
When cycles collapse: A generalapproximation technique for constrainedtwo-connectivity problemsR. Ravi and Philip KleinDepartment of Computer ScienceBrown UniversityProvidence, Rhode Island 02912CS-92-30June 1992

When cycles collapse: A general approximation technique forconstrained two-connectivity� problemsR. Ravi1Philip Klein2Brown UniversityAbstractWe present a general approximation technique for a class of network design problems where weseek a network of minimum cost that satis�es certain communication requirements and is resilientto worst-case single-link failures. Our algorithm runs in O(n2 log n) time on a graph with n nodesand outputs a solution of cost at most thrice the optimum. We extend our technique to obtainapproximation algorithms for augmenting a given network so as to satisfy certain communicationrequirements and achieve resilience to single-link failures.Our technique allows one to �nd nearly minimum-cost two-connected networks for a variety ofconnectivity requirements. For example, our result generalizes earlier results on �nding a minimum-cost two-connected subgraph of a given edge-weighted graph in [3, 9] and an earlier result on �nding aminimum-cost subgraph two-connecting a speci�ed subset of the nodes in [14]. Using our technique,we can also approximately solve for the �rst time a two-connected version of the generalized Steinernetwork problem and a two-connected version of the non-�xed point-to-point connection problem.1 Introduction: The frameworkOn designing a networkThe following scenario was proposed in [1]. You are in the job of providing communication links tocustomers. You have a set of clients with communication requirements; each client has speci�ed a pair ofcities (called a site-pair) between which the client must have communication capabilities. In front of youis the AT&T3 price list, which gives prices for constructing communication links between various cities.Each link built has essentially in�nite communication bandwidth. Your job is to select a minimum-costcollection of communication links that can accommodate all your clients' communication requirements.The network you must construct need not be connected; all that is needed is that every client's pair ofcities be connected through your network. Unfortunately, your job's NP-complete. So you come up withan approximately good solution [1] and build a network using this strategy.Soon you notice that your clients are complaining. The links used in your network seem to bebreaking down pretty often. And you notice that it is very often the case that it is just a single edgethat has caused each tree in your solution to come to a standstill. So your clients want you to augmentthis network so that each pair of cities have at least two connections. Moreover, they do not want youto duplicate any link in the already existing network since the link failures seem to be related to thelocation of the cables. By duplicating links, you are only making both copies prone to failure. Well, yourproblem is NP-complete again [3]. If you were lucky to have a large enough client�ele so that your networkspanned all the cities, then you could use the approximate solution in [3]. Or if you were plain lucky and�Connectivity refers to edge-connectivity throughout this paper unless stated otherwise explicitly.1Research supported by an IBM Graduate Fellowship. Additional support provided by NSF PYI award CCR-9157620and DARPA contract N00014-91-J-4052 ARPA Order No. 8225.2Research supported by NSF grant CCR-9012357 and NSF PYI award CCR-9157620, together with PYI matchingfunds from Thinking Machines Corporation and Xerox Corporation. Additional support provided by DARPA contractN00014-91-J-4052 ARPA Order No. 8225.3Disclaimer: Even now, the authors are in no way connected to AT&T.1

your network had only one tree, you could turn to the extension in [14] to augment this tree. However,considering your past history with fortune, no approximation algorithms are known in the general case.In this paper, we give the �rst approximation algorithm for augmenting this generalized Steinernetwork to a network in which each site-pair is two-connected. Combining this with the solution o�eredto your earlier problem in [1], this provides an approximation for a general two-connected Steiner networkdesign problem. In fact, you weren't so unlucky after all. For, while you set out to solve the problemof �nding a minimum cost network two-connecting all the site-pairs, your technique turns out to solve awhole class of minimum cost two-connected subgraph problems...An example of a solution formed this way for the generalized two-connected Steiner network problemis depicted in Figure 1.
Figure 1: An instance of the unweighted generalized two-connected Steiner network problem and anoptimum solution. Solid edges correspond to unit-cost links; dotted edges connect site pairs. In theright �gure, the solid edges correspond to �rst phase one-connecting solution. The thick dashes form anaugmentation to two-connect the solid trees.FrameworkWe can model the generalized two-connected Steiner network problem as follows: De�ne a cut in thegraph to be active if it separates some site-pair. A network is said to two-connect a site-pair if thereare two edge-disjoint paths between them in the network. Thus, any network that two-connects thesite-pairs must cross this active cut twice. Conversely, if a network crosses every such active cut twice,the network indeed two-connects all the site-pairs. More formally, we can de�ne a function f de�ningthe activity of all cuts in the graph. If a cut C separates some site-pair, then we set f(C) = 1 and callC an active cut. Otherwise, we set f(C) = 0 and call C an inactive cut. Any set of edges that crosseseach of the active cuts twice is a feasible solution to the two-connected Steiner network problem. We cangeneralize this two-connected network design problem by extending our notion of active cuts. For this,we turn to the work of Goemans and Williamson in [6] where they de�ne the notion of proper functions.Proper functions are a class of functions used for de�ning the activity of cuts in a graph.In [1], we provided the �rst approximation algorithm for the generalized network Steiner problem. Thealgorithmpresented there involved construction of feasible primal and dual solutions with an approximaterelation between their values. Subsequently, Goemans and Williamson [6] generalized this result to atechnique for approximating a large class of constrained forest problems. They introduced the notionof proper functions whose elegant de�nition captures the connectivity requirements for a variety ofconstrained forest problems. In this paper, we use their notion of proper functions in formulating ageneral two-connected network design problem.Given a graph G = (V;E), a function f : 2V ! f0; 1g and a non-negative cost function c on theedges, we consider the following integer program:Min Pe2E cexesubject to constraints: 2

x(�(S)) � 2f(S) ; 6= S � V (IP)xe 2 f0; 1g e 2 EHere �(S) denotes the set of edges having exactly one endpoint in the set S and x(F) = Pe2F xe.Any feasible solution to the program above is a collection of edges that intersect each active cut underthe function f at least twice. Thus, any minimal feasible solution to (IP) is a collection of two-connectedsubgraphs. In this paper, we address solutions to the above program for the class of proper functionsf . An important requirement of the solution subgraph that this paper addresses is that edges are notallowed to be replicated. This will be the assumption in all the problems we consider. Thus, the programis feasible only if the input graph has a feasible solution as a subgraph. We shall assume that the inputgraph is itself feasible for (IP). It is not hard to verify this assumption. We de�ne A, the set of terminalsin V as the set A = fv 2 V : f(fvg) = 1g. The following is our main result.Theorem 1.1 There is an O(n2 logn) algorithm to produce an feasible solution F 0 to (IP) such thatPe2F 0 ce � (3� 3jAj)OPT where OPT is the optimum value of (IP).Although we use weak linear programming duality in our analysis, our algorithm does not linear pro-gramming.Formulating problems in this framework - ExamplesThe generalized two-connected Steiner network problem without edge replication is representable in theabove framework. We set f(S) = 1 if there is a site pair that contains a site in S and one outsideS, and we set f(S) to 0 otherwise. The above framework also captures the following point-to-pointtwo-connection problem we introduce. In this, we are given a set C = fc1; . . . ; cpg of sources and aset D = fd1; . . . ; dpg of destinations in the graph and we need to �nd a minimum-cost set F of edgessuch that each source-destination pair is two-connected in F . The �xed destination case, in which ci isrequired to be two-connected to di, reduces to a case of the generalized two-connected Steiner networkproblem. However, we can also approximate the non-�xed destination case, where the only requirementis that each component of F contains the same number of sources and destinations. For this, we set f(S)to 1 whenever jS \Cj 6= jS \Dj and to 0 otherwise.StrategyThe algorithm we present in this paper works in two phases. In the �rst phase, the algorithm in [6] isapplied to construct a partial solution F1 that partially satis�es the requirements in (IP), namely, thesolution satis�es the one-connectivity constraints: x(�(S)) � f(S) ; 6= S � V . In the second phase, weaugment the partial solution F1 such that the augmented subgraph two-connects each of the trees in theforest F1. We show that the cost of the solution output at the �rst phase is at most the optimum valueof (IP) and the cost of the augmentation output at the second phase is at most twice the optimum valueof (IP) to obtain a performance guarantee of three. The second phase is a careful reapplication of themethods of Goemans and Williamson. We de�ne an auxiliary function f 0 specifying a di�erent notion ofactive cuts, based on the partial solution F1. If f 0 were proper, then we could reapply the method in [6]directly. Unfortunately, f 0 is not proper and so we need to adapt this method.Approximating augmentationThe techniques used in proving Theorem 1.1 can be adapted to provide approximation algorithms forminimum-cost augmentation. Suppose that we are given a graph G = (V;E) along with an initialsubgraph G0 with edge set E0. The minimum-cost augmentation problem is to choose a minimum-costset of edges in G whose addition to G0 yields a graph that obeys the constraints of (IP). This problemgeneralizes the minimum-cost bridge-connectivity augmentation problem considered in [3, 9] and also theSteiner version considered in [14]. We have the following theorem about approximating the minimum-costaugmentation. 3

Theorem 1.2 The augmentation problem described above can be approximated in O(n2 logn) time withina factor of 2(1 � 1jAj) if the incidence vector, x0 of the initial subgraph G0 obeys the one-connectivityconstraints x0(�(S)) � f(S) 8S : ; 6= S � VOtherwise the performance guarantee is 3(1� 1jAj).Road-mapIn the next section, we look at related work. Thereafter, we present background results and the basictechnique used in proving our main result. In Section 4, we present the second-phase augmentationalgorithm. In the following section, we prove the performance bound of this phase. Then we prove theresults on augmentation. We close with some implementation issues and open problems.2 Related workFredrickson and Ja'Ja', in their pioneering work [3] on approximation algorithms for weighted graphaugmentation problems, provided the �rst approximate solution for the problem of augmenting a givengraph to be two-connected. The performance guarantee of their algorithm was a multiplicative factorof two. Their technique also gave an approximate solution to the minimum-cost two-connected sub-graph problem. The performance guarantee is a multiplicative factor of three. Their solution for thelatter problem starts with a minimum spanning tree and augments this to be two-connected. Khullerand Thirumella [9] have extended these results and provided more e�cient algorithms for the same.Recently, Ravi [14] observed that this method generalizes to �nd minimum-cost two-connected Steinersubgraphs of a given graph. All the above methods are also able to solve the node two-connected versionsapproximately. Khuller and Vishkin have presented algorithms with better performance guarantees forthe minimum two-connected subgraph problems in [10]. The bounds are 32 for the two edge-connectedcase and 52 for the two node-connected case.When the cost function c obeys the triangle inequality, then Fredrickson and Ja'Ja' [4] present anadaptation of Christo�des' heuristic to solve the minimum-cost biconnectivity augmentation problemwith a performance factor of 32 . There has been considerable previous work on network survivability[5, 8, 11, 12, 15] that addresses constructing minimum-cost k-connected subgraphs under such costfunctions. However, our interest is in the general case when the cost function does not satisfy thetriangle inequality.There has also been considerable work on characterizations of integer polyhedra arising from connec-tivity constraints [7], and construction of minimum-cost two-connected survivable networks [5, 13].As mentioned in the previous section, Agrawal, Klein and Ravi [1] introduced the technique of aprimal-dualmethod for approximating the minimum-cost generalized Steiner network. Though this resultaddressed arbitrary connectivity requirements between pairs of nodes, it allowed for edge replication. Thiswas consequently generalized by Goemans and Williamson in [6].Our paper combines the two-phase idea of Fredrickson and Ja'Ja' with a primal-dual method tailoredto provide an approximate solution in both phases.3 BackgroundFollowing [6], we de�ne the notion of a proper function f : 2V ! f0; 1g. A function f is proper if thefollowing properties hold.� [Null] f(;) = 0;� [Symmetry] f(S) = f(V � S) for all S � V ; and� [Disjointness] If A and B are disjoint, then f(A) = f(B) = 0 implies f(A [B) = 0.The functions f used to model the problems in the �rst section can be easily veri�ed to be proper.4

The �rst phase:As mentioned in the introduction, our algorithm works in two phases. In the �rst phase, we constructan approximate solution to the following modi�ed integer program:Min Pe2E cexesubject to constraints:x(�(S)) � f(S) ; 6= S � V (IP1)xe 2 f0; 1g e 2 EWe do this using the method in [6]. Let the solution generated be denoted by F1. We shall use F1to denote the set of edges in this solution returned in the �rst phase. It follows from [6] that F1 inducesa forest in G. The algorithm in [6] implicitly constructs a dual solution to the above linear program toprove the performance guarantee. This dual to the linear relaxation of the above integer program (usingxe � 0) is the following.Max PS�V f(S) � ySsubject to constraints:PS:e2�(S) yS � ce e 2 EyS � 0 ; 6= S � VRecall that A is the set of terminals in V . We will be using the following results from [6].Theorem 3.1 ([6]) The solution F1 feasible for (IP1) and the dual y constructed are related byXe2F1 ce � (2� 2jAj)XS�V ySLemma 3.2 ([6]) Let e 2 N where N is a connected component of a minimal solution F1. Let N1 andN2 be the two connected components of N � feg. Then f(N1) = f(N2) = 1.Observation 3.3 ([6]) If f(S) = 0 and f(B) = 0 for some B � S, then f(S � B) = 0.The LP relaxation of our integer program (IP) is obtained by replacing each integrality constraint xe 2f0; 1g with the linear constraint 0 � xe � 1. The dual to this LP relaxation is as follows.Max PS�V 2f(S) � yS �Pe2E resubject to constraints:PS:e2�(S) yS � ce + re e 2 EyS � 0 ; 6= S � V (LP)re � 0 e 2 EBy weak linear programming duality, if OPT denotes the value of the optimal solution to (IP) andZ�LP denotes that of the optimal dual solution to (LP), then OPT � Z�LP . Note that the dual solutiony provided by the algorithm of [6] is feasible for (LP) by setting re = 0 for all edges e. The value of theabove program (LP) with this solution is 2PS�V yS . Thus we have OPT � 2PS�V yS . Combiningthis with Theorem 3.1, we get the following bound on the �rst phase solution.Lemma 3.4 Let F1 be the set of edges chosen in the �rst phase and let OPT denote the value of anoptimum solution to (IP). Then Xe2F1 ce � (1� 1jAj)OPTThe second phase:In the next section, we describe an algorithm for augmenting the forest F1 with a set of edges F2 disjointfrom F1. The algorithm also simultaneously constructs an implicit dual solution ~yS for S � V . We shallprove the following theorem in the next two sections.5

Theorem 3.5 The second phase algorithm chooses a set F2 of edges disjoint from F1, and an implicitdual solution ~y.(1) The set of edges in F1 [F2 two-connects each of the trees in (V; F1).(2) The solution ~y will have the property that ~yS > 0 only when j�(S) \ F1j = 1. Also, the solution ~ywill obey the normal packing constraint on all edges not in F1. Namely, for any edge e 2 E � F1,we have PS:�(S)3e ~yS � ce.We also prove the following relation, which is the basis for our performance analysis of the algorithm.Theorem 3.6 Let F2 be the set of edges chosen by the second phase algorithm and let ~y be the dualsolution it implicitly constructs. Then Xe2F2 ce � (2� 2jAj)XS�V ~ySThe strategy to prove a bound of two for the second phase is to show that ~y is feasible to the dual (LP)above. For this, we need the following lemma.Lemma 3.7 If j�(S) \ F1j = 1 then f(S) = 1.Proof: Suppose �(S) \ F1 = feg and suppose e 2 N , where N;N1; . . . ; Nm are components of (V; F1).Let P and Q be the two components of N � feg. Assume without loss of generality that P � S andQ\S = ;. Since �(S) only intersects the edge e from F1, for each Ni, either S \Ni = ; or S \Ni = Ni.Thus, we can write S as the disjoint union of P and some of the components in F1. Now f(Ni) = 0 forall the Ni's. Also, from Lemma 3.2, we have f(P) = 1. Disjointness and Observation 3.3 together implythat f(S) = 1.Now, we show that ~y is a feasible solution to (LP). Namely, for each edge e 2 F1, set re =PS:~yS>0; �(S)\F1=feg ~yS . Set re = 0 for all the other edges. Since we have ~yS > 0 only whenj�(S) \ F1j = 1, we getXe2E re = Xe2F1 re = Xe2F1 XS:�(S)\F1=feg ~yS = XS:j�(S)\F1j=1 ~yS = XS�V ~yS (1)Now, we show that the solution ~yS obeys all the packing constraints in (LP). For any edge e 2 F1, wehave XS:�(S)3e ~yS = re � re + cesince ce � 0. Also, for any edge e not in F1, we haveXS:�(S)3e ~yS � ce � ce + reusing the second part of Theorem 3.5. Finally, the value of the solution isXS 2f(S)~yS �Xe re � 2 XS:j�(S)\F1j=1 ~yS �Xe2F1 re =XS ~ySThe �rst inequality follows from Lemma 3.7 and the second equality from Equation (1). By weak linearprogramming duality, we again have OPT � PS ~yS . Combining this and Theorem 3.6, we get thefollowing lemma.Lemma 3.8 Let F2 be the set of edges chosen by the second phase algorithm and let OPT denote thevalue of an optimum solution to (IP). ThenXe2F2 ce � (2� 2jAj)OPT6

We pause and prove that the solution F1 [F2 we o�er is feasible.Lemma 3.9 F1 [F2 is feasible for (IP).Proof: For any S � V , we have j�(S) \ F1j � f(S) since F1 is feasible for (IP1). By Theorem 3.5, theset of edges in F1 [F2 two-connects all the trees in F1. Thus if f(S) = 1 and j�(S) \ F1j = 1 then wemust have j�(S) \ F2j � 1 for such S. Therefore if x is the incidence vector of F1 [F2 then for any Swith f(S) = 1, we have x(�(S)) = j�(S) \ F1j+ j�(S) \ F2j � 2Hence, x is feasible for (IP).We have described construction of a feasible solution F1 [F2 to (IP) and we have bounds on itsvalue from Lemmas 3.4 and 3.8. These give us the Theorem 1.1. It remains to describe the algorithm toconstruct F2 and the implicit dual ~yS . We do this in the next section.4 The algorithmIn this section, we describe the algorithm for augmenting a given forest F1 such that each tree in F1becomes two-connected. Note that F1 is a minimal solution to the integer program (IP1). We alsoimplicitly construct a dual solution ~y such that it has the properties we required in Theorem 3.5. Sincewe require that ~yS > 0 only when j�(S) \ F1j = 1, we de�ne this condition as a new function f 0, namely,f 0(S) = � 1 if j�(S) \ F1j = 10 otherwiseIt is important to note that the function f 0 de�ned this way is not proper. It can be easily shownto violate the disjointness requirement. Our basic algorithm for the second phase is similar to that ofGoemans and Williamson but is modi�ed to take care of this di�erence. As input to the algorithm, weare given an undirected graph G with edge costs ce � 0 and the forest F1. We output a set F2 of edgessuch that F2 \ F1 = ; and each tree in F1 is two-connected in F1 [F2.OverviewThe algorithm maintains a forest, F , of edges as candidates for F2. The forest F initially has no edges.It also maintains a set of clusters which partitions the vertex set at any time in the running of thealgorithm. To begin with, each node in V is in its own cluster. The set of clusters at any time in therunning of the algorithm can be partitioned into active and dead (or inactive) clusters, namely, those withf 0 value 1 and 0 respectively. The algorithm progresses in iterations, choosing edges between clusters andmerging clusters. Each merge involves an active cluster. When no active cluster remains, the algorithmterminates. Whenever a chosen edge closes a cycle in F1 [F , this cycle is collapsed: all the clusterscontaining nodes in the cycle are unioned into a single cluster. Note that the graph induced by F1[F atthe beginning of each iteration with the clusters contracted to single nodes is acyclic, because cycles arecollapsed at each iteration. The algorithm also implicitly maintains a dual solution ~y. Only the activeclusters are used to update the dual solution. As long as there remains an active cluster, there remainat least two clusters since f 0(V) = 0. In the end, we do a clean-up to retain only essential edges andremove redundant edges.The algorithmWe use the notation of [6]. We shall use C to denote the set of clusters that the algorithm maintains.For a vertex v, we let Cv denote the cluster containing v. We shall use a counter t which records theiteration number during the course of the algorithm. Henceforth, we shall use the term \at time t" torefer to iteration number t of the algorithm.1 Initialize F := ;; C := ffvg : v 2 V g; t := 0.2 Comment: Implicitly set ~yS := 0 for all S � V .7

3 For each v 2 V , set d(v) := 0.4 While there is a C 2 C such that f 0(C) = 15 Find edge e = (i; j) with i 2 C1 2 C; j 2 C2 2 C; C1 6= C2 that minimizes the reduced cost� = ce�d(i)�d(j)f 0(C1)+f 0(C2) .6 For all v 2 C 2 C, set d(v) := d(v) + � � f 0(C). Comment: Implicitly set ~yC := ~yC + � � f 0(C).7 Set t := t+ 1 and F := F [feg. Comment: Edge e is chosen at time t.8 If e closes a cycle in F1 [F , then union all the clusters containing nodes in this cycle to forma new cluster and insert this in C. Delete each of the old clusters used in the unioning from C.Comment: We say that a collapse has occurred at time t. All the edges in this cycle with theirendpoints in di�erent clusters are said to participate in this collapse.9 If e does not close a cycle, union the two clusters C1 and C2 to form a new cluster and insertthis in C. Delete the two clusters C1 and C2 from C.10 (Clean-up step) Select a subset F2 of F to output. Comment: This step is described later in thissection.Clean-UpBefore we describe the clean-up step, we need some notation. At any time t, let C(t) denote the set ofclusters in C just after iteration number t of the algorithm. Let et denote the unique edge added in thetth iteration. We de�ne F (t) to be set of edges in the set F added until time t including et. Let tf bethe total number of iterations before the algorithm terminates.We shall refer to the graph (V; F1) or any contracted version of it as the skeleton. Hence the edges inF1 are termed skeletal. Also, a path made up of edges entirely in F1 is called a skeletal path. Similarly,edges in F are termed nonskeletal.Clean-up works by processing the edges in F in the reverse order in which they were chosen by thealgorithm and discarding those that are not essential for two-connectivity. The procedure below takesas input the set of edges F chosen by the algorithm and outputs a subset F2 � F of edges to be retainedin the �nal solution.1 Initialize F2 := ;.2 For t := tf down to 1 do3 If the graph (V; F1 [F2 [F (t) � fetg) contains at least one skeletal bridge edge bt, then setF2 := F2 [fetg.FeasibilityWe have the following observations from the algorithm.Proposition 4.1 At any iteration t of the algorithm, the set of nodes in each cluster in C(t) is one-connected using edges in F1 [F (t).The above proposition can be proved by induction on the iteration count t.De�nition: De�ne a skeletal edge e to be enclosed at time t if both its endpoints belong to the samecluster in C(t).Observation 4.2 A skeletal edge is enclosed at time t if and only if it is part of an edge-simple cycle in(V; F1 [F (t)).Proof: First we prove the if part. In step 8, we collapse any cycle formed by a newly chosen edge, andwe merge the clusters involved. It follows by induction on the iteration count t that all the nodes in anyedge-simple cycle in (V; F1 [F (t)) are in the same cluster in C(t). If a skeletal edge is part of such acycle, both its endpoints are in the same cluster, and hence the edge is enclosed.Now, we prove the only-if part. Suppose a skeletal edge s is enclosed for the �rst time during the courseof the algorithm at time t0. Then a collapse must have occurred at time t0 and the edge s participated in8

the collapse. We now identify an edge-simple cycle in (V; F1[F (t0)) containing s. Consider the cycle thatcollapsed at time t0. Each cluster in the collapsing cycle is one-connected using edges in F1 [F (t0 � 1)by Proposition 4.1. So we can form a cycle containing s using the edges in this collapsing cycle, alongwith the paths within each cluster in this cycle in the graph (V; F1 [F (t0))Note that a skeletal edge, once enclosed, stays enclosed for the rest of the algorithm.Observation 4.3 Let N be any connected component in (V; F1). Then the set of nodes in N that occurin the same cluster in C(t) are two-connected in (V; F1 [F (t)).Proof: Using induction on the iteration count t, we can show that the set of edges in N with bothendpoints in the same cluster in C(t) form a subtree of N . Each edge in this subtree is thus enclosed attime t by de�nition and hence its endpoints are two-connected by Observation 4.2. Since two-connectivityis a transitive relation on the nodes, all the nodes in this subtree are two-connected.De�nition: For any iteration number t of the algorithm, we de�ne F1(t) and F2(t) to be the subset ofedges in F1 and F2 respectively with their endpoints in di�erent clusters in C(t). Note that F2(t) is justthe set of edges in F2 chosen after iteration t.From the running of the main algorithm, we have the following lemma.Observation 4.4 Each connected component of F1 is completely contained in some cluster in C(tf).Proof: Consider the graph (C(tf); F1(tf)) that F1 induces on the set of clusters at the time of termi-nation of the algorithm. We claim that F1(tf) is empty. Otherwise, consider a nonsingleton connectedcomponent H of (C(tf); F1(tf)). Each cluster in H has degree at least one. By de�nition of the activityfunction f 0, since each cluster is inactive at time tf , each cluster in H has degree at least two. HenceH contains a cycle. But the algorithm collapses any such cycle into a single cluster and thus this isimpossible.The observation above implies that every skeletal edge is enclosed at time tf . Using Observation 4.2,this implies that each tree in the initial skeletal forest (V; F1) is two-connected in the graph (V; F1 [F).By the de�nition of clean-up, we can prove the following proposition by backwards induction on theiteration count t.Proposition 4.5 The graph (V; F1 [F2(t) [F (t)) does not contain any skeletal bridge edge.Since F2(0) = F2, the above proposition implies that there is no skeletal bridge edge in the �nal retainedsolution (V; F1 [F2). Thus we have the following lemma.Lemma 4.6 Each component N of F1 is two-connected in the graph (V; F1 [F2).This proves the �rst part of Theorem 3.5.De�nition: Note that the edges in F1(t) and F2(t) de�ned earlier have their endpoints in di�erentclusters in C(t). So we can de�ne an auxiliary graph G(t) on the node set C(t) by G(t) = (C(t); F1(t) [F2(t)). For each edge g = (a; b) in F1(t) [F2(t), we have an edge (A;B) in the graph G(t) such thatA 3 a and B 3 b. The graph G(t) may be thought of as a contracted version of the solution subgraph(V; F1[F2) at time t in which all the nodes in the same cluster in C(t) have been contracted into a singlenode and only edges between clusters are retained.Observation 4.7 The graph (C(t); F2(t)) is acyclic.Proof: Connectivity between clusters in C(t) using edges of F2(t) implies that these clusters are eventu-ally merged into a single cluster in the course of the algorithm. Since no edges are ever chosen betweennodes in the same cluster, the graph (C(t); F2(t)) is acyclic.A property of clean-upAs a result of the clean-up, we have the following lemma.Lemma 4.8 Suppose the edge et 2 F2 is retained in F2 because it left a skeletal edge bt as a bridge edgein step 3 of the clean-up procedure. Then bt is also a bridge edge in the graph G(t0)�fetg for any t0 < t.9

Proof: By the de�nition of clean-up, the edge et is retained in F2 because it left the skeletal edge bt asa bridge edge in the graph (V; F1 [F2(t) [F (t)� fetg). Hence, bt is also a bridge edge in the subgraph(V; F1 [F (t)� fetg). From Observation 4.2, this implies that it is not enclosed at any time t0 < t. Thusbt 2 F1(t0).Note that we can obtain the graph G(t0) � fetg from (V; F1 [F2(t) [F (t) � fetg) by a series ofedge-contractions and edge-deletions not involving bt. Each cluster in C(t0) is one-connected using edgesin F1 [F (t) by Proposition 4.1; we can therefore obtain a node in C(t0) by contracting along the edgesbetween nodes in V in this cluster. It remains to show that we can obtain G(t0)�fetg from the contractedgraph by deleting edges. Now by de�nition, F1(t0) � F1. Also, since t0 < t, the set of edges in F2 chosenafter time t0 is a subset of all the edges chosen until time t and the set of edges in F2 chosen aftertime t, i.e., F2(t0) � F (t) [F2(t). We conclude that the edges in G(t0) are F1(t0) [F2(t0), a subset ofF1 [F2(t) [F (t), so we can obtain G(t0)� fetg from the contracted graph by deleting edges. Note thatsince bt 2 F1(t0), we do not use it in any of these operations. Furthermore, neither of these operationsdestroys bridge edges and so bt remains a bridge in the graph G(t0)� fetg .We shall use the above lemma in the proof of the performance guarantee.5 The Performance GuaranteeOur analysis of the algorithm is modeled on that of [6]. In this section, we prove Theorem 3.6. From theconstruction of the ~y values and the choice of edges in F , we get the following lemma directly.Lemma 5.1 The solution ~y satis�es ~yS > 0 only when j�(S) \ F1j = 1. Furthermore, it obeys the normalpacking constraints on edges not in F1. Namely, for any edge e 2 E � F1, we have PS:�(S)3e ~yS � ce.Also, for any edge in F , this constraint is tight, i.e., for e 2 F , ce =PS:�(S)3e ~yS .The above lemma proves the second part of Theorem 3.5.We restate Theorem 3.6 and in the remainder of this section, prove it.Theorem 3.6 Let F2 be the set of edges chosen by the second phase algorithm and let ~y be the dualsolution it implicitly constructs. Then Xe2F2 ce � (2� 2jAj)XS�V ~ySAt any time t in the running of the algorithm, recall that the set of nodes in C(t) can be partitioned intoactive nodes and dead nodes, representing clusters with f 0 value 1 and 0 respectively. Let k(t) denotethe number of active nodes in C(t). We prove the following theorem in the remainder of the section anduse it in the induction step of our proof of Theorem 3.6.Theorem 5.2 For each iteration number t, the sum of the degrees of the active nodes in the graph(C(t); F2(t)) is at most 2(k(t) � 1).The proof of Theorem 3.6 is adapted from a proof by Goemans and Williamson [6]. They use a lemmasimilar to our Theorem 5.2 in order to prove Theorem 3.6 by induction on the iteration count t. However,our proof of Theorem 5.2 di�ers completely from the proof of its counterpart in [6]. We now show thatthe above theorem su�ces to prove Theorem 3.6.Proof of Theorem 3.6: The proof is by induction on the iteration count t. From Lemma 5.1, we canwrite Pe2F2 ce = Pe2F2PS:�(S)3e ~yS . By changing the order of summation we can rewrite the abovedouble sum as follows: Pe2F2 ce =PS ~yS � jfe 2 �(S) : e 2 F2gj. Let ~yS (t) denote the value of ~yS justbefore the tth iteration of the algorithm. We show by induction on the iteration count t thatXS ~yS (t) � jfe 2 �(S) : e 2 F2gj � (2� 2jAj)XS�V ~yS (t)10

The inequality clearly holds when t = 0. Let � denote the reduced cost of the edge et chosen at timet. At this iteration of the algorithm, the increase in the left-hand side of the above inequality isXC2C(t):f 0 (C)=1 � � jfe 2 �(C) : e 2 F2gjFor the induction step, we must prove that this increase is bounded by the increase in the right-handside, namely by (2� 2jAj) � � � jC 2 C(t) : f 0(C) = 1jBy de�nition, k(t) = jC 2 C(t) : f 0(C) = 1j. In terms of the graph (C(t); F2(t)), we must prove that thesum of the degrees of the active nodes is at most 2(k(t) � k(t)jAj).Each leaf in the initial forest F1 is a terminal and the number of active nodes in C(t) at any time t isat most the number of leaves in F1. Hence k(t) � jAj at any time t. Hence it is su�cient to prove thatthe sum of the degrees of the active nodes in the graph (C(t); F2(t)) is at most 2(k(t) � 1). But this isexactly what Theorem 5.2 states. Thus this theorem proves the induction step.We shall prove Theorem 5.2 in the remainder of this section.Proof of Theorem 5.2: The proof works by constructing a subgraph of G(t) that is a forest spanningall the nodes in G(t). We call this the proof forest; it is made up of proof trees. This forest will includeall the edges in F2(t). It also has the property that that every edge in F2(t) is on a path between twoactive nodes in the forest. The following proposition asserts that we can construct such a proof forest.Proposition 5.3 For each iteration number t, we can construct a spanning forest of G(t) that includesall the edges in F2(t) such that each such edge is on a path between two active nodes in the forest.Then, we prune the forest so as to delete each edge that does not lie on a path between two active nodes.Notice that since every edge in F2(t) is in a path between two active nodes, no edge in F2(t) gets pruned.Moreover, as a result of pruning, each leaf node in the forest will be an active node. Thus any inactivenode in the forest is an internal node and has degree at least two.Since the pruned proof forest contains every edge in F2(t), (C(t); F2(t)) is a subgraph of this forest.Hence the sum of the degrees of the active nodes in (C(t); F2(t)) is at most the sum of the degrees of theactive nodes in the pruned proof forest. Let Ni denote the number of inactive nodes in the pruned proofforest. The sum of the degrees of all the nodes in the pruned forest is at most 2(k(t)+Ni� 1). The sumof the active node degrees is the sum of the degrees of all the nodes minus the sum of the degrees of theinactive nodes. Since each inactive node has degree at least two, the sum of the active node degrees isat most 2(k(t)� 1). This proves Theorem 5.2.Construction of the proof forestIt remains to prove Proposition 5.3. For this, we need a few de�nitions.De�nition: De�ne a node in C(t) to be a skeletal node if it has at least one edge of F1(t) incident on it.Thus the skeletal nodes are exactly the nodes that are not isolated nodes in the graph (C(t); F1(t)).We say that an edge b is a bridge edge for edge a if b is a bridge edge in the graph G(t) � fag.Proof of Proposition 5.3: We prove Proposition 5.3 by proving the following lemma that asserts thatwe can construct the proof forest inductively. In the following lemma, t denotes the iteration count suchthat we are attempting to construct a proof forest for G(t). For any t0 � t, the set F2(t)�F2(t0) representthe set of edges in the solution subgraph that have been chosen after time t up to and including time t0.Lemma 5.4 Let t be an iteration number of the algorithm. Then, for every t0 � t, there exists a proofforest of (C(t); F1(t) [(F2(t)� F2(t0))) such that the following properties hold.1) All the nodes in a connected component of (C(t); F1(t)) are in the same tree of the proof forest.2) The proof forest contains all the edges in F2(t)� F2(t0).11

3) Each edge in a nonskeletal path between two skeletal nodes in the forest is on a proof tree pathbetween two active nodes.4) Each skeletal edge b 2 F1(t) that is not in the proof forest is a bridge edge for some nonskeletaledge in G(t).We prove Proposition 5.3 by using Lemma 5.4 with t0 = tf . By the second property in this lemma, weget that the proof forest includes every edge in F2(t). By Lemma 4.8, each edge e0 in F2(t) is chosen atsome time t0 > t and is part of a cycle in the graph G(t) = (C(t); F1(t) [F2(t)). Furthermore, this cyclecontains at least one skeletal edge since (C(t); F2(t)) is acyclic by Observation 4.7. Since the proof forestcontains F2(t), this edge forms part of a nonskeletal path between skeletal nodes in the proof forest.Then the third property in Lemma 5.4 implies that this edge is on a path between two active nodes.This completes the proof of Proposition 5.3.Proof of Lemma 5.4: The proof is by induction on t0. Henceforth, we shall use the phrase proof forestfor t0 for any t0 � t to refer to the proof forest of the graph (C(t); F1(t) [(F2(t)� F2(t0))).Basis: (t0 = t) In this case, the proof forest for t0 is (C(t); F1(t)). It is easy to verify that the propertiesin Lemma 5.4 are true for this forest.Induction step: Let P be the proof forest for t0. We show how to obtain a proof forest bP for t0+1. Lete be the edge chosen by the algorithm at t0 + 1. If e does not appear in F2, (i.e. it was omitted duringthe clean-up phase), then P itself is a proof forest for t0 + 1. Therefore suppose the edge e does appearin F2. There are two cases.Case 1: The edge e does not form any new nonskeletal path between skeletal nodes. In this case,P [feg is acyclic, so we let the new proof forest bP be P [feg. Since no edges are deleted, the �rstand fourth properties continue to hold. Since we added the edge e to bP , the second property continuesto hold. Also, since we form no new nonskeletal paths between skeletal nodes, the third property alsocontinues to hold.Case 2: The edge e forms a new nonskeletal path between skeletal nodes. There are two subcases.Subcase 2a: The new nonskeletal path formed goes between two skeletal nodes in di�erent proof treesin the forest P . Thus this path merges these two proof trees in the proof forest. In this case also, P [fegis acyclic, so we let the new proof forest bP be P [feg. Since no edge is deleted, the �rst and fourthproperties continue to hold. Since we added the edge e to bP , the second property continues to hold.Also, in this case, we can inductively infer that each of the two merging trees contains an active node.Thus the edges in the newly formed nonskeletal path are on a path between two active nodes in the twomerging trees. This proves the third property for the proof forest bP .Subcase 2b: The new nonskeletal path formed goes between two skeletal nodes in the same proof treeT in the forest P . In this case, addition of the edge e causes the formation of a cycle C in the proof treeT . We shall add the edge e to the proof forest P and identify a skeletal edge b in this cycle to deleteso that the remaining graph is acyclic and the four properties are maintained. The �rst property willbe maintained if we delete any edge in the cycle C since this still leaves all the nodes in the proof treeT connected. Since we add the edge e to form the new proof forest and do not delete any nonskeletaledge, the second property would also continue to hold. However, it is harder to �nd a skeletal edge todelete so as to maintain the third and fourth properties. We introduce some de�nition to talk about theskeletal edge we delete.De�nition: A node in the cycle C is called an entry node if it is reachable in T � C from an activenode (See Figure 2).In the following claim, we state the properties of the skeletal edge b that we delete from C to formthe new proof tree.Claim 5.5 There is a skeletal edge b in C such that1) b is on a skeletal path between two entry nodes in the cycle C.2) b is a bridge edge for a nonskeletal edge in G(t).12

a

x

Cycle C

Path in T − C

Figure 2: A node x in the cycle C is called an entry node if it is reachable in T �C from an active nodea.Assume that the above claim holds. To form the new proof forest bP from the old, we add the edge e anddelete the edge b whose existence is stated by the claim above. From the above discussion, this maintainsthe �rst two properties for bP . We prove that bP also satis�es the third and fourth properties.The fourth property follows from the second part of the above claim. To show that the third propertyis maintained, we must show that each edge in any nonskeletal path between skeletal nodes is on a pathbetween two active nodes. Since the edge b is on a skeletal path between two entry nodes, each nonskeletaledge in the cycle C is on the complementary path in C between these two entry nodes. Since each ofthese entry nodes can reach an active node in T �C by de�nition, all nonskeletal edges in the cycle C lieon a path between two active nodes in the new proof tree. Since the third property is inductively truefor the tree T , any nonskeletal edge not in C and on a nonskeletal path between skeletal nodes is on aproof tree path between two active nodes in T . It is easy to verify that deletion of the skeletal edge b inC maintains this property for such edges. Thus the third property is maintained in the new proof treebP in this subcase.This completes the proof of Lemma 5.4.It remains to prove Claim 5.5. We do so in the remainder of this section.Proof of Claim 5.5We need a few preliminaries.Claim 5.6 For any cycle C1 in G(t), for any nonskeletal edge e0 in C1,(1) No edge of G(t)� C1 is a bridge edge for e0.(2) C1 must contain a skeletal bridge edge for e0.Proof: First we prove (1). We have by Proposition 4.5 that G(t) has no skeletal bridge edge. Hencea bridge edge in G(t) � fe0g must separate the endpoints of e0. But C1 � fe0g is a path between theendpoints of e0, so any such bridge edge must belong to C1 � fe0g.Next we prove (2). By Lemma 4.8, G(t)�fe0g must contain a skeletal bridge edge. By (1), the bridgeedge must occur in C1.Recall that the cycle C is the unique cycle in T [feg.De�nition: A path consisting of edges of the cycle C is called a segment of C. A segment is nonskeletal(skeletal) if it consists entirely of nonskeletal (skeletal) edges. For any two nodes x and y in the cycleC, note that there are two segments between x and y. Given an edge e0 of C, we can distinguishbetween these two segments as follows: the segment containing e0 is denoted he0x; yi, and the segmentnot containing f is denoted e0hx; yi. 13

Short-cuts and propertiesDe�nition: A pair (x; y) of nodes in C is called a short-cut if there is a path from x to y in G(t) usingno edge of C.Note that a pair (x; x) is trivially a short-cut. If x 6= y, we say that (x; y) is a proper short-cut. Wehave the following properties from the de�nition of short-cuts.Claim 5.7 Let e0 be a nonskeletal edge of the cycle C and let (x; y) be a short-cut. Then(A) e0hx; yi cannot contain a skeletal bridge edge for e0.(B) he0x; yi must contain a skeletal bridge edge for e0.Proof: Let P be the path from x to y using no edges of C. By applying Claim 5.6 to the cycleC1 = C [P � e0hx; yi, we infer from (1) that e0hx; yi contains no skeletal bridge edge for e0. This proves(A). Since C must contain such a skeletal bridge edge, it must occur in C � e0hx; yi which is he0x; yi.This proves (B).Corollary 5.8 For each proper short-cut (x; y), the two segments between x and y each must contain askeletal edge.Proof: Let S be one of the segments between x and y. Suppose for a contradiction that S consistsentirely of nonskeletal edges. Let e0 be one of these edges. By part (B) of Claim 5.7, he0x; yi, which is S,contains a skeletal bridge edge for e0, contradicting the fact that S is nonskeletal.Transition nodes and propertiesRecall that we are working with a proof tree T such that C is the unique cycle in T [feg.De�nition: A transition node is a node of C with one incident skeletal and one incident nonskeletaledge in C. Thus every maximal nonskeletal segment is bounded by transition nodes.Lemma 5.9 Let x be a transition node of C. Then there is an active node ax reachable from x by askeletal path that avoids C.Proof: The proof is illustrated in Figure 3. If x is itself active, we are done, so assume x is inactive.It has at least one incident skeletal edge, the one in the cycle C. Because it is inactive, it must haveat least one other incident skeletal edge e0 outside the cycle C. Let ax be a leaf reachable from x by askeletal path Ps going through e0. We show that Ps does not intersect the cycle C.Suppose for a contradiction that the skeletal path intersects C. Let x1 6= x be the �rst point ofintersection of the path from x to ax. Now x and x1 are connected via a skeletal path P1. They are alsoconnected via a path P2 along the cycle using edges of the proof tree T . Since the proof tree T is acyclic,there is a skeletal edge b0 in this skeletal path P1 from x to x1 that is deleted in forming the proof tree.Inductively, property (4) of Lemma 5.4 is true for T and so b0 must be a bridge edge for some nonskeletaledge c in G(t). Since x1 6= x, note that x1 and x are also connected in G(t) via the path P3 = C � P2.Therefore the nonskeletal edge c for which b0 is a bridge edge must lie in the path P1. But since the pathP1 is skeletal, this is a contradiction.Observation 5.10 For each transition node x of the cycle C, there is a entry node x0 in C such that(x; x0) is a short-cut.Proof: By Lemma 5.9, there is an active node ax reachable from x by a skeletal path Ps that avoids C.Inductively, property (1) of Lemma 5.4 holds for T , so there is a path Pt in T from ax to x. Let x0 bethe �rst node of Pt that lies on the cycle C; then x0 is an entry node. Following Ps from x to ax, thencontinuing along Pt to x0 yields a path from x to x0 using no edge of C. So (x; x0) is a short-cut.De�nition: For every transition node x in the cycle C, we designate an entry node x0 that can befound using the above observation as the entry node corresponding to x.14

x’

x
e’

P

P

P

cycle C

3

a
x

b’
2

1Figure 3: x is a transition node of C. e0 is a skeletal edge incident to x outside C and ax is a leafreachable from x by a skeletal path Ps going through e0. x1 6= x is the �rst node in the cycle C wherethe path Ps meets C. P1, the subpath of Ps from x to x1 is shown in dark.
S

S
S

1

2
3

entry
node entry

nodeFigure 4: A segment S is said to be forbidden if the endpoints of S are entry nodes, and S consists ofthree subsegments S1S2S3, where S2 is a nonskeletal segment, the endpoints of S1 form a short-cut, andthe endpoints of S3 form a short-cut. The dark dashed paths represent paths in G(t) � C between theendpoints of S1 and between the endpoints of S3.Forbidden segments and their propertiesDe�nition: A segment S is said to be forbidden if the endpoints of S are entry nodes, and S consistsof three subsegments S1S2S3, where S2 is a nonskeletal segment, the endpoints of S1 form a short-cut,and the endpoints of S3 form a short-cut (See Figure 4). For any edge f in C, if f is not in S1 [S3, wesay that S is forbidden for f . This terminology is motivated by the following claim.Let e0 be any nonskeletal edge in the cycle C. By part (2) of Claim 5.6, there is a skeletal edge be0 inC that is a bridge edge for e0.Claim 5.11 Any skeletal edge be0 that is a bridge edge for a nonskeletal edge e0 in C cannot occur in asegment that is forbidden for e0.Proof: Let S = S1S2S3 be a segment forbidden for e0. Since S2 is nonskeletal, the edge be0 cannot liein this subsegment. Let the endpoints of S1 be x and y. By de�nition, the edge f does not occur in S1,so we have S1 = e0hx; yi. Since (x; y) is a short-cut, by part (A) of Claim 5.7, e0 hx; yi cannot contain askeletal bridge edge for e0. Hence S1 cannot contain be0 . Similarly, we show that S3 cannot contain be0 .Thus any skeletal edge be0 that is a bridge edge for e0 cannot occur in S.From the de�nition of segments forbidden for an edge f 2 C, we have the following observation.15

l r

r’
l’

path P

S1

=S 2

S
3

e’

Figure 5: Lemma5.13: e0 is some nonskeletal edge in C, and P is the maximalnonskeletal path containinge0 in C. Let l and r be the endpoints of P , and let their corresponding entry nodes be l0 and r0. Thenthe segment he0 l0; r0i is a forbidden segment for e0. The dark lines show paths in G(t)�C between eachof l and r and the entry nodes l0 and r0 corresponding to them.Observation 5.12 Let S be a forbidden segment. For any nonskeletal edge f 0 in C � S, the segment Sis forbidden for f 0.The following lemma is illustrated in Figure 5.Lemma 5.13 Let e0 be any nonskeletal edge in C, and let P be the maximal nonskeletal segment con-taining e0. Let l and r be the endpoints of P , and let their corresponding entry nodes be l0 and r0. Thenthe segment he0 l0; r0i is a forbidden segment for e0.Proof: The entry nodes l0 and r0 cannot be internal nodes in the path P , else the short-cuts (l; l0) and(r; r0) would violate Corollary 5.8. Hence e0hl0; li; P , and e0hr; r0i are contiguous edge-disjoint segments,and he0 l0; r0i = e0hl0; li[P [e0 hr; r0i. Thus S = he0 l0; r0i has entry nodes as endpoints and can be writtenas S1S2S3 where S1 = e0hl0; li; S2 = P , and S3 = e0hr; r0i and (l; l0) and (r; r0) are short-cuts. So S is aforbidden segment. Moreover, since e0 62 S1 [S3, S is forbidden for a.Finding the skeletal edge to deleteNow we prove Claim 5.5 by providing an iterative procedure to �nd a skeletal edge b with the propertiesstated in the Claim. Note that we do not need to implement this algorithm since it is purely for thepurpose of proof.The algorithm to �nd the skeletal edge b maintains a nonskeletal edge f in the cycle C and a set ofsegments of the cycle C that are forbidden for f . On each iteration of this procedure, it either �nds askeletal edge b as required in Claim 5.5, or �nds a new nonskeletal edge f 0 and adds a new forbiddensegment to the set W . This new forbidden segment contains at least one edge not contained in anyprevious forbidden segment, so the number of iterations of this procedure is bounded by the size of thecycle C.Find-skeletal-edge(f,W)1 Initialize the nonskeletal edge f := e. By Lemma 5.13, we can �nd a segment heu0; v0i that isforbidden for e. Initialize W := fheu0; v0ig.2 Repeat3 By part (2) of Claim 5.6, since f is a nonskeletal edge in C, there is a skeletal edge bf 2 C thatis a bridge edge for f . By Claim 5.11, this skeletal bridge edge bf cannot occur in any segmentin W for these are forbidden for f . So bf must occur in a maximal segment S of C that is notoverlapped by any segment in W . Note that the endpoints of S must be entry nodes.4 If the segment S is wholly skeletal, the bridge edge bf for f is one of the edges in this segment.This skeletal edge bf has the properties required in Claim 5.5, so we are done in this case. Westop and output the edge bf as the required skeletal edge.16

5 Otherwise, the segment S contains at least one nonskeletal edge f 0. In this case, observe thatsince f 0 is not in any of the segments in W , by Observation 5.12 each segment in W is forbiddenfor f 0. Now we use Lemma 5.13 to �nd a segment hf 0 l0; r0i forbidden for f 0 and add this segmentto the set W . We then set f := f 0 and continue.Notice that the set W with the segment hf 0 l0; r0i added consists of a set of segments forbiddenfor the new nonskeletal edge f 0. Also, since f 0 was not in any of the forbidden segments in Wearlier, but is included in the segment hf 0 l0; r0i added to W , the number of edges in the union ofall the segments in W has increased by at least one.Thus the above procedure eventually �nds a skeletal edge b as required in Claim 5.5. This completesthe proof of the performance guarantee of the algorithm.6 Approximating augmentationIn this section, we restate Theorem 1.2 and prove it.Theorem 1.2 Given a graph G = (V;E) along with an initial subgraph G0 with edge set E0, theminimum-cost augmentation problem is to choose a minimum-cost set of edges in G whose addition toG0 yields a graph that obeys the constraints of (IP). This problem can be approximated in O(n2 logn) timewithin a factor of 2(1� 1jAj) if the incidence vector, x0 of the initial subgraph G0 obeys the one-connectivityconstraints x0(�(S)) � f(S) 8S : ; 6= S � VOtherwise the performance guarantee is 3(1� 1jAj).Proof: First we prove the weaker bound. For this, we modify the cost function c on the edges of G bysetting the cost of the edges in the initial subgraph G0 to zero. Let c0 be the modi�ed cost function.Then we apply the algorithm in Theorem 1.1 to the graph G with cost function c0. The algorithm �ndsa set of edges F 0 whose incidence vector is feasible for (IP). Moreover, the cost of the set of edges F 0 isat most 3(1 � 1jAj) times the cost of an optimum solution to (IP) under the cost function c0. Considerthe minimum-cost augmentation of G0. Let the cost of the edges in this augmentation be Aug�. Thisset of edges along with the zero-cost edges in E0 is a feasible solution to (IP) of value Aug� under c0.Thus the cost of the edges in F 0 is at most 3(1� 1jAj)Aug� under c0. Finally we observe that since F 0 isfeasible for (IP), the edges in F 0 � E0 form a valid augmentation of E0. This augmentation has cost atmost 3(1� 1jAj)Aug� under c. This proves the weaker bound.We now turn to the case when the incidence vector of the edges in E0 satis�es the one-connectivityconstraints: x(�(S)) � f(S) 8S : ; 6= S � VIn this case, we choose an arbitrary spanning forest F of G0. It is easy to verify that the incidence vectorof F satis�es the one-connectivity constraints. We then de�ne a minimal version F1 of F by retainingonly the edges in F that are critical. Formally, we de�neF1 fe 2 F : for some connected component N of (V; F � feg); f(N) = 1gIt follows from the results in [6] that if F is feasible for the one-connectivity constraints, then so is F1.We can then use F1 as the skeletal forest and apply the second-phase algorithm in Section 4. However,as before, we �rst modify the cost function c on the edges of G by setting to zero the cost of the edgesin E0. We apply the algorithm in Section 4 to the graph G with the modi�ed cost function c0 and theinput skeletal forest F1. The algorithm chooses a set of edges F2 disjoint from F1. We �rst show thatF2 � E0 provides a valid augmentation and then we show that it has low cost.By Lemma 3.9, the subgraph F1 [F2 is feasible for (IP). Since F1 is contained in E0, the subgraphF2 � E0 is a valid augmentation of E0. Now we show that F2 � E0 has low cost under c. It su�ces toshow that F2 has low cost under c0. By Lemma 3.8, the cost of the edges in F2 is at most 2(1 � 1jAj)times that of an optimum solution to (IP) under the cost function c0. The optimum augmentation ofG0 together with E0 is a feasible solution to (IP). The cost of this solution under c0 is just the cost of17

 ...

 ...

k copiesFigure 6: An example showing that the performance bounds of the algorithms in Theorems 1.1 and 1.2are existentially tight.the augmentation. Hence the cost of the edges in F2 is at most 2(1� 1jAj) times the cost of the optimalaugmentation. This completes the proof of the stronger bound in Theorem 1.2.7 Implementation issuesWe note that our algorithm can be implemented in time O(n2 logn) where n = jV j using the techniquesin [6]. We address the implementation of the clean-up steps. The important observation here is theinitial forest F1 and the candidate set of edges F both form acyclic subgraphs. Hence the total numberedges in them is O(n). At each step of clean-up, we identify the two-connected components of a graphwith O(n) edges. The time taken is linear in the number of edges and hence the time to implementeach step of clean-up is linear in n. Since there are only a linear number of clean-up steps, the totaltime for performing the clean-up is O(n2). The overall running time is thus dominated by the time forimplementing the main loop and is O(n2 logn).8 Conclusions and open problemsWe have described approximation techniques for a variety of two-connected subgraph problems. We alsoextended these results to derive approximation algorithms for augmentation problems in this setting.We note that the performance bounds of the algorithms we have presented in Theorems 1.1 and1.2 are existentially tight. This can be seen by their performance on an example graph taken from [3].This graph is reproduced in Figure 6. The thick (solid and dashed) edges are of unit cost and the thinedges have cost � close to zero. We use the proper function f de�ned by f(S) = 1 for every nonemptyproper subset S of V , i.e, we seek a minimum-cost two-connected subgraph. The initial spanning treeconstructed in the �rst phase of our algorithm may consist of all the thick solid lines but one and all thethin lines of cost (k� 1) + 2k�. All but one of the thick dashed lines may be chosen as the second phasesolution. The cost of this set is (2k�1). Thus our algorithm outputs a solution of total cost 3k�2+2k�.A minimum-cost two-connected subgraph of this graph consists of alternating thick dashed lines withall the thin lines. This subgraph has cost k + 2k�. Thus this example also shows that the performancebounds of our algorithms are existentially tight.It remains an important open problem to design approximation algorithms with a better performanceguarantee for this problem. It would also be interesting to investigate if the techniques in this paperextend to generalized k-connected network design problems.References[1] A. Agrawal, P. Klein and R. Ravi, \When trees collide: an approximation algorithm for the generalizedSteiner tree problem on networks," Proceedings of the 23rd Annual ACM Symposium on Theory of Computing(1991), pp. 134-144.[2] K. P. Eswaran, and R. E. Tarjan, \Augmentation problems", SIAM Journal on Computing, Vol. 5 (1976),pp. 653-665. 18

[3] Greg N. Fredrickson, and Joseph Ja'Ja', \Approximation algorithms for several graph augmentation prob-lems", SIAM Journal on Computing, Vol. 10, No. 2 (1981), pp. 270-283.[4] Greg N. Fredrickson, and Joseph Ja'Ja', \On the relationship between the biconnectivity augmentation andTravelling Salesman problems", Theoretical Computer Science 19 (1982), pp. 189-201.[5] M. X. Goemans, and D. J. Bertsimas, \Survivable Networks, Linear Programming Relaxations and theParsimonious Property", OR 216-90, Center for Operations Research, MIT (1990).[6] M. X. Goemans, and D. P. Williamson, \A general approximation technique for constrained forest problems",Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (1992), pp. 307-316.[7] M. Grotschel, and C. L. Monma, \Integer polyhedra arising from certain network design problems withconnectivity constraints," SIAM J. on Discrete Math., Vol 3, No. 4 (1990), pp. 502-523.[8] M. Grotschel, C. L. Monma, and M. Stoer, \Computational results with a cutting plane algorithm fordesigning communication networks with low-connectivity constraints," to appear, Oper. Res., (1992).[9] S. Khuller, and R. Thirumella, \Approximation algorithms for graph augmentation," Technical reportUMIACS-TR-91-132, CS-TR-2766, Univ. of Maryland, September (1991), to appear in Journal of Algo-rithms.[10] S. Khuller, and U. Vishkin, \Biconnectivity approximations and graph carvings", Technical Report UMIACS-TR-92-5, CS-TR-2825 Univ. of Maryland, January 1992.[11] C. L. Monma, and C. W. Ko, \Methods for designing survivable communication networks,"NATO AdvancedResearch Workshop, Denmark, (1989).[12] C. L. Monma, B. S. Munson, and W. R. Pulleybank, \Minimum-weight two-connected spanninf networks,"Math. Programming, 46 (1990), pp. 153-171.[13] C. L. Monma, and D. F. Shallcross, \Methods for designing communication networks with certain two-connectivity survivability constraints", Operations Research, 37, pp. 531-541, (1989).[14] R. Ravi, \Approximation algorithms for Steiner augmentations for two-connectivity", Technical Report TR-CS-92-21, Brown University, April (1992).[15] K. Steiglitz, P. Weiner, and D. J. Kleitman, \The design of minimum-cost survivable networks," IEEE Trans,on Circuit Theory, CT-16, 4, pp. 455-460, (1969).

19

