
Ordering problems approximated:
single-processor scheduling and interval

graph completion

R. Ravi* Ajit Agrawal* Philip Klein*

Brown University

Abs t rac t

In this paper, we give the first polynomial time approximation al-
gorithms for two problems in combinatorial optimization. The first
problem is single-processor scheduling to minimize weighted sum of
completion times, subject to precedence constraints. The second prob-
lem, interval graph completion, is finding a minimum-size interval
graph containing the input graph as a subgraph. Both problems are
NP-complete; our algorithms output solutions that are within a poly-
logarithmic factor of optimal. To achieve these bounds, we make use
of a technique developed and first applied by Leighton and l~ao [12],
together with a technique of Hansen [5].

1 I n t r o d u c t i o n

1.1 Graph ordering problems
The single-processor scheduling problem, scheduling to minimize weighted
sum of completion times, arises in a manufacturing process or computational
process when we want to get everything done in a hurry, and it is more
important that some tasks get done quickly than others (thus the weights).
Numerous papers have been writ ten on the solution of special cases and
approaches to this problem [1, 2, 6] and Lawler [9] showed that it is NP-
complete. We give an approximation algorithm for a more general problem,

*Research supported by NSF grant CCR-9012357, NSF grant CDA 8722809, ONR and
DARPA contract N00014-83-K-0146 and ARPA Order No. 6320, Amendment 1.

752

in which the goal is to minimize the storage-time product for the process.
This problem is intended to model a situation arising in manufacturing or
computing in which storage is an expensive resource, and its use over time
must be minimized.

The other problem we consider is that of finding a smallest interval graph
that includes the input graph. This problem arises, e.g. in archeology [7] in
finding a consistent chronological model for tool use while making as few as-
sumptions as possible. Unfortunately, the interval graph completion problem
is NP-complete [3]. Moreover, no algorithm is known for approximately min-
imizing the number of edges whose addition yields an interval graph. As a
first step towards finding such an algorithm, we have developed an algorithm
that approximately minimizes (to within a log-squared factor) the number
of edges in the completed graph.

1.2 Techniques

Both of the problems we consider are closely related to the problem of finding
an optimal linear arrangement. This is the problem of ordering a graph's
nodes from 1 to n so as to minimize the sum over all edges {v, w} of the
number of nodes between v and w. Optimal linear arrangement was shown
to be NP-complete by Garey, Johnson, and Stockmeyer [4]. Hansen has
shown [5] how to approximately solve a more general problem, embedding the
node-set of a graph in a d-dimensionaI grid so as to approximately minimize
the weighted sum of edge-distances. He obtains this result by proving a
lower bound on the cost of the best embedding in terms of the minimum
size of a separator in the graph. He then combines this with a recently
developed algorithm of Leighton and Rao [12] for finding an approximately
minimum balanced separator. This paper consists in further applying these
two techniques.

2 Separators in Graphs

In this section, we define the notion of a separator which we use in this
paper. The basic idea is to remove nodes or edges in order to split a graph
into pieces, each ot~ which is "small" with respect to the original graph in that
its node ~ve@ht--the sum of the weights of its nodes--is at most a fraction of
the node weight of the original graph. Let G be a graph with node weights.
If G is undirected, we define a b-bounded node separator of G to be a set of
nodes of G whose removal separates G into pieces, where the node weight of
each piece is at most a fraction b of the total node weight of G. The cost

753

of the separator is the total weight of the removed nodes. A method for
finding small node separators 1 follows from the work of Leighton and Rao.
The following lemma, which is due to Leighton, Makedon, and Tragoudas
[11], is used in our algorithm for interval graph completion.

L e m m a 2.1 There is a polynomial-time algorithm to find a 3-bounded node-
separator with cost within a 0 (log n) factor of the optimal ~-bounded node-
separator.

For a directed acyclic graph G, we define a DAG edge-separator to be a
partition of the nodes into two sets, A and B, such that all edges between A
and B go from A to B. The cost of the separator is the total weight of edges
from A to B. The separator is said to be b-balanced if A and B each have
node weight at least a fraction b of G's node weight. We show a reduction
from finding a small separator of this form to finding a small separator of
another form, defined by Leighton and Rao. Our reduction is closely related
to one we presented in a recent paper [8].
D e f i n i t i o n [12]: For a strongly connected graph G I, the edge separator
determined by a three-way node partition (S, T, S U T) is the set of edges
that leave S or enter T. The cost of the separator is defined to be the sum
of the weights of the edges comprising it. Such a partition is said to be b-
balanced if the node weight of S U T and the node weight of S U T are each
at least a fraction b of the total node weight of G I.

Leighton and ltao prove the following lemma.

L e m m a 2.2 There is a polynomial-time algorithm to find a ¼-balanced edge-
separator with cost within a 0 (log n) factor of cost of the minimum-cost
1-balanced edge-separator.

We now derive from Lemma 2.2 a result about finding edge-separators in
DAGs.

L e m m a 2.3 Given a DA G G with weights on the nodes and edges, we can
find a ~-balanced DAG edge-separator of G whose cost ks within a factor of
O(logn) of the minimum-cost ½-balanced n A G edge-separator of G where n
is the total number of nodes in G.

P r o o f : We transform the DAO G to a strongly connected graph G ~ as follows.
The nodes of G' are the same as the nodes of G. An edge (u, v) in G of weight
w is replaced in G ~ by a pair of edges, an originaledge (u, v) of weight w and a

1Here and henceforth, a "small" separator is one whose size is nearly minimum.

754

> W

Figure 1: Augmentation of the DAG G to a strongly connected graph G' by
adding a reverse edge of infinite cost for every original edge (~t, v) of cost w
in G.

"...%

A " B t

Figure 2: The augmented graph G' is separated by the algorithm of Leighton
and Rao [12] into three pieces S, T and S U T, where the edges of the sep-
arator are those leaving S or entering T as shown above. Since both pieces
S U T and S U T are ¼-balanced, assuming that S has more weight than T,
then the partition A and B is ~-balanced and forms a DAG separator of G.

755

reverse edge (v, u) of infinite weight (see Fig. 1). We now find an approximate
¼-balanced edge-separator (S, T, S U T') in G' using the algorithm of Lemma
2.2. Note that no reverse edges can be in this separator since they have
infinite weight. Hence, the edges in the separator are all original edges (Fig.
2). Without loss of generality, suppose S has at least as much node weight
as T. Hence, its weight is at least a fraction 1/8 of the total node weight
of G. In this case, we choose A to be S, and B to be T U (SU-T). Then
the partition (A, B) in the original graph G is a ~-balanced directed edge
separator. The cost of the directed edge separator in G is the same as the
cost of the ¼-balanced edge-separator in G I, which in turn is at most O(log n)
times the minimum cost of a ½-balanced edge-separator in G. It remains only
to point out that for any ½-balanced DAd edge-separator (A, B) in G, there
corresponds a L-balanced edge-separator in C, namely (A, ~, B). D

3 Approximating scheduling problems
In this section, we present approximation algorithms for two single-processor
scheduling problems. The performance bounds are polylogarithmic in the
total weight of the input graph. We define each of these problems and present
the approximation algorithms below.

3.1 Minimizing storage-time
Let G = (V, E) be a DAd. The nodes represent tasks to be scheduled on
a single processor. The time required to execute the task ~ is denoted by
l(~). Each edge e = (u, v) has a weight w(e) associated with it. This weight
represents the number of units of storage required to save the intermediate
results generated by task u until they are consumed at task v. Let ~" =
vl , . . . ,v ,~ be a topological ordering of G. We denote the storage-time cost
for this ordering by C~. We define C~ as C~ = ~allcdsc,,s(e)w(e) where
s(e) for an edge e = (v~,vj) is exactly the sum of the execution times of
all tasks ordered between tasks vi and vi, inclusive. In other words, s(e) =
~]~=~ l(vk) The problem is to find the topological ordering rop~ that minimizes
the storage-time cost over all orderings. When w(e) equals 1 for all edges e,
then this problem reduces to the NP-complete problem of directed optimal
linear arrangement [3]. We call s(e) and s(e)w(e) respectively the stretch
and the weighted s~retch of the edge e. The main result of this section is as
follows.

756

T h e o r e m 3.1 There is a polynomial-time algorithm to minimize the total
storage-time cost to within a factor of O(log n log L), where L is the sum of
execution times, and n is the number of nodes.

3.1.1 A lower b o u n d

We first derive a lower bound for the cost of a topological ordering using a
technique analogous to that of Hansen[5]. Consider a topologicaJ ordering
r = v l , . . . , v,~. We define the cut Si to be the set of edges going from nodes
v~ through vi to the rest of the nodes. We define the cost C i of this cut to
be the sum of the edge weights of all the edges in the cut, multiplied by the
weight of the vertex vi. We use the following observation to obtain the lower
bound on the cost of the minimum storage-time schedule.

Obse rva t ion 3.1 For any topological ordering r, the sum of the weighted
stretches of all the edges, and hence the storage-time cost of % is at least

Oi.

L e m m a 3.1 For a computation DAG G with total completion time L such
that the length of each task is at most L/6, the optimal storage-time cost
is at least f](LB) where B is the weigh~ of the minimum ½-balanced DAG
edge-separator of G.

Proof i Consider the topological ordering r~t that minimizes the storage-
time product in G. Let i be the minimum index such that i-1 E==I is at

1 of L, and let j be the maximum index such that ~ , = i g(v,~) is at least least
! of L. For any k between i and j - 1 inclusive, the cut Sk is a ½-balanced
3

DAG edge-separator, and hence has weight at least B, where B is the weight
of the minimum ½-balanced DAG edge-separator. Since we assumed that
each node has weight at most L/6, it follows that E~=i g(vk) <_ L/3 + L/6,
SO

n # - 1

Cop~ >_ ~ Vkg(vk) >_ B ~ g(vk) >_ BL/6
k=l k=i

[]

Now, let v be any node in G, let P be the set of ancestors of v (nodes
that can reach v), and let Q be the set of descendents of v. Let G~ be the
graph obtained from G by deleting v, contracting P to a single node p, and
contracting Q to a ~ngle node q; We find a minimum DAG edge-separator
(.4, B) wherep E A and q E B. Such a separator can be found using a
rain-cut computation in G~. Let A be the set of nodes of G in A, together
with P, and let B be the set of nodes of G in/~, together with Q. We call

757

~M

Figure 3: H there is a node of weight more than a sixth of the total node
weight in the graph G, then we partition the nodes of G - {v} into pieces
P, Q and I that are respectively before, after, and incomparable to v in the
partial order represented by the DAG G. We then contract P and Q to
single nodes p and q respectively and find a minimum weighted DAG edge-
separator (A, B) of weight M in G~. We use Mi and Mo to denote the weights
of the incoming and outgoing edges of v respectively. We can then derive a
minimum v-DAG edge-separator (A, B). Namely, we let A equal .4U P - {p}
and B equal/Y U Q - {q}.

(A, B) the minimum v-DAG edge-separator. Intuitively, (A, B) is a DAG
edge-separator in G - {v}. In the next lemma, we give a simple lower bound
on the storage-time cost of G. This lower bound is particularly useful in the
case where there is a node of large weight. The lemma is illustrated in Fig.
3.

Lemma 3.2 Let M be the minimum v-DAG edge-separator in 0~. Let Mi
and Mo be the total weight of the incoming edges and outgoing edges of v,
respectively. Then (M q- Mi q- Mo) times the weight of v is a lower bound on
the storage-time cost of G.

3.1.2 T he algorithm

We now give the algorithm for finding a topological ordering of a DAG G that
approximately minimizes the storage-time cost. The algorithm is as follows.
If G consists of a single node, the algorithm is trivial. Otherwise, we proceed
recursively as follows.

1 If every node is of weight at most a factor ~ of the total node weight of
the graph L, then we find an approximately minimum ~-balanced DAG edge-
separator (A, B) in G as outlined in Lemma 2.3. The topological ordering of
G consists of the nodes of A, recursively ordered, followed by those in B, also

758

recursively ordered. If there is a vertex v in G of weight greater than L/6,
then we make use of Lemma 3.2 and find a minimum v-DAG edge-separator
(A, B). The topological ordering of G consists of the recursive topological
ordering of A, the node v, and the recursive topological ordering of B.

3.1.3 P e r f o r m a n c e G u a r a n t e e

Let us introduce some notation for convenience. We define a stage of the
algorithm as follows. Let G1 , . . . , Gk be the subgraphs of G at the beginning
of stage i. At the first stage there is only one such graph and that is G
itself. The subgraphs at the beginning of the stage i + 1 are the subgraphs
A1, B1, A2, B2, . . . , Ak, Bk, where Aj and Bj are the graphs found by decom-
posing Gj for recursively ordering its nodes. For each such graph G~, some of
its edges are removed during the decomposition. These edges go between the
node sets Aj and Bj if Gj has no large weight node. If Gj has a large weight
node v, then the edges either go between the node sets Aj and Bj, between
the nodes in Aj and the node v, or between the node v and the nodes in Bj.

Obse rva t ion 3.2 Each edge in G is removed once and exactly once by the
algorithm.

L e m m a 3.3 The sum of the weighted stretches of the edges removed at a
stage is at most O(C, opt log n), where C~op~ is the storage time product for the
optimal topological ordering ropt, and n is the number of nodes in the graph.

Proof." Let G1 , . . . , Gk be the subgraphs at stage i. Consider a subgraph G i
with node weight Li.

If Gj does not have a high-weight node, then by lemma 3.1 the optimal
storage time product 6'~t for ordering its nodes is at least BjLi/6, where Bj
is the weight of the minimum ½-balanced edge separator of Gj. By lamina
2.3, the weight of the edges removed from Gj is at most cBj log nj, where nj is
the number of nodes in Gi, and c is the constant for the separator algorithm.
Hence the sum of their stretches in the ordering given by the algorithm can
be at most cLiB j log nj, and hence at most 6cC~: log n.

Now suppose G i has a node of weight at least ~t. In this case, we use
Lemma 3.2, which is illustrated in Fig. 3. By Lemma 3.2, C~: is at least
(Mi + Mo + M)-~-. The sum of the weighted stretches of the edges removed
from Gj is at most (Mi + Mo + M)Li and hence is at most 6C~t.

Since ~i=lk C~,ti is at most C~o~,, it follows that the sum of stretches of

the edges removed at a stage is at most O (C~-o, t log n). []

759

Since the node weights of each of the subgraphs at stage i is at most (~)iL,
where L is the sum of the execution times of the tasks in G, it follows that
the number of stages in the above algorithm is 0 (log L). Thus, Theorem 3.1
follows from Lemma 3.3.

3.2 Minimizing weighted completion time
We describe the problem of minimizing the weighted completion time of a
DAG G. The nodes of G represent tasks. The execution time for the task t is
denoted by l(t), and the weight of the task is denoted by w(t). For an ordering
T = {Vl, . . . , v,,}, the weighted completion time is given by r,'~=l w(vi)cr(vi),
where a(vk) denotes the time at which the task for the node vk is completed
in the given ordering. We assume that the execution of the first task begins
at time 0, so cz(vk) is given by ~i=1 ~ I(v~). The objective is to find a topological
ordering of G such that the weighted completion time is minimum over all
such orderings. The problem is known to be NP-complete [3].

We reduce the above problem to an instance of minimizing the storage-
time product. From the given DAG G representing the computation, we
build an augmented DAG G' as follows. We add a new node s to O and add
directed edges from s to each of the vertices of G. We then assign weights
to the nodes and edges of G I as follows. Each original node v, is allotted a
weight equal to its execution time l(v). The added node s is assigned weight
0. All the original edges of G are weighted 0. For every node t, the added
edge (s, 4) is assigned weight w(~). It can easily be checked that the value
of the storage-time product for any ordering of G ~ is exactly the value of
the weighted completion time of G for the same ordering of the nodes as
in G' - {s}. This implies that approximating the minimum storage-time
product for G ~ yields an approximation for the weighted completion time for
G with the same performance guarantee. Using the results of the previous
section, we can prove the following theorem.

T h e o r e m 3.2 There is a polynomial-time algorithm to minimize the weighted
sum of completion times to within a factor of 0(lognlog L), where L is the
sum of execution times~ and n is the number of nodes.

4 Interval Graph C o m p l e t i o n

The interval graph completion problem consists in finding a smallest interval
graph that contains the input graph as a subgraph, and has the same nodes as
the input graph. An interval graph is a graph whose vertices can be mapped

760

to distinct intervals in the real line such that two vertices in the graph have
an edge between them iff their corresponding intervals overlap.

Fact 4.1 [13] There exists an ordering of the nodes in any interval graph
such that if a node u with number i has an edge to a node v with number j ,
for i less than j , then every node with number between i and j has an edge
to v.

We shall refer to such an ordering as the "interval graph ordering." An
ordering of the nodes of the input graph induces an interval graph containing
the input graph as a subgraph, namely the graph obtained by adding edges
as needed until the condition of 4.1 holds. This augmentation can be done
in time proportional to the number of edges in the augmented graph. Our
algorithm for interval graph completion will output an ordering such that
the total number of edges in the augmented graph is small with respect to
the optimum. Let G be the input graph, and let G~t be a smallest graph
containing G. We shall start by giving a lower bound for the number of edges
in G~t. We then present an ordering of the nodes of G such that the number
of edges in its augmented interval graph is no more than a polylog factor of
the number of edges in G~t.

4.1 Lower Bound

We again use the technique of Hansen to get a lower bound on the size of
the minimum interval graph.

L e m m a 4.1 If B is the size of the optimal ~-bounded node-separator for G,
then G~t has ~ (Bn) edges.

Proof : Let interval graph ordering of Gopt be ~" = v l , . . . , vn . For each i,
consider the set of nodes V~ = {v l , . . . , vi}. Let the set of neighbors of V~ not
in ~ be Ni, and suppose it has size Ci. For i between n/3 and 2n/3, each
of the node sets Ni is a ~-bounded node-separator and hence Ci must be at
least B for each such cut. Moreover, every node in Ni is adjacent to some
node in ~ . Hence by fact 4.1 it follows that the node vi must have edges in
G~t to each of the nodes in Ni. Thus the total number of edges in Go~ must

2_.~

be at least ~i~1 Ci which is at least ~i%~ Ci and hence at least Bn/3. []

4.2 Algori thm

We now give the algorithm for ordering the nodes of G. If G consists of
at most two nodes, we use any ordering. Otherwise, we find a ~-bounded

761

node separator of G using the algorithm of Lemma 2.1, order each of the
pieces recursively, and pick any order between the pieces. The nodes in the
separator are then ordered arbitrarily after all of the pieces. Let a be the
resulting ordering of the nodes of G. By adding edges to G, we can obtain
a graph G* for which a is an interval graph ordering. Namely, if a node u
numbered/has an edge to a node v numbered j , then for every k (i < k < j) ,
we add an edge between v and the node numbered k. We show in the next
subsection that the number of edges in G* is small.

4 . 3 P e r f o r m a n c e G u a r a n t e e

L e m m a 4.2 The number of edges in G* is no more than a 0 (log2n) factor
of C~t, the number of edges in Gopt.

Proofi Let us define the concept of stages as before. Let the ith stage
consist of subgraphs G1,. . . ,Gk. The first stage consists of the graph G.
Let Sj be the the node separator for Gj found by the algorithm. Let the
optimally augmented interval graph for Gj have Cj edges. By lemma 4.1 Cj
is at least Bjnff3, where Bj is the optimal ~-bounded node separator of Gj,
and nj is the total number of nodes in G i. All the edges in the interval graph
produced by the algorithm must go between the pieces of Gj and the node
separator of Gj found by the Mgorithm. The total number of such edges is
at most xjnj, where xj is the size of the node separator of Gj found by the
Mgorithm. By Lemma 2.1, xj is at most cBj log hi, where c is the constant in
the guarantee of the algorithm. By Lemma 4.1, therefore, the total number
of edges added between the pieces of Gj is at most 3clog n times Cj. Since
the value of ~ = 1 Cj is at most the number of edges in G~t, it follows that
the totM number of edges added to the intervaJ graph at any stage is at most
3clog nCopt. Moreover, since the sizes of the subgraphs go down by a factor
of 3/4 at each stage, it follows that the total number of stages is O (log n).
This implies the lemma. []

R e f e r e n c e s

[1] D. Adolphson and T. C. Hu, "Optimal linear ordering", SIAM J. Appl.
Math. 25 (1973), pp. 403-423.

[2] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling
(1967), Addison-Wesley, Reading, Massachusetts.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

762

M. R. Garey and D. S. Johnson, Computers and Intractability: A guide
to the theory ofNP-completeness, W. H. Freeman, San Francisco (1979).

M. R. Garey., D. S. Johnson, and L. Stockmeyer, "Some simplified NP-
complete graph problems," Theor. Comput. Sci. 1 (1976), pp. 237-267.

Mark D. Hansen, "Approximation algorithms for geometric embeddings
in the plane with applications to parallel processing problems," Proceed-
ings, 30th Symposium on Foundations of Computer Science (1989), pp.
604-609.

W. A. Horn, "Single machine job sequencing with treelike precedence
ordering and linear delay penalties," SIAM o r. Appl. Math.23 (1972), pp.
189-202.

D. G. Kendall, "Incidence matrices, interval graphs, and seriation in
archeology," Pacific J. Math. 28 (1969), pp. 565-570.

P. Klein, A. Agrawal, R. Ravi, and S. Rao, "Approximation through
multicommodity flow", Proceedings, 31st Annual Syrup. on Foundations
of Comp. Sci., (1990), pp. 726-737.

E. L. Lawler, "Sequencing jobs to minimize total weighted completion
time subject to precedence constraints," Annals of Discrete Math. 2
(197S), pp. 75-90.

F. T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, S.
Tragoudas, "Fast approximation algorithms for multicommodity flow
problems," Proceedings, P3rd Annual ACM Symposium on Theory of
Computing (1991), to appear.

[11] F. T. Leighton, F. Makedon, and S. Tragoudas, personal communication,
1990

[12]

[13]

F. T. Leighton and S. Rao, "An approximate max-flow min-cut theorem
for uniform multicommodity flow problems with application to approx-
imation algorithms", Proceedings, 29th Symposium on Foundations of
Computer Science (1988), pp. 422-431.

G. Ramalingam, and C. Pandu l~angan, "A unified approach to domina-
tion problems in interval graphs", Information Processing Letters, vol.
27 (1988), pp. 271-274.

