
An Optimal Algorithm to Solve the All-Pair
Shortest Path Problem on Interval Graphs
R. Ravi,* Madhav V. Marathe,? and C. Pandu Rangan
Department of Computer Science, 1.1.7.
Madras 600036, India

We present an O(n2) time-optimal algorithm for solving the unweighted all-pair shortest
path problem on interval graphs, an important subclass of perfect graphs. An interesting
structure called the neighborhood tree is studied and used in the algorithm. This tree is
formed by identifying the successive neighborhoods of the vertex labeled last in the
graph according to the IG-ordering.

1. INTRODUCTION

Interval graphs are an important subclass of perfect graphs, and areas as
diverse as archeology, molecular biology, genetics, and traffic planning use this
class of graphs to model problems frequently. Interval graphs are discussed
extensively in [4].

An interval graph is a graph whose vertices can be mapped to unique inter-
vals on the real line such that two vertices in the graph are adjacent iff their
corresponding intervals intersect. Given a connected interval graph G, we wish
to find the shortest path between any pair of its vertices. We discuss here only a
method to compute and store the length of such paths. Also, observe that this is
the best that can be done in O(n2) time, where n is the number of vertices in G,
for there are interval graphs for which an enumeration of all the shortest paths
can require O(n3) time. However, an easy extension of our algorithm can be
tailored to output the shortest paths between any pair of vertices in G.

For any general graph with n vertices, the well-known solution to the all-pair
shortest path problem in [I] takes O(n3) time. A lot of work has been done in
improving the running time using randomization and probabilistic methods and
also in the case of special kinds of graphs. For instance, see [6] for a recent

*Current Address: Box 1910, Department of Computer Science, Brown University,
Providence, RI 02912.
tCurrent address: Dept. of Computer Science, SUNY, Albany, NY 12222.

NETWORKS, VOI. 22 (1992) 21-35
0 1992 by John Wiley & Sons, Inc. CCC 0028-3045/92/01021-15$04.00

22 RAW, MARATHE, AND RANGAN

FIG. 1. An interval graph and its interval representation.

algorithm for the all-pair shortest path problem on any graph with O(n2 log n)
average case time complexity.

The algorithm presented below solves the all-pair shortest path problem on
interval graphs where all edges are of unit distance in O(n2) time. This matches
the obvious lower bound to solve this problem, and, hence, the algorithm
presented is time-optimal. The algorithm uses the concept of a neighborhood
tree formed by identifying the successive neighborhoods of the vertex labeled
last in the graph according to the IG-ordering of the vertices. The IG-ordering
of the vertices of an interval graph was introduced in [7] and has been useful in
solving a variety of problems on interval graphs efficiently [2, 5 , 81.

2. DEFINITIONS

Let G = (V, E) , IVI = n, (El = rn be an interval graph. We assume that V =
(1, . . . , n} and that the vertices of G are labeled according to the IG ordering
[7]. This is simply the order in which we consider the intervals in the intersec-
tion model of G in the nondecreasing order of their right endpoints. Figure 1
shows an interval graph with its interval representation and its vertices labeled
in the IG ordering. An important property of this ordering is given below.

Property 2.1. Zfuertices, x, y , z E V are such that x < y < z in the ordering, if
x is adjacent to z , then y is also adjacent to z [7/.

If vertices x and y are adjacent, then we write x - y or y - x. For any vertex u
in V, we define

OPTIMAL ALGORITHM FOR SHORTEST PATH PROBLEM 23

w such that w < u and w is the smallest vertex adjacent to u

otherwise, i.e., if no neighbor of u has smaller IG numbering
than u.

u

Similarly, we define

w such that w > u and y is the highest numbered vertex adjacent to

otherwise, i.e., if no neighbor of u has a higher IG numbering
than u.

U

u
HZ(U) =

LO(u) for each vertex u can be computed in linear time in a single scan of the
vertices of G in the IG-ordering [7]. A variation of this method can be used to
compute HZ(u) for each u in linear time. Let c (H) denote the number of con-
nected components of the graph H. The distance between a pair of vertices u
and u , denoted as d(u, u) , is the length of the shortest path between them in G.
The ith neighborhood in G of a vertex u is denoted as N;(u) and is defined as
follows :

Ni(u) = {u :d (u , u) = i}.

Let k be the length of the longest chordless path from vertex n to any other
vertex in G. It is easy to see that N&) is nonempty while Nk+, (n) is empty. In
this paper, we shall be interested only in the neighborhoods of the vertex
numbered n in the IG-ordering and shall, henceforth, refer to N;(n) as N; with-
out ambiguity.

3. THE NEIGHBORHOOD TREE OF AN INTERVAL GRAPH

Define G/ to be the subgraph of G induced on the set of vertices Ni and let
c(Gf) = pi . Let CC; denote the set of the pi connected components of Gf . We
define CCo to be the singleton set {n}. We now define an auxiliary graph NT(G)
built from the graph G as follows:

NT(G) = (V ’ , E ’) , where

V ’ = { U!2,CCi} and

E ’ = { (X , Y):XECCi, YECCj , j# i ,andthereex i s txEXandyE Y
such that x - y}.

Since we have two different graphs under consideration, G and NT(G), we shall
refer to a vertex of G simply as a vertex and a vertex of NT(G) as a node to

24 RAVI, MARATHE, AND RANGAN

.......... .. 1 ,..-

I 6,198 1 I F \
...... \ -... ...

W,..'; 3(12)
......

FIG. 2.
p(1) = 1 andp(2) = p (3) = 2.

The neighborhood tree N T (G) for the interval graph in Figure 1. In this figure,

avoid confusion. The auxiliary graph NT(G) of the interval graph in Figure 1 is
shown in Figure 2. Here, n = 12, po = p I = 1, p 2 = p 3 = 2 ; the nodes of NT(G)
are CI = (9, 10, 1 l}, C2 = {5 } , C3 = (6, 7, S}, C4 = { I , 2}, and C5 = (3, 4). As
noted above, two nodes of NT(G) are joined by an edge if there exists an edge
between a vertex in one node to a vertex in another. Thus, for instance, the
node C3 is joined to the node C, since a vertex, say 7, in the former is connected
to a vertex, 9, in the latter.

Lemma 3.1.
G is a tree.

The auxiliary graph NT(G) built from a connected interval graph

Proof. We can see directly that N T (G) is connected iff G is. We now show
that NT(G) constructed from a connected interval graph is indeed acyclic. We
shall define a node C to be at a distance i from the node denoting vertex n if d(x,
n) = i for any x E C . Note that the notion of distance given above is well
defined since C is the connected component of the subgraph induced on the ifh
neighborhood of the vertex n.

To prove that NT(G) is acyclic, first observe that no edges can exist in
NT(G) between nodes that are at the same distance from {n}. Also, there are no
edges in NT(G) connecting nodes Ci and Cj whose distances from n differ by
more than one. This is by virtue of the definition of NT(G) . Thus, to show that
NT(G) is a tree, we show that each node C, at a distance i from {n} is adjacent
to exactly one node that is at a distance (i - 1) from {n}.

We prove this by contradiction. Assume that some node C, of NT(G) at
distance i from {n} is adjacent to two nodes C, and C, of NT(G) at a distance
(i - 1) from {n} (see Fig. 3). We can identify vertices uI , u2 , u 3 , and u4 as in

OPTIMAL ALGORITHM FOR SHORTEST PATH PROBLEM 25

......
c .i

q. ../

N i

....
-..

FIG. 3. The contradiction that the graph is an interval graph in the proof of acyclicity
of N T (G) for an interval graph G: Lemma 3.1. A chordless cycle of length at least four is
identified above whenever a node C, at distance i + 1 is adjacent to two distinct nodes
C, and C, in level i.

Figure 3 and thus an induced chordless cycle P of length at least 4 in the graph
G. This contradicts our assumption that G is an interval graph. Hence, every
node C, at a distance i from {n} is adjacent exactly to a single node at a distance
(i - I) from {n} . Thus, we see that NT(G) is a tree whenever G is a connected
interval graph.

We shall refer to N T (G) as the neighborhood free of G . Also, we shall
consider this tree to be rooted at {n} . We remark here that N T (G) is a tree even
if G is a chordal graph with its vertices labeled according to a perfect elimina-
tion ordering. This is because the proof of Lemma 3.1 uses only the triangu-
lated property of interval graphs that chordal graphs also have. For each node
C of NT(G) , define Leuel(C) to be the distance of C from { n } in N T (G) and for
any u E V , let Leuel(u) = Leuel(C) such that u E C.

Note that in Figure 2 the vertices in level 1 are 9 , 10, and 11 and, among
these, the vertex with the minimum value of LO is 9 with LO(9) = 5 . Also, note
that level 2 is made of 5 , 6, 7, and 8. More formally, if level i is made up of the
vertex set { x I , . . . x,} in ascending order and xg is the vertex in this set with the
smallest value of LO, then we see that the vertices in level (i + 1) of NT(G) are
exactly those in the range {LO&), LO&) + 1, x1 - I}. This observation
is proved in the lemma below, but before that, we need the following notation.
Recall that

= { x , , x,}, where xI, xr is sorted in ascending order

For ease of reference and to avoid ambiguity, let us denote this sorted set
representation of Ni by L(i).

26 RAW, MARATHE, AND RANGAN

Lemma 3.2. If L(i) = { x l , . . . , x,} and MZNLOi = min {LO(xj) : xj E L(i)},
then

(I) x I , . . . , x , are consecutive integers, and
(2) L(i + 1) = {MZNLOi, MZNLOi + 1, . . . , X I - 1).

Proof. We prove the lemma by induction on i. Observe that L(0) = {n} and
L(1) = {LO(n), LO(n) + 1 , . . . , n - 1) and the basis is true.

Assume that L(i) = { x I , . . . , x,}, where xI , . . . , x, are consecutive integers.
Now, by definition, L(i + 1) consists of the neighbors of all the vertices in L(Q
and MZNLOi is the least numbered vertex in G to which any vertex in L(i) is
connected. Property 2.1 of the IG-ordering leads us to conclude that MZNLO;,
MZNLOi+1, . . . , x 1 - 1 are all vertices in L(i + 1). Hence, the theorem is true
by induction.

From the lemma above, we see that if x > y in the IG-ordering, i.e., if x lies to
the right of y in the ordering, then Leuel(x) 5 Leuel(y). Also, if x > y > z and
Leuel(x) = Leuel(z) = t , then Leuel(y) = t. The next lemma establishes one of
the most important properties of the neighborhood tree of an interval graph.

Lemma 3.3. Let G be a connected interval graph. All nodes of NT(G) that are
in leuel i are adjacent to a unique node o fNT(G) at level (i - 1) .

Proof. To see this, consider level i to be made up of nodes CI , . . . , C,, with
vertices L(i) = { x I , . . . , xr} . Let the node C, contain the vertex X I . Note that
xI - y for some y in level (i - 1) of NT(G) . Also, y > xI from the observation
following Lemma 3.2 above. Let C, be the node at level (i - 1) containing y. It
is clear that C, and C, are adjacent in NT(G) . We will show that C; is adjacent to
C, for all i such that 1 I i 5 u. This follows from the observation that each such
node Ci contains some xi such that xI < xi < y. The IG-ordering Property 2.1
leads us to conclude that each Ci must be connected to C,. Finally, from the
proof of Lemma 3.1, we know that each node in level i is connected to exactly
one node at level (i - 1) . Thus, all nodes in level i are connected to a unique
node in level (i - 1).

We define a node in level i of NT(G) to be a special node if every node in
level (i + 1) is adjacent to it. From Lemma 3.3, we conclude that there is
exactly one special node at each level of NT(G) whenever G is an interval
graph. The backbone of NT(G) is defined as the path { n } , X I , . . . , Xk-, , where
Xi is the special node of NT(G) at level i . Figure 4 shows the backbone of the
neighborhood tree of the interval graph in Figure 1. We shall number the
components in CCi from 1 through pi in such a way that the component corre-
sponding to the special node gets the number one and the other components are
numbered arbitrarily (see Fig. 4). Using this convention, the components of
CCi will be denoted as Cf, . . . , Cf". C,! denotes the component corresponding
to the special node, and, hence, it forms part of the backbone. We call the

OPTIMAL ALGORITHM FOR SHORTEST PATH PROBLEM 27

FIG. 4. The neighborhood tree in Figure 2 depiciting the backbone in dotted line. The
nodes of the tree are labeled as Cj , where i is the component number and j is the level
number. The special nodes at each level have component number 1.

nodes C:, j > 1 the suspended nodes of NT(G) . If node x E V is in C:, then we
see that Level(x) = i and we define Corn&) = j.

4. CONSTRUCTION OF THE NEIGHBORHOOD TREE

We shall not explicitly construct the neighborhood tree of the input graph G .
Instead, note, that computing Level(x) and Comp(x) for each vertex x E V
determines the structure of NT(G) completely. We use the convention de-
scribed above to allow us to determine if a vertex is in a special node or in a
suspended node of NT(G) .

We describe below procedures that would allot to each vertex x the values of
Level(x) and Comp(x). The input to these procedures is the adjacency matrix of
the graph G and the values of LO(x) for every vertex x E V. We do this in a
single left-to-right sweep of the interval representation. In the sweep, we can
identify the level of each vertex using Lemma 3.2 by computing MZNLOi for
each level i to determine the vertices in level (i + 1). Before we explain how we
can determine the values of Comp(x) for each vertex x, we state the following
useful lemma:

Lemma 4.1. At any level i of NT(G) , the special node at this level contains the
lowest numbered vertex in that level.

Proof. This can be easily proved by contradiction. Let the smallest num-
bered vertex xI at level i be in the node C;, (j # l) , a suspended node. Note that
every node in level (i + 1) will be adjacent to Cf, by definition of the special

28 RAW, MARATHE, AND RANGAN

node. This means that there is a vertex y in level (i + 1) that is adjacent to some
vertex x‘ in C ; such that y < x’ < x ’ . Property 2.1 implies that xI is also adjacent
to x ’ , which implies thatj = 1 since xI is in the same connected component as x’

rn (a contradiction). Hence, the lemma follows.

Since we know by Lemma 3.2 that all vertices in a given level form a contigu-
ous block in the IG-ordering, it is easy to identify the components in each level
by a procedure we call Lo-riding. Consider the level i with L(i) = { x l , . . . , x,}.
Lo-riding starts with the last vertex x, and finds its LO. Now, we find the LO of
this vertex and continue in this fashion until we either come to a vertex smaller
than X I or we have reached the end of a component. If so, we have come to a
vertex x, whose LO is itself. In the former case, we have crossed the current
level i, and so the component that we are working with is the special node of
this level. We identify this component and number it with one. In the latter
case, we assign the block of vertices that we have as a component and give it a
number other than one. We then continue lo-riding from the vertex xe - 1. This
process will eventually end when we exhaust lo-riding through all the compo-
nents in this level. Lo-riding is illustrated in Figure 5. The procedures that allot
the Leuel and Comp entries for each vertex are described below.

Procedure Allot

1. While there are no more levels to be processed,
[1.11 Assign level numbers to the vertices in the current level.
[1.21 Find the range of vertices in the next level.
[1.3] Assign component numbers to each vertex in the current level.

Now, we go on to describe the procedures themselves.

Procedure Allot

For each vertex x E V, we assume that we have the value of LO(x) in an
array LO.

1 . Initialize Leuel(n) = 0, Comp(n) = I , p = n - 1, lulcnt = 1, and q =

W P) .
2. Repeat until p = 1

[1.1] For each vertex x in the range {q, . . . , p - l}, do
[1.1.13 Leuel(x) = lulcnt. Here, we allot level numbers for the verti-

ces in this level.
[I .2] lulcnt = lulcnt + 1.
[1.31 Find - comp(q, p) . We find the components in this level and allot

the component entries for vertices in this level.
[1.41 Reset the values p and q appropriately. temp = min{LO(x) : x E

{q, . . . , p - 1)). This is the MINLO of this level and marks off the start
of the next level. p = q,q = temp.

OPTIMAL ALGORITHM FOR SHORTEST PATH PROBLEM 29

......
L *

....................................

FIG. 5 . Lo-riding: At each level, we start at the highest vertex x,. An arrow from a
vertex represents the operation of computing the LO of the vertex. When a vertex
whose LO is itself is reached without overshooting the sentinel XI, we mark off a
component. At the next run of lo-ride, we start from the vertex numbered one less than
this and continue until we overshoot the sentinel. At this point, we have identified all the
connected components of the induced subgraph of this level. The dotted intervals
represent vertices not in the level for which the lo-ride is performed. The dark rectan-
gles enclose the components identified for this level.

Procedure Find-comp(x,, x,)

This procedure determines the component entries for vertices in the range
{ X I , x,} by successively finding the components by Lo-riding and labeling
them.

1. Initialize last = x, to begin the right-to-left sweep, mainlo = xi, a sentinel
for ending lo-riding and count = 2 for the component number. The com-
ponent number one is reserved for the special node. Also, initialize ret -
ual = x, for the current vertex we are at.
Repeat until ret - val = mainlo

[2.1] ref - val = Lo - ride(last, mainlo). Here, ret-Val identifies the
beginning of the component that the vertex last ends. Thus, we have
identified the set {ret - ual, last} as a component.

2.

[2.2] If ref - val f mainlo,
[2.2.1] then we have still not exhausted the vertices in this level. So,

[2.2.1.1] For every vertex x E { ret - ual, last}, set Comp(x)
= count.

number.

new ret - val = Lo - ride(last, ref - val - 1).

special node. So,

= 1.

[2.2.1.2] count = count + 1. Reset count for the next component

[2.2.1.3] Lo-ride again now setting last to ref - uaf - 1. Thus, the

[2.2.2] else, we have finished the sweep of this level and come to the

[2.2.2.1] For every vertex x E {ref - ual, last}, set Comp(x)

30 RAW, MARATHE, AND RANGAN

Procedure Lo-ride(lusf,mainlo)

This procedure is used within a level to identify the connected components of
this level. It takes in as arguments last, the vertex to begin the lo-riding from,
and also a sentinel mainlo, overshooting which means that the current level is
exhausted. The procedure returns a vertex z 5 y such that the set {z, z +
1 , . . . , y } forms a single component in the level i .

1 . Initialize p = y .
2.

3. If (LO(p) < mainlo)

While ((LO(p) > mainlo) AND (LO(p) # p)) ,
[2.1] p = LO(p).

[3.1] then, we have crossed the sentinel into the next level, so we stop

[3.2] else, we have just encountered the end of a component in this
and return z = mainlo signaling this.

level and so we return the last vertex in this component as z = p .

The complexity of computing Level(x) and Comp(x) for each vertex x in V is
stated below.

Theorem 4.1.
vertex x in V is O(n + m).

The complexity of computing Levef(x) and Comp(x) for each

Proof. Levef(x) for each vertex x in V is computed in the “Allot” procedure
above and takes only O(n) time. This construction follows the result in Lemma
3.2 and involves a single scan of the LO values of all the vertices at a given level
to determine the next level.

Determination of the component numbers at each level also takes only O(m
+ n) time since it involves finding the connected components at each level of
NT(G). To do this for level i , it takes time O(ni + mi) time where ni and mi are,
respectively, the number of vertices and edges in the induced subgraph on N i .
Summing over all the levels, we see that the overall time complexity is only
O(m + n) . Thus, the theorem follows.

5. THE ALGORITHM AND THE PROOF OF CORRECTNESS

To compute the distance between every pair of vertices in the interval graph
G , we assign to each vertex the information about whether it is a special node
or one of the suspended nodes and its level in the tree. The component number
determines whether the vertex is in a special node or a suspended node.

We make a top-down pass of the neighborhood tree of the graph and compute
at each level of the tree the distance between each vertex in this level and all
the vertices in the same level and in the levels above it. This computation can
be viewed as a right-to-left scan of the vertices of the interval graph from vertex
n to vertex 1 in the IG-ordering. In the scan, at each vertex x, we determine d(x,
y) for all y > x. The distance calculations at each stage can be viewed to be of

OPTIMAL ALGORITHM FOR SHORTEST PATH PROBLEM 31

essentially three types. Typically at level i, we wish to enumerate d(x, y) ,
where Leuel(x) = i and one of the following cases hold:

(i) Leue/(y) = i;
(ii)

(iii)
Leuel(y) = i - 1;
Leuel(y) = j wherej < (i - I) .

Further, we perform the distance calculations differently depending o n
whether x and/or y belong to a suspended node (i.e., have their Comp entry
greater than 1) or a backbone node (i.e., with the Cornp entry equal to 1) in
NT(G) .

We present below recurrence relations for computing d(x, y) , where y > x for
the different possible cases of x and y . We also present a concise reason below
each of the expressions for the correctness of the recurrences without provid-
ing a formal proof. In all these cases, we assume that Leuef(x) = i and that z =
HZ(x). Notice that if x is in level i then z must belong to level i - 1.

Case 1. Leuel (y) = i.

backbone. We then have
[Case l a .] Cornp(x) = Cornp(y) = 1. In this case, both x and y are in the

d(x, y) = 1 i f x - y

= 2 otherwise.

This is obvious, since if there is an edge between x and y , the distance is 1.
Otherwise, there exists an obvious path of length two through some vertex w in
level (i - 1). This case is shown in Figure 6.

<a
Level(i)

FIG. 6 . Case la of the recurrences for d(x, y). If the edge labeled A exists between x
and y , then d(x, y) = 1. Otherwise, there is a path between x and y of length two through
some vertex w in level (i - 1).

32 RAW, MARATHE, AND RANGAN

[Case Zb.] Comp(x) = 1 and Comp(y) > 1. Here we have

4 x 9 Y) = 1 + d (y , z).

The recurrence above stems from the observation that if there exists a shortest
path P from x to y via some vertex zr < z in level (i - l), then there is a path P r
from x to y via z itself of the same length. This case is depicted in Figure 7. To
see this, observe that if zrr is the next vertex after zr in this shortest path P, then
zrr > zr and z’ - zrr implies that z - z” since we know that zr < z < z”. This
follows from Property 2.1 of the IG-ordering. Using this edge (z, z”) and the rest
of the shortest path in P, we can construct a new shortest path P r via z from x
to y .

[Case Zc.] Comp(x) >1 and Comp(y) > 1. In this case also,

The reasoning is identical to that for Case lb.

Case 2 . Leuel(y) = i - 1.
[Case 2a.I Comp(y) = 1 and Comp(x) z 1. In this case, we have

FIG. 7. Cases lb, lc, 2, and 3 of the recurrences for d(x, y) showing that there is a
shortest path from x to y via z = HZ(x). Let P be a shortest path that goes via a vertex
z‘ # z, and let z“ denote the vertex following z’ in P from x toy. Since z‘ < z I z”, by the
interval graph Property 2.1, another shortest path P‘ between x and y can be identified
via z .

OPTIMAL ALGORITHM FOR SHORTEST PATH PROBLEM 33

d (x , y) = 1 i f x - y

= 2 if x is not adjacent to y and z > y

= 1 + d(z, y) otherwise.

These recurrences are drawn again based on arguments similar to those in Case
1, except for the case when d(x, y) = 2. This is also easy since if x is not
adjacent to y, then x - z where x < y < z. By the interval graph Property 2.1,
we then have that y - z, and so there is a path of length two from x to y via z .
This case is shown in Figure 8.

[Case 2b.l Comp(x) = 1 and Comp(y) > 1.
[Case 2c.I Comp(x) > 1 and Comp(y) > 1.

In both the cases above, by an argument similar to that offered for Case lb, we
can conclude that

Case 3. Leuel(y) = j, wherej < (i - 1). In all the subcases of this case, too,
we can see that a shortest path between x and y must pass through the vertex z
and arrive at

d(x, y) = 1 + d(z, Y) .

FIG. 8. Case 2a of the recurrences for d(x, y) where y < z. If the edge labeled A exists
between x and y , then d(x, y) is obviously 1. Otherwise, there is a path between x and y
of length two using the edge labeled B from x to z = Hf(x) and then toy. The existence of
the edge from z to y is by the interval graph Property 2.1 given that x < y < z.

34 RAVI, MARATHE, AND RANGAN

The distances between every pair of vertices of G can thus be calculated by
making a top-down evaluation of NT(G) . The only point that must be clarified
is the order in which we calculate the distances associated with the vertices at a
given level i. At each level, we make the following four passes of computation.
Note that whenever d(x, y) is computed, both the values d(x, y) as well as d (y ,
x) are updated to facilitate easy computation of the recurrences later.

Pass 1. In the first pass, we compute the distances between all pairs of verti-
ces in level i that lie within the same component (and, hence, have the
same component number). This corresponds to the application of
Case l a and a few of the cases in Case lc of the recurrences above.

Pass 2. In the second pass, we compute all distance d(x, y) such that Leuel(x)
= i and Leuel(y) = i - 1. This is case 2 of the recurrences.

Pass 3. This third pass corresponds to computations in case 3 of the recur-
rences above and determines all the distances d(x , y) such that
Leuel(x) = i and Leuel(y) = j wherej < (i - 1).

Pass 4. In this last pass, we compute the distance between all pairs of vertices
in level i such that they lie in different components (and, hence, have
different component numbers). These are the rest of the cases in case
1 of the recurrences.

It is easy to verify that this order of computing the distances at each level
ensures that all values needed for substitution in a recurrence are already
computed at an earlier pass and are available. This makes each of the recur-
rence computations a constant time table look-up.

6. COMPLEXITY AND CONCLUSIONS

The complexity of computing LO(x) for each vertex x in V is O(n + rn) [7].
HZ(x) can be computed similarly in linear time. In Theorem 4.1, we have shown
that Leuel(x) and Comp(x) for each vertex X can be computed in linear time.
Thus, all the preprocessing takes time O(rn + n) .

Since the determination of d(x, y) for any given x and y in the order proposed
above takes only constant time and there are O(n2) entries to fill, the whole
algorithm has an overall time complexity of O(n2). Since there are O(n2) entries
to be calculated to solve the all-pair shortest path problem, it is clear that our
bound is optimal.

It would be interesting to investigate if the weighted version of the all-pair
shortest path problem can be handled in a similar fashion.

REFERENCES

[I] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, MA (1974).

OPTIMAL ALGORITHM FOR SHORTEST PATH PROBLEM 35

[2] S. Aravind, R. Mahesh, and C. Pandu Rangan, Bandwidth optimization for interval
graphs revisited. Inform. and Computation, in press.

[3] D. G. Corneil and J . Fonlupt, The complexity of generalized clique covering.
Discrete Appl. Math. 22, (1988-89), 109-1 18.

[4] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980).

[5] J. M. Keil, Finding Hamiltonian circuits in interval graphs. fnfor. Process. Lett. 20

[6] A. Moffat and T. Takoka, An all-pair shortest path algorithm with expected run-
ning time O(nZ log n) . Proceedings of the IEEE Symposium on Foundations of
Computer Science (1985) 101-105.
G. Ramalingam and C. Pandu Rangan, A unified approach to domination problems
in interval graphs”, fnfor. Process. Lett. 27 (1988) 271-274.
A. Srinivas Rao and C. Pandu Rangan, A linear algorithm for domatic number of
interval graphs. Infor. Process. Lett. 33 (1989-90), 29-33.

(1985), 201-206.

[7]

[8]

Received December 1989
Accepted May 1991

