qe =
1 − (1 − de)

k∗ ≤ k∗ · de . Thus qe ≤ q̃e for all e ∈ T ; in other words, the solution
S̃ stochastically dominates S. We use the following monotone property of the re-
quirement cut problem: if S1 is a feasible solution to an instance of requirement cut
and S2 ⊇ S1, then S2 is also a feasible solution. When k∗ ≥ c · log(gR) (for a large
constant c), solution S is feasible to the requirement cut instance with probability at
least 3

4 (as mentioned above); combined with the monotone property and the fact that
S̃ dominates S, it follows that S̃ is also a feasible solution with probability at least 3

4 .
As in the proof of Theorem 1, since the expected cost of solution S̃ is k∗ · OPT∗, S̃ is
a feasible solution of cost at most 8k∗ · OPT∗ with probability at least 1

2 .

2.3 LP Rounding for Requirement Cut

In this section we show how the linear program (LP) yields an O(logn · log(gR)) ap-
proximation algorithm for requirement cut on general graphs. This would also show
that the integrality gap of (LP) is at most O(logn · log(gR)). Let I denote any in-
stance of requirement cut on a graph G = (V (G),E(G)), with groups X1, . . . ,Xg

and corresponding requirements r1, . . . , rg . Let LPG denote the LP relaxation for I ,
d∗ its optimal solution, and OPT∗ its optimal value. Our rounding procedure uses
solution d∗ (which defines a metric), and embeds it as a fractional solution into a
distribution of tree instances. Then we use the rounding algorithm for requirement
cut on trees (Sect. 2.2) to obtain an integral solution on a tree instance, which also
corresponds to a solution to the requirement cut instance I . We use the following
embedding result of Fakcharoenphol et al. [8].
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Theorem 2 [8] For any metric (V , d) with |V | = n, there exists a distribution T of
tree metrics satisfying:

1. For all (T , κ) ∈ T , κi,j ≥ di,j , ∀ i, j ∈ V .
2. ET [κi,j ] ≤ ρ · di,j , ∀ i, j ∈ V , where ρ = O(logn).

Furthermore, trees from distribution T can be sampled in polynomial time.

The rounding algorithm on general graphs first embeds metric (V (G), d∗) into
a distribution T of dominating tree metrics, as in Theorem 2. Let (T , κ) ∈R T be
a random tree metric from this distribution. Here T = (V (T ),E(T )) is a tree on
the vertex set V (G) plus some additional (Steiner) vertices, and κ defines a tree
metric on V (T ) by assigning distances to the tree edges E(T ). For any edge e ∈
E(T ), we denote by sepe the set of edges of the original graph G that are separated
by e: sepe = {(i, j) | i, j ∈ V (G), e lies on the i − j path in T }. Edge costs in T are
defined as follows: c′

e = ∑
(i,j)∈sepe

ci,j for all e ∈ E(T ) (non tree edges have cost 0).
Consider a random instance J of requirement cut on trees, defined on T with cost
function c′, and groups X1, . . . ,Xg having requirements r1, . . . , rg (same as in I ).
Given any feasible integral solution S to the tree instance J , it is clear that the edge-
set

⋃
e∈S sepe defines a feasible integral solution to I of the same cost.

Now consider the LP relaxation LPT of J (a requirement cut instance on trees).
Define κ ′

u,v = min{κu,v,1} for all u,v ∈ V (T ); note that κ ′ is a metric with distances
in [0,1]. Since κ restricted to V (G) dominates d∗ (Theorem 2) and d∗ is a metric with
distances in [0,1], κ ′ restricted to V (G) also dominates d∗. So for any spanning tree
Ti on a group Xi , its length under κ ′, κ ′(Ti) ≥ d∗(Ti), its length under d∗. Since d∗ is
a feasible solution for LPG, we get κ ′(Ti) ≥ ri − 1. Thus κ ′ is a feasible (fractional)
solution to LPT . The cost of this fractional solution is given by the random variable
C = ∑

u,v∈V (T ) c
′
u,v · κ ′

u,v = ∑
e∈E(T ) c

′
e · κ ′

e ≤ ∑
e∈E(T ) c

′
e · κe (since κ dominates

κ ′). Now since κ is a tree metric,

C ≤
∑

e∈E(T )

c′
e · κe =

∑

e∈E(T )

κe

∑

(i,j)∈sepe

ci,j =
∑

i,j∈V (G)

ci,j

∑

e:(i,j)∈sepe

κe

=
∑

i,j∈V (G)

ci,j · κi,j .

Using Theorem 2 and linearity of expectation, we get E[C] ≤ ρ ·∑i,j∈V (G) ci,j d
∗
i,j =

O(logn) · OPT∗. Now using the rounding algorithm for trees (Theorem 1), we get an
integral solution to J of expected cost at most O(logn · log(gR)). Since any integral
solution to J also corresponds to an integral solution to I , we obtain the following.

Theorem 3 There is a polynomial time randomized rounding algorithm for require-
ment cut on graphs, that obtains a solution of cost O(logn · log(gR)) times the opti-
mal value of (LP).

Remark: Improved Approximation for Small Sized Groups We note that there is
an alternate algorithm that gives an O(t logg) approximation ratio, where t =
maxg

i=1 |Xi | is the size of the largest group. This follows from the algorithm for
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multi-multiway cut [4]. We first solve the LP relaxation (LP) to get a metric d∗ with
objective value OPT∗. The following argument holds for any group Xi . Consider a
minimum spanning tree Ti on Xi , with length d∗(Ti) ≥ ri − 1. Since each edge has
length at most 1, Ti has at least ri − 1 edges of length at least 1

t
. Removing the ri − 1

longest edges in Ti , we obtain ri connected components. Pick one Xi -vertex from
each component to obtain set Si = {s1, s2, . . . , sri } ⊆ Xi . Since Ti is an MST on Xi ,
each pairwise distance (under metric d∗)in Si is at least 1

t
.

Define a new metric d ′ = min{t · d∗,1}. In metric d ′, the distance between any
pair of vertices in Si is 1 (for each i = 1, . . . , g). Consider a multi-multiway cut in-
stance on the sets S1, S2, . . . , Sg : recall that the goal is to remove a minimum cost set
of edges that completely disconnects each of {Si}gi=1. The approximation algorithm
in Avidor and Langberg [4] was based on the following LP relaxation for multi-
multiway cut.

min
∑

e∈E

cede

s.t.

d(x,y) ≥ 1 ∀x, y ∈ Si, ∀i = 1, . . . , g,

d(u,w) ≤ d(u,v) + d(v,w) ∀u,v,w ∈ V,

0 ≤ de ≤ 1 ∀e ∈ E.

Observe that d ′ is a feasible fractional solution to this linear program. So using
the algorithm in [4], we obtain a set of edges whose removal completely disconnects
each Si , and has cost at most O(logg)(d ′ · c) ≤ O(t · logg) · OPT∗. It is clear that
this solution is also feasible to the original requirement cut instance. Thus we have an
O(t · logg) approximation for requirement cut, which is an improvement when the
largest group size t is a constant.

3 Greedy Algorithm

In this section we present a greedy algorithm for the requirement cut problem that
achieves a guarantee of O(logn · log(gR)). This algorithm is deterministic, and its
approximation ratio matches that of the randomized rounding algorithm (Sect. 2). The
greedy algorithm works in phases, and maintains a partial solution in every phase.
Each phase is a greedy step that augments the partial solution. The algorithm ends
when the requirements of all groups have been satisfied. We first define an appropriate
greedy subproblem to solve in each phase, then obtain an approximation algorithm
for this subproblem (Sect. 3.1), and finally show how this can be used to solve the
requirement cut problem (Sect. 3.2).

Consider an instance of requirement cut on graph G = (V ,E), and groups
X1, . . . ,Xg having requirements r1, . . . , rg . As before, by adding 0 cost edges, we
assume that graph G is complete. Let OPT∗ denote the optimal cost of this instance.
The partial solution at the start of phase k is a set of edges Ck ⊆ E, and the resid-
ual graph in phase k is Gk = G \ Ck . For any group Xi , the residual requirement in
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phase k is the number of additional components that Xi should be split into, in order
to satisfy its requirement (see also Sect. 2.2). The total residual requirement (over all
groups) in phase k is denoted φk . In any phase, a group Xi is said to be active if it has
a positive residual requirement. At the start of the algorithm, C1 = φ and the residual
requirement of each group Xi is ri − 1.

In phase k, a cut in graph Gk = (V ,E \ Ck) refers to a set of edges of the form
∂kS

.= {(i, j) ∈ E \ Ck | i ∈ S, j /∈ S}, where S ⊆ V is a set of vertices. The coverage
of cut ∂kS, cov(∂kS), is defined as the number of active groups (in phase k) that
are separated by ∂kS in Gk . Note that this definition of coverage does not take into
account, the increase in the number of components of a group: this is because if
the increase is more than the residual requirement of the group, it does not help in
satisfying any requirement. The cost-effectiveness of cut ∂kS is defined to be the ratio
of its cost to its coverage, and is denoted eff (∂kS) = c(∂kS)

cov(∂kS)
. In each phase k, the

greedy algorithm adds a cut of (approximately) minimum cost effectiveness to its
partial solution, to obtain Ck+1. Since the algorithm only removes cuts and the initial
graph G is complete, in each phase, all the connected components are complete.2 The
next lemma shows why the minimum cost-effective cut is a good choice as a greedy
step.

Lemma 3 In any phase k, there is a cut ∂kM such that M is contained in some
connected component of Gk , and eff (∂kM) ≤ 2OPT∗

φk
.

Proof Let S1, S2, . . . , Sl denote the connected components in the graph obtained by
removing the edges of an optimal solution S∗ from the residual graph Gk . Consider
the cuts {∂kSi}li=1. It is clear that each edge in ∪l

i=1∂kSi is contained in S∗, and

participates in exactly two cuts in {∂kSi}li=1. So we have
∑l

i=1 c(∂kSi) ≤ 2 · OPT∗.
Starting with graph Gk , consider removing cuts step by step, in the order

∂kS1, ∂kS2, . . . , ∂kSl , to end up with the graph Gk \S∗ having connected components
{Si}li=1. Note that all connected components in each step of this procedure are com-
plete, and the cut removed in each step is contained in some connected component.
So in any single step above, the increase in the number of connected components
is at most 1; and the additional requirement satisfied for any group in one step is
also at most 1. So the total (over all groups) additional requirement satisfied in any
one step is equal to the number of (currently active) groups separated in that step.
Clearly any group that is active at some step in this procedure is also active in Gk

(i.e., in phase k). So the total additional requirement satisfied over all groups and
all steps is at most

∑l
i=1 cov(∂kSi). On the other hand, since S∗ is a feasible solu-

tion to the requirement cut instance, the total residual requirement in Gk \ S∗ is 0.
But the total residual requirement in Gk is φk ; so the total additional requirement
satisfied (over all groups & steps) in this procedure is at least φk . Thus we have

2A connected component consisting of vertices U ⊆ V is said to be complete if every edge with both
end-points in U is present.
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∑l
i=1 cov(∂kSi) ≥ φk . Now,

l

min
i=1

eff (∂kSi) = l

min
i=1

c(∂kSi)

cov(∂kSi)
≤

∑l
i=1 c(∂kSi)∑l

i=1 cov(∂kSi)
≤ 2

OPT∗

φk

So the minimum cost effective cut amongst {∂kSi}li=1 has cost-effectiveness at most
2OPT∗

φk
. Furthermore, it is clear that each {Si}li=1 lies in some connected component

of Gk . �

3.1 The Steiner Ratio Problem

In making the greedy choice in any phase, we wish to compute a cut of minimum
cost effectiveness. Formally, we are given a connected graph H = (V (H),E(H))

with costs ce on edges, and g groups of vertices X1, . . . ,Xg ⊆ V (H). Recall that a
cut in graph H is any set of edges of the form ∂S = {(i, j) ∈ E(H) : i ∈ S, j /∈ S},
where S ⊆ V (H). The goal is to find a cut that minimizes the ratio of its cost to
the number of groups that it separates. This is also the minimum ratio Steiner cut
problem that was studied in Klein et al. [12], where an O(log2 gt) approximation
algorithm was given. Here, using the results of Fakcharoenphol et al. [8], we improve
the approximation ratio to O(logn). We note that this is an improvement over [12]
when n is at most polynomial in gt ; otherwise the earlier O(log2 gt) guarantee is
better. When all groups have size 2, the Steiner ratio problem reduces to sparsest
cut [2, 3, 16, 17], for which the currently best known approximation guarantee is
O(

√
logg · log logg) due to Arora et al. [1].

The approximation algorithm for the Steiner ratio problem is based on rounding
a natural linear programming relaxation, which is described below. This is also the
LP relaxation that was used in Klein et al. [12]. Using the MST algorithm in the
separation oracle, this LP can be solved by the Ellipsoid algorithm in polynomial
time. Again, we assume that the graph H is complete, by adding edges of zero cost.

min
∑

e∈E(H)

cele

s.t.

(LP-ratio)
g∑

i=1

∑

e∈Ti

le ≥ 1 ∀ (T1, . . . , Tg) where

Ti : spanning tree on H [Xi], ∀i = 1, . . . , g,

0 ≤ le ≤ 1 ∀e ∈ E(H),

l(u,w) ≤ l(u,v) + l(v,w) ∀u,v,w ∈ V (H).

To see that this is indeed a relaxation of the Steiner ratio problem, consider the
optimal solution B∗ (which is a cut) of the Steiner ratio problem. Define a 0-1 metric
l′ corresponding to B∗ by setting l′(u, v) = 0 iff u and v are in the same connected
component in H \ ∂B∗, and 1 otherwise. Let σ be the number of groups separated
by ∂B∗. Clearly, the sum of the minimum spanning trees in H [Xi] (for i = 1, . . . , g)
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is also σ . Now the metric 1
σ

· l′ is a feasible solution to (LP-ratio), and has cost
c(∂B∗)

σ
= eff (∂B∗), which is the optimal value of the Steiner ratio problem.

Let l be the optimal solution to (LP-ratio), and OPT ′ = ∑
e∈E(H) ce · le its cost.

We now describe how l can be rounded to get an approximately optimal cut. Using
Theorem 2, the algorithm first embeds metric (V (H), l) to a distribution T of dom-
inating tree metrics. Let (T , κ) ∈R T be a random sample from T . As defined in
Sect. 2.3, each edge f ∈ T corresponds to a cut in graph H , sepf = {(i, j) | i, j ∈
V (H),f lies on the i − j path in T }. We say that edge f ∈ T separates group i if re-
moving edge f from T disconnects Xi , and denote this f |Xi . Below, T [Xi] denotes
the tree induced by Xi in T , and MST i denotes the minimum spanning tree on Xi in
the specified metric. We have,

c(sepf )

cov(sepf )
= min

f ∈T

[
κf c(sepf )

κf

∑g

i=1 1f |Xi

]
≤

∑
f ∈T κf

∑
(i,j)∈sepf

ci,j

∑
f ∈T κf

∑g

i=1 1f |Xi

=
∑

i,j ci,j

∑
f :(i,j)∈sepf

κf

∑
f ∈T κf

∑g

i=1 1f |Xi

=
∑

i,j ci,j κi,j
∑g

i=1

∑
f :f |Xi

κf

=
∑

i,j ci,j κi,j
∑g

i=1 κ(T [Xi])
≤ 2 ·

∑
i,j ci,j κi,j

∑g

i=1 κ(MST i )
(2)

≤ 2 ·
∑

i,j ci,j κi,j
∑g

i=1 l(MST i )
(3)

≤ 2 ·
∑

i,j

ci,j κi,j . (4)

The only non trivial inequalities above are the last three. Since T [Xi] is a Steiner
tree on Xi , the length of an MST on Xi is at most 2 times the length of T [Xi], so
(2) follows. For (3), note that κ restricted to V (H) dominates l, and (4) follows from
the feasibility of l in (LP-ratio). It was shown in [8] that, given a metric (in this
case, l) and weights on all pairs of vertices (in this case ci,j ), their tree embedding
algorithm can be derandomized to find a single tree with weighted average stretch at
most O(logn) times that of metric l. Thus we can find (in deterministic polynomial
time), a single tree metric (T ′, κ ′) such that

∑
i,j ci,j · κ ′

i,j ≤ ρ · ∑i,j ci,j li,j , where
ρ = O(logn). Given such a tree, the algorithm outputs the minimum cost effective
cut B corresponding to an edge of T ′, as the approximate solution. From the above
argument, it follows that eff (∂B) ≤ 2ρ · OPT ′, and we obtain an O(logn) approxi-
mation algorithm for the Steiner ratio problem.

Since sparsest cut is a special case of the Steiner ratio problem, the Ω(logn) inte-
grality gap for the sparsest cut linear program [16] also implies that this approxima-
tion guarantee is tight for any algorithm based on the linear program (LP-ratio).

3.2 Approximating Requirement Cut

As mentioned, the algorithm for requirement cut involves greedily augmenting the
partial solution in phases, until all the residual requirements are 0. The greedy step in
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phase k is as follows. For each connected component of the residual graph Gk , run
the Steiner ratio algorithm (Sect. 3.1), and among all the solutions, pick the cut Bk

of minimum cost-effectiveness. Lemma 3 along with the Steiner ratio approximation
implies that eff (∂kBk) ≤ 4ρ · OPT∗

φk
. Using a standard analysis based on the greedy al-

gorithm for set cover (see e.g., [13]), we obtain that the total cost of the solution (over
all phases) is at most 4ρ(lnφ1 + 1) · OPT∗, where φ1 is the total residual requirement
in the first phase of the algorithm. Since φ1 ≤ gR, the cost of the greedy solution is
O(logn · log(gR)) · OPT∗. Clearly, the number of phases is at most gR, which gives
a polynomial time algorithm.

Theorem 4 The greedy algorithm is an O(logn · log(gR)) approximation algorithm
for the requirement cut problem on graphs.

Note that when restricted to trees, the greedy step is trivial: cuts are just edges, and
we can enumerate all of them. So the greedy algorithm is actually an O(log(gR))

approximation for requirement cut on trees.

4 Conclusions

It would be interesting to obtain improved approximation guarantees for the require-
ment cut problem, even in special cases such as planar graphs. One approach could be
to improve the approximation guarantee for the Steiner ratio problem. Arora et al. [2]
used a semidefinite programming relaxation for sparsest cut (which is a special case
of the Steiner ratio problem) to obtain an O(

√
logn) approximation algorithm. How-

ever those techniques do not seem to apply directly to the Steiner ratio problem, and
it would be interesting to see if a suitable SDP relaxation yields a stronger bound.
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