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Abs t rac t  

In this paper, we give the first polynomial time approximation al- 
gorithms for two problems in combinatorial optimization. The first 
problem is single-processor scheduling to minimize weighted sum of 
completion times, subject to precedence constraints. The second prob- 
lem, interval graph completion, is finding a minimum-size interval 
graph containing the input graph as a subgraph. Both problems are 
NP-complete; our algorithms output solutions that are within a poly- 
logarithmic factor of optimal. To achieve these bounds, we make use 
of a technique developed and first applied by Leighton and l~ao [12], 
together with a technique of Hansen [5]. 

1 I n t r o d u c t i o n  

1.1 Graph ordering problems 
The single-processor scheduling problem, scheduling to minimize weighted 
sum of completion times, arises in a manufacturing process or computational  
process when we want to get everything done in a hurry, and it is more 
important  that  some tasks get done quickly than others (thus the weights). 
Numerous papers have been writ ten on the solution of special cases and 
approaches to this problem [1, 2, 6] and Lawler [9] showed that  it is NP- 
complete. We give an approximation algorithm for a more general problem, 
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in which the goal is to minimize the storage-time product for the process. 
This problem is intended to model a situation arising in manufacturing or 
computing in which storage is an expensive resource, and its use over time 
must be minimized. 

The other problem we consider is that of finding a smallest interval graph 
that includes the input graph. This problem arises, e.g. in archeology [7] in 
finding a consistent chronological model for tool use while making as few as- 
sumptions as possible. Unfortunately, the interval graph completion problem 
is NP-complete [3]. Moreover, no algorithm is known for approximately min- 
imizing the number of edges whose addition yields an interval graph. As a 
first step towards finding such an algorithm, we have developed an algorithm 
that approximately minimizes (to within a log-squared factor) the number 
of edges in the completed graph. 

1.2 Techniques 

Both of the problems we consider are closely related to the problem of finding 
an optimal linear arrangement. This is the problem of ordering a graph's 
nodes from 1 to n so as to minimize the sum over all edges {v, w} of the 
number of nodes between v and w. Optimal linear arrangement was shown 
to be NP-complete by Garey, Johnson, and Stockmeyer [4]. Hansen has 
shown [5] how to approximately solve a more general problem, embedding the 
node-set of a graph in a d-dimensionaI grid so as to approximately minimize 
the weighted sum of edge-distances. He obtains this result by proving a 
lower bound on the cost of the best embedding in terms of the minimum 
size of a separator in the graph. He then combines this with a recently 
developed algorithm of Leighton and Rao [12] for finding an approximately 
minimum balanced separator. This paper consists in further applying these 
two techniques. 

2 Separators in Graphs 

In this section, we define the notion of a separator which we use in this 
paper. The basic idea is to remove nodes or edges in order to split a graph 
into pieces, each ot~ which is "small" with respect to the original graph in that 
its node ~ve@ht--the sum of the weights of its nodes--is at most a fraction of 
the node weight of the original graph. Let G be a graph with node weights. 
If G is undirected, we define a b-bounded node separator of G to be a set of 
nodes of G whose removal separates G into pieces, where the node weight of 
each piece is at most a fraction b of the total node weight of G. The cost 
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of the separator is the total weight of the removed nodes. A method for 
finding small node separators 1 follows from the work of Leighton and Rao. 
The following lemma, which is due to Leighton, Makedon, and Tragoudas 
[11], is used in our algorithm for interval graph completion. 

L e m m a  2.1 There is a polynomial-time algorithm to find a 3-bounded node- 
separator with cost within a 0 (log n) factor of the optimal ~-bounded node- 
separator. 

For a directed acyclic graph G, we define a DAG edge-separator to be a 
partition of the nodes into two sets, A and B, such that all edges between A 
and B go from A to B. The cost of the separator is the total weight of edges 
from A to B. The separator is said to be b-balanced if A and B each have 
node weight at least a fraction b of G's node weight. We show a reduction 
from finding a small separator of this form to finding a small separator of 
another form, defined by Leighton and Rao. Our reduction is closely related 
to one we presented in a recent paper [8]. 
D e f i n i t i o n  [12]: For a strongly connected graph G I, the edge separator 
determined by a three-way node partition (S, T, S U T) is the set of edges 
that leave S or enter T. The cost of the separator is defined to be the sum 
of the weights of the edges comprising it. Such a partition is said to be b- 
balanced if the node weight of S U T and the node weight of S U T are each 
at least a fraction b of the total node weight of G I. 

Leighton and ltao prove the following lemma. 

L e m m a  2.2 There is a polynomial-time algorithm to find a ¼-balanced edge- 
separator with cost within a 0 (log n) factor of cost of the minimum-cost 
1-balanced edge-separator. 

We now derive from Lemma 2.2 a result about finding edge-separators in 
DAGs. 

L e m m a  2.3 Given a DA G G with weights on the nodes and edges, we can 
find a ~-balanced DAG edge-separator of G whose cost ks within a factor of 
O(logn) of the minimum-cost ½-balanced n A G  edge-separator of G where n 
is the total number of nodes in G. 

P r o o f :  We transform the DAO G to a strongly connected graph G ~ as follows. 
The nodes of G' are the same as the nodes of G. An edge (u, v) in G of weight 
w is replaced in G ~ by a pair of edges, an originaledge (u, v) of weight w and a 

1Here and henceforth, a "small" separator is one whose size is nearly minimum. 
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Figure 1: Augmentation of the DAG G to a strongly connected graph G' by 
adding a reverse edge of infinite cost for every original edge (~t, v) of cost w 
in G. 

"...% 
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Figure 2: The augmented graph G' is separated by the algorithm of Leighton 
and Rao [12] into three pieces S, T and S U T, where the edges of the sep- 
arator are those leaving S or entering T as shown above. Since both pieces 
S U T and S U T are ¼-balanced, assuming that S has more weight than T, 
then the partition A and B is ~-balanced and forms a DAG separator of G. 
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reverse edge (v, u) of infinite weight (see Fig. 1). We now find an approximate 
¼-balanced edge-separator (S, T, S U T') in G' using the algorithm of Lemma 
2.2. Note that no reverse edges can be in this separator since they have 
infinite weight. Hence, the edges in the separator are all original edges (Fig. 
2). Without loss of generality, suppose S has at least as much node weight 
as T. Hence, its weight is at least a fraction 1/8 of the total node weight 
of G. In this case, we choose A to be S, and B to be T U (SU-T). Then 
the partition (A, B) in the original graph G is a ~-balanced directed edge 
separator. The cost of the directed edge separator in G is the same as the 
cost of the ¼-balanced edge-separator in G I, which in turn is at most O(log n) 
times the minimum cost of a ½-balanced edge-separator in G. It remains only 
to point out that for any ½-balanced DAd edge-separator (A, B) in G, there 
corresponds a L-balanced edge-separator in C, namely (A, ~, B). D 

3 Approximating scheduling problems 
In this section, we present approximation algorithms for two single-processor 
scheduling problems. The performance bounds are polylogarithmic in the 
total weight of the input graph. We define each of these problems and present 
the approximation algorithms below. 

3.1 Minimizing storage-time 
Let G = (V, E) be a DAd. The nodes represent tasks to be scheduled on 
a single processor. The time required to execute the task ~ is denoted by 
l(~). Each edge e = (u, v) has a weight w(e) associated with it. This weight 
represents the number of units of storage required to save the intermediate 
results generated by task u until they are consumed at task v. Let ~" = 
vl , . . . ,v ,~ be a topological ordering of G. We denote the storage-time cost 
for this ordering by C~. We define C~ as C~ = ~allcdsc,,s(e)w(e) where 
s(e) for an edge e = (v~,vj) is exactly the sum of the execution times of 
all tasks ordered between tasks vi and vi, inclusive. In other words, s(e) = 
~]~=~ l(vk) The problem is to find the topological ordering rop~ that minimizes 
the storage-time cost over all orderings. When w(e) equals 1 for all edges e, 
then this problem reduces to the NP-complete problem of directed optimal 
linear arrangement [3]. We call s(e) and s(e)w(e) respectively the stretch 
and the weighted s~retch of the edge e. The main result of this section is as 
follows. 
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T h e o r e m  3.1 There is a polynomial-time algorithm to minimize the total 
storage-time cost to within a factor of O(log n log L), where L is the sum of 
execution times, and n is the number of nodes. 

3.1.1 A lower b o u n d  

We first derive a lower bound for the cost of a topological ordering using a 
technique analogous to that of Hansen[5]. Consider a topologicaJ ordering 
r = v l , . . . ,  v,~. We define the cut Si to be the set of edges going from nodes 
v~ through vi to the rest of the nodes. We define the cost C i of this cut to 
be the sum of the edge weights of all the edges in the cut, multiplied by the 
weight of the vertex vi. We use the following observation to obtain the lower 
bound on the cost of the minimum storage-time schedule. 

Obse rva t ion  3.1 For any topological ordering r, the sum of the weighted 
stretches of all the edges, and hence the storage-time cost of % is at least 

Oi. 

L e m m a  3.1 For a computation DAG G with total completion time L such 
that the length of each task is at most L/6, the optimal storage-time cost 
is at least f](LB) where B is the weigh~ of the minimum ½-balanced DAG 
edge-separator of G. 

Proof i  Consider the topological ordering r~t that minimizes the storage- 
time product in G. Let i be the minimum index such that i-1 E==I is at 

1 of L, and let j be the maximum index such that ~ , = i  g(v,~) is at least least 
! of L. For any k between i and j - 1 inclusive, the cut Sk is a ½-balanced 
3 

DAG edge-separator, and hence has weight at least B, where B is the weight 
of the minimum ½-balanced DAG edge-separator. Since we assumed that 
each node has weight at most L/6, it follows that E~=i g(vk) <_ L/3 + L/6, 
SO 

n # - 1  

Cop~ >_ ~ Vkg(vk) >_ B ~ g(vk) >_ BL/6 
k=l  k=i 

[] 

Now, let v be any node in G, let P be the set of ancestors of v (nodes 
that  can reach v), and let Q be the set of descendents of v. Let G~ be the 
graph obtained from G by deleting v, contracting P to a single node p, and 
contracting Q to a ~ngle node q; We find a minimum DAG edge-separator 
(.4, B) wherep E A and q E B. Such a separator can be found using a 
rain-cut computation in G~. Let A be the set of nodes of G in A, together 
with P, and let B be the set of nodes of G in/~,  together with Q. We call 
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Figure 3: H there is a node of weight more than a sixth of the total node 
weight in the graph G, then we partition the nodes of G - {v} into pieces 
P, Q and I that are respectively before, after, and incomparable to v in the 
partial order represented by the DAG G. We then contract P and Q to 
single nodes p and q respectively and find a minimum weighted DAG edge- 
separator (A, B) of weight M in G~. We use Mi and Mo to denote the weights 
of the incoming and outgoing edges of v respectively. We can then derive a 
minimum v-DAG edge-separator (A, B). Namely, we let A equal .4U P - {p} 
and B equal/Y U Q - {q}. 

(A, B) the minimum v-DAG edge-separator. Intuitively, (A, B) is a DAG 
edge-separator in G -  {v}. In the next lemma, we give a simple lower bound 
on the storage-time cost of G. This lower bound is particularly useful in the 
case where there is a node of large weight. The lemma is illustrated in Fig. 
3. 

Lemma 3.2 Let M be the minimum v-DAG edge-separator in 0~. Let Mi 
and Mo be the total weight of the incoming edges and outgoing edges of v, 
respectively. Then (M q- Mi q- Mo) times the weight of v is a lower bound on 
the storage-time cost of G. 

3.1.2 T he  algorithm 

We now give the algorithm for finding a topological ordering of a DAG G that 
approximately minimizes the storage-time cost. The algorithm is as follows. 
If G consists of a single node, the algorithm is trivial. Otherwise, we proceed 
recursively as follows. 

1 If every node is of weight at most a factor ~ of the total node weight of 
the graph L, then we find an approximately minimum ~-balanced DAG edge- 
separator (A, B) in G as outlined in Lemma 2.3. The topological ordering of 
G consists of the nodes of A, recursively ordered, followed by those in B, also 
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recursively ordered. If there is a vertex v in G of weight greater than L/6, 
then we make use of Lemma 3.2 and find a minimum v-DAG edge-separator 
(A, B). The topological ordering of G consists of the recursive topological 
ordering of A, the node v, and the recursive topological ordering of B. 

3.1.3 P e r f o r m a n c e  G u a r a n t e e  

Let us introduce some notation for convenience. We define a stage of the 
algorithm as follows. Let G1 , . . . ,  Gk be the subgraphs of G at the beginning 
of stage i. At the first stage there is only one such graph and that is G 
itself. The subgraphs at the beginning of the stage i + 1 are the subgraphs 
A1, B1, A2, B2, . . . ,  Ak, Bk, where Aj and Bj are the graphs found by decom- 
posing Gj for recursively ordering its nodes. For each such graph G~, some of 
its edges are removed during the decomposition. These edges go between the 
node sets Aj and Bj if Gj has no large weight node. If Gj has a large weight 
node v, then the edges either go between the node sets Aj and Bj, between 
the nodes in Aj and the node v, or between the node v and the nodes in Bj. 

Obse rva t ion  3.2 Each edge in G is removed once and exactly once by the 
algorithm. 

L e m m a  3.3 The sum of the weighted stretches of the edges removed at a 
stage is at most O( C, opt log n), where C~op~ is the storage time product for the 
optimal topological ordering ropt, and n is the number of nodes in the graph. 

Proof." Let G1 , . . . ,  Gk be the subgraphs at stage i. Consider a subgraph G i 
with node weight Li. 

If Gj does not have a high-weight node, then by lemma 3.1 the optimal 
storage time product 6'~t for ordering its nodes is at least BjLi/6, where Bj 
is the weight of the minimum ½-balanced edge separator of Gj. By lamina 
2.3, the weight of the edges removed from Gj is at most cBj log nj, where nj is 
the number of nodes in Gi, and c is the constant for the separator algorithm. 
Hence the sum of their stretches in the ordering given by the algorithm can 
be at most cLiB j log nj, and hence at most 6cC~: log n. 

Now suppose G i has a node of weight at least ~t. In this case, we use 
Lemma 3.2, which is illustrated in Fig. 3. By Lemma 3.2, C~: is at least 
(Mi + Mo + M)-~-. The sum of the weighted stretches of the edges removed 
from Gj is at most (Mi + Mo + M)Li and hence is at most 6C~t. 

Since ~i=lk C~,ti is at most C~o~,, it follows that the sum of stretches of 

the edges removed at a stage is at most O (C~-o, t log n).  [] 
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Since the node weights of each of the subgraphs at stage i is at most (~)iL, 
where L is the sum of the execution times of the tasks in G, it follows that 
the number of stages in the above algorithm is 0 (log L). Thus, Theorem 3.1 
follows from Lemma 3.3. 

3.2 Minimizing weighted completion time 
We describe the problem of minimizing the weighted completion time of a 
DAG G. The nodes of G represent tasks. The execution time for the task t is 
denoted by l(t), and the weight of the task is denoted by w(t). For an ordering 
T = {Vl, . . . ,  v,,}, the weighted completion time is given by r,'~=l w(vi)cr(vi), 
where a(vk) denotes the time at which the task for the node vk is completed 
in the given ordering. We assume that the execution of the first task begins 
at time 0, so cz(vk) is given by ~i=1 ~ I(v~). The objective is to find a topological 
ordering of G such that the weighted completion time is minimum over all 
such orderings. The problem is known to be NP-complete [3]. 

We reduce the above problem to an instance of minimizing the storage- 
time product. From the given DAG G representing the computation, we 
build an augmented DAG G' as follows. We add a new node s to O and add 
directed edges from s to each of the vertices of G. We then assign weights 
to the nodes and edges of G I as follows. Each original node v, is allotted a 
weight equal to its execution time l(v). The added node s is assigned weight 
0. All the original edges of G are weighted 0. For every node t, the added 
edge (s, 4) is assigned weight w(~). It can easily be checked that the value 
of the storage-time product for any ordering of G ~ is exactly the value of 
the weighted completion time of G for the same ordering of the nodes as 
in G' - {s}. This implies that approximating the minimum storage-time 
product for G ~ yields an approximation for the weighted completion time for 
G with the same performance guarantee. Using the results of the previous 
section, we can prove the following theorem. 

T h e o r e m  3.2 There is a polynomial-time algorithm to minimize the weighted 
sum of completion times to within a factor of 0(lognlog L), where L is the 
sum of execution times~ and n is the number of nodes. 

4 Interval  Graph C o m p l e t i o n  

The interval graph completion problem consists in finding a smallest interval 
graph that contains the input graph as a subgraph, and has the same nodes as 
the input graph. An interval graph is a graph whose vertices can be mapped 
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to distinct intervals in the real line such that two vertices in the graph have 
an edge between them iff their corresponding intervals overlap. 

Fact  4.1 [13] There exists an ordering of the nodes in any interval graph 
such that if  a node u with number i has an edge to a node v with number j ,  
for i less than j ,  then every node with number between i and j has an edge 
to v. 

We shall refer to such an ordering as the "interval graph ordering." An 
ordering of the nodes of the input graph induces an interval graph containing 
the input graph as a subgraph, namely the graph obtained by adding edges 
as needed until the condition of 4.1 holds. This augmentation can be done 
in time proportional to the number of edges in the augmented graph. Our 
algorithm for interval graph completion will output an ordering such that 
the total number of edges in the augmented graph is small with respect to 
the optimum. Let G be the input graph, and let G~t be a smallest graph 
containing G. We shall start by giving a lower bound for the number of edges 
in G~t. We then present an ordering of the nodes of G such that the number 
of edges in its augmented interval graph is no more than a polylog factor of 
the number of edges in G~t. 

4.1 Lower Bound 

We again use the technique of Hansen to get a lower bound on the size of 
the minimum interval graph. 

L e m m a  4.1 If B is the size of the optimal ~-bounded node-separator for G, 
then G~t has ~ (Bn) edges. 

Proof :  Let interval graph ordering of Gopt be ~" = v l , . . . , vn .  For each i, 
consider the set of nodes V~ = {v l , . . . ,  vi}. Let the set of neighbors of V~ not 
in ~ be Ni, and suppose it has size Ci. For i between n/3 and 2n/3, each 
of the node sets Ni is a ~-bounded node-separator and hence Ci must be at 
least B for each such cut. Moreover, every node in Ni is adjacent to some 
node in ~ .  Hence by fact 4.1 it follows that the node vi must have edges in 
G~t to each of the nodes in Ni. Thus the total number of edges in Go~ must 

2_.~ 

be at least ~i~1 Ci which is at least ~i%~ Ci and hence at least Bn/3. [] 

4.2 Algori thm 

We now give the algorithm for ordering the nodes of G. If G consists of 
at most two nodes, we use any ordering. Otherwise, we find a ~-bounded 
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node separator of G using the algorithm of Lemma 2.1, order each of the 
pieces recursively, and pick any order between the pieces. The nodes in the 
separator are then ordered arbitrarily after all of the pieces. Let a be the 
resulting ordering of the nodes of G. By adding edges to G, we can obtain 
a graph G* for which a is an interval graph ordering. Namely, if a node u 
numbered/has an edge to a node v numbered j ,  then for every k (i < k < j) ,  
we add an edge between v and the node numbered k. We show in the next 
subsection that the number of edges in G* is small. 

4 . 3  P e r f o r m a n c e  G u a r a n t e e  

L e m m a  4.2 The number of edges in G* is no more than a 0 (log2n) factor 
of C~t, the number of edges in Gopt. 

Proofi  Let us define the concept of stages as before. Let the ith stage 
consist of subgraphs G1,. . . ,Gk. The first stage consists of the graph G. 
Let Sj be the the node separator for Gj found by the algorithm. Let the 
optimally augmented interval graph for Gj have Cj edges. By lemma 4.1 Cj 
is at least Bjnff3, where Bj is the optimal ~-bounded node separator of Gj, 
and nj is the total number of nodes in G i. All the edges in the interval graph 
produced by the algorithm must go between the pieces of Gj and the node 
separator of Gj found by the Mgorithm. The total number of such edges is 
at most xjnj, where xj is the size of the node separator of Gj found by the 
Mgorithm. By Lemma 2.1, xj is at most cBj log hi, where c is the constant in 
the guarantee of the algorithm. By Lemma 4.1, therefore, the total number 
of edges added between the pieces of Gj is at most 3clog n times Cj. Since 
the value of ~ = 1  Cj is at most the number of edges in G~t, it follows that 
the totM number of edges added to the intervaJ graph at any stage is at most 
3clog nCopt. Moreover, since the sizes of the subgraphs go down by a factor 
of 3/4 at each stage, it follows that the total number of stages is O (log n). 
This implies the lemma. [] 
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