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We present an O(n2) time-optimal algorithm for solving the unweighted all-pair shortest 
path problem on interval graphs, an important subclass of perfect graphs. An interesting 
structure called the neighborhood tree is studied and used in the algorithm. This tree is 
formed by identifying the successive neighborhoods of the vertex labeled last in the 
graph according to the IG-ordering. 

1. INTRODUCTION 

Interval graphs are an important subclass of perfect graphs, and areas as 
diverse as archeology, molecular biology, genetics, and traffic planning use this 
class of graphs to model problems frequently. Interval graphs are discussed 
extensively in [4]. 

An interval graph is a graph whose vertices can be mapped to unique inter- 
vals on the real line such that two vertices in the graph are adjacent iff their 
corresponding intervals intersect. Given a connected interval graph G, we wish 
to find the shortest path between any pair of its vertices. We discuss here only a 
method to compute and store the length of such paths. Also, observe that this is 
the best that can be done in O(n2) time, where n is the number of vertices in G, 
for there are interval graphs for which an enumeration of all the shortest paths 
can require O(n3) time. However, an easy extension of our algorithm can be 
tailored to output the shortest paths between any pair of vertices in G. 

For any general graph with n vertices, the well-known solution to the all-pair 
shortest path problem in [ I ]  takes O(n3) time. A lot of work has been done in 
improving the running time using randomization and probabilistic methods and 
also in the case of special kinds of graphs. For instance, see [6] for a recent 

*Current Address: Box 1910, Department of Computer Science, Brown University, 
Providence, RI 02912. 
tCurrent address: Dept. of Computer Science, SUNY, Albany, NY 12222. 

NETWORKS, VOI. 22 (1992) 21-35 
0 1992 by John Wiley & Sons, Inc. CCC 0028-3045/92/01021-15$04.00 



22 RAW, MARATHE, AND RANGAN 

FIG. 1. An interval graph and its interval representation. 

algorithm for the all-pair shortest path problem on any graph with O(n2 log n) 
average case time complexity. 

The algorithm presented below solves the all-pair shortest path problem on 
interval graphs where all edges are of unit distance in O(n2) time. This matches 
the obvious lower bound to solve this problem, and, hence, the algorithm 
presented is time-optimal. The algorithm uses the concept of a neighborhood 
tree formed by identifying the successive neighborhoods of the vertex labeled 
last in the graph according to the IG-ordering of the vertices. The IG-ordering 
of the vertices of an interval graph was introduced in [7] and has been useful in 
solving a variety of problems on interval graphs efficiently [2, 5 ,  81. 

2. DEFINITIONS 

Let G = (V, E ) ,  IVI = n,  (El = rn be an interval graph. We assume that V = 
(1, . . . , n} and that the vertices of G are labeled according to the IG ordering 
[7]. This is simply the order in which we consider the intervals in the intersec- 
tion model of G in the nondecreasing order of their right endpoints. Figure 1 
shows an interval graph with its interval representation and its vertices labeled 
in the IG ordering. An important property of this ordering is given below. 

Property 2.1. Zfuertices, x, y ,  z E V are such that x < y < z in the ordering, if 
x is adjacent to z ,  then y is also adjacent to z [7/. 

If vertices x and y are adjacent, then we write x - y or y - x. For any vertex u 
in V, we define 
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w such that w < u and w is the smallest vertex adjacent to u 

otherwise, i.e., if no neighbor of u has smaller IG numbering 
than u.  

u 

Similarly, we define 

w such that w > u and y is the highest numbered vertex adjacent to 

otherwise, i.e., if no neighbor of u has a higher IG numbering 
than u. 

U 

u 
HZ(U) = 

LO(u) for each vertex u can be computed in linear time in a single scan of the 
vertices of G in the IG-ordering [7]. A variation of this method can be used to 
compute HZ(u) for each u in linear time. Let c ( H )  denote the number of con- 
nected components of the graph H. The distance between a pair of vertices u 
and u ,  denoted as d(u, u) ,  is the length of the shortest path between them in G. 
The ith neighborhood in G of a vertex u is denoted as N;(u) and is defined as 
follows : 

Ni(u) = {u :d (u ,  u )  = i}. 

Let k be the length of the longest chordless path from vertex n to any other 
vertex in G. It is easy to see that N&) is nonempty while Nk+, (n )  is empty. In 
this paper, we shall be interested only in the neighborhoods of the vertex 
numbered n in the IG-ordering and shall, henceforth, refer to N;(n) as N; with- 
out ambiguity. 

3. THE NEIGHBORHOOD TREE OF AN INTERVAL GRAPH 

Define G/ to be the subgraph of G induced on the set of vertices Ni and let 
c(Gf) = pi .  Let CC; denote the set of the pi connected components of Gf . We 
define CCo to be the singleton set {n}. We now define an auxiliary graph NT(G) 
built from the graph G as follows: 

NT(G) = ( V ’ ,  E ’ ) ,  where 

V ’ = { U!2,CCi} and 

E ’ = { ( X ,  Y):XECCi, YECCj , j# i ,andthereex i s txEXandyE Y 
such that x - y}. 

Since we have two different graphs under consideration, G and NT(G), we shall 
refer to a vertex of G simply as a vertex and a vertex of NT(G) as a node to 
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FIG. 2. 
p(1) = 1 andp(2) = p ( 3 )  = 2. 

The neighborhood tree N T ( G )  for the interval graph in Figure 1. In this figure, 

avoid confusion. The auxiliary graph NT(G) of the interval graph in Figure 1 is 
shown in Figure 2. Here, n = 12, po = p I  = 1,  p 2  = p 3  = 2 ;  the nodes of NT(G) 
are CI = (9, 10, 1 l}, C2 = {5 } ,  C3 = (6, 7, S}, C4 = { I ,  2}, and C5 = (3, 4). As 
noted above, two nodes of NT(G) are joined by an edge if there exists an edge 
between a vertex in one node to a vertex in another. Thus, for instance, the 
node C3 is joined to the node C, since a vertex, say 7, in the former is connected 
to a vertex, 9, in the latter. 

Lemma 3.1. 
G is a tree. 

The auxiliary graph NT(G) built from a connected interval graph 

Proof. We can see directly that N T ( G )  is connected iff G is. We now show 
that NT(G)  constructed from a connected interval graph is indeed acyclic. We 
shall define a node C to be at a distance i from the node denoting vertex n if d(x, 
n)  = i for any x E C .  Note that the notion of distance given above is well 
defined since C is the connected component of the subgraph induced on the ifh 
neighborhood of the vertex n. 

To prove that NT(G)  is acyclic, first observe that no edges can exist in 
NT(G)  between nodes that are at the same distance from {n}.  Also, there are no 
edges in NT(G)  connecting nodes Ci and Cj whose distances from n differ by 
more than one. This is by virtue of the definition of NT(G) .  Thus, to show that 
NT(G)  is a tree, we show that each node C, at a distance i from {n} is adjacent 
to exactly one node that is at a distance (i - 1) from {n}. 

We prove this by contradiction. Assume that some node C, of NT(G)  at 
distance i from {n} is adjacent to two nodes C, and C,  of NT(G) at a distance 
( i  - 1) from {n} (see Fig. 3). We can identify vertices uI , u2 ,  u 3 ,  and u4 as in 
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FIG. 3. The contradiction that the graph is an interval graph in the proof of acyclicity 
of N T ( G )  for an interval graph G: Lemma 3.1.  A chordless cycle of length at least four is 
identified above whenever a node C, at distance i + 1 is adjacent to two distinct nodes 
C, and C,  in level i. 

Figure 3 and thus an induced chordless cycle P of length at least 4 in the graph 
G. This contradicts our assumption that G is an interval graph. Hence, every 
node C, at a distance i from {n}  is adjacent exactly to a single node at a distance 
(i - I )  from {n} .  Thus, we see that NT(G)  is a tree whenever G is a connected 
interval graph. 

We shall refer to N T ( G )  as the neighborhood free of G .  Also, we shall 
consider this tree to be rooted at {n} .  We remark here that N T ( G )  is a tree even 
if G is a chordal graph with its vertices labeled according to a perfect elimina- 
tion ordering. This is because the proof of Lemma 3.1 uses only the triangu- 
lated property of interval graphs that chordal graphs also have. For each node 
C of NT(G) ,  define Leuel(C) to be the distance of C from { n }  in N T ( G )  and for 
any u E V ,  let Leuel(u) = Leuel(C) such that u E C. 

Note that in Figure 2 the vertices in level 1 are 9 ,  10, and 11 and, among 
these, the vertex with the minimum value of LO is 9 with LO(9) = 5 .  Also, note 
that level 2 is made of 5 ,  6, 7,  and 8. More formally, if level i is made up of the 
vertex set { x I ,  . . .  x,} in ascending order and xg is the vertex in this set with the 
smallest value of LO, then we see that the vertices in level ( i  + 1) of NT(G)  are 
exactly those in the range {LO&), LO&) + 1, . . . .  x1 - I}. This observation 
is proved in the lemma below, but before that, we need the following notation. 
Recall that 

= { x , ,  . . . .  x,}, where xI, . . . .  xr is sorted in ascending order 

For ease of reference and to avoid ambiguity, let us denote this sorted set 
representation of Ni by L(i). 
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Lemma 3.2. If L(i)  = { x l  , . . . , x,} and MZNLOi = min {LO(xj) : xj E L(i)}, 
then 

( I )  x I ,  . . . , x ,  are consecutive integers, and 
(2) L(i + 1) = {MZNLOi, MZNLOi + 1, . . . , X I  - 1). 

Proof. We prove the lemma by induction on i. Observe that L(0) = {n}  and 
L(1) = {LO(n), LO(n) + 1 ,  . . . , n - 1)  and the basis is true. 

Assume that L(i)  = { x I  , . . . , x,}, where xI , . . . , x, are consecutive integers. 
Now, by definition, L(i + 1) consists of the neighbors of all the vertices in L(Q 
and MZNLOi is the least numbered vertex in G to which any vertex in L(i) is 
connected. Property 2.1 of the IG-ordering leads us to conclude that MZNLO;, 
MZNLOi+1, . . . , x 1  - 1 are all vertices in L(i + 1). Hence, the theorem is true 
by induction. 

From the lemma above, we see that if x > y in the IG-ordering, i.e., if x lies to 
the right of y in the ordering, then Leuel(x) 5 Leuel(y). Also, if x > y > z and 
Leuel(x) = Leuel(z) = t ,  then Leuel(y) = t. The next lemma establishes one of 
the most important properties of the neighborhood tree of an interval graph. 

Lemma 3.3. Let G be a connected interval graph. All nodes of NT(G)  that are 
in leuel i are adjacent to a unique node o fNT(G)  at level ( i  - 1 ) .  

Proof. To see this, consider level i to be made up of nodes CI , . . . , C,, with 
vertices L(i )  = { x I  , . . . , xr} .  Let the node C, contain the vertex X I .  Note that 
xI - y for some y in level (i - 1 )  of NT(G) .  Also, y > xI from the observation 
following Lemma 3.2 above. Let C, be the node at level ( i  - 1) containing y. It 
is clear that C, and C, are adjacent in NT(G) .  We will show that C; is adjacent to 
C, for all i such that 1 I i 5 u. This follows from the observation that each such 
node Ci contains some xi such that xI < xi < y. The IG-ordering Property 2.1 
leads us to conclude that each Ci must be connected to C,. Finally, from the 
proof of Lemma 3.1, we know that each node in level i is connected to exactly 
one node at level ( i  - 1 ) .  Thus, all nodes in level i are connected to a unique 
node in level (i - 1). 

We define a node in level i of NT(G)  to be a special node if every node in 
level ( i  + 1 )  is adjacent to it. From Lemma 3.3, we conclude that there is 
exactly one special node at each level of NT(G)  whenever G is an interval 
graph. The backbone of NT(G)  is defined as the path { n } ,  X I ,  . . . , Xk-, , where 
Xi  is the special node of NT(G)  at level i .  Figure 4 shows the backbone of the 
neighborhood tree of the interval graph in Figure 1. We shall number the 
components in CCi from 1 through pi  in such a way that the component corre- 
sponding to the special node gets the number one and the other components are 
numbered arbitrarily (see Fig. 4). Using this convention, the components of 
CCi will be denoted as Cf,  . . . , Cf". C,! denotes the component corresponding 
to the special node, and, hence, it forms part of the backbone. We call the 
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FIG. 4. The neighborhood tree in Figure 2 depiciting the backbone in dotted line. The 
nodes of the tree are labeled as Cj ,  where i is the component number and j is the level 
number. The special nodes at each level have component number 1. 

nodes C:, j > 1 the suspended nodes of NT(G) .  If node x E V is in C:, then we 
see that Level(x) = i and we define Corn&) = j. 

4. CONSTRUCTION OF THE NEIGHBORHOOD TREE 

We shall not explicitly construct the neighborhood tree of the input graph G .  
Instead, note, that computing Level(x) and Comp(x) for each vertex x E V 
determines the structure of NT(G)  completely. We use the convention de- 
scribed above to allow us to determine if a vertex is in a special node or in a 
suspended node of NT(G) .  

We describe below procedures that would allot to each vertex x the values of 
Level(x) and Comp(x). The input to these procedures is the adjacency matrix of 
the graph G and the values of LO(x) for every vertex x E V. We do this in a 
single left-to-right sweep of the interval representation. In the sweep, we can 
identify the level of each vertex using Lemma 3.2 by computing MZNLOi for 
each level i to determine the vertices in level (i  + 1). Before we explain how we 
can determine the values of Comp(x) for each vertex x, we state the following 
useful lemma: 

Lemma 4.1. At any level i of NT(G) ,  the special node at this level contains the 
lowest numbered vertex in that level. 

Proof. This can be easily proved by contradiction. Let the smallest num- 
bered vertex xI  at level i be in the node C;, ( j  # l) ,  a suspended node. Note that 
every node in level ( i  + 1) will be adjacent to Cf, by definition of the special 
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node. This means that there is a vertex y in level (i + 1) that is adjacent to some 
vertex x‘ in C ;  such that y < x’ < x ’ .  Property 2.1 implies that xI is also adjacent 
to x ’ ,  which implies thatj  = 1 since xI is in the same connected component as x’ 

rn (a contradiction). Hence, the lemma follows. 

Since we know by Lemma 3.2 that all vertices in a given level form a contigu- 
ous block in the IG-ordering, it is easy to identify the components in each level 
by a procedure we call Lo-riding. Consider the level i with L(i) = { x l ,  . . . , x,}. 
Lo-riding starts with the last vertex x, and finds its LO. Now, we find the LO of 
this vertex and continue in this fashion until we either come to a vertex smaller 
than X I  or we have reached the end of a component. If so, we have come to a 
vertex x, whose LO is itself. In the former case, we have crossed the current 
level i, and so the component that we are working with is the special node of 
this level. We identify this component and number it with one. In the latter 
case, we assign the block of vertices that we have as a component and give it a 
number other than one. We then continue lo-riding from the vertex xe - 1. This 
process will eventually end when we exhaust lo-riding through all the compo- 
nents in this level. Lo-riding is illustrated in Figure 5. The procedures that allot 
the Leuel and Comp entries for each vertex are described below. 

Procedure Allot 

1. While there are no more levels to be processed, 
[ 1.11 Assign level numbers to the vertices in the current level. 
[ 1.21 Find the range of vertices in the next level. 
[1.3] Assign component numbers to each vertex in the current level. 

Now, we go on to describe the procedures themselves. 

Procedure Allot 

For each vertex x E V, we assume that we have the value of LO(x) in an 
array LO. 

1 .  Initialize Leuel(n) = 0, Comp(n) = I ,  p = n - 1, lulcnt = 1, and q = 

W P ) .  
2. Repeat until p = 1 

[1.1] For each vertex x in the range {q, . . . , p - l}, do 
[ 1.1.13 Leuel(x) = lulcnt. Here, we allot level numbers for the verti- 

ces in this level. 
[ I  .2] lulcnt = lulcnt + 1. 
[ 1.31 Find - comp(q, p ) .  We find the components in this level and allot 

the component entries for vertices in this level. 
[ 1.41 Reset the values p and q appropriately. temp = min{LO(x) : x E 

{q, . . . , p - 1)). This is the MINLO of this level and marks off the start 
of the next level. p = q,q = temp. 
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FIG. 5 .  Lo-riding: At each level, we start at the highest vertex x,. An arrow from a 
vertex represents the operation of computing the LO of the vertex. When a vertex 
whose LO is itself is reached without overshooting the sentinel XI, we mark off a 
component. At the next run of lo-ride, we start from the vertex numbered one less than 
this and continue until we overshoot the sentinel. At this point, we have identified all the 
connected components of the induced subgraph of this level. The dotted intervals 
represent vertices not in the level for which the lo-ride is performed. The dark rectan- 
gles enclose the components identified for this level. 

Procedure Find-comp(x,, x,) 

This procedure determines the component entries for vertices in the range 
{ X I ,  . . . .  x,} by successively finding the components by Lo-riding and labeling 
them. 

1. Initialize last = x, to begin the right-to-left sweep, mainlo = xi, a sentinel 
for ending lo-riding and count = 2 for the component number. The com- 
ponent number one is reserved for the special node. Also, initialize ret - 
ual = x, for the current vertex we are at. 
Repeat until ret - val = mainlo 

[2.1] ref - val = Lo - ride(last, mainlo). Here, ret-Val identifies the 
beginning of the component that the vertex last ends. Thus, we have 
identified the set {ret - ual, . . . .  last} as a component. 

2. 

[2.2] If ref - val f mainlo, 
[2.2.1] then we have still not exhausted the vertices in this level. So, 

[2.2.1.1] For every vertex x E { ret - ual, . . . .  last}, set Comp(x) 
= count. 

number. 

new ret - val = Lo - ride(last, ref - val - 1). 

special node. So, 

= 1. 

[2.2.1.2] count = count + 1. Reset count for the next component 

[2.2.1.3] Lo-ride again now setting last to ref - uaf - 1. Thus, the 

[2.2.2] else, we have finished the sweep of this level and come to the 

[2.2.2.1] For every vertex x E {ref - ual, . . . .  last}, set Comp(x) 
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Procedure Lo-ride(lusf,mainlo) 

This procedure is used within a level to identify the connected components of 
this level. It takes in as arguments last, the vertex to begin the lo-riding from, 
and also a sentinel mainlo, overshooting which means that the current level is 
exhausted. The procedure returns a vertex z 5 y such that the set {z, z + 
1 ,  . . . , y }  forms a single component in the level i .  

1 .  Initialize p = y .  
2. 

3. If (LO(p)  < mainlo) 

While ( (LO(p)  > mainlo) AND (LO(p) # p ) ) ,  
[2.1] p = LO(p).  

[3.1] then, we have crossed the sentinel into the next level, so we stop 

[3.2] else, we have just encountered the end of a component in this 
and return z = mainlo signaling this. 

level and so we return the last vertex in this component as z = p .  

The complexity of computing Level(x) and Comp(x) for each vertex x in V is 
stated below. 

Theorem 4.1. 
vertex x in V is O(n + m).  

The complexity of computing Levef(x) and Comp(x) for each 

Proof. Levef(x) for each vertex x in V is computed in the “Allot” procedure 
above and takes only O(n) time. This construction follows the result in Lemma 
3.2 and involves a single scan of the LO values of all the vertices at a given level 
to determine the next level. 

Determination of the component numbers at each level also takes only O(m 
+ n) time since it involves finding the connected components at each level of 
NT(G). To do this for level i ,  it takes time O(ni + mi) time where ni and mi are, 
respectively, the number of vertices and edges in the induced subgraph on N i .  
Summing over all the levels, we see that the overall time complexity is only 
O(m + n ) .  Thus, the theorem follows. 

5. THE ALGORITHM AND THE PROOF OF CORRECTNESS 

To compute the distance between every pair of vertices in the interval graph 
G ,  we assign to each vertex the information about whether it is a special node 
or one of the suspended nodes and its level in the tree. The component number 
determines whether the vertex is in a special node or a suspended node. 

We make a top-down pass of the neighborhood tree of the graph and compute 
at each level of the tree the distance between each vertex in this level and all 
the vertices in the same level and in the levels above it. This computation can 
be viewed as a right-to-left scan of the vertices of the interval graph from vertex 
n to vertex 1 in the IG-ordering. In the scan, at each vertex x, we determine d(x, 
y )  for all y > x. The distance calculations at each stage can be viewed to be of 
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essentially three types. Typically at level i, we wish to enumerate d(x, y ) ,  
where Leuel(x) = i and one of the following cases hold: 

(i) Leue/(y)  = i; 
(ii) 

(iii) 
Leuel(y)  = i - 1; 
Leuel(y)  = j  wherej < (i - I ) .  

Further, we perform the distance calculations differently depending o n  
whether x and/or y belong to a suspended node (i.e., have their Comp entry 
greater than 1) or a backbone node (i.e., with the Cornp entry equal to 1) in 
NT(G) .  

We present below recurrence relations for computing d(x, y ) ,  where y > x for 
the different possible cases of x and y .  We also present a concise reason below 
each of the expressions for the correctness of the recurrences without provid- 
ing a formal proof. In all these cases, we assume that Leuef(x) = i and that z = 
HZ(x). Notice that if x is in level i then z must belong to level i - 1. 

Case 1. Leuel (y )  = i. 

backbone. We then have 
[Case l a . ]  Cornp(x) = Cornp(y) = 1. In this case, both x and y are in the 

d(x, y )  = 1 i f x  - y 

= 2 otherwise. 

This is obvious, since if there is an edge between x and y ,  the distance is 1. 
Otherwise, there exists an obvious path of length two through some vertex w in 
level (i - 1). This case is shown in Figure 6. 

<a 
Level( i ) 

FIG. 6 .  Case la of the recurrences for d(x, y). If the edge labeled A exists between x 
and y ,  then d(x,  y )  = 1. Otherwise, there is a path between x and y of length two through 
some vertex w in level (i - 1). 
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[Case Zb.] Comp(x) = 1 and Comp(y)  > 1. Here we have 

4 x 9  Y )  = 1 + d ( y ,  z). 

The recurrence above stems from the observation that if there exists a shortest 
path P from x to y via some vertex zr < z in level (i - l),  then there is a path P r  
from x to y via z itself of the same length. This case is depicted in Figure 7. To 
see this, observe that if zrr is the next vertex after zr in this shortest path P, then 
zrr > zr and z’ - zrr implies that z - z” since we know that zr < z < z”. This 
follows from Property 2.1 of the IG-ordering. Using this edge (z, z”) and the rest 
of the shortest path in P, we can construct a new shortest path P r  via z from x 
to y .  

[Case Zc.] Comp(x) >1 and Comp(y)  > 1. In this case also, 

The reasoning is identical to that for Case lb. 

Case 2 .  Leuel(y) = i - 1. 
[Case 2a.I Comp(y)  = 1 and Comp(x) z 1. In this case, we have 

FIG. 7. Cases lb, lc, 2, and 3 of the recurrences for d(x, y) showing that there is a 
shortest path from x to y via z = HZ(x). Let P be a shortest path that goes via a vertex 
z‘ # z, and let z“ denote the vertex following z’ in P from x toy. Since z‘ < z I z”, by the 
interval graph Property 2.1, another shortest path P‘ between x and y can be identified 
via z .  
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d ( x , y )  = 1 i f x - y  

= 2 if x is not adjacent to y and z > y 

= 1 + d(z, y )  otherwise. 

These recurrences are drawn again based on arguments similar to those in Case 
1, except for the case when d(x, y) = 2. This is also easy since if x is not 
adjacent to y,  then x - z where x < y < z. By the interval graph Property 2.1, 
we then have that y - z, and so there is a path of length two from x to y via z .  
This case is shown in Figure 8. 

[Case 2b.l Comp(x) = 1 and Comp(y) > 1. 
[Case 2c.I Comp(x) > 1 and Comp(y) > 1. 

In both the cases above, by an argument similar to that offered for Case lb, we 
can conclude that 

Case 3. Leuel(y) = j, wherej < (i - 1). In all the subcases of this case, too, 
we can see that a shortest path between x and y must pass through the vertex z 
and arrive at 

d(x, y )  = 1 + d(z, Y ) .  

FIG. 8. Case 2a of the recurrences for d(x, y) where y < z. If the edge labeled A exists 
between x and y ,  then d(x, y) is obviously 1. Otherwise, there is a path between x and y 
of length two using the edge labeled B from x to z = Hf(x)  and then toy. The existence of 
the edge from z to y is by the interval graph Property 2.1 given that x < y < z. 
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The distances between every pair of vertices of G can thus be calculated by 
making a top-down evaluation of NT(G) .  The only point that must be clarified 
is the order in which we calculate the distances associated with the vertices at a 
given level i. At each level, we make the following four passes of computation. 
Note that whenever d(x, y) is computed, both the values d(x, y )  as well as d ( y ,  
x) are updated to facilitate easy computation of the recurrences later. 

Pass 1. In the first pass, we compute the distances between all pairs of verti- 
ces in level i that lie within the same component (and, hence, have the 
same component number). This corresponds to the application of 
Case l a  and a few of the cases in Case lc  of the recurrences above. 

Pass 2. In the second pass, we compute all distance d(x, y)  such that Leuel(x) 
= i and Leuel(y) = i - 1. This is case 2 of the recurrences. 

Pass 3. This third pass corresponds to computations in case 3 of the recur- 
rences above and determines all the distances d(x ,  y) such that 
Leuel(x) = i and Leuel(y) = j wherej < (i - 1). 

Pass 4. In this last pass, we compute the distance between all pairs of vertices 
in level i such that they lie in different components (and, hence, have 
different component numbers). These are the rest of the cases in case 
1 of the recurrences. 

It is easy to verify that this order of computing the distances at each level 
ensures that all values needed for substitution in a recurrence are already 
computed at an earlier pass and are available. This makes each of the recur- 
rence computations a constant time table look-up. 

6. COMPLEXITY AND CONCLUSIONS 

The complexity of computing LO(x) for each vertex x in V is O(n + rn) [7]. 
HZ(x) can be computed similarly in linear time. In Theorem 4.1, we have shown 
that Leuel(x) and Comp(x) for each vertex X can be computed in linear time. 
Thus, all the preprocessing takes time O(rn + n) .  

Since the determination of d(x, y) for any given x and y in the order proposed 
above takes only constant time and there are O(n2) entries to fill, the whole 
algorithm has an overall time complexity of O(n2). Since there are O(n2) entries 
to be calculated to solve the all-pair shortest path problem, it is clear that our 
bound is optimal. 

It would be interesting to investigate if the weighted version of the all-pair 
shortest path problem can be handled in a similar fashion. 
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