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Abstract. We consider the problem of constructing optimal decision trees: given a col-
lection of tests that can disambiguate between a set of m possible diseases, each test
having a cost, and the a priori likelihood of any particular disease, what is a good adap-
tive strategy to perform these tests to minimize the expected cost to identify the disease?
This problem has been studied in several works, with O(log m)-approximations known
in the special cases when either costs or probabilities are uniform. In this paper, we set-
tle the approximability of the general problem by giving a tight O(log m)-approximation
algorithm.

We also consider a substantial generalization, the adaptive traveling salesman prob-
lem. Given an underlying metric space, a random subset S of vertices is drawn from
a known distribution, but S is initially unknown—we get information about whether
any vertex is in S only when it is visited. What is a good adaptive strategy to visit all
vertices in the random subset S while minimizing the expected distance traveled? This
problem has applications in routing message ferries in ad hoc networks and also models
switching costs between tests in the optimal decision tree problem. We give a polylog-
arithmic approximation algorithm for adaptive TSP, which is nearly best possible due
to a connection to the well-known group Steiner tree problem. Finally, we consider the
related adaptive traveling repairman problem, where the goal is to compute an adaptive
tour minimizing the expected sum of arrival times of vertices in the random subset S;
we obtain a polylogarithmic approximation algorithm for this problem as well.

Funding: A. Gupta’s research was supported in part by the National Science Foundation [Grants CCF-
0448095 and CCF-0729022] and an Alfred P. Sloan Fellowship. R. Ravi’s research was supported
in part by National Science Foundation [Grant CCF-0728841].

Keywords: approximation algorithms • stochastic optimization • decision trees • vehicle routing

1. Introduction
Consider the following two adaptive covering optimization problems:

• Adaptive traveling salesman problem under stochastic demands (AdapTSP). A traveling salesperson is given a
metric space (V, d) and distinct subsets S1 , S2 , . . . , Sm ⊆V such that Si appears with probability pi (and

∑
i pi � 1).

She needs to serve requests at a random subset S of locations drawn from this distribution. However, she does
not know the identity of the random subset: she can only visit locations, at which time she finds out whether
or not that location is part of the subset S. What adaptive strategy should she use to minimize the expected
time to serve all requests in the random set S?

• Optimal decision trees. Given a set of m diseases, there are n binary tests that can be used to disambiguate
between these diseases. If the cost of performing test t ∈ [n] is ct , and we are given the likelihoods {p j} j∈[m] that
a typical patient has the disease j, what (adaptive) strategy should the doctor use for the tests to minimize the
expected cost to identify the disease?
It can be shown that the optimal decision tree problem is a special case of the adaptive TSP problem: a

formal reduction is given in Section 4. In both these problems we want to devise adaptive strategies, which
take into account the revealed information in the queries so far (e.g., locations already visited or tests already
done) to determine the future course of action. Such an adaptive solution corresponds naturally to a decision tree,
where nodes encode the current “state” of the solution and branches represent observed random outcomes; see
Definition 2 for a formal definition. A simpler class of solutions that have been useful in some other adaptive
optimization problems, e.g., Dean et al. [11], Guha and Munagala [20], Bansal et al. [2], are nonadaptive solutions,
which are specified by just an ordered list of actions. However there are instances for both the above problems
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where the optimal adaptive solution costs much less than the optimal nonadaptive solution. Hence it is essential
that we find good adaptive solutions.
The optimal decision tree problem has long been studied; its NP-hardness was shown by Hyafil and Rivest in

1976 (Hyafil and Rivest [25]) and many references and applications can be found in Nowak [33]. There have
been a large number of papers providing algorithms for this problem (Garey and Graham [15], Loveland [30],
Kosaraju et al. [28], Dasgupta [10], Adler and Heeringa [1], Chakaravarthy et al. [5], Nowak [33], Guillory and
Bilmes [21]). The best results yield approximation ratios of O(log(1/pmin)) and O(log(m(cmax/cmin))), where pmin
is the minimum nonzero probability and cmax (respectively, cmin) is the maximum (respectively, minimum) cost.
In the special cases when the likelihoods {p j} or the costs {ct} are all polynomially bounded in m, these imply an
O(log m)-approximation algorithm. However, there are instances (when probabilities and costs are exponential)
demonstrating an Ω(m) approximation guarantee for all previous algorithms. On the hardness side, an Ω(log m)
hardness of approximation (assuming P ,NP) is known for the optimal decision tree problem (Chakaravarthy
et al. [5]). While the existence of an O(log m)-approximation algorithm for the general optimal decision tree
problem has been posed as an open question, it has not been answered prior to this work.
Optimal decision tree is also a basic problem in average-case active learning (Dasgupta [10], Nowak [33], Guillory

and Bilmes [21]). In this application, there is a set of n data points, each of which is associated with a + or
− label. The labels are initially unknown. A classifier is a partition of the data points into + and − labels.
The true classifier h∗ is the partition corresponding to the actual data labels. The learner knows beforehand, a
“hypothesis class” H consisting of m classifiers; it is assumed that the true classifier h∗ ∈ H. Furthermore, in
the average case model, there is a known distribution π of h∗ over H. The learner wants to determine h∗ by
querying labels at various points. There is a cost ct associated with querying the label of each data point t. An
active learning strategy involves adaptively querying labels of data points until h∗ ∈ H is identified. The goal is
to compute a strategy that minimizes the expectation (over π) of the cost of all queried points. This is precisely
the optimal decision tree problem, with points being tests and classifiers corresponding to diseases.
Apart from being a natural adaptive routing problem, AdapTSP has many applications in the setting of

message ferrying in ad hoc networks (Zhao and Ammar [38], Shah et al. [35], Zhao et al. [39, 40], He et al. [24]).
We cite two examples below:

• Data collection in sparse sensor networks (see, e.g., Shah et al. [35]). A collection of sensors is spread over a
large geographic area, and one needs to periodically gather sensor data at a base station. Due to the power
and cost overheads of setting up a communication network between the sensors, the data collection is instead
performed by a mobile device (the message ferry) that travels in this space from/to the base station. On any
given day, there is a known distribution D of the subset S of sensors that contain new information: this might
be derived from historical data or domain experts. The routing problem for the ferry then involves computing
a tour (originating from the base station) that visits all sensors in S, at the minimum expected cost.

• Disaster management (see, e.g., Zhao et al. [39]). Consider a post-disaster situation, in which usual communi-
cation networks have broken down. In this case, vehicles can be used in order to visit locations and assess the
damage. Given a distribution of the set of affected locations, the goal here is to route a vehicle that visits all
affected locations as quickly as possible in expectation.
In both these applications, due to the absence of a direct communication network, the information at any

location is obtained only when it is visited: this is precisely the AdapTSP problem.

1.1. Our Results and Techniques
In this paper, we settle the approximability of the optimal decision tree problem:

Theorem 1. There is an O(log m)-approximation algorithm for the optimal decision tree problem with arbitrary test costs
and arbitrary probabilities, where m is the number of diseases. The problem admits the same approximation ratio even
when the tests have nonbinary outcomes.

In fact, this result arises as a special case of the following theorem:

Theorem 2. There is an O(log2 n log m)-approximation algorithm for the adaptive Traveling Salesman Problem, where n
is the number of vertices and m the number of scenarios in the demand distribution.

To solve the AdapTSP problem, we first solve the “isolation problem,” which seeks to identify which of
the m scenarios has materialized. Once we know the scenario, we can visit its vertices using any constant-factor
approximation algorithm for TSP. The high-level idea behind our algorithm for the isolation problem is this—
suppose each vertex lies in at most half the scenarios; then if we visit one vertex in each of the m scenarios using
a short tour, which is an instance of the group Steiner tree problem,1 we’d notice at least one of these vertices to
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have a demand; this would reduce the number of possible scenarios by at least 50% and we can recursively run
the algorithm on the remaining scenarios. This is an oversimplified view, and there are many details to handle:
we need not visit all scenarios—visiting all but one allows us to infer the last one by exclusion, the expectation
in the objective function means we need to solve a minimum-sum version of group Steiner tree, and not all
vertices need lie in fewer than half the scenarios. Another major issue is that we do not want our performance
to depend on the magnitude of the probabilities, as some of them may be exponentially small. Finally, we need
to charge our cost directly against the optimal decision tree. All these issues can indeed be resolved to obtain
Theorem 2.
The algorithm for the isolation problem involves an interesting combination of ideas from the group

Steiner (Garg et al. [17], Charikar et al. [6]) and minimum latency TSP (Blum et al. [3], Chaudhuri et al. [7],
Fakcharoenphol et al. [12]) problems—it uses a greedy approach that is greedy with respect to two different cri-
teria, namely, the probability measure and the number of scenarios. This idea is formalized in our algorithm for
the partial latency group Steiner (LPGS) problem, which is a key subroutine for IsoProb. While this LPGS problem
is harder to approximate than the standard group Steiner tree (see Section 2), for which O(log2 n log m) is the
best approximation ratio, we show that it admits a better (O(log2 n), 4) bicriteria approximation algorithm. More-
over, even this bicriteria approximation guarantee for LPGS suffices to obtain an O(log2 n · log m)-approximation
algorithm for IsoProb.
We also show that both AdapTSP and the isolation problem are Ω(log2−ε n) hard to approximate even on

tree metrics; our results are essentially best possible on such metrics, and we lose an extra logarithmic factor
to go to general metrics, as in the group Steiner tree problem. Moreover, any improvement to the result in
Theorem 2 would lead to a similar improvement for the group Steiner tree problem (Garg et al. [17], Halperin
and Krauthgamer [23], Chekuri and Pál [8]), which is a longstanding open question.
For the optimal decision tree problem, we show that we can use a variant of minimum-sum set cover (Feige

et al. [14]), which is the special case of LPGS on star metrics. This avoids an O(log2 n) loss in the approxima-
tion guarantee and hence gives us an O(log m)-approximation algorithm that is best possible (Chakaravarthy
et al. [5]). Although this variant of min-sum set cover is Ω(log m)-hard to approximate (it generalizes set cover
as shown in Section 2), we again give a constant factor bicriteria approximation algorithm, which leads to the
O(log m)-approximation for optimal decision tree. Our result further reinforces the close connection between
the min-sum set cover problem and the optimal decision tree problem that was first noticed by Chakaravarthy
et al. [5].
Finally, we consider the related adaptive traveling repairman problem (AdapTRP), which has the same input

as AdapTSP, but the objective is to minimize the expected sum of arrival times at vertices in the materialized
demand set. In this setting, we cannot first isolate the scenario and then visit all its nodes since a long isolation
tour may negatively impact the arrival times. So AdapTRP (unlike AdapTSP) cannot be reduced to the isolation
problem. However, we show that our techniques for AdapTSP are robust and can be used to obtain the following:

Theorem 3. There is an O(log2 n log m)-approximation algorithm for the adaptive traveling repairman problem, where n
is the number of vertices and m the number of scenarios in the demand distribution.

Paper outline: The results on the isolation problem appear in Section 3. We obtain the improved approximation
algorithm for optimal decision tree in Section 4. The algorithm for the adaptive traveling salesman problem is
in Section 5; Appendix A contains a nearly matching hardness of approximation result. Finally, Section 6 is on
the adaptive traveling repairman problem.

1.2. Other Related Work
The optimal decision tree problem has been studied earlier by many authors, with algorithms and hardness
results being shown by Garey and Graham [15], Hyafil and Rivest [25], Loveland [30], Kosaraju et al. [28], Adler
and Heeringa [1], Dasgupta [10], Chakaravarthy et al. [5], Chakaravarthy et al. [4], Guillory and Bilmes [21].
As mentioned above, the algorithms in these papers gave O(log m)-approximation ratios only when the prob-
abilities or costs (or both) are polynomially bounded. The early papers on optimal decision tree considered
tests with only binary outcomes. More recently, Chakaravarthy et al. [5] studied the generalization with K ≥ 2
outcomes per test and gave an O(log K · log m)-approximation under uniform costs. Subsequently, Chakar-
avarthy et al. [4] improved this bound to O(log m), again under uniform costs. Later, Guillory and Bilmes [21]
gave an algorithm under arbitrary costs and probabilities, achieving an approximation ratio of O(log(1/pmin))
or O(log(m(cmax/cmin))). This is the previous best approximation guarantee; see also Guillory and Bilmes [21,
Table 1] for a summary of these results. We note that in terms of the number m of diseases, the previous best
approximation guarantee is only Ω(m). On the other hand, there is an Ω(log m) hardness of approximation for
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the optimal decision tree problem (Chakaravarthy et al. [5]). Our O(log m)-approximation algorithm for arbi-
trary costs and probabilities solves an open problem from these papers. A crucial aspect of this algorithm is
that it is nongreedy. All previous results were based on variants of a greedy algorithm.
There are many results on adaptive optimization dealing with covering problems. For example, Goemans

and Vondrák [18] considered the adaptive set-cover problem; they gave an O(log n)-approximation when sets
may be chosen multiple times and an O(n)-approximation when each set may be chosen at most once. The
latter approximation ratio was improved in Munagala et al. [31] to O(log2 n log m) and subsequently to the best-
possible O(log n)-approximation ratio by Liu et al. [29], also using a greedy algorithm. In recent work Golovin
and Krause( [19]) generalized adaptive set-cover to a setting termed “adaptive submodularity” and gave many
applications. In all these problems, the adaptivity gap (ratio between optimal adaptive and nonadaptive solu-
tions) is large, as is the case for the problems considered in this paper, and so the solutions need to be inherently
adaptive.
The AdapTSP problem is related to universal TSP (Jia et al. [27], Gupta et al. [22]) and a priori TSP (Jaillet [26],

Schalekamp and Shmoys [34], Shmoys and Talwar [36]) only in spirit—in both the universal and a priori TSP
problems, we seek a master tour that is shortcut once the demand set is known, and the goal is to minimize the
worst-case or expected length of the shortcut tour. The crucial difference is that the demand subset is revealed
in toto in these two problems, leaving no possibility of adaptivity—this is in contrast to the slow revelation of
the demand subset that occurs in AdapTSP.

2. Preliminaries
We work with a finite metric (V, d) that is given by a set V of n vertices and distance function d: V ×V→�+. As
usual, we assume that the distance function is symmetric and satisfies the triangle inequality. For any integer
t ≥ 1, we let [t] :� {1, 2, . . . , t}.
Definition 1 (r-Tour). Given a metric (V, d) and vertex r ∈ V , an r-tour is any sequence (r � u0 , u1 , . . . , uk � r) of
vertices that begins and ends at r. The length of such an r-tour is ∑k

i�1 d(ui , ui−1), the total length of all edges
in the tour.
Throughout this paper, we deal with demand distributions over vertex subsets that are specified explicitly.

A demand distribution D is specified by m distinct subsets {Si ⊆ V}m
i�1 having associated probabilities {pi}m

i�1
such that ∑m

i�1 pi � 1. This means that the realized subset D ⊆V of demand vertices will always be one of {Si}m
i�1,

where D � Si with probability pi (for all i ∈ [m]). We also refer to the subsets {Si}m
i�1 as scenarios. The following

definition captures adaptive strategies.
Definition 2 (Decision Tree). A decision tree T in metric (V, d) is a rooted binary tree where each nonleaf node
of T is labeled with a vertex u ∈ V , and its two children uyes and uno correspond to the subtrees taken if there
is demand at u or if there is no demand at u. Thus given any realized demand D ⊆ V , a unique path TD is
followed in T from the root down to a leaf.
Depending on the problem under consideration, there are additional constraints on decision tree T and the

expected cost of T is also suitably defined. There is a (problem-specific) cost Ci associated with each scenario
i ∈ [m] that depends on path TSi

, and the expected cost of T (under distribution D) is then ∑m
i�1 pi · Ci . For

example, in AdapTSP, cost Ci corresponds to the length of path TSi
.

Since we deal with explicitly specified demand distributions D, all decision trees we consider will have size
polynomial in m (support size of D) and n (number of vertices).
Adaptive traveling salesman. This problem consists of a metric (V, d) with root r ∈ V and a demand distribu-
tion D over subsets of vertices. The information on whether or not there is demand at a vertex v is obtained
only when that vertex v is visited. The objective is to find an adaptive strategy that minimizes the expected
time to visit all vertices of the realized scenario drawn from D.
We assume that the distribution D is specified explicitly with a support-size of m. This allows us to model

demand distributions that are arbitrarily correlated across vertices. We note, however, that the running time
and performance of our algorithm will depend on the support size. The most general setting would be to
consider black-box access to the distribution D: however, as shown in Nagarajan [32], in this setting there is
no o(n)-approximation algorithm for AdapTSP that uses a polynomial number of samples from the distribu-
tion. One could also consider AdapTSP under independent demand distributions. In this case there is a trivial
constant-factor approximation algorithm that visits all vertices having nonzero probability along an approx-
imately minimum TSP tour; note that any feasible solution must visit all vertices with nonzero probability
as otherwise (due to the independence assumption) there would be a positive probability of not satisfying a
demand.
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Definition 3 (Adaptive TSP). The input is a metric (V, d), root r ∈ V and demand distribution D given by m
distinct subsets {Si ⊆ V}m

i�1 with probabilities {pi}m
i�1 (where ∑m

i�1 pi � 1). The goal in AdapTSP is to compute a
decision tree T in metric (V, d) such that

• the root of T is labeled with the root vertex r, and
• for each scenario i ∈ [m], the path TSi

followed on input Si contains all vertices in Si .
The objective function is to minimize the expected tour length ∑m

i�1 pi · d(TSi
), where d(TSi

) is the length of the
tour that starts at r, visits the vertices on path TSi

in that order, and returns to r.
Isolation problem. This is closely related to AdapTSP. The input is the same as AdapTSP, but the goal is just to
identify the unique scenario that has materialized and not to visit all the vertices in the realized scenario.
Definition 4 (Isolation Problem). Given metric (V, d), root r, and demand distribution D, the goal in IsoProb is to
compute a decision tree T in metric (V, d) such that

• the root of T is labeled with the root vertex r, and
• for each scenario i ∈ [m], the path TSi

followed on input Si ends at a distinct leaf node of T.
The objective is to minimize the expected tour length IsoTime(T) :�∑m

i�1 pi · d(TSi
), where d(TSi

) is the length of
the r-tour that visits the vertices on path TSi

in that order and returns to r.
The only difference between IsoProb and AdapTSP is that the tree path TSi

in IsoProb need not contain all
vertices of Si , and the paths for different scenarios must end at distinct leaf nodes. In Section 5 we show that
any approximation algorithm for IsoProb leads to an approximation algorithm for AdapTSP, so we focus on
designing algorithms for IsoProb.
Optimal decision tree. This problem involves identifying a random disease from a set of possible diseases using
binary tests.
Definition 5 (Optimal Decision Tree). The input is a set of m diseases with probabilities {pi}m

i�1 that sum to one and
a collection {T j ⊆ [m]}n

j�1 of n binary tests with costs {c j}n
j�1. There is exactly one realized disease: each disease

i ∈ [m] occurs with probability pi . Each test j ∈ [n] returns a positive outcome for subset T j of diseases and
returns a negative outcome for the rest [m]\T j . The goal in optimal decision tree (ODT) is to compute a decision
tree Q where each internal node is labeled by a test and has two children corresponding to positive/negative
test outcomes, such that for each i ∈ [m] the path Qi followed under disease i ends at a distinct leaf node of Q.
The objective is to minimize the expected cost ∑m

i�1 pi · c(Qi) where c(Qi) is the sum of test costs along path Qi .
Notice that the optimal decision tree problem is exactly IsoProb on a weighted star metric. Indeed, given an

instance of ODT, consider a metric (V, d) induced by a weighted star with center r and n leaves corresponding
to the tests. For each j ∈ [n], we set d(r, j)� c j/2. The demand scenarios are as follows: for each i ∈ [m] scenario
i has demands Si � { j ∈ [n] | i ∈ T j}. It is easy to see that this IsoProb instance corresponds exactly to the optimal
decision tree instance. See Section 4 for an example. Thus any algorithm for IsoProb on star metrics can be used
to solve ODT as well.
Useful deterministic problems. Recall that the group Steiner tree problem (Garg et al. [17], Halperin and
Krauthgamer [23]) consists of a metric (V, d), root r ∈ V , and g groups of vertices {Xi ⊆ V}g

i�1, and the goal is
to find an r-tour of minimum length that contains at least one vertex from each group {Xi}

g
i�1. Our algorithms

for the above stochastic problems rely on solving some variants of group Steiner tree.
Definition 6 (Group Steiner Orienteering). The input is a metric (V, d), root r ∈V , g groups of vertices {Xi ⊆ V}g

i�1
with associated profits {φi}

g
i�1 and a length bound B. The goal in group Steiner orienteering (GSO) is to compute

an r-tour of length at most B that maximizes the total profit of covered groups. A group i ∈ [g] is covered if
any vertex from Xi is visited by the tour.

An algorithm for GSO is said to be a (β, γ)-bicriteria approximation algorithm if on any instance of the
problem, it finds an r-tour of length at most γ ·B that has profit at least 1/β times the optimal (which has length
at most B).
Definition 7 (Partial Latency Group Steiner). The input is a metric (V, d), g groups of vertices {Xi ⊆ V}g

i�1 with
associated weights {wi}

g
i�1, root r ∈V and a target h ≤ g. The goal in LPGS is to compute an r-tour τ that covers

at least h groups and minimizes the weighted sum of arrival times over all groups. The arrival time of group
i ∈ [g] is the length of the shortest prefix of tour τ that contains an Xi-vertex; if the group is not covered, its
arrival time is set to be the entire tour-length. The LPGS objective is termed latency; i.e.,

latency(τ)�
∑

i covered
wi · arrival timeτ(Xi)+

∑
i uncovered

wi · length(τ). (1)
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An algorithm for LPGS is said to be a (ρ, σ)-bicriteria approximation algorithm if on any instance of the
problem, it finds an r-tour that covers at least h/σ groups and has latency at most ρ times the optimal (which
covers at least h groups). The reason we focus on a bicriteria approximation for LPGS is that it is harder to
approximate than the group Steiner tree problem (see below) and we can obtain a better bicriteria guarantee
for LPGS.
To see that LPGS is at least as hard to approximate as the group Steiner tree problem, consider an arbitrary

instance of group Steiner tree with metric (V, d), root r ∈V , and g groups {Xi ⊆ V}g
i�1. Construct an instance of

LPGS as follows. The vertices are V′ �V ∪{u} where u is a new vertex. Let L :� n2 ·maxa , b d(a , b). The distances
in metric (V′, d′) are d′(a , b) � d(a , b) if a , b ∈ V and d′(a , u) � L + d(a , r) if a ∈ V . There are g′ � g + 1 groups
with X′i � Xi for i ∈ [g] and X′g+1 � {u}. The target h � g. The weights are wi � 0 for i ∈ [g] and wg+1 � 1. Since
the distance from r to u is very large, no approximately optimal LPGS solution will visit u, so any such LPGS
solution covers all the groups {X′i}

g
i�1 and has latency equal to the length of the solution (as group X′g+1 has

weight one and all others have weight zero). This reduction also shows that LPGS on weighted star metrics
(which is used in the ODT algorithm) is at least as hard to approximate as set cover: this is because when metric
(V, d) is a star metric with center r, so is the new metric (V′, d′).2

3. Approximation Algorithm for the Isolation Problem
Recall that an instance of IsoProb is specified by a metric (V, d), a root vertex r ∈V , and m scenarios {Si}m

i�1 with
associated probability values {pi}m

i�1. The main result of this section is the following:

Theorem 4. If there is a (4, γ)-bicriteria approximation algorithm for group Steiner orienteering, then there is an
O(γ · log m)-approximation algorithm for the isolation problem.

We prove this in two steps. First, in Subsection 3.1 we show that a (ρ, 4)-bicriteria approximation algorithm for
LPGS can be used to obtain an O(ρ · log m)-approximation algorithm for IsoProb. In Subsection 3.2 we show that
any (4, γ)-bicriteria approximation algorithm for GSO leads to an (O(γ), 4)-bicriteria approximation algorithm
for LPGS.

Note on reading this section. While the results of this section apply to the isolation problem on general metrics,
readers interested in just the optimal decision tree problem need to only consider weighted star metrics (as
discussed after Definition 5). In the ODT case, we have the following simplifications: (1) a tour is simply a
sequence of tests, (2) the tour length is the sum of test costs in the sequence, and (3) concatenating tours
corresponds to concatenating test sequences.

3.1. Algorithm for IsoProb Using LPGS
Recall the definition of IsoProb and LPGS from Section 2. Here we will prove the following:

Theorem 5. If there is a (ρ, 4)-bicriteria approximation algorithm for LPGS, then there is an O(ρ · log m)-approximation
algorithm for IsoProb.

We first give a high-level description of our algorithm. The algorithm uses an iterative approach and maintains
a candidate set of scenarios that contains the realized scenario. In each iteration, the algorithm eliminates
a constant fraction of scenarios from the candidate set. Thus, the number of iterations will be bounded by
O(log m). In each iteration we solve a suitable instance of LPGS in order to refine the candidate set of scenarios.

Single iteration of IsoProb algorithm. As mentioned above, we use LPGS in each iteration of the IsoProb
algorithm—we now describe how this is done. At the start of each iteration, our algorithm maintains a candi-
date set M ⊆ [m] of scenarios that contains the realized scenario. The probabilities associated with the scenarios
i ∈M are not the original pis but their conditional probabilities qi :� pi/

∑
j∈M p j . The algorithm Partition (given

as Algorithm 1) uses LPGS to compute an r-tour τ such that after observing the demands on τ, the number of
scenarios consistent with these observations is guaranteed to be a constant factor smaller than |M |.

To get some intuition for this algorithm, consider the simplistic case when there is a vertex u ∈V located near
the root r such that ≈ 50% of the scenarios in M contain it; then just visiting vertex u would reduce the number
candidate scenarios by ≈ 50%, irrespective of the observation at u, giving us the desired notion of progress.
However, each vertex may give a very unbalanced partition of M, so we may have to visit multiple vertices
before ensuring that the number of candidate scenarios reduces by a constant factor. Moreover, some vertices
may be too expensive to visit from r, so we need to carefully take the metric into account in choosing the set
of vertices to visit. Addressing these issues is precisely where the LPGS problem comes in.
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Algorithm 1 (Algorithm Partition(〈M, {qi}i∈M〉))
1: let g � |M |. For each v ∈V , define Fv :� {i ∈M | v ∈ Si}, and Dv :�

{
Fv if |Fv | ≤ g/2,
M\Fv if |Fv | > g/2.

2: for each i ∈M, set Xi←{v ∈V | i ∈ Dv}.
3: run the (ρ, 4)-bicriteria approximation algorithm for LPGS on the instance with metric (V, d), root r,

groups {Xi}i∈M with weights {qi}i∈M , and target h :� g − 1.
let τ :� r, v1 , v2 , . . . , vt−1 , r be the r-tour returned.

4: let {Pk}t
k�1 be the partition of M where Pk :�

{
Dvk
\(⋃ j<k Dv j

) if 1 ≤ k ≤ t − 1,
M\(⋃ j<t Dv j

) if k � t .
5: return tour τ and the partition {Pk}t

k�1.

Note that the information at any vertex v corresponds to a bi-partition (Fv ,M\Fv) of the scenario set M, with
scenarios Fv having demand at v and scenarios M\Fv having no demand at v. Either the presence of demand
or the absence of demand reduces the number of candidate scenarios by half (and represents progress). To
better handle this asymmetry, step 1 associates vertex v with subset Dv which is the smaller of {Fv ,M\Fv};
this corresponds to the set of scenarios under which just the observation at v suffices to reduce the number of
candidate scenarios below |M |/2 (and represents progress). In steps 2 and 3, we view vertex v as covering the
scenarios Dv .

The overall algorithm for IsoProb. Here we describe how the different iterations are combined to solve IsoProb.
The final algorithm IsoAlg (given as Algorithm 2) is described in a recursive manner where each “iteration” is
a new call to IsoAlg. As mentioned earlier, at the start of each iteration, the algorithm maintains a candidate
set M ⊆ [m] of scenarios such that the realized scenario lies in M. Upon observing demands along the tour
produced by algorithm Partition, a new set M′ ⊆M containing the realized scenario is identified such that the
number of candidate scenarios reduces by a constant factor (specifically |M′ | ≤ 7

8 · |M |). IsoAlg then recurses
on scenarios M′, which corresponds to the next iteration. After O(log m) such iterations, the realized scenario
would be correctly identified.

Algorithm 2 (Algorithm IsoAlg〈M, {qi}i∈M〉)
1: If |M | � 1, return this unique scenario as realized.
2: run Partition〈M, {qi}i∈M〉

let τ � (r, v1 , v2 , . . . , vt−1 , r) be the r-tour and {Pk}t
k�1 be the partition of M returned.

3: let q′k :�∑
i∈Pk

qi for all k � 1 . . . t.
4: traverse tour τ and return directly to r after visiting the first (if any) vertex vk∗ (for k∗ ∈ [t−1]) that determines

that the realized scenario is in Pk∗ ⊆M. If there is no such vertex until the end of the tour τ, then set k∗← t.
5: run IsoAlg〈Pk∗ , {qi/q′k∗}i∈Pk∗

〉 to isolate the realized scenario within the subset Pk∗ .

Note that the adaptive Algorithm IsoAlg implicitly defines a decision tree, too; indeed, we create a path
(r, v1 , v2 , . . . , vt−1 , vt � r) and hang the subtrees created in the recursive call on each instance 〈Pk , {qi/q′k}〉 from
the respective node vk . See also Figure 1.

Analysis. The rest of this subsection analyzes IsoAlg and proves Theorem 5. We first provide an outline of the
proof. It is easy to show that IsoAlg correctly identifies the realized scenario after O(log m) iterations: this is
shown formally in Claim 5. We relate the objective values of the LPGS and IsoProb instances in two steps:
Claim 1 shows that LPGS has a smaller optimal value than IsoProb, and Claim 3 shows that any approximate
LPGS solution can be used to construct a partial IsoProb solution incurring the same cost (in expectation). Since
different iterations of IsoAlg deal with different subinstances of IsoProb, we need to relate the optimal cost of
these subinstances to that of the original instance: this is done in Claim 4.
Recall that the original instance of IsoProb is defined on metric (V, d), root r, and set {Si}m

i�1 of scenarios
with probabilities {pi}m

i�1. IsoAlg works with many subinstances of the isolation problem. Such an instance J is
specified by a subset M ⊆ [m], which implicitly defines (conditional) probabilities qi � pi/

∑
j∈M p j for all i ∈M.

In other words, J involves identifying the realized scenario conditioned on it being in set M (the metric and root
remain the same as the original instance). Let IsoTime∗(J) denote the optimal value of any instance J.

Claim 1. For any instance J � 〈M, {qi}i∈M〉, the optimal value of the LPGS instance considered in step 3 of algorithm
Partition(J) is at most IsoTime∗(J).
Proof. Let T be an optimal decision tree corresponding to IsoProb instance J, and hence IsoTime∗(J)� IsoTime(T).
Note that by definition of the sets {Fv}v∈V , any internal node in T labeled vertex v has its two children vyes
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Figure 1. Example of Decision Tree in Single Iteration Using Tour τ � (r, v1 , v2 , v3 , r)

v1

v2

v3

P1

P2

P3P4

Yes No

Yes

Yes

No

No

Dv1
 corresponds to the yes branch

Dv2
 and Dv3

 correspond to the no branch

r Subtrees corresponding to {Pk}
4
k =1 are constructed recursively

r

rr

r

and vno corresponding to the realized scenario being in Fv and M\Fv (respectively); by definition of {Dv}v∈V ,
nodes vyes and vno correspond to the realized scenario being in Dv and M\Dv (now not necessarily in that order).
We now define an r-tour σ based on a specific root-leaf path in T. Consider the root-leaf path that at any

node labeled v, moves to the child vyes or vno that corresponds to M\Dv until it reaches a leaf node `. Let
r, u1 , u2 , . . . , u j denote the sequence of vertices in this root-leaf path, and define r-tour σ � 〈r, u1 , u2 , . . . , u j , r〉.
Since T is a feasible decision tree for the isolation instance, there is at most one scenario a ∈M such that the
path TSa

traced in T under demands Sa ends at leaf node `. In other words, every scenario b ∈M\{a} gives rise
to a root-leaf path TSb

that diverges from the root-` path. By our definition of the root-` path, the scenarios that
diverge from it are precisely ⋃ j

k�1 Duk
, and so ⋃ j

k�1 Duk
� M\{a}.

Next, we show that σ is a feasible solution to the LPGS instance in step 3. By definition of the groups {Xi}i∈M

(step 2 of Algorithm 1), it follows that tour σ covers groups ⋃ j
k�1 Duk

. The number of groups covered is at least
|M | − 1� h, and σ is a feasible LPGS solution.
Finally, we bound the LPGS objective value of σ in terms of the isolation cost IsoTime(T). To reduce notation

let u0 � r below. The arrival times in tour σ are

arrival timeσ(Xi)�


k∑

s�1
d(us−1 , us) if i ∈ Duk

\⋃k−1
s�1 Dus

, for k � 1, . . . , j,

length(σ) if i � a.

Fix any k � 1, . . . , j. For any scenario i ∈ Duk
\⋃k−1

s�1 Dus
, the path TSi

traced in T contains the prefix labeled
r, u1 , . . . , uk of the root-` path, so d(TSi

) ≥ ∑k
s�1 d(us−1 , us) � arrival timeσ(Xi). Moreover, for scenario a, which

is the only scenario not in ⋃ j
k�1 Duk

, we have d(TSa
) � length(σ) � arrival timeσ(Xi). Now by (1), latency(σ) ≤∑

i∈M qi · d(TSi
)� IsoTime(T)� IsoTime∗(J). �

If we use a (ρ, 4)-bicriteria approximation algorithm for LPGS, we get the following claim:

Claim 2. For any instance J � 〈M, {qi}i∈M〉, the latency of tour τ returned by Algorithm Partition is at most ρ ·
IsoTime∗(J). Furthermore, the resulting partition {Pk}t

k�1 has each |Pk | ≤ 7
8 |M | for each k ∈ [t], when |M | ≥ 2.

Proof. By Claim 1, the optimal value of the LPGS instance in step 3 of algorithm Partition is at most IsoTime∗(J);
now the (ρ, 4)-bicriteria approximation guarantee implies that the latency of the solution tour τ is at most ρ
times that. This proves the first part of the claim.
Consider τ :� 〈r � v0 , v1 , . . . , vt−1 , vt � r〉 the tour returned by the LPGS algorithm in step 3 of algorithm

Partition; and {Pk}t
k�1 the resulting partition. The (ρ, 4)-bicriteria approximation guarantee implies that the num-

ber of groups covered by τ is |⋃t−1
k�1 Dvk

| ≥ h/4� (|M | −1)/4 ≥ |M |/8 (when |M | ≥ 2). By definition of the sets Dv ,
it holds that |Dv | ≤ |M |/2 for all v ∈ V . Since all but the last part Pt is a subset of some Dv , it holds that
|Pk | ≤ |M |/2 for 1 ≤ k ≤ t − 1. Moreover, the set Pt has size |Pt | � |M\(

⋃
j<t Dv j

)| ≤ 7
8 |M |. This proves the second

part of the claim. �
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Of course, we don’t really care about the latency of the tour per se; we care about the expected cost incurred
in isolating the realized scenario. But the two are related (by their very construction), as the following claim
formalizes:

Claim 3. At the end of step 4 of IsoAlg〈M, {qi}i∈M〉, the realized scenario lies in Pk∗ . The expected distance traversed in
this step is at most 2ρ · IsoTime∗(〈M, {qi}i∈M〉).
Proof. Consider the tour τ :� 〈r � v0 , v1 , . . . , vt−1 , vt � r〉 returned by the Partition algorithm. Recall that visiting
any vertex v reveals whether the scenario lies in Dv or in M\Dv . In step 4 of algorithm IsoAlg, we traverse τ
and one of the following happens:

• 1 ≤ k∗ ≤ t − 1. Tour returns directly to r from the first vertex vk (for 1 ≤ k ≤ t − 1) such that the realized
scenario lies in Dvk

; here k � k∗. Since the scenario did not lie in any earlier Dv j
for j < k, the definition of

Pk � Dvk
\(⋃ j<k Dv j

) gives us that the realized scenario is indeed in Pk .
• k∗ � t. Tour τ is completely traversed and we return to r. In this case, the realized scenario does not lie in

any of {Dvk
| 1 ≤ k ≤ t−1}, and it is inferred to be in the complement set M\(⋃ j<t Dv j

), which is Pt by definition.
Hence for k∗ as defined in step 4 of IsoAlg〈M, {qi}i∈M〉, it follows that Pk∗ contains the realized scenario; this
proves the first part of the claim (and correctness of the algorithm).
For each i ∈M, let αi denote the arrival time of group Xi in tour τ; recall that this is the length of the shortest

prefix of τ until it visits an Xi-vertex and is set to the entire tour length if τ does not cover Xi . The construction
of partition {Pk}t

k�1 from τ implies that

αi �

k∑
j�1

d(v j−1 , v j), ∀ i ∈ Pk , ∀1 ≤ k ≤ t ,

and hence latency(τ)�∑
i∈M qi · αi .

To bound the expected distance traversed, note the probability that the traversal returns to r from vertex vk
(for 1 ≤ k ≤ t − 1) is exactly ∑

i∈Pk
qi ; with the remaining ∑

i∈Pt
qi probability the entire tour τ is traversed. Now,

using symmetry and triangle inequality of the distance function d, we have d(vk , r) ≤
∑k

j�1 d(v j−1 , v j) for all
k ∈ [t]. Hence the expected length traversed is at most

t∑
k�1

(∑
i∈Pk

qi

)
·
(
d(vk , r)+

k∑
j�1

d(v j−1 , v j)
)
≤ 2 ·

t∑
k�1

(∑
i∈Pk

qi

)
·
( k∑

j�1
d(v j−1 , v j)

)
� 2 ·

∑
i∈M

qi · αi ,

which is exactly 2 · latency(τ). Finally, by Claim 5, this is at most 2 · ρ · IsoTime∗(〈M, {qi}i∈M〉). �
Now, the following simple claim captures the “subadditivity” of IsoTime∗.

Claim 4. For any instance 〈M, {qi}i∈M〉 and any partition {Pk}t
k�1 of M,

t∑
k�1

q′k · IsoTime∗(〈Pk , {qi/q′k}i∈Pk
〉) ≤ IsoTime∗(〈M, {qi}i∈M〉), (2)

where q′k �
∑

i∈Pk
qi for all 1 ≤ k ≤ t.

Proof. Let T denote the optimal decision tree for the instance J0 :� 〈M, {qi}i∈M〉. For each k ∈ [t], consider
instance Jk :� 〈Pk , {qi/q′k}i∈Pk

〉; a feasible decision tree for instance Jk is obtained by taking the decision tree T
and considering only paths to the leaf nodes labeled by {i ∈ Pk}. Note that this is a feasible solution since T
isolates all scenarios ⋃t

k�1 Pk . Moreover, the expected cost of such a decision tree for Jk is ∑
i∈Pk
(qi/q′k) · d(TSi

);
recall that TSi

denotes the tour traced by T under scenario i ∈ Pk . Hence Opt(Jk) ≤
∑

i∈Pk
(qi/q′k) · d(TSi

). Summing
over all parts k ∈ [t], we get

t∑
k�1

q′k ·Opt(Jk) ≤
t∑

k�1
q′k ·

∑
i∈Pk

qi

q′k
· d(TSi

)�
∑
i∈M

qi · d(TSi
)�Opt(J0), (3)

where the penultimate equality uses the fact that {Pk}t
k�1 is a partition of M. �

Given the above claims, we can bound the overall expected cost of the algorithm.

Claim 5. The expected length of the decision tree given by IsoAlg〈M, {qi}i∈M〉 is at most

2ρ · log8/7 |M | · IsoTime∗(〈M, {qi}i∈M〉).
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Proof. We prove this by induction on |M |. The base case of |M | � 1 is trivial, since zero length is traversed. Now
consider |M | ≥ 2. Let instance I0 :� 〈M, {qi}i∈M〉. For each k ∈ [t], consider the instance Ik :� 〈Pk , {qi/q′k}i∈Pk

〉,
where q′k �

∑
i∈Pk

qi . Note that |Pk | ≤ 7
8 |M | < |M | for all k ∈ [t] by Claim 5 (as |M | ≥ 2). By the inductive hypothesis,

for any k ∈ [t], the expected length of IsoAlg(Ik) is at most 2ρ · log8/7 |Pk | · IsoTime∗(Ik) ≤ 2ρ · (log8/7 |M | − 1) ·
IsoTime∗(Ik), since |Pk | ≤ 7

8 |M |.
By Claim 3, the expected length traversed in step 4 of IsoAlg(I0) is at most 2ρ · IsoTime∗(I0). The probability

of recursing on Ik is exactly q′k for each k ∈ [t]. Thus,

expected length of IsoAlg(I0) ≤ 2ρ · IsoTime∗(I0)+
t∑

k�1
q′k · (expected length of IsoAlg(Ik))

≤ 2ρ · IsoTime∗(I0)+
t∑

k�1
q′k · 2ρ · (log8/7 |M | − 1) · IsoTime∗(Ik)

≤ 2ρ · IsoTime∗(I0)+ 2ρ · (log8/7 |M | − 1) · IsoTime∗(I0)
� 2ρ · log8/7 |M | · IsoTime∗(I0)

where the third inequality uses Claim 4. �

Claim 5 implies that our algorithm achieves an O(ρ log m)-approximation for IsoProb. This completes the
proof of Theorem 5.

3.2. Algorithm for LPGS Using GSO
Recall the definitions of LPGS and GSO from Section 2. Here we will prove the following:

Theorem 6. If there is a (4, γ)-bicriteria approximation algorithm for GSO then there is an (O(γ), 4)-bicriteria approxi-
mation algorithm for LPGS.

We now describe the algorithm for LPGS in Theorem 6. Consider any instance of LPGS with metric (V, d),
root r ∈ V , g groups of vertices {Xi ⊆ V}g

i�1 having weights {wi}
g
i�1, and target h ≤ g. Let ζ∗ be an optimal tour

for the given instance of LPGS: let Lat∗ denote the latency and D∗ the length of ζ∗. We assume (without loss of
generality) that the minimum nonzero distance in the metric is one. Let parameter a :� 5

4 . Algorithm 3 is the
approximation algorithm for LPGS. The “guess” in the first step means the following. We run the algorithm
for all choices of l and return the solution having minimum latency among those that cover at least h/4 groups.
Since 1 < D∗ ≤ n ·maxe de , the number of choices for l is at most log(n ·maxe de), and so the algorithm runs in
polynomial time.

Algorithm 3 (Algorithm for LPGS)
1: guess an integer l such that a l−1 < D∗ ≤ a l .
2: mark all groups as uncovered.
3: for i � 1 . . . l do
4: run the (β, γ)-bicriteria approximation algorithm for GSO on the instance with groups {Xi}

g
i�1, root r,

length bound a i+1, and profits:

φi :�

{
0 for each covered group i ∈ [g],
wi for each uncovered group i ∈ [g].

5: let τ(i) denote the r-tour obtained above.
6: mark all groups visited by τ(i) as covered.
7: end for
8: construct tour τ← τ(1) ◦ τ(2) ◦ · · · ◦ τ(l), the concatenation of all the above r-tours.
9: Extend τ if necessary to ensure that d(τ) ≥ γ · a l (this is only needed for the analysis).
10: run the (β, γ)-bicriteria approximation algorithm for GSO on the instance with groups {Xi}

g
i�1, root r,

length bound a l , and unit profit for each group, i.e., φi � 1 for all i ∈ [g].
11: let σ denote the r-tour obtained above.
12: output tour π :� τ ◦ σ as solution to the LPGS instance.
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Analysis. In order to prove Theorem 6, we will show that the algorithm’s tour covers at least h/4 groups and
has latency O(γ) · Lat∗.
Claim 6. The tour τ in step 9 has length Θ(γ) ·D∗ and latency O(γ) · Lat∗.
Proof. Due to the (β, γ)-bicriteria approximation guarantee of the GSO algorithm used in step 4, the length
of each r-tour τ(i) is at most γ · a i+1. Thus, the length of τ in step 8 is at most γ∑l

i�1 a i+1 ≤ (γ/(a − 1))a l+2 ≤
(γa3/(a − 1))D∗. Moreover, the increase in step 9 ensures that d(τ) ≥ γ · D∗. Thus the length of τ in step 8 is
Θ(γ) ·D∗, which proves the first part of the claim.

The following proof for bounding the latency is based on techniques from the minimum latency TSP
(Chaudhuri et al. [7], Fakcharoenphol et al. [12]). Recall the optimal solution ζ∗ to the LPGS instance, where
d(ζ∗) � D∗ ∈ (a l−1 , a l]. For each i ∈ [l], let N ∗i denote the total weight of groups visited in ζ∗ by time a i ; note
that N ∗l equals the total weight of the groups covered by ζ∗. Similarly, for each i ∈ [l], let Ni denote the total
weight of groups visited in τ(1) · · · τ(i), i.e., by iteration i of the algorithm. Set N0 � N ∗0 :� 0, and W :�∑g

i�1 wi the
total weight of all groups. We have

latency(τ) ≤
l∑

i�1
(Ni −Ni−1) ·

i∑
j�1
γa j+1

+ (W −Nl) · d(τ) ≤
l∑

i�1
(Ni −Ni−1) ·

γa i+2

a − 1 + (W −Nl) · d(τ)

�

l∑
i�1
((W −Ni−1) − (W −Ni)) ·

γa i+2

a − 1 + (W −Nl) · d(τ) ≤
l∑

i�0
(W −Ni) ·

γa i+3

a − 1 �: T.

The last inequality uses the bound d(τ) ≤ (γ/a − 1)a l+2 from above.
The latency of the optimal tour ζ∗ is

Lat∗ ≥
l−1∑
i�1

a i−1(N ∗i −N ∗i−1)+ (W −N ∗l ) ·D∗

≥
l−1∑
i�1

a i−1((W −N ∗i−1) − (W −N ∗i ))+ (W −N ∗l ) · a l−1 ≥
(
1− 1

a

) l∑
i�0

a i(W −N ∗i ).

Consider any iteration i ∈ [l] of the algorithm in step 4. Note that the optimal value of the GSO instance
solved in this iteration is at least N ∗i −Ni−1: the a i length prefix of tour ζ∗ corresponds to a feasible solution to
this GSO instance with profit at least N ∗i −Ni−1. The GSO algorithm implies that the profit obtained in τ(i); i.e.,
Ni −Ni−1 ≥ 1

4 · (N ∗i −Ni−1) and, i.e., W −Ni ≤ 3
4 · (W −Ni−1)+ 1

4 · (W −N ∗i ). Using this,

(a − 1)T
γ

�

l∑
i�0

a i+3 · (W −Ni) ≤ a3 ·W +
1
4

l∑
i�1

a i+3(W −N ∗i )+
3
4

l∑
i�1

a i+3(W −Ni−1)

≤ a4

a − 1 · Lat
∗
+

3
4

l∑
i�1

a i+3(W −Ni−1)�
a4

a − 1 · Lat
∗
+

3a
4

l−1∑
i�0

a i+3(W −Ni)

≤ a4

a − 1 · Lat
∗
+

3a
4 · (a − 1)T

γ

This implies T ≤ γ · (a4/((a − 1)2(1− 3a/4))) · Lat∗ � O(γ) · Lat∗ since a �
5
4 . This completes the proof. �

Claim 7. The tour σ in step 10 covers at least h/4 groups and has length O(γ) ·D∗.
Proof. Since we know that the optimal tour ζ∗ has length at most a l and covers at least h groups, it is a feasible
solution to the GSO instance defined in step 10. Thus the GSO algorithm ensures that the tour σ has length at
most γa l � O(γ)D∗ and profit (i.e., number of groups) at least h/4. �
Lemma 1. Tour π � τ · σ covers at least h/4 groups and has latency O(γ) · Lat∗.
Proof. Since π visits all the vertices in σ, Claim 7 implies that π covers at least h/4 groups. For each group
i ∈ [g], let αi denote its arrival time under the tour τ after step 9—recall that the arrival time αi for any group
i that is not covered by τ is set to the length of the tour d(τ). Claim 6 implies that the latency of tour τ,∑g

i�1 wi · αi � O(γ) · Lat∗. Observe that for each group i that is covered in τ, its arrival time under tour π � τ · σ
remains αi . For any group j not covered in τ, its arrival time under τ is d(τ) ≥ γ · a l (due to step 9), and its arrival
time under π is d(π) ≤ O(γ) ·D∗ � O(1) · d(τ). Hence, the arrival time under π of each group i ∈ [g] is O(1) · αi ,
i.e., at most a constant factor more than its arrival time in τ. Now using Claim 6 completes the proof. �
Finally, Lemma 1 directly implies Theorem 6.
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Figure 2. Reducing Optimal Decision Tree to Isolation: Binary Tests (Top), Multiway Tests (Bottom)
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Remark: The above approach also leads to an approximation algorithm for the minimum latency group Steiner
problem, which is the special case of LPGS when the target h � g.

Definition 8 (Minimum Latency Group Steiner). The input is a metric (V, d), g groups of vertices {Xi ⊆ V}g
i�1 with

associated nonnegative weights {wi}
g
i�1 and root r ∈ V . The goal in latency group Steiner (LGS) is to compute

an r-tour that covers all groups with positive weight and minimizes the weighted sum of arrival times of the
groups. The arrival time of group i ∈ [g] is the length of the shortest prefix of the tour that contains a vertex
from Xi .

Note that the objective here is to minimize the sum of weighted arrival times where every group has to
be visited. The algorithm for latency group Steiner is in fact simpler than Algorithm 3: we do not need the
“guess” l (step 1) and we just repeat step 4 until all groups are covered (instead of stopping after l iterations).
A proof identical to that in Claim 6 gives

Corollary 1. If there is a (4, γ)-bicriteria approximation algorithm for GSO, then there is an O(γ)-approximation algo-
rithm for the latency group Steiner problem.

Combined with the (4,O(log2 n)-bicriteria approximation algorithm for GSO (see Section 5.1) we obtain an
O(log2 n)-approximation algorithm for LGS. It is shown in Nagarajan [32] that any α-approximation algorithm
for LGS can be used to obtain an O(α · log g)-approximation algorithm for group Steiner tree. Thus improving
this O(log2 n)-approximation algorithm for latency group Steiner would also improve the best known bound
for the standard group Steiner tree problem.

4. Optimal Decision Tree Problem
Recall that the optimal decision tree problem consists of a set of diseases with their probabilities (where exactly one
disease occurs) and a set of binary tests with costs, and the goal is to identify the realized disease at minimum
expected cost. In this section we prove Theorem 1.
As noted in Section 2 the optimal decision tree problem (Definition 5) is a special case of IsoProb (Definition 4).

We recall the reduction for convenience. Given an instance of ODT, consider a metric (V, d) induced by a
weighted star with center r and n leaves corresponding to the tests. For each j ∈ [n], we set d(r, j) � c j/2. The
demand scenarios are as follows: for each i ∈ [m] scenario i has demands Si � { j ∈ [n] | i ∈ T j}. It is easy to see
that this IsoProb instance corresponds exactly to the optimal decision tree instance. Figure 2 gives an example.
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The main observation here is the following:
Theorem 7. There is a (1 − 1/e)-approximation algorithm for the group Steiner orienteering problem on weighted star
metrics.
Proof. Consider an instance of GSO (Definition 6) on weighted star metric (V, d) with center r (which is also
the root in GSO) and leaves [n], g groups {Xi ⊆ [n]}

g
i�1 with profits {φi}

g
i�1, and length bound B. If for each

j ∈ [n], we define set Yj :� {i ∈ [g] | j ∈ Xi} of cost c j :� d(r, j)/2, then solving the GSO instance is the same as
computing a collection K ⊆ [n] of the sets with ∑

j∈K c j ≤ B/2 that maximizes f (K) :� ∑{φi | i ∈
⋃

j∈K Yj}. But
the latter problem is precisely an instance of maximizing a monotone submodular function over a knapsack
constraint (∑ j∈K c j ≤ B/2), for which a (1− 1/e)-approximation algorithm is known (Sviridenko [37]). �

Combining this result with Theorem 4, we obtain an O(log m) approximation algorithm for IsoProb on
weighted star metrics and hence ODT. This proves the first part of Theorem 1.
Multiway tests. Our algorithm can be easily extended to the generalization of ODT where tests have multiway
(instead of binary) outcomes. In this setting (when each test has at most l outcomes), any test j ∈ [n] induces a
partition {Tk

j }l
k�1 of [m] into l parts (some of them may be empty), and performing test j determines which part

the realized disease lies in. Note that this problem is also a special case of IsoProb. As before, consider a metric
(V, d) induced by a weighted star with center r and n leaves corresponding to the tests. For each j ∈ [n], we
set d(r, j)� c j/2. Additionally, for each j ∈ [n], introduce l copies of test-vertex j, labeled ( j, 1), . . . , ( j, l), at zero
distance from each other. The demand scenarios are defined naturally: for each i ∈ [m], scenario i has demands
Si � {( j, k) | i ∈ Tk

j }. See also an example in Figure 2. Clearly this IsoProb instance is equivalent to the (multiway)
decision tree instance. Since the resulting metric is still a weighted star (we only made vertex copies), Theorem 7
along with Theorem 4 implies an O(log m)-approximation for the multiway decision tree problem. This proves
the second part of Theorem 1.

5. Adaptive Traveling Salesman Problem
Recall that the adaptive TSP (Definition 3) consists of a metric (V, d) with root r ∈ V and demand distribution
D, and the goal is to visit all demand vertices (drawn from D) using an r-tour of minimum expected cost. We
first show the following simple fact relating this problem to the isolation problem.
Lemma 2. If there is an α-approximation algorithm for IsoProb, then there is an (α +

3
2 )-approximation algorithm for

AdapTSP.
Proof. We first claim that any feasible solution T to AdapTSP is also feasible for IsoProb. For this it suffices to
show that the paths TSi

, TS j
for any two scenarios i , j ∈ [m] with i , j. Suppose (for a contradiction) that paths

TSi
� TS j

� π for some i , j. By feasibility of T for AdapTSP, path π contains all vertices in Si ∪ S j . Since Si , S j ,
there is some vertex in (Si\S j) ∪ (S j\Si); let u ∈ Si\S j (the other case is identical). Consider the point where π
is at a node labeled u; then path TSi

must take the yes child, whereas path TS j
must take the no child. This

contradicts the assumption TSi
� TS j

� π. Thus any solution to AdapTSP is also feasible for IsoProb; moreover,
the expected cost remains the same. Hence the optimal value of IsoProb is at most that of AdapTSP.
Now, using any α-approximation algorithm for IsoProb, we obtain a decision tree T′ that isolates the realized

scenario and has expected cost α · Opt, where Opt denotes the optimal value of the AdapTSP instance. This
suggests the following feasible solution for AdapTSP:

1. Implement T′ to determine the realized scenario k ∈ [m], and return to r.
2. Traverse a 3

2 -approximate TSP tour (Christofides [9]) on vertices {r} ∪ Sk .
From the preceding argument, the expected length in the first phase is at most α · Opt. The expected length
in the second phase is at most 3

2
∑m

i�1 pi · Tsp(Si), where Tsp(Si) denotes the minimum length of a TSP tour on
{r} ∪ Si . Note that ∑m

i�1 pi · Tsp(Si) is a lower bound on the optimal AdapTSP value. Thus we obtain a solution
that has expected cost at most (α+ 3

2 )Opt, as claimed. �
Therefore, it suffices to obtain an approximation algorithm for IsoProb. In the next subsection we obtain a
(4,O(log2 n))-bicriteria approximation algorithm for GSO, which combined with Theorem 4 and Lemma 2 yields
an O(log2 n · log m)-approximation algorithm for both IsoProb and AdapTSP. This would prove Theorem 2.

5.1. Algorithm for Group Steiner Orienteering
Recall the GSO problem (Definition 6). Here we obtain a bicriteria approximation algorithm for GSO.
Theorem 8. There is a (4,O(log2 n))-bicriteria approximation algorithm for GSO, where n is the number of vertices in
the metric. That is, the algorithm’s tour has length O(log2 n) · B and has profit at least 1

4 times the optimal profit of a
length B tour.
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This algorithm is based on a greedy framework that is used in many maximum-coverage problems: the
solution is constructed iteratively where each iteration adds an r-tour that maximizes the ratio of profit to length.
In order to find an r-tour (approximately) maximizing the profit to length ratio, we use a slight modification
of an existing algorithm (Charikar et al. [6]); see Theorem 9 below. The final GSO algorithm is then given as
Algorithm 5.

Theorem 9. There is a polynomial time algorithm that, given any instance of GSO, outputs an r-tour σ having profit-to-
length ratio φ(σ)/(d(σ)) ≥ (1/α) · (Opt/B). Here φ(σ) and d(σ) denote the profit and length (respectively) of tour σ, Opt
is the optimal value of the GSO instance, B is the length bound in GSO, and α � O(log2 n) where n is the number of
vertices in the metric.

Proof. This result essentially follows from Charikar et al. [6] but requires some modifications, which we present
here for completeness. We first preprocess the metric to only include vertices within distance B/2 from the root
r: note that since the optimal GSO tour cannot visit any excluded vertex, the optimal profit remains unchanged
by this. To reduce notation, we refer to this restricted vertex-set also as V and let |V | � n. We denote the set of
all edges in the metric by E �

(V
2

)
. We assume (without loss of generality) that every group is covered by some

vertex in V ; otherwise, the group can be dropped from the GSO instance. By averaging, there is some vertex
u ∈ V covering groups of total profit at least (1/n)∑g

i�1 φi . If Opt ≤ (4/n)∑g
i�1 φi , then the r-tour that just visits

vertex u has profit-to-length ratio at least Opt/(4B) and is output as the desired tour σ. Below we assume that
(1/n)∑g

i�1 φi <Opt/4.
We use the following linear programming relaxation LPGSO for GSO:

max
g∑

i�1
φi · yi

s.t. x(δ(S)) ≥ yi , ∀S ⊆ V : r < S, Xi ⊆ S, ∀ i ∈ [g],∑
e∈E

de · xe ≤ B,

0 ≤ yi ≤ 1, ∀ i ∈ [g],
xe ≥ 0, ∀ e ∈ E.

(4)

It is easy to see that this a valid relaxation of GSO: any feasible GSO solution corresponds to a feasible solution
above where the x , y variables are {0, 1} valued, so the optimal value ∑g

i�1 φi · yi ≥ Opt. The algorithm is given
as Algorithm 4 and uses the following known results: Theorem 10 shows how to round fractional solutions to
LPGSO on tree metrics and Theorem 11 shows how to transform an LPGSO solution on general metrics to one on
a tree.

Theorem 10 (Charikar et al. [6]). There is a polynomial time algorithm that, given any fractional solution (x , y) to LPGSO
on a tree metric where all variables are integral multiples of 1/N , finds a subtree A containing r such that d(A)/(φ(A)) ≤
O(log N) · (∑e∈E de · xe/(

∑g
i�1 φi · yi)). Here φ(A) and d(A) denote the profit and length (respectively) of subtree A.

Theorem 11 (Fakcharoenphol et al. [13]). There is a polynomial time algorithm that, given any metric (V, d) with edges
E �

(V
2

)
and capacity function x: E → �+, computes a spanning tree T in this metric such that ∑

f ∈T d f · xT( f ) ≤
O(log n) ·∑e∈E de · x(e), where

xT( f ) :�
∑

u , v: f ∈uv path inT

x(u , v), ∀ f ∈ T.

Algorithm 4 (Algorithm for GSO maximizing profit-to-length ratio)
1: solve the linear program LPGSO to obtain solution (x , y).
2: run the algorithm from Theorem 11 on metric (V, d) with edge capacities x to obtain a

spanning tree T with “new capacities” xT on edges of T.
3: round down each xT(e) to an integral multiple of 1/n3.
4: for each group i ∈ [g], let y′i be the maximum flow from r to group Xi under capacities xT .
5: run the algorithm from Theorem 10 using variables xT and y′ to obtain subtree A.
6: output a Euler tour σ of the subtree A.

By definition of the new edge capacities xT on edges of T (see Theorem 11), it is clear that the capacity of
each cut under xT is at least as much as under x; i.e., ∑

e∈δ(S) xT(e) ≥
∑

e∈δ(S) x(e) for all S ⊆ V . For each group
i ∈ [g], since capacities x support yi units of flow from r to Xi , it follows that the new capacities xT on tree T
also support such a flow. Thus (xT , y) is a feasible solution to LPGSO on tree T with budget O(log n) ·B. In order

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

23
7.

12
6.

23
8]

 o
n 

09
 O

ct
ob

er
 2

01
7,

 a
t 1

5:
23

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Gupta, Nagarajan, and Ravi: Approximation Algorithms for Decision Trees and Adaptive TSP
890 Mathematics of Operations Research, 2017, vol. 42, no. 3, pp. 876–896, ©2017 INFORMS

to apply the rounding algorithm from Charikar et al. [6] for GSO on trees, we need to ensure the technical
condition (see Theorem 10) that every variable is an integral multiple of 1/N for some N � poly(n). This is the
reason behind modifying capacities xT in step 3. Note that this step reduces the capacity xT(e) of each edge
e ∈ T by at most 1/n3. Since any cut in tree T has at most n edges, the capacity of any cut decreases by at most
1/n2 after step 3; by the max-flow min-cut theorem, the maximum flow value for group Xi is y′i ≥ yi − 1/n2

for each i ∈ [g] (in step 4). Furthermore, since all edge capacities are integer multiples of 1/n3, so are all the
flow values y′is. Thus (xT , y′) is a feasible solution to LPGSO on tree T (with budget O(log n) · B) that satisfies
the condition required in Theorem 10, with N � n3. Also note that this rounding down does not change the
fractional profits much since

g∑
i�1
φi · y′i ≥

g∑
i�1
φi · yi −

1
n2

g∑
i�1
φi ≥

3
4 ·Opt− 1

n2

g∑
i�1
φi ≥

3
4 ·Opt− Opt

4n
≥ Opt

2 (5)

where the second last inequality follows from 1
n

∑g
i�1 φi ≤ Opt/4 (by the preprocessing). Now, applying Theo-

rem 10 implies that subtree A satisfies the following:

d(A)
φ(A) ≤(Theorem 10) O(log N) ·

∑
e∈T de · xT(e)∑g

i�1 φi · y′i
≤(5) O(log N) ·

∑
e∈T de · xT(e)

Opt

≤(Theorem 11) O(log N log n) ·
∑

e∈E de · x(e)
Opt

≤ O(log2 n) · B
Opt

.

Finally, since we output a Euler tour of A, the theorem follows. �

Remark: A simpler approach in Theorem 9 might have been to use the randomized algorithm from Garg
et al. [17] rather than the deterministic algorithm (Theorem 10) from Charikar et al. [6]. This, however, does
not work directly since Garg et al. [17] only yields a random solution A′ with expected length E[d(A′)] ≤
O(log n) ·∑e∈E de · xe and expected profit E[φ(A′)] ≥ ∑g

i�1 φi · yi . While this does guarantee the existence of a
solution with length-to-profit ratio at most O(log n) · (∑e∈E de · xe/(

∑g
i�1 φi · yi)), it may not find such a solution

with reasonable (inverse polynomial) probability.
Algorithm. The GSO algorithm first preprocesses the metric to only include vertices within distance B/2 from
the root r: note that the optimal profit remains unchanged by this. The algorithm then follows a standard greedy
approach (see, e.g., Garg [16]) and is given as Algorithm 5.

Algorithm 5 (Algorithm for GSO)
1: initialize r-tour τ←� and mark all groups as uncovered.
2: while length of τ does not exceed α · B do
3: set residual profits:

φ̃i :�

{
0 for each covered group i ∈ [g],
φi for each uncovered group i ∈ [g].

4: run the algorithm from Theorem 9 on the GSO instance with profits φ̃ to obtain r-tour σ.
5: if d(σ) ≤ αB, then τ′← τ ◦ σ.
6: if d(σ) > αB, then

(i) partition tour σ into at most 2 · (d(σ)/(αB)) paths, each of length at most αB;
(ii) let σ′ denote the path containing maximum profit;
(iii) let 〈r, σ′, r〉 be the r-tour obtained by connecting both end-vertices of path σ′ to r;
(iv) set τ′← τ∪ 〈r, σ′, r〉.

7: set τ← τ′. Mark all groups visited in τ as covered.
8: end while
9: output the r-tour τ.

Analysis. Let Opt denote the optimal profit of the given GSO instance. In the following, let α :�O(log2 n), which
comes from Theorem 9. We prove that Algorithm 5 achieves a (4, 2α + 1) bicriteria approximation guarantee;
i.e., solution τ has profit at least Opt/4 and length (2α+ 1) · B.

By the description of the algorithm, we iterate as long as the total length of edges in τ is at most αB. Note
that the increase in length of τ in any iteration is at most (α+1) ·B since every vertex is at distance at most B/2
from r. The final length d(τ) ≤ (2α+ 1) · B. This proves the bound on the length.
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It now suffices to show that the final subgraph τ gets profit at least Opt/4. At any iteration, let φ(τ) denote
the profit of the current solution τ and d(τ) its length. Since d(τ)> αB upon termination, it suffices to show the
following invariant over the iterations of the algorithm:

φ(τ) ≥min
{
Opt
4 ,

Opt
2αB
· d(τ)

}
. (6)

At the start of the algorithm, inequality (6) holds trivially since d(τ) � 0 for τ � �. Consider any iteration
where φ(τ) < Opt/4 at the beginning: otherwise, (6) trivially holds for the next iteration. The invariant now
ensures that d(τ)< αB/2, and hence we proceed further with the iteration. Moreover, in step 4 the optimal value
of the “residual” GSO instance with profits φ̃ is Õpt ≥ Opt− φ(τ) ≥ 3

4 ·Opt (by considering the optimal tour for
the GSO instance with profits φ). By Theorem 9, the r-tour σ satisfies d(σ)/φ̃(σ) ≤ α · B/Õpt ≤ 2α · B/Opt.
We finish by handling the two possible cases (steps 5 and 6).
• If d(σ) ≤ αB, then φ(τ′)� φ(τ)+ φ̃(σ) ≥ (Opt/(2αB)) · d(τ)+ (Opt/(2αB)) · d(σ)� (Opt/(2αB)) · d(τ′).
• If d(σ) > αB, then σ is partitioned into at most (2d(σ))/(αB) paths of length αB each. The path σ′ of best

profit has φ̃(σ′) ≥ (αB/(2 · d(σ)))φ̃(σ) ≥ Opt/4; so φ(τ′) ≥ φ̃(σ′) ≥ Opt/4.
In either case r-tour τ′ satisfies inequality (6), and since τ← τ′ at the end of the iteration, the invariant holds

for next iteration as well. This completes the proof of Theorem 8.

6. Adaptive Traveling Repairman
In this section we consider the adaptive traveling repairman problem (AdapTRP), where given a demand dis-
tribution, the goal is to find an adaptive strategy that minimizes the expected sum of arrival times at demand
vertices. As in adaptive TSP, we assume that the demand distribution D is specified explicitly in terms of its
support.

Definition 9 (Adaptive Traveling Repairman). The input is a metric (V, d), root r, and demand distribution D given
by m distinct subsets {Si}m

i�1 with probabilities {pi}m
i�1 (which sum to one). The goal in AdapTRP is to compute

a decision tree T in metric (V, d) such that
• the root of T is labeled with the root vertex r, and
• for each scenario i ∈ [m], the path TSi

followed on input Si contains all vertices in Si .
The objective function is to minimize the expected latency ∑m

i�1 pi · Lat(TSi
), where Lat(TSi

) is the sum of arrival
times at vertices Si along path TSi

.

We obtain an O(log2 n log m)-approximation algorithm for AdapTRP (Theorem 3). The high-level approach
here is similar to that for AdapTSP, but there are some important differences. Unlike AdapTSP, we cannot
directly reduce AdapTRP to the isolation problem, so there is no analogue of Lemma 2 here. The following
example illustrates this.

Example 1. Consider an instance of AdapTRP on a star metric with center r and leaves {v , u1 , . . . , un}. Edges
(r, ui) have unit length for each i ∈ [n], and edge (r, v) has length

√
n. There are m � n + 1 scenarios: scenario

S0 � {v} occurs with 1− 1/n probability; and for each i ∈ [n], scenario Si � {v , ui} occurs with 1/n2 probability.
The optimal IsoProb value for this instance is Ω(n) and any reasonable solution clearly will not visit vertex v:
it appears in all scenarios and hence provides no information. If we first follow such an IsoProb solution, the
arrival time for v is Ω(n); since S0 � {v} occurs with 1− o(1) probability, the resulting expected latency is Ω(n).
However, the AdapTRP solution that first visits v and then vertices {u1 , . . . , un} has expected latency O(

√
n).

On the other hand, one cannot ignore the “isolation aspect” in AdapTRP either.

Example 2. Consider another instance of AdapTRP on a star metric with center r and leaves {vi}n
i�1 ∪ {ui}n

i�1.
For each i ∈ [n], edge (r, vi) has unit length and edge (r, ui) has length n. There are n scenarios: for each
i ∈ [n], scenario Si � {vi , ui} occurs with 1/n probability. The optimal values for both AdapTRP and IsoProb are
Θ(n). Moreover, any reasonable AdapTRP solution will involve first isolating the realized scenario (by visiting
vertices vis).

Hence, the algorithm needs to interleave the two goals of isolating scenarios and visiting high-probability
vertices. This will become clear in the construction of the latency group Steiner instances used by our algorithm
(step 3 in Algorithm 6).
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Algorithm outline. Although we cannot reduce AdapTRP to IsoProb, we are still able to use ideas from the
IsoProb algorithm. The AdapTRP algorithm also follows an iterative approach and maintains a candidate set
M ⊆ [m] containing the realized scenario. We also associate conditional probabilities qi :� pi/

∑
j∈M p j for each

scenario i ∈M. In each iteration, the algorithm eliminates a constant fraction of scenarios from M, so the number
of iterations will be O(log m). Each iteration involves solving an instance of the latency group Steiner (LGS)
problem: recall Definition 8 and the O(log2 n)-approximation algorithm for LGS (Corollary 1). The construction
of this LGS instance is the main point of difference from the IsoProb algorithm. Moreover, we will show that
the expected latency incurred in each iteration is O(log2 n) ·Opt. Adding up the latency over all iterations would
yield an O(log2 n log m)-approximation algorithm for AdapTRP.
Using LGS to partition scenarios M. In each iteration, the algorithm formulates an LGS instance and computes
an r-tour τ using Corollary 1. The details are in Algorithm 6 below. An important property of this tour τ is
that the number of candidate scenarios after observing demands on τ will be at most |M |/2 (see Claim 8).

Given a candidate set M of scenarios, it will be convenient to partition the vertices into two parts: H consists
of vertices that occur in more than half the scenarios, and L :� V\H consists of vertices occurring in at most
half the scenarios. In the LGS instance (step 3 below), we introduce |Si ∩H | + 1 groups (with suitable weights)
corresponding to each scenario i ∈M.
Algorithm 6 (PartnLat(〈M, {qi}i∈M , {Si}i∈M〉))
1: define Fv :� {i ∈M | v ∈ Si} for each v ∈V .

2: let L :� {u ∈V : |Fu | ≤ |M |/2}, H :� V\L, and Dv :�

{
Fv if v ∈ L,
M\Fv if v ∈ H.

3: define instance G of LGS (Definition 8) on metric (V, d), root r, and the following groups:
for each scenario i ∈M,
—the main group Xi of scenario i has weight |Si ∩ L |pi and vertices (L∩ Si) ∪ (H\Si).
—for each v ∈ Si ∩H, group Yv

i has weight pi and vertices {v} ∪ (L∩ Si) ∪ (H\Si).
4: run the LGS algorithm (from Corollary 1) on instance G.

let τ :� 〈r, v1 , v2 , . . . , vt−1 , r〉 be the r-tour returned.

5: let {Pk}t
k�1 be the partition of M where Pk :�

{
Dvk
\(⋃ j<k Dv j

) if 1 ≤ k ≤ t − 1,
M\(⋃ j<t Dv j

) if k � t .
6: return tour τ � 〈r, v1 , v2 , . . . , vt−1 , r〉 and partition {Pk}t

k�1.
Claim 8. When |M | ≥ 2, partition {Pk}t

k�1 returned by PartnLat satisfies |Pk | ≤ |M |/2, ∀ k ∈ [t].
Proof. For each k ∈ [t−1], we have Pk ⊆Dvk

and so |Pk | ≤ |M |/2. We now show that |Pt | ≤ 1, which would prove
the claim. Let V(τ) � {v1 , . . . , vt−1} denote the vertices visited in the tour τ output by PartnLat. Consider any
i ∈ Pt : we will show that it is unique. By definition of Pt , we have i <

⋃t−1
k�1 Dvk

. By the definition of group Xi
and sets Dvs, this means that Xi is not covered by V(τ). Since τ is a feasible solution to G, Xi’s weight must be
zero; i.e., |Si ∩ L | � 0. Thus we have Si ⊆ H. Furthermore, if vk ∈ H\Si for any k ∈ [t − 1], then i ∈ Dvk

, which
implies i < Pt , so H ∩V(τ) ⊆ Si . Note that each Yv

i � {v} ∪Xi (for v ∈H ∩Si � Si) must be covered by τ since Yv
i s

have weight pi > 0. Also since Xi is not covered by V(τ), we must have v ∈ V(τ) for all v ∈ Si . Thus we have
Si ⊆ H ∩V(τ), and combined with the earlier observation, H ∩V(τ) � Si . This determines i ∈M uniquely, and
so |Pt | � 1 ≤ |M |/2. �
Final AdapTRP algorithm and analysis. Given the above partitioning scheme, Algorithm 7 describes the overall
AdapTRP algorithm in a recursive manner.
Algorithm 7 (AdapTRP〈M, {qi}i∈M , {Si}i∈M〉)
1: If |M | � 1, visit the vertices in this scenario using the O(1)-approximation algorithm (Fakcharoenphol
et al. [12]) for deterministic traveling repairman, and quit.
2: run PartnLat〈M, {qi}i∈M〉

let τ � (r, v1 , v2 , . . . , vt−1 , r) be the r-tour and {Pk}t
k�1 be the partition of M returned.

3: let q′j :�∑
i∈Pk

qi for all j � 1, . . . , t.
4: traverse tour τ and return directly to r after visiting the first vertex vk∗ (for k∗ ∈ [t])

that determines that the realized scenario is in Pk∗ ⊆M.
5: update the scenarios in Pk∗ by removing vertices visited in τ until vk∗ , i.e.,

S′i← Si\{v1 , . . . , vk∗}, for all i ∈ Pk∗ .

6: run AdapTRP〈Pk∗ , {qi/q′k∗}i∈Pk∗
, {S′i}i∈Pk∗

〉 to recursively cover the realized scenario within Pk∗ .
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The analysis for this algorithm is similar to that for the isolation problem (Section 3.1) and we follow the
same outline. For any subinstance J of AdapTRP, let Opt(J) denote its optimal value. Just as in the isolation case
(Claim 4), it can be easily seen that the latency objective function is also subadditive.

Claim 9. For any subinstance 〈M, {qi}i∈M , {Si}i∈M〉 and any partition {Pk}t
k�1 of M,

t∑
k�1

q′k ·Opt(〈Pk , {qi/q′k}i∈Pk
, {Si}i∈Pk

〉) ≤ Opt(〈M, {qi}i∈M , {Si}i∈M〉), (7)

where q′k �
∑

i∈Pk
qi for all 1 ≤ k ≤ t.

The next property we show is that the optimal cost of the LGS instance G considered in steps 3 and 4 of
Algorithm 6 is not too high.

Lemma 3. For any instance J � 〈M, {qi}i∈M , {Si}i∈M〉 of AdapTRP, the optimal value of the latency group Steiner in-
stance G in step 4 of Algorithm PartnLat(J) is at most Opt(J).

Proof. Let T be an optimal decision tree for the given AdapTRP instance J. Note that any internal node of T,
labeled v, has two children corresponding to the realized scenario being in Fv (yes child) or M\Fv (no child).
Now consider the root-leaf path in T (and corresponding tour σ in the metric) which starts at r and at any
internal node v moves on to the no child if v ∈ L and moves to the yes child if v ∈ H. We claim that this tour is
a feasible solution to G, the latency group Steiner instance G.

To see why, first consider any scenario i ∈M that branched off from path σ in decision tree T; let v be the
vertex where the tree path of scenario i branched off from σ. If v ∈ L, then by the way we defined σ, it follows
the “no” child of v, and so v ∈ Si ∩ L. On the other hand, if v ∈H, then it must be that v ∈H\Si (again from the
way σ was defined). In either case, v ∈ (Si ∩ L) ∪ (H\Si), and hence visiting v covers all groups, associated with
scenario i, i.e., Xi and {Yv

i | v ∈ Si ∩H}. Thus σ covers all groups of all the scenarios that branched off it in T.
Note that there is exactly one scenario (say a ∈ M) that does not branch off σ; scenario a traverses σ in T.

Since T is a feasible solution for AdapTRP, σ must visit every vertex in Sa . Therefore, σ covers all the groups
associated with scenario a: clearly {Yv

a | v ∈ Sa ∩H} are covered; Xa is also covered unless Sa ∩ L �� (however,
in that case group Xa has zero weight and does not need to be covered- see Definition 8). Thus σ is a feasible
solution to G.
We now bound the latency cost of tour σ for instance G. In path σ, let αi (for each i ∈M) denote the coverage

time for group Xi , and βv
i (for i ∈M and v ∈ Si ∩H) the coverage time for group Yv

i . The next claim shows that
the latency of σ for instance G is at most Opt(J).

Claim 10. The expected cost of T, Opt(J) ≥ ∑
i∈M pi · |L ∩ Si | · αi +

∑
i∈M

∑
v∈Si∩H pi · βv

i , which is exactly the latency of
tour σ for the latency group Steiner instance G.

Proof. Fix any i ∈M; let σi denote the shortest prefix of σ containing a vertex from Xi . Note that by definition,
σi has length αi . We will lower bound separately the contributions of Si ∩ L and Si ∩H to the cost of T.
As all but the last vertex in σi are from (L\Si)∪ (H∩Si), by definition of σ, the path TSi

traced in the decision
tree T when scenario i is realized-agrees with this prefix σi . Moreover, no vertex of Si ∩ L is visited before
the end of σi . Under scenario Si , the total arrival time for vertices L ∩ Si is at least |L ∩ Si | · αi . Hence Si ∩ L
contributes at least pi · |L∩ Si | · αi toward Opt(J).
Now consider some vertex v ∈ Si∩H; let σv

i denote the shortest prefix of σ containing a Yv
i -vertex. Note that σv

i
has length βv

i , and it is a prefix of σi since Yv
i ⊇ Xi . As observed earlier, the path traced in decision tree T under

scenario i contains σi , so vertex v is visited (under scenario i) only after tracing path σv
i . So the contribution

of v (under scenario i) to Opt(J) is at least pi · βv
i ; i.e., the contribution of Si ∩H is at least ∑

v∈Si∩H pi · βv
i . �

Thus we have demonstrated a feasible solution to G of latency at most Opt(J). �

It remains to bound the expected additional latency incurred in step 4 of Algorithm 7 when a random scenario
is realized. Below we assume a ρ � O(log2 n) approximation algorithm for latency group Steiner tree (from
Corollary 1).

Lemma 4. At the end of step 4 of AdapTRP〈M, {qi}i∈M , {Si}i∈M〉, the realized scenario lies in Pk∗ . The expected increase
in latency due to this step is at most 2ρ ·Opt(〈M, {qi}i∈M , {Si}i∈M〉).
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Proof. The proof that the realized scenario always lies in the Pk∗ determined in step 4 is identical to that in
Claim 3 of the IsoProb algorithm, and is omitted. We now bound the expected latency incurred. In the solution τ
to the latency group Steiner instance G, define αi as the coverage time for group Xi , ∀ i ∈ M, and βv

i as the
coverage time for group Yv

i , ∀ i ∈M and v ∈ Si ∩H.
Let i denote the realized scenario. Suppose that k∗ � ` ≤ t −1 in step 4. By definition of the parts Pks, we have

v` ∈ Xi � (Si ∩ L) ∪ (H\Si) and Xi ∩ {v1 , . . . , v`−1} ��. Thus, the length along τ until v` equals αi . Moreover, the
total length spent in this step is at most 2 · αi , to travel till v` and then return to r (this uses the symmetry and
triangle-inequality properties of the metric). Thus the latency of any Si-vertex increases by at most this amount.
Furthermore, we claim that the latency of any v ∈ Si ∩H increases by at most 2 · βv

i : this is clearly true if βv
i � αi ;

on the other hand, if βv
i < αi , then v is visited before v` and so it only incurs latency βv

i . Thus the increase in
latency of Si is at most 2∑

v∈Si∩H β
v
i + 2 · |Si ∩ L |αi .

If k∗ � t, then by the proof of Claim 8 the realized scenario i satisfies Si ⊆ H, group Xi is not visited by τ
(so αi is undefined), and all of Si is visited by τ. In this case the total latency of Si is

∑
v∈Si∩H β

v
i , which is clearly

at most 2∑
v∈Si∩H β

v
i + 2 · |Si ∩ L | αi ; note that |Si ∩ L | � 0 here.

Thus the expected latency incurred in step 4 is at most 2∑
i∈M pi · [|Si ∩ L |αi +

∑
v∈Si∩H β

v
i ], which is twice the

latency of τ for the latency group Steiner instance G. Finally, since τ is a ρ-approximate solution to G and using
Lemma 3, we obtain the claim. �

Finally, combining Claim 8, Lemma 4, and Claim 9, by a proof identical to that of Theorem 4, it follows that
the final AdapTRP solution has cost O(log2 n log m) ·Opt. This completes the proof of Theorem 3.
We note that for the AdapTRP problem on metrics induced by a tree, our algorithm achieves an O(log n log m)

approximation ratio (the guarantees in Theorem 8 and Corollary 1 improve by a logarithmic factor on
tree metrics). There is also an Ω(log1−ε n)-hardness of approximation the AdapTRP problem on tree metrics
(Nagarajan [32]). Thus there is still a logarithmic gap between the best upper and lower bounds for the AdapTRP
problem on tree metrics. In going from tree metrics to general, we lose another logarithmic factor in the approx-
imation ratio.

7. Concluding Remarks
In this paper, we studied the problem of constructing optimal decision trees; this widely studied problem was
previously known to admit logarithmic approximation algorithms for the case of uniform costs or uniform
probabilities. The greedy algorithms used in these cases do not extend to the case of nonuniform costs and
probabilities, and we gave a new algorithm that seeks to be greedy with respect to two different criteria; our
O(log m)-approximation is asymptotically optimal. We then considered a generalization to the adaptive traveling
salesman problem and obtained an O(log2 n log m)-approximation algorithm for this adaptive TSP problem. We
also showed that any asymptotic improvement on this result would imply an improved approximation algorithm
for the group Steiner tree problem, which is a longstanding open problem. Finally, we gave an O(log2 n log m)-
approximation algorithm for the adaptive traveling repairman problem—closing the gap between the known
upper and lower bounds in this case remains an interesting open problem.
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Appendix. Hardness of approximation for AdapTSP
We show that AdapTSP is at least as hard to approximate as group Steiner tree.

Theorem 12. If there is an α-approximation algorithm for AdapTSP, then there is an (α + o(1))-approximation algorithm for group
Steiner tree. Hence AdapTSP is Ω(log2−ε n) hard to approximate even on tree metrics.

Proof. This reduction is similar to the reduction (Chakaravarthy et al. [5]) from set-cover to the optimal decision tree
problem; we give a proof in context of AdapTSP for completeness.

Consider an arbitrary instance of group Steiner tree on metric (V, d) with root r and groups X1 , . . . ,Xg ⊆V ; let Opt denote
its optimal value. Assume without loss of generality that Xi , X j for all i , j, and the minimum nonzero distance in d is
one. We construct an instance of AdapTSP as follows. Let V′ � V ∪ {s} where s is a new vertex (representing a copy of r),
and define metric d′ on V′ as

d′(u , v) :�
{

d(u , v) for u , v ∈V,
d(u , r) for u ∈V, v � s ,

∀ (u , v) ∈
(
V′

2

)
.
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There are g + 1 scenarios in the AdapTSP instance: Si :� Xi ∪ {s} for i ∈ [g], and Sg+1 :� {s}, with probabilities

pi :�


1

gL
if 1 ≤ i ≤ g ,

1− 1
L

if i � g + 1.

Above L� 2n ·maxu ,v d(u , v) is some large value. The root in the AdapTSP instance remains r. Let Opt′ denote the optimal
value time of this instance. We will show that (1− o(1)) ·Opt ≤ Opt′ ≤ Opt+ 1, which would prove the theorem.

(A) (1− 1/L)Opt ≤ Opt′. Consider the optimal solution to the AdapTSP instance; let σ denote the r-tour traversed by this
decision tree under scenario Sg+1. We now argue that σ is a feasible solution to the group Steiner tree instance, i.e., Opt≤ d(σ).
Suppose for a contradiction that σ does not visit any Xi-vertex for some i ∈ [g]. Observe that the r-tour traversed by this
decision tree under scenario Si is also σ since the decision tree cannot distinguish scenarios Si and Sg+1 (the only way to do
this is by visiting some Xi-vertex). However, this violates the requirement that the tour (namely σ) under scenario Si must
visit all vertices Si ⊇ Xi . Finally, we have Opt′ ≥ (1− 1/L) · d(σ) ≥ (1− 1/L)Opt as required.

(B) Opt′ ≤Opt+1. Let τ denote an optimal r-tour for the given GST instance, so d(τ)�Opt. Consider the following solution
for AdapTSP:

1. Traverse r-tour τ to determine whether or not Xg+1 is the realized scenario.
2. If no demands observed on τ (i.e., scenario Sg+1 is realized), visit vertex s and stop.
3. If some demand observed on τ (i.e., one of scenarios {Si}

g
i�1 is realized), then visit all vertices in V along an arbitrary

r-tour and stop.
It is clear that this decision tree is feasible for the AdapTSP instance. For any i ∈ [g + 1], let πi denote the r-tour traversed

under scenario Si in the above AdapTSP decision tree. We have d(πg+1) � d(τ) ≤ Opt, and d(πi) ≤ 2n ·maxu ,v d(u , v) ≤ L for
all i ∈ [g]. Thus, the resulting AdapTSP objective is at most(

1− 1
L

)
·Opt+ g · 1

gL
· L ≤ Opt+ 1

Thus we have the desired reduction. �

Endnotes
1 In the group Steiner tree problem (Garg et al. [17]), the input is a metric (V, d) with root r ∈ V and groups {Xi ⊆ V} of vertices; the goal
is to compute a minimum length tour originating from r that visits at least one vertex of each group.
2Recall that group Steiner tree on star metrics is equivalent to the set cover problem.
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