When cycles collapse: A general
approximation technique for constrained
two-connectivity problems

R. Ravi and Philip Klein

Department of Computer Science
Brown University

Providence, Rhode Island 02912

CS-92-30
June 1992

When cycles collapse: A general approximation technique for
constrained two-connectivity* problems

R. Ravi!
Philip Klein?

Brown University

Abstract

We present a general approximation technique for a class of network design problems where we
seek a network of minimum cost that satisfies certain communication requirements and is resilient
to worst-case single-link failures. Our algorithm runs in O(n”logn) time on a graph with » nodes
and outputs a solution of cost at most thrice the optimum. We extend our technique to obtain
approximation algorithms for augmenting a given network so as to satisfy certain communication
requirements and achieve resilience to single-link failures.

Our technique allows one to find nearly minimum-cost two-connected networks for a variety of
connectivity requirements. For example, our result generalizes earlier results on finding a minimum-
cost two-connected subgraph of a given edge-weighted graph in [3, 9] and an earlier result on finding a
minimum-cost subgraph two-connecting a specified subset of the nodes in [14]. Using our technique,
we can also approximately solve for the first time a two-connected version of the generalized Steiner
network problem and a two-connected version of the non-fixed point-to-point connection problem.

1 Introduction: The framework

On designing a network

The following scenario was proposed in [1]. You are in the job of providing communication links to
customers. You have a set of clients with communication requirements; each client has specified a pair of
cities (called a site-pair) between which the client must have communication capabilities. In front of you
is the AT&T3 price list, which gives prices for constructing communication links between various cities.
Each link built has essentially infinite communication bandwidth. Your job is to select a minimum-cost
collection of communication links that can accommodate all your clients’ communication requirements.
The network you must construct need not be connected; all that is needed is that every client’s pair of
cities be connected through your network. Unfortunately, your job’s NP-complete. So you come up with
an approximately good solution [1] and build a network using this strategy.

Soon you notice that your clients are complaining. The links used in your network seem to be
breaking down pretty often. And you notice that it is very often the case that it is just a single edge
that has caused each tree in your solution to come to a standstill. So your clients want you to augment
this network so that each pair of cities have at least two connections. Moreover, they do not want you
to duplicate any link in the already existing network since the link failures seem to be related to the
location of the cables. By duplicating links, you are only making both copies prone to failure. Well, your
problem is NP-complete again [3]. If you were lucky to have a large enough clientéle so that your network
spanned all the cities, then you could use the approximate solution in [3]. Or if you were plain lucky and

*Connectivity refers to edge-connectivity throughout this paper unless stated otherwise explicitly.

1Research supported by an IBM Graduate Fellowship. Additional support provided by NSF PYT award CCR-9157620
and DARPA contract N0O0014-91-J-4052 ARPA Order No. 8225.

?Research supported by NSF grant CCR-9012357 and NSF PYI award CCR-9157620, together with PYI matching
funds from Thinking Machines Corporation and Xerox Corporation. Additional support provided by DARPA contract
N00014-91-J-4052 ARPA Order No. 8225.

3Disclaimer: Even now, the authors are in no way connected to AT&T.

your network had only one tree, you could turn to the extension in [14] to augment this tree. However,
considering your past history with fortune, no approximation algorithms are known in the general case.

In this paper, we give the first approximation algorithm for augmenting this generalized Steiner
network to a network in which each site-pair is two-connected. Combining this with the solution offered
to your earlier problem in [1], this provides an approximation for a general two-connected Steiner network
design problem. In fact, you weren’t so unlucky after all. For, while you set out to solve the problem
of finding a minimum cost network two-connecting all the site-pairs, your technique turns out to solve a
whole class of minimum cost two-connected subgraph problems...

An example of a solution formed this way for the generalized two-connected Steiner network problem
is depicted in Figure 1.

—

Figure 1: An instance of the unweighted generalized two-connected Steiner network problem and an
optimum solution. Solid edges correspond to unit-cost links; dotted edges connect site pairs. In the
right figure, the solid edges correspond to first phase one-connecting solution. The thick dashes form an
augmentation to two-connect the solid trees.

Framework

We can model the generalized two-connected Steiner network problem as follows: Define a cut in the
graph to be active if it separates some site-pair. A network is said to two-connect a site-pair if there
are two edge-disjoint paths between them in the network. Thus, any network that two-connects the
site-pairs must cross this active cut twice. Conversely, if a network crosses every such active cut twice,
the network indeed two-connects all the site-pairs. More formally, we can define a function f defining
the activity of all cuts in the graph. If a cut C' separates some site-pair, then we set f(C') = 1 and call
C' an active cut. Otherwise, we set f(C') = 0 and call C' an inactive cut. Any set of edges that crosses
each of the active cuts twice 1s a feasible solution to the two-connected Steiner network problem. We can
generalize this two-connected network design problem by extending our notion of active cuts. For this,
we turn to the work of Goemans and Williamson in [6] where they define the notion of proper functions.
Proper functions are a class of functions used for defining the activity of cuts in a graph.

In [1], we provided the first approximation algorithm for the generalized network Steiner problem. The
algorithm presented there involved construction of feasible primal and dual solutions with an approximate
relation between their values. Subsequently, Goemans and Williamson [6] generalized this result to a
technique for approximating a large class of constrained forest problems. They introduced the notion
of proper functions whose elegant definition captures the connectivity requirements for a variety of
constrained forest problems. In this paper, we use their notion of proper functions in formulating a
general two-connected network design problem.

Given a graph G = (V, E), a function f : 2V — {0,1} and a non-negative cost function ¢ on the
edges, we consider the following integer program:

Min >, pceme
subject to constraints:

2(I(S) > 2/(S) 0£ScCV (IP)
z. € 40,1} e€FE

Here I'(.S) denotes the set of edges having exactly one endpoint in the set S and =(F) =) _ p z..
Any feasible solution to the program above is a collection of edges that intersect each active cut under
the function f at least twice. Thus, any minimal feasible solution to (IP) is a collection of two-connected
subgraphs. In this paper, we address solutions to the above program for the class of proper functions
f- An important requirement of the solution subgraph that this paper addresses is that edges are not
allowed to be replicated. This will be the assumption in all the problems we consider. Thus, the program
is feasible only if the input graph has a feasible solution as a subgraph. We shall assume that the input
graph is itself feasible for (IP). It is not hard to verify this assumption. We define A, the set of terminals
inV astheset A={veV : f({v}) =1}. The following is our main result.

Theorem 1.1 There is an O(n?logn) algorithm to produce an feasible solution F' to (IP) such that
Yoeer Ce < (3— %)OPT where OPT is the optimum value of (IP).

Although we use weak linear programming duality in our analysis, our algorithm does not linear pro-
gramming.

Formulating problems in this framework - Examples

The generalized two-connected Steiner network problem without edge replication 1s representable in the
above framework. We set f(S) = 1 if there is a site pair that contains a site in S and one outside
S, and we set f(S) to 0 otherwise. The above framework also captures the following point-to-point
two-connection problem we introduce. In this, we are given a set C' = {e1,...,¢,} of sources and a
set D = {dy,...,d,} of destinations in the graph and we need to find a minimum-cost set F' of edges
such that each source-destination pair 1s two-connected in F'. The fixed destination case, in which ¢; 1s
required to be two-connected to d;, reduces to a case of the generalized two-connected Steiner network
problem. However, we can also approximate the non-fixed destination case, where the only requirement
is that each component of F' contains the same number of sources and destinations. For this, we set f(.5)
to 1 whenever |[SNC| # |SN D] and to 0 otherwise.

Strategy

The algorithm we present in this paper works in two phases. In the first phase, the algorithm in [6] is
applied to construct a partial solution Fy that partially satisfies the requirements in (IP), namely, the
solution satisfies the one-connectivity constraints: z(T'(S)) > f(S) 0 # .5 C V. In the second phase, we
augment the partial solution F} such that the augmented subgraph two-connects each of the trees in the
forest F. We show that the cost of the solution output at the first phase is at most the optimum value
of (IP) and the cost of the augmentation output at the second phase is at most twice the optimum value
of (IP) to obtain a performance guarantee of three. The second phase is a careful reapplication of the
methods of Goemans and Williamson. We define an auxiliary function f’ specifying a different notion of
active cuts, based on the partial solution Fy. If f' were proper, then we could reapply the method in [6]
directly. Unfortunately, f’ is not proper and so we need to adapt this method.

Approximating augmentation

The techniques used in proving Theorem 1.1 can be adapted to provide approximation algorithms for
minimum-cost augmentation. Suppose that we are given a graph G = (V| E) along with an initial
subgraph Gy with edge set Ey. The mintmum-cost augmentation problem is to choose a minimum-cost
set of edges in GG whose addition to G yields a graph that obeys the constraints of (IP). This problem
generalizes the minimum-cost bridge-connectivity augmentation problem considered in [3, 9] and also the
Steiner version considered in [14]. We have the following theorem about approximating the minimum-cost
augmentation.

Theorem 1.2 The augmentation problem described above can be approzimated in O(n?logn) time within
a factor of 2(1 — ﬁ) if the incidence vector, xy of the wnitial subgraph Gy obeys the one-connectivity
constraints

2o(T(S) > f(S) VS 1 0£SCV

Otherwise the performance guarantee is 3(1 — ﬁ)

Road-map

In the next section, we look at related work. Thereafter, we present background results and the basic
technique used in proving our main result. In Section 4, we present the second-phase augmentation
algorithm. In the following section, we prove the performance bound of this phase. Then we prove the
results on augmentation. We close with some implementation issues and open problems.

2 Related work

Fredrickson and Ja’Ja’, in their pioneering work [3] on approximation algorithms for weighted graph
augmentation problems, provided the first approximate solution for the problem of augmenting a given
graph to be two-connected. The performance guarantee of their algorithm was a multiplicative factor
of two. Their technique also gave an approximate solution to the minimum-cost two-connected sub-
graph problem. The performance guarantee is a multiplicative factor of three. Their solution for the
latter problem starts with a minimum spanning tree and augments this to be two-connected. Khuller
and Thirumella [9] have extended these results and provided more efficient algorithms for the same.
Recently, Ravi [14] observed that this method generalizes to find minimum-cost two-connected Steiner
subgraphs of a given graph. All the above methods are also able to solve the node two-connected versions
approximately. Khuller and Vishkin have presented algorithms with better performance guarantees for
the minimum two-connected subgraph problems in [10]. The bounds are % for the two edge-connected
case and g for the two node-connected case.

When the cost function ¢ obeys the triangle inequality, then Fredrickson and Ja’Ja’ [4] present an
adaptation of Christofides’ heuristic to solve the minimum-cost biconnectivity augmentation problem
with a performance factor of % There has been considerable previous work on network survivability
[5, 8, 11, 12, 15] that addresses constructing minimum-cost k-connected subgraphs under such cost
functions. However, our interest is in the general case when the cost function does not satisfy the
triangle inequality.

There has also been considerable work on characterizations of integer polyhedra arising from connec-
tivity constraints [7], and construction of minimum-cost two-connected survivable networks [5, 13].

As mentioned in the previous section, Agrawal, Klein and Ravi [1] introduced the technique of a
primal-dual method for approximating the minimum-cost generalized Steiner network. Though this result
addressed arbitrary connectivity requirements between pairs of nodes, it allowed for edge replication. This
was consequently generalized by Goemans and Williamson in [6].

Our paper combines the two-phase 1dea of Fredrickson and Ja’Ja’ with a primal-dual method tailored
to provide an approximate solution in both phases.

3 Background

Following [6], we define the notion of a proper function f :2Y — {0,1}. A function f is proper if the
following properties hold.

o [Null] £() = 0;
e [Symmetry] f(S) = f(V = 5) for all S C V; and
e [Disjointness] If A and B are disjoint, then f(A) = f(B) = 0 implies f(AU B) = 0.

The functions f used to model the problems in the first section can be easily verified to be proper.

The first phase:

As mentioned in the introduction, our algorithm works in two phases. In the first phase, we construct
an approximate solution to the following modified integer program:

Min >, pceme
subject to constraints:

dI(S) > f(S) 0£ScV (P
z. € {0,1} e€FE
We do this using the method in [6]. Let the solution generated be denoted by Fy. We shall use F}
to denote the set of edges in this solution returned in the first phase. It follows from [6] that F induces
a forest in G. The algorithm in [6] implicitly constructs a dual solution to the above linear program to

prove the performance guarantee. This dual to the linear relaxation of the above integer program (using
z. > 0) is the following.

Max ZSCV f(S) " Ys

subject to constraints:

ZS:&EF(S) Ys S Ce el
ys > 0 0#SCV

Recall that A is the set of terminals in V. We will be using the following results from [6].
Theorem 3.1 ([6]) The solution Fy feasible for (IP1) and the dual y constructed are related by
2
ZceS(Q—m)Zys
e€fy Scv

Lemma 3.2 ([6]) Lel e € N where N is a connecled component of a minimal solution Fy. Lel Ny and
Ny be the two connected components of N — {e}. Then f(N1) = f(N2) = 1.

Observation 3.3 ([6]) If f(S) =0 and f(B) =0 for some B C S, then f(S— B)=0.

The LP relaxation of our integer program (IP) is obtained by replacing each integrality constraint z. €
{0, 1} with the linear constraint 0 < @, < 1. The dual to this LP relaxation is as follows.

Max ZScV 2£(S) -ys — ZeEE Te

subject to constraints:

ZS:&EF(S) Ys S Ce+ Te ee l
ys > 0 D£SCV (LP)
Te Z 0 € E E

By weak linear programming duality, if OPT denotes the value of the optimal solution to (IP) and
7% p denotes that of the optimal dual solution to (LP), then OPT > 7% . Note that the dual solution
y provided by the algorithm of [6] is feasible for (LP) by setting r. = 0 for all edges e. The value of the
above program (LP) with this solution is QZSCV ys. Thus we have OPT > QZSCV ys. Combining
this with Theorem 3.1, we get the following bound on the first phase solution.

Lemma 3.4 Let Fy be the set of edges chosen in the first phase and let OPT denote the value of an
optimum solution to (IP). Then

1
. < (1— —)OPT
2 e ==

The second phase:

In the next section, we describe an algorithm for augmenting the forest F; with a set of edges F5 disjoint
from F4. The algorithm also simultaneously constructs an implicit dual solution yg for S C V. We shall
prove the following theorem in the next two sections.

Theorem 3.5 The second phase algorithm chooses a set Fy of edges disjoint from Fy, and an implicit
dual solution g.

(1) The set of edges in Fy U Fa two-connects each of the trees in (V, Fy).

(2) The solution § will have the property that gs > 0 only when |T(S) N Fi| = 1. Also, the solution §
will obey the normal packing constraint on all edges not in Fy. Namely, for any edge e € E — F1,

we have ZST(S)% Us < ce.
We also prove the following relation, which is the basis for our performance analysis of the algorithm.

Theorem 3.6 Let Iy be the set of edges chosen by the second phase algorithm and let y be the dual
solution it implicitly constructs. Then

ZceS(Q_%)ZgS

e€F: SCV

The strategy to prove a bound of two for the second phase is to show that g is feasible to the dual (LP)
above. For this, we need the following lemma.

Lemma 3.7 If [T(S)N Fy| =1 then f(S)=1.

Proof: Suppose I'(S) N Fy = {e} and suppose e € N, where N, Ny, ..., Ny, are components of (V, F).
Let P and @ be the two components of N — {e}. Assume without loss of generality that P C .S and
QNS = 0. Since T'(S) only intersects the edge e from Fy, for each N;, either SN N, =@ or SNN; = N;.
Thus, we can write S as the disjoint union of P and some of the components in . Now f(N;) = 0 for
all the N;’s. Also, from Lemma 3.2, we have f(P) = 1. Disjointness and Observation 3.3 together imply
that f(S)=1. [

Now, we show that § is a feasible solution to (LP). Namely, for each edge e € Fy, set r. =
ZS:gjs>0, D(S)NFi={e} ys. Set r. = 0 for all the other edges. Since we have gs > 0 only when
IT(S)N Fy| =1, we get

Z?“ezzrezz Z Ys = Z 37522375 (1)

eeE e€Fy e€F1 ST (S)NFy={e} S:D(S)NFy|=1 SCV

Now, we show that the solution §g obeys all the packing constraints in (LP). For any edge e € Fy, we
have

Z Us =re <ret e
SI(S)de

since ¢, > 0. Also, for any edge e not in F;, we have
Z Us < e <ot e
SI(S)de
using the second part of Theorem 3.5. Finally, the value of the solution is

D2S)gs =Y re=2 > Gs— > re= Us

e S:D(S)NFy|=1 e€F,

The first inequality follows from Lemma 3.7 and the second equality from Equation (1). By weak linear
programming duality, we again have OPT > 3. gs. Combining this and Theorem 3.6, we get the
following lemma.

Lemma 3.8 Let F5 be the set of edges chosen by the second phase algorithm and let OPT denote the
value of an optimum solution to (IP). Then

2
. < (2— —)OPT
2 2oy

We pause and prove that the solution Fy U Fy we offer is feasible.
Lemma 3.9 Fy U Fy is feasible for (IP).

Proof: For any S C V, we have |T'(S) N Fy| > f(5) since I is feasible for (IP1). By Theorem 3.5, the
set of edges in Fy U Fhy two-connects all the trees in Fy. Thus if f(S) = 1 and |T'(S) N Fy| = 1 then we
must have [I'(S) N F3| > 1 for such S. Therefore if # is the incidence vector of Fy U Iy then for any S
with f(S) = 1, we have

z(I'(S)) = [D(S) N Fi|+ [T(S) N Fy| > 2

Hence, # is feasible for (IP). O

We have described construction of a feasible solution F} U F» to (IP) and we have bounds on its
value from Lemmas 3.4 and 3.8. These give us the Theorem 1.1. It remains to describe the algorithm to
construct F5 and the implicit dual yg. We do this in the next section.

4 The algorithm

In this section, we describe the algorithm for augmenting a given forest F; such that each tree in F}
becomes two-connected. Note that Fy is a minimal solution to the integer program (IP1). We also
implicitly construct a dual solution y such that it has the properties we required in Theorem 3.5. Since
we require that gs > 0 only when |T'(S) N Fi| = 1, we define this condition as a new function f/, namely,

, 1 S nmRl=1
F(5)= { 0 otherwise

It is important to note that the function f’ defined this way is not proper. It can be easily shown
to violate the disjointness requirement. Our basic algorithm for the second phase is similar to that of
Goemans and Williamson but is modified to take care of this difference. As input to the algorithm, we
are given an undirected graph G with edge costs ¢, > 0 and the forest Fy. We output a set Fy of edges
such that F» N F; = § and each tree in F; is two-connected in Fy U Fy.

Overview

The algorithm maintains a forest, F', of edges as candidates for F5. The forest F' initially has no edges.
It also maintains a set of clusters which partitions the vertex set at any time in the running of the
algorithm. To begin with, each node in V is in its own cluster. The set of clusters at any time in the
running of the algorithm can be partitioned into active and dead (or inactive) clusters, namely, those with
/! value 1 and 0 respectively. The algorithm progresses in iterations, choosing edges between clusters and
merging clusters. Each merge involves an active cluster. When no active cluster remains, the algorithm
terminates. Whenever a chosen edge closes a cycle in Fy U F', this cycle is collapsed: all the clusters
containing nodes in the cycle are unioned into a single cluster. Note that the graph induced by Fy U F' at
the beginning of each iteration with the clusters contracted to single nodes is acyclic, because cycles are
collapsed at each iteration. The algorithm also implicitly maintains a dual solution y. Only the active
clusters are used to update the dual solution. As long as there remains an active cluster, there remain
at least two clusters since f/(V) = 0. In the end, we do a clean-up to retain only essential edges and
remove redundant edges.

The algorithm

We use the notation of [6]. We shall use C to denote the set of clusters that the algorithm maintains.
For a vertex v, we let C, denote the cluster containing v. We shall use a counter ¢ which records the
iteration number during the course of the algorithm. Henceforth, we shall use the term “at time ¢” to
refer to iteration number ¢ of the algorithm.

1 Initialize F := 0, C := {{v} : vEV}, ¢:=0.
2 Comment: Implicitly set gs := 0 for all S C V.

3 For each v € V, set d(v) := 0.

4 While there is a C' € C such that f/(C) =1
Find edge e = (4,j) with i € C, € C, j € C2 € C, 1 # (5 that minimizes the reduced cost
§ = ce=dli)—d(j)

T fHCH+HfI(Ce)”

6 For all v € C' € C, set d(v) := d(v) + 6 - f/(C). Comment: Tmplicitly set jo := g +6 - f/(C).

7 Set t:=t+ 1 and F:= FU{e}. Comment: Edge ¢ is chosen at time ¢.

8 If e closes a cycle in F; U F', then union all the clusters containing nodes in this cycle to form
a new cluster and insert this in C. Delete each of the old clusters used in the unioning from C.
Comment: We say that a collapse has occurred at time ¢. All the edges in this cycle with their
endpoints in different clusters are said to participate in this collapse.

9 If e does not close a cycle, union the two clusters C; and Cs to form a new cluster and insert

this in C. Delete the two clusters €'y and Cy from C.

10 (Clean-up step) Select a subset Fs of F' to output. Comment: This step is described later in this
section.

Clean-Up

Before we describe the clean-up step, we need some notation. At any time ¢, let C(¢) denote the set of
clusters in C just after iteration number ¢ of the algorithm. Let e; denote the unique edge added in the
1" iteration. We define F(t) to be set of edges in the set F' added until time ¢ including e;. Let ¢; be
the total number of iterations before the algorithm terminates.

We shall refer to the graph (V| F1) or any contracted version of it as the skeleton. Hence the edges in
Fy are termed skeletal. Also, a path made up of edges entirely in F is called a skeletal path. Similarly,
edges in F are termed nonskeletal.

Clean-up works by processing the edges in F' in the reverse order in which they were chosen by the
algorithm and discarding those that are not essential for two-connectivity. The procedure below takes
as input the set of edges F' chosen by the algorithm and outputs a subset Fs C F of edges to be retained
in the final solution.

1 Initialize % := 0.

2 For t :=t; down to 1 do

3 If the graph (V, Fy U Fo U F(t) — {e+}) contains at least one skeletal bridge edge b;, then set
F2 = F2 U {6t}.
Feasibility

We have the following observations from the algorithm.

Proposition 4.1 At any ileration t of the algorithm, the set of nodes in each cluster in C(t) is one-
connected using edges in Fy U F(1).

The above proposition can be proved by induction on the iteration count ¢.
Definition: Define a skeletal edge e to be enclosed at time ¢ if both its endpoints belong to the same
cluster in C(t).

Observation 4.2 A skeletal edge is enclosed at time t if and only if it is part of an edge-simple cycle in
(V,FLUF(1)).

Proof: First we prove the if part. In step 8, we collapse any cycle formed by a newly chosen edge, and
we merge the clusters involved. It follows by induction on the iteration count ¢ that all the nodes in any
edge-simple cycle in (V, FyL U F(t)) are in the same cluster in C(¢). If a skeletal edge is part of such a
cycle, both its endpoints are in the same cluster, and hence the edge 1s enclosed.

Now, we prove the only-if part. Suppose a skeletal edge s is enclosed for the first time during the course
of the algorithm at time ¢’. Then a collapse must have occurred at time ¢ and the edge s participated in

the collapse. We now identify an edge-simple cycle in (V, F{UF(#')) containing s. Consider the cycle that
collapsed at time ¢'. Each cluster in the collapsing cycle is one-connected using edges in Fy U F'(¢' — 1)
by Proposition 4.1. So we can form a cycle containing s using the edges in this collapsing cycle, along
with the paths within each cluster in this cycle in the graph (V, 4 U F(¢')) O

Note that a skeletal edge, once enclosed, stays enclosed for the rest of the algorithm.

Observation 4.3 Let N be any connected component in (V, Fy). Then the set of nodes in N that occur
in the same cluster in C(t) are two-connected in (V, Fy U F(t)).

Proof: Using induction on the iteration count ¢, we can show that the set of edges in N with both
endpoints in the same cluster in C(¢) form a subtree of N. Each edge in this subtree is thus enclosed at
time ¢ by definition and hence its endpoints are two-connected by Observation 4.2. Since two-connectivity
1s a transitive relation on the nodes, all the nodes in this subtree are two-connected. 0O

Definition: For any iteration number ¢ of the algorithm, we define F1(¢) and Fa(t) to be the subset of
edges in Fy and F5 respectively with their endpoints in different clusters in C(¢). Note that Fy(¢) is just
the set of edges in F5 chosen after iteration ¢.

From the running of the main algorithm, we have the following lemma.

Observation 4.4 Each connected component of Fy is completely contained in some cluster in C(ty).

Proof: Consider the graph (C(ts), Fi(ty)) that Fy induces on the set of clusters at the time of termi-
nation of the algorithm. We claim that Fy(t;) is empty. Otherwise, consider a nonsingleton connected
component H of (C(t7), Fi(ts)). Each cluster in H has degree at least one. By definition of the activity
function f, since each cluster is inactive at time ¢y, each cluster in H has degree at least two. Hence
H contains a cycle. But the algorithm collapses any such cycle into a single cluster and thus this is
impossible. 0O

The observation above implies that every skeletal edge is enclosed at time ¢;. Using Observation 4.2,
this implies that each tree in the initial skeletal forest (V| Fy) is two-connected in the graph (V, Fy U F').
By the definition of clean-up, we can prove the following proposition by backwards induction on the
iteration count .

Proposition 4.5 The graph (V, F1 U Fa(1) U F(t)) does not contain any skeletal bridge edge.

Since F2(0) = F4, the above proposition implies that there is no skeletal bridge edge in the final retained
solution (V, Fy U F4). Thus we have the following lemma.

Lemma 4.6 Fach component N of Iy is two-connected in the graph (V, Fy U Fs).

This proves the first part of Theorem 3.5.

Definition: Note that the edges in Fy(t) and Fa(t) defined earlier have their endpoints in different
clusters in C(t). So we can define an auxiliary graph G(¢) on the node set C(¢) by G(¢) = (C(?), Fi(t) U
F5(t)). For each edge ¢ = (a,b) in F1(2) U Fa(t), we have an edge (A4, B) in the graph G(¢) such that
A3 aand B 3b. The graph G(¢) may be thought of as a contracted version of the solution subgraph
(V, F1 U F5) at time ¢ in which all the nodes in the same cluster in C(¢) have been contracted into a single
node and only edges between clusters are retained.

Observation 4.7 The graph (C(t), Fa(t)) is acyclic.

Proof: Connectivity between clusters in C(¢) using edges of Fa2(t) implies that these clusters are eventu-
ally merged into a single cluster in the course of the algorithm. Since no edges are ever chosen between
nodes in the same cluster, the graph (C(¢), F2(1)) is acyclic. O

A property of clean-up

As a result of the clean-up, we have the following lemma.

Lemma 4.8 Suppose the edge ey € Fb 1s retained in Fy because it left a skeletal edge by as a bridge edge
in step 3 of the clean-up procedure. Then by is also a bridge edge in the graph G(t') — {e:} for any t' < t.

Proof: By the definition of clean-up, the edge e; is retained in Fy because it left the skeletal edge b; as
a bridge edge in the graph (V, F} U Fo(t) U F'(t) — {e:}). Hence, b; is also a bridge edge in the subgraph
(V,FLUF(t) — {e:}). From Observation 4.2, this implies that it is not enclosed at any time ¢’ < ¢. Thus
by € F1(t).

Note that we can obtain the graph G(¢') — {e:} from (V, Fy U F3(t) U F'(t) — {e+}) by a series of
edge-contractions and edge-deletions not involving b;. Each cluster in C(¢') is one-connected using edges
in Iy U F'(t) by Proposition 4.1; we can therefore obtain a node in C(¢') by contracting along the edges
between nodes in V' in this cluster. It remains to show that we can obtain G(#')—{e;} from the contracted
graph by deleting edges. Now by definition, Fy (') C Fy. Also, since t' < ¢, the set of edges in F» chosen
after time t' is a subset of all the edges chosen until time ¢ and the set of edges in F5 chosen after
time 7, i.e., Fa(t') C F(¥) U Fa(t). We conclude that the edges in G(t') are Fy(t') U Fa(t'), a subset of
LU Fs(t) U F(t), so we can obtain G(t') — {e;} from the contracted graph by deleting edges. Note that
since b; € F1(t'), we do not use it in any of these operations. Furthermore, neither of these operations
destroys bridge edges and so b; remains a bridge in the graph G(t') — {e;} . O

We shall use the above lemma in the proof of the performance guarantee.

5 The Performance Guarantee

Our analysis of the algorithm is modeled on that of [6]. In this section, we prove Theorem 3.6. From the
construction of the g values and the choice of edges in F', we get the following lemma directly.

Lemma 5.1 The solution § satisfies g > 0 only when |T(S) N F1| = 1. Purthermore, it obeys the normal
packing constraints on edges not in Fy. Namely, for any edge e € E — Iy, we have ZST(S)% s < ce.
Also, for any edge in F', this constraint is tight, i.e., fore € F, c. = ZST(S)% Js -

The above lemma proves the second part of Theorem 3.5.

We restate Theorem 3.6 and in the remainder of this section, prove it.
Theorem 3.6 Let Fy be the set of edges chosen by the second phase algorithm and let y be the dual
solution it implicitly constructs. Then

ZceS(Q_%)ZgS

e€F: SCV

At any time ¢ in the running of the algorithm, recall that the set of nodes in C(¢) can be partitioned into
active nodes and dead nodes, representing clusters with f’ value 1 and 0 respectively. Let k(t) denote
the number of active nodes in C(¢). We prove the following theorem in the remainder of the section and
use 1t in the induction step of our proof of Theorem 3.6.

Theorem 5.2 For cach iteration number t, the sum of the degrees of the active nodes in the graph

(C(t), Fa(t)) ts at most 2(k(t) — 1).

The proof of Theorem 3.6 is adapted from a proof by Goemans and Williamson [6]. They use a lemma
similar to our Theorem 5.2 in order to prove Theorem 3.6 by induction on the iteration count . However,
our proof of Theorem 5.2 differs completely from the proof of its counterpart in [6]. We now show that
the above theorem suffices to prove Theorem 3.6.

Proof of Theorem 3.6: The proof is by induction on the iteration count . From Lemma 5.1, we can
write Y0 cp Ce = D ep, ZST(S)% ¥s. By changing the order of summation we can rewrite the above
double sum as follows: Z€€F2 ce = cUs - |{e €T(S): e € Fu}|. Let gs(t) denote the value of gg just
before the t*" iteration of the algorithm. We show by induction on the iteration count ¢ that

S Gst) e €T(S) : € P} < (2 %) S s ()

SCV

10

The inequality clearly holds when ¢ = 0. Let é denote the reduced cost of the edge ey chosen at time
t. At this iteration of the algorithm, the increase in the left-hand side of the above inequality is

Z §-He eT(C): e € Fal}|

Cec(t):f'(C)=1

For the induction step, we must prove that this increase is bounded by the increase in the right-hand
side, namely by
2
4]

By definition, k(t) = |C € C(t) : f/(C) = 1|. In terms of the graph (C(t), F2(t)), we must prove that the

sum of the degrees of the active nodes is at most 2(k(¢) — %)

(2)60 ec): f(C)=1]

Fach leaf in the initial forest F is a terminal and the number of active nodes in C(?) at any time ¢ is
at most the number of leaves in Fy. Hence k(¢) < |A| at any time ¢. Hence it is sufficient to prove that
the sum of the degrees of the active nodes in the graph (C(t), F2(t)) is at most 2(k(¢) — 1). But this is
exactly what Theorem 5.2 states. Thus this theorem proves the induction step. O

We shall prove Theorem 5.2 in the remainder of this section.

Proof of Theorem 5.2: The proof works by constructing a subgraph of G(¢) that is a forest spanning
all the nodes in G(t). We call this the proof forest; it is made up of proof trees. This forest will include
all the edges in Fa(t). Tt also has the property that that every edge in Fy(?) is on a path between two
active nodes in the forest. The following proposition asserts that we can construct such a proof forest.

Proposition 5.3 For each iteration number t, we can construct a spanning forest of G(t) that includes
all the edges in Fa(t) such that each such edge is on a path between two active nodes in the forest.

Then, we prune the forest so as to delete each edge that does not lie on a path between two active nodes.
Notice that since every edge in Fy(t) is in a path between two active nodes, no edge in Fa(t) gets pruned.
Moreover, as a result of pruning, each leaf node in the forest will be an active node. Thus any inactive
node in the forest is an internal node and has degree at least two.

Since the pruned proof forest contains every edge in Fa(t), (C(t), Fa(t)) is a subgraph of this forest.
Hence the sum of the degrees of the active nodes in (C(¢), Fa(t)) is at most the sum of the degrees of the
active nodes in the pruned proof forest. Let N; denote the number of inactive nodes in the pruned proof
forest. The sum of the degrees of all the nodes in the pruned forest is at most 2(k(¢) + N; — 1). The sum
of the active node degrees is the sum of the degrees of all the nodes minus the sum of the degrees of the
inactive nodes. Since each inactive node has degree at least two, the sum of the active node degrees is
at most 2(k(¢) — 1). This proves Theorem 5.2. O

Construction of the proof forest

It remains to prove Proposition 5.3. For this, we need a few definitions.
Definition: Define a node in C(¢) to be a skeletal node if it has at least one edge of Fi(¢) incident on it.
Thus the skeletal nodes are exactly the nodes that are not isolated nodes in the graph (C(¢), F1(?)).

We say that an edge b is a bridge edge for edge a if b is a bridge edge in the graph G(t) — {a}.

Proof of Proposition 5.3: We prove Proposition 5.3 by proving the following lemma that asserts that
we can construct the proof forest inductively. In the following lemma, ¢ denotes the iteration count such
that we are attempting to construct a proof forest for Gi(¢). For any t' > ¢, the set Fy(t) — Fa(t’) represent
the set of edges in the solution subgraph that have been chosen after time ¢ up to and including time ¢'.

Lemma 5.4 Let t be an iteration number of the algorithm. Then, for every t' > t, there exists a proof
forest of (C(t), F1(t) U (Fa(t) — Fa(t'))) such that the following properties hold.

1) All the nodes in a connected component of (C(t), F1(t)) are in the same tree of the proof forest.

2) The proof forest contains all the edges in Fa(t) — Fa(t').

11

3) Each edge in a nonskeletal path between two skeletal nodes in the forest is on a proof tree path
between two active nodes.

4) Each skeletal edge b € F1(t) that is not in the proof forest is a bridge edge for some nonskeletal
edge in G(t).

We prove Proposition 5.3 by using Lemma 5.4 with ¢’ = ¢;. By the second property in this lemma, we
get that the proof forest includes every edge in F»(¢). By Lemma 4.8, each edge €’ in F4(?) is chosen at
some time ¢’ >t and is part of a cycle in the graph G(t) = (C(t), F1(t) U Fa(t)). Furthermore, this cycle
contains at least one skeletal edge since (C(t), Fa(t)) is acyclic by Observation 4.7. Since the proof forest
contains Fy(t), this edge forms part of a nonskeletal path between skeletal nodes in the proof forest.
Then the third property in Lemma 5.4 implies that this edge is on a path between two active nodes.
This completes the proof of Proposition 5.3. O

Proof of Lemma 5.4: The proof is by induction on t'. Henceforth, we shall use the phrase proof forest
for t' for any t' > t to refer to the proof forest of the graph (C(¢), F1(t) U (Fa2(t) — Fa(1'))).

Basis: (t' = t) In this case, the proof forest for ¢’ is (C(t), F1(t)). Tt is easy to verify that the properties
in Lemma 5.4 are true for this forest. R

Induction step: Let P be the proof forest for #'. We show how to obtain a proof forest P for ¢ +1. Let
e be the edge chosen by the algorithm at ¢/ + 1. If e does not appear in Fy, (i.e. it was omitted during
the clean-up phase), then P itself is a proof forest for ¢’ 4+ 1. Therefore suppose the edge e does appear
in F5. There are two cases.

Case 1: The edge e does not form any new nonskeletal path between skeletal nodes. In this case,
P U {e} is acyclic, so we let the new proof forest P be P U {e}. Since no edges are deleted, the first
and fourth properties continue to hold. Since we added the edge e to]3, the second property continues
to hold. Also, since we form no new nonskeletal paths between skeletal nodes, the third property also
continues to hold.

Case 2: The edge e forms a new nonskeletal path between skeletal nodes. There are two subcases.

Subcase 2a: The new nonskeletal path formed goes between two skeletal nodes in different proof trees
in the forest P. Thus this path merges these two proof trees in the proof forest. In this case also, PU{e}
1s acyclic, so we let the new proof forest Pbe PU {e}. Since no edge is deleted, the first and fourth
properties continue to hold. Since we added the edge e to]3, the second property continues to hold.
Also, in this case, we can inductively infer that each of the two merging trees contains an active node.
Thus the edges in the newly formed nonskeletal path are on a path between two active nodes in the two
merging trees. This proves the third property for the proof forest P.
Subcase 2b: The new nonskeletal path formed goes between two skeletal nodes in the same proof tree
T in the forest P. In this case, addition of the edge e causes the formation of a cycle C' in the proof tree
T. We shall add the edge e to the proof forest P and identify a skeletal edge b in this cycle to delete
so that the remaining graph is acyclic and the four properties are maintained. The first property will
be maintained if we delete any edge in the cycle C' since this still leaves all the nodes in the proof tree
T connected. Since we add the edge e to form the new proof forest and do not delete any nonskeletal
edge, the second property would also continue to hold. However, it is harder to find a skeletal edge to
delete so as to maintain the third and fourth properties. We introduce some definition to talk about the
skeletal edge we delete.

Definition: A node in the cycle C is called an eniry node if it is reachable in T'— C' from an active
node (See Figure 2).

In the following claim, we state the properties of the skeletal edge b that we delete from C' to form
the new proof tree.

Claim 5.5 There is a skeletal edge b in C' such that
1) b is on a skeletal path between two entry nodes in the cycle C.

2) b is a bridge edge for a nonskeletal edge in G(t).

12

PathinT-C

Cycle C

Figure 2: A node z in the cycle C' is called an entry node if it is reachable in T'— C from an active node
a.

Assume that the above claim holds. To form the new proof forest P from the old, we add the edge e and
delete the edge b whose existence is stated by the claim above. From the above discussion, this maintains
the first two properties for P. We prove that P also satisfies the third and fourth properties.

The fourth property follows from the second part of the above claim. To show that the third property
i1s maintained, we must show that each edge in any nonskeletal path between skeletal nodes is on a path
between two active nodes. Since the edge b is on a skeletal path between two entry nodes, each nonskeletal
edge in the cycle C' is on the complementary path in C' between these two entry nodes. Since each of
these entry nodes can reach an active node in T'— C' by definition, all nonskeletal edges in the cycle C' lie
on a path between two active nodes in the new proof tree. Since the third property is inductively true
for the tree T, any nonskeletal edge not in C' and on a nonskeletal path between skeletal nodes is on a
proof tree path between two active nodes in 7T'. It is easy to verify that deletion of the skeletal edge b in
(' maintains this property for such edges. Thus the third property is maintained in the new proof tree
P in this subcase.

This completes the proof of Lemma 5.4. O

It remains to prove Claim 5.5. We do so in the remainder of this section.

Proof of Claim 5.5

We need a few preliminaries.

Claim 5.6 For any cycle Cy in G(1), for any nonskeletal edge e in C1,
(1) No edge of G(t) — Cy is a bridge edge for e'.
(2) C1 must contain a skeletal bridge edge for e’

Proof: First we prove (1). We have by Proposition 4.5 that G(¢) has no skeletal bridge edge. Hence
a bridge edge in G(t) — {e’} must separate the endpoints of ¢/. But C7 — {e’} is a path between the
endpoints of ¢/, so any such bridge edge must belong to Cy — {e’}.

Next we prove (2). By Lemma 4.8, G(t) — {¢'} must contain a skeletal bridge edge. By (1), the bridge
edge must occur in Cy. 0O

Recall that the cycle C'is the unique cycle in T'U {e}.
Definition: A path consisting of edges of the cycle C is called a segment of C'. A segment is nonskeletal
(skeletal) if it consists entirely of nonskeletal (skeletal) edges. For any two nodes # and y in the cycle
C', note that there are two segments between z and y. Given an edge ¢ of C, we can distinguish
between these two segments as follows: the segment containing e’ is denoted (. #,y), and the segment
not containing f is denoted .. (z,).

13

Short-cuts and properties

Definition: A pair (z,y) of nodes in C'is called a short-cut if there is a path from z to y in G(¢) using
no edge of C.

Note that a pair (z,) is trivially a short-cut. If # # y, we say that (z,y) is a proper short-cut. We
have the following properties from the definition of short-cuts.

Claim 5.7 Let €' be a nonskeletal edge of the cycle C' and let (x,y) be a short-cut. Then
(A) o{x,y) cannot contain a skeletal bridge edge for e’.

(B) {o®,y) must contain a skeletal bridge edge for e’.

Proof: Let P be the path from z to y using no edges of C'. By applying Claim 5.6 to the cycle
Cy =CUP— . (x,y), we infer from (1) that ./ {z,y) contains no skeletal bridge edge for ¢’. This proves
(A). Since C' must contain such a skeletal bridge edge, it must occur in C' — .{x,y) which is {2, y).
This proves (B). O

Corollary 5.8 For each proper short-cut (x,y), the two segments between x and y each must contain a
skeletal edge.

Proof: Let S be one of the segments between z and y. Suppose for a contradiction that S consists
entirely of nonskeletal edges. Let ¢’ be one of these edges. By part (B) of Claim 5.7, (. &, y), which is S,
contains a skeletal bridge edge for ¢’ contradicting the fact that S is nonskeletal. 0O

Transition nodes and properties

Recall that we are working with a proof tree T' such that €' is the unique cycle in T'U {e}.
Definition: A transition node is a node of C' with one incident skeletal and one incident nonskeletal
edge in C'. Thus every maximal nonskeletal segment is bounded by transition nodes.

Lemma 5.9 Let & be a transition node of C. Then there is an active node a, reachable from x by a
skeletal path that avoids C'.

Proof: The proof is illustrated in Figure 3. If z is itself active, we are done, so assume z is inactive.
It has at least one incident skeletal edge, the one in the cycle C. Because it i1s inactive, it must have
at least one other incident skeletal edge e’ outside the cycle C'. Let a, be a leaf reachable from = by a
skeletal path P going through ¢’. We show that Py does not intersect the cycle C.

Suppose for a contradiction that the skeletal path intersects C. Let z1 # z be the first point of
intersection of the path from x to a,. Now # and x; are connected via a skeletal path P;. They are also
connected via a path P» along the cycle using edges of the proof tree T'. Since the proof tree T is acyclic,
there is a skeletal edge &’ in this skeletal path P; from x to 1 that is deleted in forming the proof tree.
Inductively, property (4) of Lemma 5.4 is true for 7" and so &’ must be a bridge edge for some nonskeletal
edge ¢ in G(t). Since x1 # x, note that z; and z are also connected in G(t) via the path Ps = C' — Ps.
Therefore the nonskeletal edge ¢ for which b’ is a bridge edge must lie in the path P;. But since the path
Py is skeletal, this is a contradiction. 0O

Observation 5.10 For each transition node x of the cycle C, there is a eniry node ' in C such that
(x,2') is a short-cut.

Proof: By Lemma 5.9, there is an active node a, reachable from z by a skeletal path P that avoids C'.
Inductively, property (1) of Lemma 5.4 holds for T, so there is a path P; in T from a, to z. Let 2’ be
the first node of P; that lies on the cycle C'; then z’ is an entry node. Following Ps from z to a,, then
continuing along P; to «’ yields a path from # to ' using no edge of C'. So (#,2’) is a short-cut. 0O

Definition: For every transition node z in the cycle (', we designate an entry node ' that can be
found using the above observation as the entry node corresponding to x.

14

cycle C

Figure 3: 2 is a transition node of C'. ¢’ is a skeletal edge incident to x outside C and a, is a leaf
reachable from « by a skeletal path P going through e¢’. a1 # x is the first node in the cycle C where
the path Ps; meets C'. Py, the subpath of P; from x to x; 1s shown in dark.

“\
R
/
entry 1 entr
y
node node

Figure 4: A segment S is said to be forbidden if the endpoints of S are entry nodes, and S consists of
three subsegments 515253, where S5 is a nonskeletal segment, the endpoints of .S; form a short-cut, and
the endpoints of S3 form a short-cut. The dark dashed paths represent paths in G(¢) — C' between the
endpoints of S; and between the endpoints of Ss.

Forbidden segments and their properties

Definition: A segment S is said to be forbidden if the endpoints of S are entry nodes, and S consists
of three subsegments 51.5553, where S5 is a nonskeletal segment, the endpoints of S; form a short-cut,
and the endpoints of S3 form a short-cut (See Figure 4). For any edge f in C, if f is not in S; U S5, we
say that S is forbidden for f. This terminology is motivated by the following claim.

Let ¢’ be any nonskeletal edge in the cycle C. By part (2) of Claim 5.6, there is a skeletal edge b in
C' that is a bridge edge for ¢’.

Claim 5.11 Any skeletal edge b, that is a bridge edge for a nonskeletal edge €' in C' cannot occur in a
segment that is forbidden for ¢'.

Proof: Let S = 5155535 be a segment forbidden for €’. Since Sy is nonskeletal, the edge b.: cannot lie
in this subsegment. Let the endpoints of S; be # and y. By definition, the edge f does not occur in Sy,
so we have S1 = {z,y). Since (#,y) is a short-cut, by part (A) of Claim 5.7, .+ (z,y) cannot contain a
skeletal bridge edge for ¢’. Hence S; cannot contain b.,. Similarly, we show that S3 cannot contain b.:.
Thus any skeletal edge b.: that is a bridge edge for ¢’ cannot occur in S. 0O

From the definition of segments forbidden for an edge f € C', we have the following observation.

15

e
— O O —

pathP =S, Y

—

S
S1 3

Figure 5: Lemma5.13: ¢’ is some nonskeletal edge in C', and P is the maximal nonskeletal path containing
¢/ in C. Let [and r be the endpoints of P, and let their corresponding entry nodes be I’ and r’. Then
the segment (o', 7'} is a forbidden segment for ¢’. The dark lines show paths in G(t) — C' between each
of [and r and the entry nodes I’ and r’ corresponding to them.

Observation 5.12 Let S be a forbidden segment. For any nonskeletal edge f' in C' — S, the segment S
is forbidden for f'.

The following lemma is illustrated in Figure 5.

Lemma 5.13 Let ¢/ be any nonskeletal edge in C, and let P be the mazimal nonskeletal segment con-
taining ¢'. Let | and v be the endpoints of P, and let their corresponding entry nodes be ' and r'. Then
the segment {./I', 7'} is a forbidden segment for ¢'.

Proof: The entry nodes ! and v’ cannot be internal nodes in the path P, else the short-cuts (I,1') and
(r,r") would violate Corollary 5.8. Hence .{I', [}, P, and .{(r,r') are contiguous edge-disjoint segments,
and (' r") = (U, UPUg (r, 7). Thus S = {/I',r') has entry nodes as endpoints and can be written
as 5152535 where S1 = ('), So = P, and Sz = o {r,r") and ({,!') and (r,7') are short-cuts. So S is a
forbidden segment. Moreover, since ¢’ ¢ S; U Ss, S is forbidden for a. O

Finding the skeletal edge to delete

Now we prove Claim 5.5 by providing an iterative procedure to find a skeletal edge b with the properties
stated in the Claim. Note that we do not need to implement this algorithm since it is purely for the
purpose of proof.

The algorithm to find the skeletal edge b maintains a nonskeletal edge f in the cycle €' and a set of
segments of the cycle C' that are forbidden for f. On each iteration of this procedure, it either finds a
skeletal edge b as required in Claim 5.5, or finds a new nonskeletal edge f’ and adds a new forbidden
segment to the set W. This new forbidden segment contains at least one edge not contained in any
previous forbidden segment, so the number of iterations of this procedure is bounded by the size of the
cycle C'.

Find-skeletal-edge(f,W)

1 Initialize the nonskeletal edge f := e. By Lemma 5.13, we can find a segment {(.u',v’) that is
forbidden for e. Initialize W := {{.u/, v} }.

2 Repeat

3 By part (2) of Claim 5.6, since f is a nonskeletal edge in C, there is a skeletal edge by € C' that

is a bridge edge for f. By Claim 5.11, this skeletal bridge edge b; cannot occur in any segment
in W for these are forbidden for f. So by must occur in a maximal segment S of C' that is not
overlapped by any segment in W. Note that the endpoints of S must be entry nodes.

4 If the segment S is wholly skeletal, the bridge edge b; for f is one of the edges in this segment.
This skeletal edge b; has the properties required in Claim 5.5, so we are done in this case. We
stop and output the edge b; as the required skeletal edge.

16

5 Otherwise, the segment S contains at least one nonskeletal edge f’. In this case, observe that
since f’ is mot in any of the segments in ¥, by Observation 5.12 each segment in W is forbidden
for f'. Now we use Lemma 5.13 to find a segment (;/', 7'} forbidden for f’ and add this segment
to the set W. We then set f := f’ and continue.

Notice that the set W with the segment (;{',7') added consists of a set of segments forbidden
for the new nonskeletal edge f’. Also, since f’ was not in any of the forbidden segments in W
earlier, but is included in the segment (', ') added to W, the number of edges in the union of
all the segments in W has increased by at least one.
Thus the above procedure eventually finds a skeletal edge b as required in Claim 5.5. This completes
the proof of the performance guarantee of the algorithm.

6 Approximating augmentation

In this section, we restate Theorem 1.2 and prove it.

Theorem 1.2 Given a graph G = (V, E) along with an initial subgraph Go with edge set Ey, the
minimume-cost augmentation problem s to choose a minimum-cost set of edges in G whose addition to
Glo yields a graph that obeys the constraints of (IP). This problem can be approzimated in O(n? logn) time
within a factor 0f2(1—ﬁ) if the incidence vector, xy of the initial subgraph Gy obeys the one-connectivity
constraints

ro(D(S)) > f(S) VS : 0£ScCV

Otherwise the performance guarantee is 3(1 — ﬁ)

Proof: First we prove the weaker bound. For this, we modify the cost function ¢ on the edges of G by
setting the cost of the edges in the initial subgraph Go to zero. Let ¢’ be the modified cost function.
Then we apply the algorithm in Theorem 1.1 to the graph G with cost function ¢’. The algorithm finds
a set of edges F whose incidence vector is feasible for (IP). Moreover, the cost of the set of edges F” is
at most 3(1 — ﬁ) times the cost of an optimum solution to (IP) under the cost function ¢/. Consider
the minimum-cost augmentation of Gy. Let the cost of the edges in this augmentation be Aug*. This
set of edges along with the zero-cost edges in Ej is a feasible solution to (IP) of value Aug* under ¢'.
Thus the cost of the edges in F” is at most 3(1 — ﬁ)Aug* under ¢’. Finally we observe that since F' is
feasible for (IP), the edges in F’/ — Fy form a valid augmentation of Fy. This augmentation has cost at
most 3(1 — ﬁ)Aug* under ¢. This proves the weaker bound.

We now turn to the case when the incidence vector of the edges in Ej satisfies the one-connectivity

constraints:

2(T(S) > f(S) VS : 0#£SCV

In this case, we choose an arbitrary spanning forest F' of (. It is easy to verify that the incidence vector
of F satisfies the one-connectivity constraints. We then define a minimal version Fy of F' by retaining
only the edges in F' that are critical. Formally, we define

Fy—{eeF : for some connected component N of (V, F' — {e}), f(N) =1}

It follows from the results in [6] that if F' is feasible for the one-connectivity constraints, then so is F}.
We can then use F) as the skeletal forest and apply the second-phase algorithm in Section 4. However,
as before, we first modify the cost function ¢ on the edges of G by setting to zero the cost of the edges
in Fy. We apply the algorithm in Section 4 to the graph G with the modified cost function ¢’ and the
input skeletal forest Fy. The algorithm chooses a set of edges F5 disjoint from Fy. We first show that
Fy — Ey provides a valid augmentation and then we show that it has low cost.

By Lemma 3.9, the subgraph Fy U Fy is feasible for (IP). Since F} is contained in Ey, the subgraph
Fy — Ey 1s a valid augmentation of Ey. Now we show that F» — Ey has low cost under ¢. It suffices to
show that Fb has low cost under ¢/. By Lemma 3.8, the cost of the edges in F5 is at most 2(1 — ﬁ)
times that of an optimum solution to (IP) under the cost function ¢/. The optimum augmentation of
Gy together with Fy is a feasible solution to (IP). The cost of this solution under ¢ is just the cost of

17

o
—

(B

—— O (o e O --T—/-O-~§:76

\Y,

k copies

Figure 6: An example showing that the performance bounds of the algorithms in Theorems 1.1 and 1.2
are existentially tight.

the augmentation. Hence the cost of the edges in Fs is at most 2(1 — %) times the cost of the optimal
augmentation. This completes the proof of the stronger bound in Theorem 1.2. O

7 Implementation issues

We note that our algorithm can be implemented in time O(n?logn) where n = |V| using the techniques
in [6]. We address the implementation of the clean-up steps. The important observation here is the
initial forest F} and the candidate set of edges F' both form acyclic subgraphs. Hence the total number
edges in them is O(n). At each step of clean-up, we identify the two-connected components of a graph
with O(n) edges. The time taken is linear in the number of edges and hence the time to implement
each step of clean-up is linear in n. Since there are only a linear number of clean-up steps, the total
time for performing the clean-up is O(n?). The overall running time is thus dominated by the time for
implementing the main loop and is O(n?logn).

8 Conclusions and open problems

We have described approximation techniques for a variety of two-connected subgraph problems. We also
extended these results to derive approximation algorithms for augmentation problems in this setting.

We note that the performance bounds of the algorithms we have presented in Theorems 1.1 and
1.2 are existentially tight. This can be seen by their performance on an example graph taken from [3].
This graph is reproduced in Figure 6. The thick (solid and dashed) edges are of unit cost and the thin
edges have cost ¢ close to zero. We use the proper function f defined by f(S) = 1 for every nonempty
proper subset S of V| i.e, we seek a minimum-cost two-connected subgraph. The initial spanning tree
constructed in the first phase of our algorithm may consist of all the thick solid lines but one and all the
thin lines of cost (k — 1) + 2ke. All but one of the thick dashed lines may be chosen as the second phase
solution. The cost of this set is (2k —1). Thus our algorithm outputs a solution of total cost 3k — 24 2ke.
A minimum-cost two-connected subgraph of this graph consists of alternating thick dashed lines with
all the thin lines. This subgraph has cost k + 2ke. Thus this example also shows that the performance
bounds of our algorithms are existentially tight.

It remains an important open problem to design approximation algorithms with a better performance
guarantee for this problem. It would also be interesting to investigate if the techniques in this paper
extend to generalized k-connected network design problems.

References

[1] A. Agrawal, P. Klein and R. Ravi, “When trees collide: an approximation algorithm for the generalized
Steiner tree problem on networks,” Proceedings of the 23rd Annual ACM Symposium on Theory of Computing
(1991), pp. 134-144.

[2] K. P. Eswaran, and R. E. Tarjan, “Augmentation problems”, SIAM Journal on Computing, Vol. 5 (1976),
pp. 653-665.

18

(3]

[10]
[11]
[12]
[13]
[14]

[15]

Greg N. Fredrickson, and Joseph Ja’Ja’, “Approximation algorithms for several graph augmentation prob-
lems”, STAM Journal on Computing, Vol. 10, No. 2 (1981), pp. 270-283.

Greg N. Fredrickson, and Joseph Ja’Ja’, “On the relationship between the biconnectivity augmentation and
Travelling Salesman problems”, Theoretical Computer Science 19 (1982), pp. 189-201.

M. X. Goemans, and D. J. Bertsimas, “Survivable Networks, Linear Programming Relaxations and the
Parsimonious Property”, OR 216-90, Center for Operations Research, MIT (1990).

M. X. Goemans, and D. P. Williamson, “A general approximation technique for constrained forest problems”,
Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (1992), pp. 307-316.

M. Grotschel, and C. L. Monma, “Integer polyhedra arising from certain network design problems with
connectivity constraints,” SIAM J. on Discrete Math., Vol 3, No. 4 (1990), pp. 502-523.

M. Grotschel, C. L. Monma, and M. Stoer, “Computational results with a cutting plane algorithm for
designing communication networks with low-connectivity constraints,” to appear, Oper. Res., (1992).

S. Khuller, and R. Thirumella, “Approximation algorithms for graph augmentation,” Technical report
UMIACS-TR-91-132, CS-TR-2766, Univ. of Maryland, September (1991), to appear in Journal of Algo-
rithms.

S. Khuller, and U. Vishkin, “Biconnectivity approximations and graph carvings”, Technical Report UMIACS-
TR-92-5, CS-TR-2825 Univ. of Maryland, January 1992.

C. L. Monma, and C. W. Ko, “Methods for designing survivable communication networks,” NATO Advanced
Research Workshop, Denmark, (1989).

C. L. Monma, B. S. Munson, and W. R. Pulleybank, “Minimum-weight two-connected spanninf networks,”
Math. Programming, 46 (1990), pp. 153-171.

C. L. Monma, and D. F. Shallcross, “Methods for designing communication networks with certain two-
connectivity survivability constraints”, Operations Research, 37, pp. 531-541, (1989).

R. Ravi, “Approximation algorithms for Steiner augmentations for two-connectivity”, Technical Report TR-
(CS-92-21, Brown University, April (1992).

K. Steiglitz, P. Weiner, and D. J. Kleitman, “The design of minimum-cost survivable networks,” IEFFE Trans,
on Circuit Theory, CT-16, 4, pp. 455-460, (1969).

19

