
ELSEVIER Information Processing Letters 50 (1994) 185-190

Information
Processing
Letters

A primal-dual approximation algorithm for
the Steiner forest problem

R. Ravi *
Department of Computer Science, University of California, Davis, CA 95616, USA

Communicated by D. Gries; received 5 August 1993; revised 12 January 1994

Abstract

Given an undirected graph with nonnegative edge-costs, a subset of nodes of size k called the terminals, and
an integer q between 1 and k, the minimum q-Steiner forest problem is to find a forest of minimum cost with at
most q trees that spans all the terminals. When q = 1, we have the classical minimum-cost Steiner tree problem
on networks. We adapt a primal-dual approximation algorithm for the latter problem due to Agrawal, Klein and
Ravi to provide one for the former. The algorithm runs in time 0 (n log n + m) and outputs a solution of cost at
most 2 (1 - l/ (k - q + 1)) times the value of a lower bound on the cost of any solution. Here n and m denote
respectively the number of nodes and edges in the input graph.

Key words: Analysis of algorithms; Approximation algorithms, Primal-dual method; Steiner tree problem

1. Introduction

We consider a generalization of the classi-
cal Steiner tree problem in networks called the
Steiner forest problem. We are given an undi-
rected graph with nonnegative costs on the
edges, and a subset of k nodes called terminals.
Given an integer q between 1 and k, the goal
is to tind a forest of minimum cost contain-
ing at most q trees spanning all the terminals.
When m = 1, we have the classical Steiner tree

* This research was done while the author was at Brown
University and supported by an IBM Graduate Fellow-
ship, NSF PYI award CCR-9157620 and DARPA con-
tract N00014-91-J-4052 ARPA Order No. 8225. Email:
ravi@cs.ucdavis.edu.

problem where a single tree of minimum cost
spanning all the terminals is required.

The Steiner forest problem, introduced by
Duin and Volgenant [4], was motivated by
the following application. A tree in the forest
spanning a subset of the terminals represents es-
tablishing a service for the terminals in the tree.
The cost of the tree may be taken to be the cost
of providing the service. The q-Steiner forest
problem corresponds to minimizing the service
cost for the terminals when there is provision for
providing the service using q different agents.
For instance, if the costs obey the triangle in-
equality, the Euler tour of each tree in the forest
can be short-cut into a cycle, thus providing a
tour covering all the terminals in the tree. When
q agents are available to perform q tours that

0020-0190/94/$07.00 @ 1994 Elsevier Science B.V. All rights reserved
SsDIOO20-0190(94)00034-V

186 R. Ravi /Information Processing Letters 50 (1994) 185-190

are required to cover all the terminals at mini- approximation guarantee follows. Note that the
mum cost, then a solution to the q-Steiner forest Steiner tree problem is a special case of a gen-
problem on these terminals is a good starting eralized problem where each pair of terminals
point for this simple heuristic for the q-Steiner is specified as a site-pair (or more efficiently,
tour problem. Applying our heuristic for the q- a “root” terminal is chosen and for every other
Steiner tour problem gives a solution of cost at terminal, a site-pair consisting of the root and
most2(1-l/(k-q+l))timestheminimum. this terminal is specified).

The Steiner tree problem is one of the first
few problems proved NP-complete by Karp
in [lo]. Since then, much work has gone to-
wards finding exact and approximate solutions
to the problem [7-9,18,19 1. Several researchers
[5,14,16,17 J have independently provided ap-
proximation algorithms for this problem with
performance ratio 2 (1 - 1 /k) where k is the
number of terminals specified to be connected
in the problem. There have been several effi-
cient algorithms devised to provide such an
approximation [11,13,20] and the best-known
running time for such an algorithm is that of
Mehlhom [13 1. Mehlhorn’s algorithm runs in
time 0 (II log n + m) where y1 and m are the
number of nodes and edges in the Input graph
respectively. Zelikovsky [2 1] devised the first
approximation algorithm with a better perfor-
mance ratio. His algorithm outputs a solution of
cost at most 1 l/6 times the minimum. Berman
and Ramaiyer [21 have generalized Zelikovsky’s
result to provide approximation algorithms with
even better performance ratios.

We adapt the algorithm and proof technique of
Agrawal, Klein and Ravi to provide an approx-
imation algorithm for the Steiner forest prob-
lem. In addition, we use Mehlhorn’s technique
in implementing our algorithm efficiently. The
following is our main result.

Theorem 1. For every positive integer q, there
is an 0 (n log n + m)-time approximation algo-
rithm for the q-Steinerforestproblem that outputs
asolutionofcostatmost2(1-l/(k-q+ 1))
times the minimum, where k is the number of
terminals speci$ed in the problem, and n and m
are the number of nodes and edges in the input
graph respectively.

In the special case when all the nodes in the
graph are terminals, it is not hard to infer that
our algorithm returns an optimal solution. We
call this special case the q-spanning forest prob-
lem.

Agrawal, Klein and Ravi [l] provided an
approximation algorithm for a different gener-
alization of the Steiner problem. They consider
the generalized Steiner forest problem wherein
given an undirected graph with nonnegative
edge-costs, and a set of site-pairs of nodes, a
subgraph of minimum cost in which each site is
connected to its mate is required. They provide
an approximation algorithm with performance
guarantee 2 (1 - 1 /k) where k is the number of
nodes specified as sites in the input. They prove
the performance guarantee of their algorithm
by relating the cost of the approximate solution
they find to the value of a packing of cuts that
separate some site-pair. They argue that the
value of such a packing is a lower bound on the
cost of any solution; Since they find a solution
of cost at most roughly twice this value, the

Theorem 2. For every positive integer q, there
is an O(n log n + m)-time algorithm for the q-
spanning forest problem that outputs a solution
of minimum cost, where n and m are respectively
the number of nodes and edges in the input graph.

2. Background

We define and use the notion of multicuts to
derive a lower bound for our problem. The in-
put to the problem is an undirected graph G =
(V, E) with nonnegative edge-costs and a sub-
set A of terminals that must be spanned by a q-
Steiner forest. Let IAl = k. Let the cost on edge
e be denoted by c (e) .

Definition. A multicut M is defined by a parti-
tion of V into sets 5, Vz, . . . , 6. The set of edges

R. Ravi/Information Processing Letters 50 (1994) 185-190 187

between nodes in different sets in the partition
constitute the multicut. Call VI,. . . , K the blocks
of the partition. A block is termed active if it con-
tains at least one terminal and its complement
contains at least one terminal. Thus a block 5 is
activewhenever K::nA # Band (v-V)&4 # 8.
For a subset vi of nodes, we use r (vi> to denote
the set of edges with exactly one endpoint in K.

The following lemma is immediate.

Lemma 3. Let F denote the set of edges of a q-
Steinerforest and let V,, V,, V, denote a multi-
cut with q’ active blocks where q’ > q. Then

c Ir(K)nFI 2 q’-q+ 1.
active blocks V,

We can generalize the above lemma by con-
sidering an edge-disjoint collection of multicuts.

Lemma 4. Let F denote the set of edges of a
q-Steiner forest and let MI, Mz, Ml be edge-
disjoint multicuts where Mi has qi (> q) active
blocks. Then

multicuts M, active blocks 4 E Mi

a (4i-4 + 1).

We can use the above lemma to provide a
lower bound on the number of edges in a q-
Steiner forest using multicuts with more than q
active blocks in them. To generalize this notion
to the case when the edges have costs, we need
more definitions.

We associate a rational weight 1p with multi-
cut Mp. Define the load on an edge of the graph
due to a multicut Mp with weight Ap as follows.
If an edge has endpoints in two distinct blocks
K and 5 of P, and if both V and Vj are active,
then the load on the edge due to the multicut Mp
is defined to be 2 + jlp. If only one of I/;: and Vj
is active, then the load on the edge due to Mp
is defined to be ,lp. Otherwise, the edge has zero
load due to Mp. Lemma 3 generalizes as follows
to the weighted case.

Lemma 5. Let F denote the set of edges of a q-
Steiner forest and let M = V,, V2, V, denote a
multicut of weight AM with q’ active blocks where
q’ > q. Then the cost of the edges in F is at least
(4’ - 4 + 1)AM.

A c-packing of multicuts in a graph is a collec-
tion of multicuts Ml, M2, M,, each multicut
Mi associated with a rational weight ;li, such that
for every edge e, the sum of the loads on e due
to all the multicuts in the collection is at most
c (e), the cost of the edge. Further the number
of active blocks qi in multicut Mi is greater than
q for all i. Applying Lemma 5, we arrive at the
following generalization of Lemma 4.

Lemma 6. Let F denote the set of edges of a q-
Steiner forest and let MI, M2, Ml denote a c-
packing of multicuts, where multicut Mi has qi
(> q) active blocks and weight Ai. Then the cost
of the edges in F is at least Ci (qi - q + 1)Ai.

We define the quantity xi (qi -q + 1)Ai in the
above lemma as the lower bound on the problem.
We use this lower bound in our analysis of the
performance guarantee.

3. The algorithm

The notion of a multicut is dual to that of
a q-Steiner forest. Our algorithm is primal-dual
in that it runs in iterations and, in each iter-
ation, collects a greedy c-packing of multicuts
and at the same time partially constructs the
Steiner forest. During the iterations, we main-
tain that the cost of the partial forest constructed
is roughly at most twice the lower bound col-
lected from the multicuts using Lemma 6.

The multicuts are collected by growing ordi-
nary cuts greedily starting from all the terminals
in a breadth-first fashion. This way of collect-
ing a dual solution was introduced by Agrawal,
Klein and Ravi in [11. Each of these greedy
cuts around terminals is considered an active
block of the partition defining a multicut in the
dual solution. All the nodes of the graph not
in an active block together form an inactive

188 R. Ravi /Information Processing Letters 50 (1994) 185-190

block in the multicut partition. If we have q’ ac-
tive blocks that grow for distance 6, then using
Lemma 5, the value of the lower bound col-
lected by the multicut defined by this partition
is (q’ - q + 1)6. When two growing cuts around
active blocks “collide” or load an edge com-
pletely, then we merge them into a single active
block of the partition. Note that the multicuts
we collect all have at most one inactive block.

As we grow such active blocks to form a se-
ries of multicuts, we also maintain a tree for
each active block that connects all the terminals
within the block. Whenever we merge two active
blocks into one, we connect the corresponding
trees using a shortest path that is testimony to
the collision of these two blocks. The breadth-
first growth of the active blocks lends a notion
of time to the running of the algorithm. At any
instant in the running of the algorithm, the total
distance from the start of the algorithm that any
of the currently active blocks have grown for is
defined to be the current time. Using this detini-
tion of time, if two active blocks collide at time
t, then there is a path of length at most 2t be-
tween a pair of terminals, one from each of these
colliding blocks. We use this path to connect the
trees of the colliding blocks.

We continue until there are at most q active
blocks in the multicut at which point we have at
most q trees spanning all the terminals. We stop
and output this q-Steiner forest as the approxi-
mate solution.

4. Performance guarantee

The proof of the performance guarantee is
based on the following lemma that we prove by
using induction on the steps of the algorithm.

Lemma 7. At any time t in the running of the
algorithm, let LBI denote the total lower bound
accumulated until time t using the multicuts col-
lected so far in the running of the algorithm, and
let kr (> q) denote the number of active blocks in
the multicut. Let F, denote the cost of the forest
built up so far. Then

~(4) < 2(LB,-(k-q+ l).t),

where c (Ft) is the sum of the costs of all the edges
in Ft.

Proof. The proof uses induction on the running
of the algorithm. Assume that the lemma holds
for any time t’ < t. We prove it for time t. There
are two distinct kinds of steps that the algorithm
performs: a grow step which happens over a pe-
riod of time, and a build-network step that hap-
pens at certain instants of time. We show that
during both types of steps of the algorithm, the
claim in the lemma is maintained.

Suppose the algorithm grows a multicut for the
period from t’ to t without adding any edge to the
solution F. Then Ft = F,I and kt = kr . More-
over, the increase in the lower bound is exactly
(kt - q + 1) (t - t’). Using this and the induc-
tion hypothesis at time t’, we see that the claim
in the lemma continues to hold.

The build-network step of the algorithm hap-
pens at certain instants of time. Consider such
an instant t. In this step, we merge two active
blocks into one thus reducing kt by one. But at
the same time we connect the spanning trees of
the two merging blocks using a path of length at
most 2t. Thus assuming that the statement of the
lemma holds just before the merge, it continues
to hold after the merge as well since the increase
in the left-hand side in the cost of the solution is
at most the increase in the right-hand side due
to the decrease in kr.

This completes the inductive verification of
the lemma. 0

Suppose the algorithm stops at time ts and out-
puts a q-Steiner forest F, then by applying the
above lemma, we have that

c(F) < 2GB, - ts)

since k,, = q. Since the maximum value of LB,
is attained if all the multicuts collected have the
maximum number of active blocks, we have that

LBt, G (k-q + l).t,.

Substituting above and simplifying gives the per-
formance guarantee in Theorem 1.

R. Ravi /Information Processing Letters 50 (1994) 185-190

5. Implementation

To arrive at an efficient implementation of
the algorithm, observe that the algorithm may

Acknowledgement

Thanks to Ravi Sundaram for a careful read-
ing of this paper.

189

be simply restated as follows: Compute an aux-
iliary distance-graph on the terminals where the
edge between two terminals has weight equal to
the shortest path between them in the graph.
Run a Minimum Spanning Tree algorithm in this
graph until there are at most q connected com-
ponents. Add the shortest paths corresponding
to the edges added in the auxiliary graph to ob-
tain the final q-Steiner forest. This is because the
uniform breadth-first growth of the active blocks
would cause exactly the shortest-paths between
distinct active blocks to be picked in the same
order in which they would be picked by the MST
algorithm.

We can now use the algorithm of Mehlhorn
[131 to compute an auxiliary graph that is
equivalent to the one we described above in
terms of running the MST algorithm. However,
Mehlhorn showed that this alternative graph
can be computed using just one single-source
shortest-path computation. This takes time
0 (IZ log IZ + m) using Fredman and Tarjan’s
implementation of Dijkstra’s algorithm [6 1.
Running the MST algorithm in this alternative
graph until at most q components result and
converting this to a q-Steiner forest can be ac-
complished in this time as well. This proves the
running time in Theorem 1.

6. Remarks

It is not hard to see that the algorithm reduces
to a truncated version of Kruskal’s algorithm for
MSTs [121 in the case of q-spanning forests ad-
dressed in Theorem 2. At any step in Kruskal’s
algorithm when x edges have been added to the
solution, these edges form a minimum-cost set
of x edges that induce an acyclic subgraph. Thus
it is also easy to see that this algorithm outputs
a minimum-cost solution as claimed in Theo-
rem 2.

References

111

121

131

[41

[51

161

171

A. Agrawal, P. Klein and R. Ravi, When trees collide:
An approximation algorithm for the generalized
Steiner tree problem on networks, in: Proc. 23rd Ann.
ACM Symp. on Theory of Computing (199 1) 134-
144.
P. Berman and V. Ramaiyer, Improved approxi-
mations for the Steiner tree problem, in: Proc. 3rdAnn.
ACM-SIAM Symp. on Discrete Algorithms (1992)
325-334.
S.E. Dreyfus and R.A. Wagner, The Steiner problem
in graphs, Networks 1 (1971) 195-207.
C.W. Duin and A. Volgenant, Some generalizations
of the Steiner problem in graphs, Networks 17 (1987)
353-364.
C. El-Arbi, Une heuristique pour le problem de l’arbre
de Steiner, RAIRO Oper. Res. 12 (1978) 207-212.
M.L. Fredman and R.E. Tarjan, Fibonacci Heaps
and their use in improved network optimization
algorithms, IEEE (1984) 338-346.
S.L. Hakimi, Steiner’s problem in graphs and its
implications, Networks 1 (1971) 113-133.

[S] F.K. Hwang and D.S. Richards, Steiner tree problems,
Networks 22 (1992) 55-90.

[9] A. Jain, Probabilistic analysis of an LP relaxation
bound for the Steiner problem in networks, Networks
19 (1989) 793-801.

[lo] R.M. Karp, Reducibility among combinatorial
problems, in: R.E. Miller and J.W. Thatcher, eds.,
Complexity of Computer Computations (Plenum
Press, New York, 1972) 85-103.

[111 L. Kou, G. Markowsky and L. Berman, A fast

12

13

14

algorithm for Steiner trees, Acta Inform. 15 (198 1)
141-145.

] J.B. Kruskal, On the shortest spanning subtree of a
graph and the traveling salesman problem, Proc. Amer.
Math. Sot. 7 (1) (1956) 48-50.

] K. Mehlhom, A faster approximation algorithm for
the Steiner problem in graphs, Inform. Process. Lett.
27 (3) (1988) 125-128.

] J. Plesnik, A bound for the Steiner tree problem in
graphs, Math. Slovaca 31 (1981) 155-163.

[15] V.J. Rayward-Smith, The computation of nearly
minimal Steiner trees in graphs, Internat. .I. Math. Ed.
Sci. Tech. 14 (1983) 15-23.

[161 G.F. Sullivan, Approximation algorithms for Steiner
tree problems, Tech. Rept. 249, Dept. of Computer
Science, Yale University, 1982.

