Rapid Rumor Ramification:
Approximating the minimum broadcast time
(Extended Abstract)

R. Ravi *

DIMACS Center
Department of Computer Science
Princeton University
Princeton, NJ 08544-2087

Abstract

Given an undirected graph representing a network
of processors, and a source node conlaining a message
that must be broadcast to all the nodes, find a scheme
that accomplishes the broadcast in the mintmum num-
ber of time steps. At each lime step, any processor
that has recetved the message is allowed to communi-
cate the message to at most one of its neighbors in the
network, i.e. can communicate via a telephone call to
a neighbor. This has been termed the minimum broad-
cast time problem under the telephone model and is
known to be NP-complete.

The minimum broadcast time in a graph is closely
related to the poise of the graph. The poise of a tree
ts defined to be the quantity (mazimum degree of any
node in the tree + diameter of the iree). The poise
of a graph ts the minimum poise of any of ils span-
ning trees. Computing the poise of a graph is shown
to be NP-hard and an algorithm for computing a span-
ning tree of approzimately minimum poise is derived.
This algorithm is then used to derive an O(ic:—;%)‘
approzimation for the minimum broadcast time prob-
lem on an n-node graph.

Our algorithm eziends to many generalizations of
the problem such as the multicast problem, a telephone
model allowing conference calls, and to the closely re-
lated minimum gossip time problem.

*Most of this work was done while the author was at the De-
partment of Computer Science, University of California, Davis,
and supported by NSF Grant CCR-91-03937. The author also
acknowledges support from a DIMACS postdoctoral fellowship.

02172-5428/94 $04.00 © 1994 IEEE

202

1 Introduction
Motivation and formulation

The minimum broadcast time problem is the fol-
lowing. We are given a connected, undirected graph
representing a set of processors interconnected by an
arbitrary configuration of bidirectional links between
them. The model of communication assumes a global
clock, with the restriction that each processor can
communicate (send or receive) with at most one of its
neighbors in the graph per clock step. This model and
its extensions have been variously termed as the tele-
phone model, the telegraph model, or the single-port
interconnection architecture. Given a source proces-
sor with a message, the problem is that of finding a
scheme which disseminates this message to all the pro-
cessors in the network in the minimum number of clock
steps. This problem is known to be NP-complete [10],
even in 3-regular planar graphs [21]. If the underlying
undirected graph models communication possibilities
between a group of people represented by the nodes,
and the source node represents a person carrying a
piece of rumor that is to be propagated to everyone
in the graph, then the problem becomes one of rapid
rumor ramification.

Let b, ((7) denote the minimum broadcast time with
v as the source node in a graph G. Define the
minimum broadcast time of a graph G as b(G) =
maxyeq by(G). The following lower bound on the min-
imum broadcast time is immediate from the observa-
tion that the number of informed processors at most
doubles with every time step.

Lemma 1 For any source vertez r in a graph G,

b-(G) = [log, |GI]

Previous work and our main result

Given that broadcasting is an important basic
primitive In communication networks, it has received
a lot of interest among researchers in the past [3, 4, 5,
6,7, 8,11, 12, 13, 20, 27, 31, 32]. {13] is a comprehen-
sive survey of the literature related to the broadcast
problem and its relative, the gossip problem, wherein
every node has a unique message that must be dis-
seminated to every other node. A substantial por-
tion of the work in this area has been aimed at con-
structing good broadcast graphs on a given number of
nodes. A broadcast graph on n nodes is one with
the minimum number of edges in which broadcast
from any source can be completed within the lower
bound in Lemma 1. This line of work is pursued in
3, 4, 5, 11, 12, 20, 31, 32]. Fault-tolerant broadcast
graphs were considered in [3, 19] while some general-
izations of the problem were addressed in [27]. [30]
considers broadcasting on trees and provides an opti-
mal algorithm for the minimum broadcast time prob-
lem that runs in polynomial time while [8] consider the
problem in trees with multiple originators. Broadcast-
ing in grid-graphs was considered in [7].

In contrast, there is little known work on estimat-
ing the broadcast time of arbitrary networks, though
many of the above-mentioned articles allude to this
problem. Scheuermann and Wu [29] proposed a
heuristic algorithm that works by computing a max-
imum matching along which to accomplish the next
step in the broadcast scheme; no guarantees were pro-
vided. Feige, Peleg, Raghavan, and Upfal [9] analyze
a randomized broadcasting scheme in arbitrary net-
works and and derive bounds on the expected and al-
most sure coverage times for such broadcast schemes.
They also analyze the performance of such schemes in
hypercubes and random graphs.

The only known approximation algorithm for the
minimum broadcast time problem prior to this work
was that of Kortsarz and Peleg [16]. They provide an
approximation algorithm that computes a scheme that
completes in time that is within a constant factor of
the minimum plus an additive factor of O(y/n) in an
n-node graph. They give better approximation algo-
rithms for chordal graphs, outerplanar graphs, series-
parallel graphs, and trees of cliques.

The main result of this paper is the first polylog-
arithmic approximation algorithm for the minimum
broadcast time problem.

Theorem 1 There is an O(nmlog?®n)-time algo-
rithm that, given an undirected graph G on n nodes
with m edges and a source node r, computes a broad-

203

cast scheme that completes in time O(b,(G) 2.

Our work improves the approximation result of Kort-
sarz and Peleg by removing the large additive O(y/n)
term. To achieve our result, we investigate a quantity
closely related to the broadcast time of a graph that
we call the poise of the graph. We believe that the
poise of the graph is interesting in its own right and
may have other applications as well. In what follows,
we motivate the definition of the poise of a graph.

Broadcast arborescences

Any broadcast scheme from a source node can be
represented by a directed spanning tree or arbores-
cence of the graph where the edges are directed away
from the source. Given a broadcast scheme, this tree
is defined by choosing, for every node other than the
source, the unique edge along which the message is
conveyed to the node for the first time, as the single
edge directed into this node. It is easy to see that the
digraph defined in this way is a outward-directed ar-
borescence rooted at the source. Conversely, given an
outward-directed arborescence rooted at the source, it
is easy to recursively compute, working bottom-up, an
optimum broadcast scheme that completes in the min-
imum number of steps using only the edges in the tree
(For more details, see [30]). Observe that this span-
ning tree need not even be directed, since the choice
of a source node can be used to direct the edges of
an undirected spanning tree appropriately to form an
arborescence.)

Poise of a graph

We can use the characterization of a broadcast
scheme as an arborescence to derive a good lower
bound on the broadcast time in the graph. The tele-
phone model restriction dictates that the maximum
out-degree of any node in the arborescence defined by
a broadcast scheme is a lower bound on the broad-
cast time for this scheme. The maximum depth of
any node from the root in this arborescence is also
a lower bound on the broadcast time for this scheme
since only neighbors can be informed in a time step.
If A* corresponds to the arborescence defined by the
optimum broadcast scheme for a source node r, then
the two observations above imply that

b (G) > %(Max. out-degree(A”) + Depth(A*))
1
> = Max. out-degree(A
~ 2 all arborescences A{ gree(4)

+Depth(A)}

Motivated by this we define the following problem:
given an undirected graph, find an undirected span-
ning tree in which the quantity (maximum degree of
any node in the tree + diameter of the tree) is mini-
mum over all the spanning trees. For any tree T, we
call the quantity (maximum degree of any node in the
tree + diameter of the tree) the poise of the tree! and
denote this value by P(T). The poise of a graph G,
denoted P((G), is defined as the minimum poise of any
of its spanning trees. A tree on n nodes with the least
poise is one with branching z at each internal node
and with diameter roughly z. The value of z then

obeys ¥ = n solving to z = Q(I—OLEE)%;). Thus the

poise of any graph on n nodes is Q(Blgg%).

We observed that the poise of a graph is a lower
bound on the minimum broadcast time from any
source node in the graph. The next theorem shows
that it is a good lower bound.

Theorem 2 Let P(G) denotle the poise of G and
|G| =n. Then

logn

QP(G)) <b(G) < O(P(G)W

).

The proof of the second inequality in the above the-
orem is constructive: given a tree with poise P, we
demonstrate a broadcast scheme startin% at any root
in this tree which completes in O(Pl—o—g%) steps.
This allows us to reduce the problem of finding a good
broadcast scheme to one of finding a tree of minimum
poise, within a factor of ()(10#;%). However, it is
hard to compute the poise of an undirected graph.

Theorem 3 Computing the poise of an undirected
graph 1s NP-hard.

The reduction is from the Hamiltonian path problem
and is omitted. We present the first approximation
algorithm for this problem.

Theorem 4 There s an O(nmlog® n)-time algo-
rithm to compute a spanning tree of an undirected
graph on n nodes with m edges, such that the poise
of this tree is within O(logn) times the poise of the
graph plus an additive term of O(log2 n).

Given this theorem, we can now apply the results in
Theorem 2 along with the lower bound in Lemma 1
to derive the approximation algorithm for minimum
broadcast time in Theorem 1.

IThis name is inspired by the fact that this quantity rep-
resents how well poised between width (the maximum degree)
and height (the diameter) the tree is.

204

Extension: the multicast problem

Our algorithms extend naturally to a generalization
of the broadcast problem commonly referred to as the
multicast problem. As before, we are given a source
node in an undirected graph, but we only require the
message to reach a subset of the nodes called the ter-
minal nodes. Note that the terminal nodes may not
necessarily induce a connected subgraph so we may
need to use other non-terminal nodes to accomplish
the multicast. The objective is to devise a scheme that
achieves the multicast in the minimum time. Since
this problem generalizes the minimum broadcast time
problem, it is NP-complete.

Our treatment above for approximating the broad-
cast time using spanning trees of minimum poise ex-
tends in a straightforward manner by considering the
analogous problem of computing a Steiner tree for the
terminal nodes with minimum poise. Details are in

[24].
Gossiping in minimal time

The minimum gossip time problem [17] is an exten-
sion of the minimum broadcast time problem in which
every node in the graph has a unique message that
must be disseminated to every other node in the min-
imum number of time steps. As before, at each clock
step, every node can only communicate with one of its
neighbors. However any number of messages may be
transmitted in a single communication step between
two nodes.

The unlimited bandwidth assumption at each step
immediately gives an approximate reduction between
the minimum time broadcast and gossip problems.
The minimum broadcast time from any node in a
graph is a trivial lower bound on the minimum gos-
sip time in the graph. On the other hand, a broadcast
scheme from any node in the graph completing in time
b can be used to accomplish gossip in time 2b as fol-
lows: Use the broadcast scheme in the reverse order
to collect all the messages from all nodes at the root
of the broadcast tree in b steps?. Then use the scheme
in the forward direction to broadcast all the collected
messages and complete the gossip in the next b steps.

Given this approximate equivalence between the
two problems, our results for the broadcast time prob-
lem extend naturally to the minimum gossip time
problem. The extension to minimum time gossip
among a subset of terminal nodes is also equally direct

2This process has been termed census-taking in [1].

using our results on approximate multicasting. The
details are omitted.

Extension: Conference calls

Our approach also extends to solving a variant of
the broadcast problem where at every clock step, any
processor can communicate with up to a given num-
ber, c, of its neighbors, thus allowing more communi-
cation per clock step. This extension of the telephone
model can be thought of as one allowing “conference
calls” with up to ¢ neighbors per time step. This model
is fairly realistic since such a bound may be imposed
either by the communication hardware at each proces-
sor or by the high setup costs involved in exchanging
a message with a neighbor. Our approximation algo-
rithm extends to this version and we have the following
theorem.

Theorem 5 There is an O(nmlog®n)-time algo-
rithm that, given an undirected graph G on n nodes
with m edges, a parameter ¢ and a source node r, com-
putes a broadcast scheme allowing ¢ conference calls
to neighbors from every node at each clock step, such
that this scheme completes in time O(bﬁ(G)%ZgL")
where b3(G) is the minimum broadcast time of any
scheme for this root under this model When ¢ =
Q(P(G)logn) where P(G) denotes the poise of G, the
performance ratio can be improved to O(logn).

The above result generalizes in a straightforward
manner to the corresponding multicast problem allow-
ing conference calls. We omit a description of these
extensions here.

Special cases: Networks with bounded de-
gree or diameter

In the special case of graphs with bounded de-
gree, we can approximate the minimum broadcast
time within a constant factor, the factor depending
on the bound on the degree.

Theorem 6 There is a polynomial-time algorithm
that, given an undirected graph in which the mari-
mum degree of any node is bounded by a fized number
B, compute a broadcast scheme from a source r that
completes in time 2B - b.(G).

The above theorem also extends to the multicast prob-
lem on graphs of bounded degree.

The case of bounded diameter graphs is however
nearly as hard as the original problem as testified by
the following theorem.

205

Theorem 7

Given a polynomial-time p-approzimation algorithm
to the minimum broadcast time problem on a graph
of bounded diameter (in fact, for a graph of diame-
ter at most two), there is a polynomial-time 2p + 2-
approzimalion algorithm for the minimum broadcast
time problem on any graph.

In the next section, we detail the connection be-
tween the minimum broadcast time and the poise of
a graph. In Section 3, the algorithm for computing
a spanning tree of approximately minimum poise is
presented. Section 4 contains the proofs of a few ex-
tensions and we conclude with some open problems.

2 Broadcast schemes and trees of poise

We prove Theorem 2 in this section. Let r be a node
from which the minimum time to accomplish broad-
cast is b(G). Consider an optimum broadcast scheme
finishing in time b(({) starting at r. This defines an
outward-directed arborescence rooted at r in a natural
way as described in Section 1. Let T be the underlying
undirected spanning tree defined by this arborescence
rooted at r. Then b(() is at least as much as the
maximum degree of any node in T minus one. Fur-
thermore, b(() is also at least as much as the depth
of the arborescence from which T is derived, and thus
at least half the diameter of T'. Since the poise of T’
is defined as the sum of the maximum degree and the
diameter of T', we have that b(G) = Q(P(G)).

We prove the second inequality in Theorem 2 by
showing that b(G) = O(P(G)ﬁ%), and applying
the lower bound of P(G) = Q(Flgolgog—n)‘ To show the
former claim, we exhibit a simple algorithm to com-
plete broadcast in this many time steps starting from
any root 7 and using only edges in a spanning tree of
G with poise P(G). Let T be such a spanning tree.
Let T, denote the outward arborescence derived from
T by rooting it at r and directing all the edges in T
away from r. The maximum out-degree of any node
in T is at most P(G) and the longest directed path in
T has length at most P(G).

Note that given the tree T and the root r, the min-
imum time to accomplish broadcast from r using only
edges of T can be determined in polynomial time by
using dynamic programming and working bottom-up
in the rooted tree T, [30]. However, we wish to bound
the broadcast time of the resulting scheme in terms of
the poise of T', so we use a broadcast scheme that is
simpler to analyze.

The scheme to broadcast the message from the root
r is specified completely by specifying for each internal
node v in T}, the order in which the children of v in T,
will be informed. We determine this order according
to the number of nodes in the subtree of T, rooted at
this child. For any node v, let T, denote the subtree
of T, rooted at node v and |7, | denote the number of
nodes in T,,. We order the children of an internal node
v of T, as vy, vy, ...,vq where d is the out-degree of v
and |T,,,| > [Ty, | for 1 < i< d— 1. After the time
at which v first receives the message from its parent
in T, for the next d steps, it sends the message to its
children in the order vy, vy, ..., v4. The broadcast is
then accomplished recursively in each of the subtrees
To,-

Let B(n,d, &) denote the time taken by this scheme
to complete broadcast using a directed tree on n nodes
with maximum out-degree d and depth §. We have the
recurrence

B(n,d,6) = lfg{}?&’{B(m,d,é ~ 1) +1}

where n; is the number of nodes in the i** subtree of
the root, and d’ is the out-degree of the root of this
tree on n nodes. Since we ordered the subtrees in
non-increasing order of size we have n; < %.

Claim 1

log, n

<d
B(n,d,d) < Tog, d

+ 6.

Proof: We verify that the above solution satisfies the
recurrence for B(n,d,§). The left-hand side becomes

d- II‘;—?—Z + 6 while the right hand side has value d -
llifg% +i+6—1. It is easy to verify that this is at most
the left-hand side using n; < ¥ and that ﬁ > @

for 2 < i < d. The case i = 1 is handled by using the
slack of one in the additive § term. 0O

Applying Claim 1 to the tree T, and noting that
the sum (maximum degree + depth) of this tree is
O(P(G)), we have that the broadcast completes in
O(P(G)Tg}‘;r%j) steps.

The bound of O(Pl%’g%) on the broadcast time of a
scheme derived from a tree of poise P is existentially
tight in the following sense: For any value of P, there
is a tree of poise P using which any broadcast scheme
takes Q(Pl%’g%) steps to complete. An example of
such a tree is a complete P-ary tree of depth roughly

_ logn
logpn = _LlogP'

3 Approximating the poise of a graph
A bicriteria formulation

To find a spanning tree of approximately minimum
poise, we first recast this problem as the following bi-
criteria problem: given an undirected graph and a pos-
itive integer A at least as much as the diameter of the
graph, find a spanning tree of the graph of diameter
at most A such that the maximum degree of any node
in this tree is minimum. We call this problem the
diameter-constrained minimum degree spanning tree
problem. It is easy to see that this problem is NP-
hard since the degree-constrained spanning tree prob-
lem [10] is a special case of this problem without the
diameter restriction. We provide the following bicri-
teria approximation result.

Theorem 8 There is an O(nmlogn)-time algorithm
that, given an undirected graph G on n nodes with
m edges and a positive integer A greater than the
diameter of G, finds a spanning tree of of degree
O(D* logn + log? n) and diameter O(Alogn) where
D* is the minitmum mazimum degree of any spanning
tree of diameter at most A.

The above theorem is the essential ingredient in
the proof of Theorem 4. Suppose we run the above
algorithm with the value of A set to P({7), then
by the definition of P(G) and the performance guar-
antees in Theorem 8, the output spanning tree has
maximum degree O(P(G)logn+log®n) and diameter
O(P(G)logn). Thus this spanning tree has poise as
claimed in Theorem 4. To complete the proof of The-
orem 4, we must describe how we can determine P(G)
so as to run the above algorithm. To do this we sim-
ply run the above algorithm for decreasing candidate
values of A starting from n to find the smallest value
A such that the output spanning tree has maximum
degree O(Alogn + log?n). We can achieve the run-
ning time bound in Theorem 4 by performing a binary
search for A in the range [2,...,n] and running the
algorithm in Theorem 8 at every step of this search.
Thus we use O(logn) invocations of the algorithm in
Theorem 8 giving the running time in Theorem 4.

The proof of Theorem 8 uses the rough framework
of the algorithms in [25] and randomized rounding [23]
applied to a concurrent multicommodity flow problem.
Before we prove this theorem, we describe some back-
ground material that will be useful in understanding
our algorithm and its analysis.

Background

Concurrent multicommodity flow with length
bounds, and randomized rounding

Concurrent flow is an optimization version of multi-
commodity flow defined by Shahrokhi and Matula [28].
For our purpose, we consider a multicommodity flow
problem specified as follows: a network with a node-
capacity of one on every node, and a set of commod:-
ties, each specifying a pair s;,¢; of nodes and a demand
of one unit of flow between them. The edges in the
network are assumed to have unbounded capacity.

An assignment of flow is feasible if for every node,
the flow through that node is at most its capacity. The
instance is feasible if there exists a feasible flow. Even
for a non-feasible assignment of flow, it is possible to
measure how far it is from being feasible. For any as-
signment of flow satisfying the demands, the conges-
tion u is the maximum ratio of flow through a node to
the node-capacity (one in our case). The concurrent
flow problem is to find the minimum congestion u, i.e.
the minimum number such that the instance becomes
feasible when all capacities are multiplied by u.

We consider a more restricted version of the conges-
tion problem described above where we require each
flow path to be bounded in length, i.e., number of
edges in the flow path. We can use integer program-
ming to set up a multicommodity flow problem on the
input network G where each node has unit capacity
and the number of edges in any flow path for any com-
modity is restricted to be at most L. We call this the
L-bounded congestion problem. We can do this as in
[18] where such a formulation is used in approximating
network embeddings. We detail this below.

To limit the length of a flow path, we specify that
for some input number L, no flow can travel more then
L edges. We set up one unit of flow of commodity ¢
from s; to t;. Let N(v) denote the set of nodes adja-
cent to v in the input network. We interpret fi(uv)
as being the flow of commodity i through edge (u,v)
at distance d from s;. Using these variables we have
the following integer program.

Minimize u

subject to constraints

> (Filkl) = fiy (1K)

keN()

> 0

Vie{l,...,p}, l€eV, 0<d<1L

207

D folsik) = 1 Vie{l,...p}
kEN(s:)
1
0

SN S (fitk) + fikl) < uw VeV

kEN() 0<d<L i

3 ST (kD = Fia (16)) =
0<d<L keN(l)
leV

Vie{l,...,p},

Fi(lk) € {o,1}
vie{l,...,p} V(,k)eE Vje{0,...,L—1}

The first set of equations enforce flow conserva-
tion. They require that any flow that is traversing the
(d+1)** edge on leaving a node { must have entered the
node on an incoming edge that was the d'*, i.e., must
have traveled distance d. The second and third groups
of equations specify the conditions on the sources and
sinks of each commodity. The fourth group of equa-
tions define the node-capacity constraints of the flow
problem. The last set of constraints enforce integral-
ity.

It is easy to find a fractional solution for the above
linear program minimizing the congestion ratio in
which a unit of flow is split among various paths car-
rying fractional flow values. This can be done by
solving the above linear program without the integral-
ity constraints. For our application, we shall require
that flow paths carry integral flow values. Minimiz-
ing congestion under this condition is NP-complete
[10]. However, Raghavan and Thompson have given
a polynomial time algorithm for approximately mini-
mizing congestion under the integral flow restriction.
They show that given any fractional flow solution with
congestion ug, one can use their randomized rounding
technique to obtain an integral flow solution®.

Theorem 9 (Raghavan & Thompson) Let

the value of the minimum congestion for a fractional
flow solution for an L-bounded congestion problem be
denoted by up. Then there is an integral flow solution
in which each integral flow-path has length at most L
and the congestion uy is O(up +logn), where n is the
number of nodes in the graph.

Raghavan [22] has shown that the rounding can be
done deterministically and such an integral solution

3Though the original result of Raghavan and Thomson did
not address the length-bounded flow problem, the extension of
their result to this case, as observed in [18], is immediate.

otherwise

can be found in polynomial time. Alternatively, one
can use the fast approximation algorithm of Klein,
Stein, and Tardos [15] to directly obtain an integral
solution. For the special case we consider here, their
algorithm can be shown to give an expected running
time of O(nmlogn) in the randomized version, with
a factor of n overhead for the deterministic version.

A tree-pairing result

Next, we recall a tree decomposition result used in
(14, 25).

Lemma 2 Let T be a tree with an even num-
ber of marked nodes. Then there is a pairing
(vi,wy),. .., (vk, wi) of the marked nodes such that the
v; — w; paths in T are edge-disjoint.

A pairing of the marked nodes that minimizes the
sum of the sizes of the tree-paths between the nodes
paired can be verified to obey the property in the
lemma above. We use this lemma in the proof of the
performance guarantee.

The approximation algorithm

We describe now the algorithm referred to in The-
orem 8. Let A denote the bound on the diameter of
the tree specified in the problem, and D* the minimum
maximum degree of any spanning tree of diameter at
most A.

Overview

The algorithm begins with the empty set of edges as
the solution subgraph where each node is in a single-
ton connected component. A connected component
maintained in the current solution is called a cluster.
The algorithm works in O(logn) iterations where n
is the number of nodes in the original graph, merging
clusters during each iteration by adding paths between
them. We reduce the number of clusters by a constant
fraction at each iteration via merging to ensure that
the number of iterations is as desired.

The clusters maintained by our algorithm represent
node-subsets of the input graph G. However, they
do not represent a partition of the nodes of the in-
put graph. This is because of the way in which we
merge the clusters in the algorithm. For each clus-
ter we maintain a spanning tree on the nodes in the
cluster. The spanning trees of the clusters maintained
by the algorithm are not necessarily edge-disjoint as
a result of our merging procedure. We sketch this

208

procedure below. We identify a center in the span-
ning tree of each cluster?. In each iteration, most of
the clusters are grouped with other clusters, and one
of the clusters in each group is chosen as the mid-
cluster. For every cluster in a group other than the
mid-cluster, we add a path from its center to the cen-
ter of the mid-cluster. This path may involve nodes
that occur in other clusters currently maintained by
the algorithm. The addition of these paths allows us
to merge all the clusters in this group into one. How-
ever, while merging, we ensure that the new cluster
formed has at most one copy of any node or edge.

If we ensure that the paths added to merge any
cluster in a group to the mid-cluster has length at most
A, then we can ensure inductively that the spanning
trees we maintain for the clusters have approximately
low diameter. Furthermore, if we add paths to merge
clusters such that the maximum degree of any node
due to all the paths added in an iteration is small, since
the number of iterations is small, we ensure that the
spanning tree of the single cluster formed at the end
of the algorithm also has low maximum degree. This
1s how the performance guarantees of the algorithm
are proved.

The Algorithm

1 Initialize the set of clusters C to contain n sin-
gleton sets, one for each node of the input graph.
For each cluster in C, define the single node in the
cluster to be the center for the cluster. Initialize
the iteration count i := 1.

2 Repeat until there remains a single cluster in C

3 Let C denote the set, of clusters at the beginning
of this iteration.
Define Vi to be

{v : v is the center of a cluster in C}, ie. the
set of all the centers of clusters in C.

4 Set up a A + 1-bounded congestion problem on

the input graph G as follows.

5 Define a commodity j for each node v; in V;.
The source of this commodity is the node v;
itself. We connect all the nodes v, such that
k # j using directed arcs to a new node t;.
This new node is the sink for commodity j.
The nodes are assigned unit capacity and the
length bound on the flow-paths is A+1, where
A is the diameter bound input to the problem.

6 Find an approximately optimal integral solu-

tion to the flow problem as in Theorem 9. This

*Intuitively, a center is a node that is roughly in the middle
of a longest path in the tree.

10

11
12

13

14

15

provides a set of flow paths, one for each com-
modity j going from v; to some v; where k # j
and the length of this path is at most A.

Construct an auxiliary digraph G; on the node
set V; modeling the way the flow for the com-
modities were satisfied. For each commodity j,
we include the arc (vj,vx) in G; where vy is
the destination node for the flow path for this
commodity. This arc denotes a flow path P; of
length at most A from v; to vx in G.

Identify a subgraph H; of the auxiliary graph
G; that is a forest of directed trees. This step
is elaborated below in Lemma 3. Each of these
directed trees is an inward arborescence on at
least two nodes in V; and each node of V; is in
exactly one of these trees

For each directed tree T, in the forest H;

Bicolor the arcs in T, by partitioning them
into arcs in odd and even levels. The level
of a node is its distance from the root. Odd
level arcs are those with their heads pointing
to nodes in odd-numbered levels and the even
level arcs are defined similarly. Let E; denote
the color class with the maximum number of
arcs. Note that F; is a set of stars, where
all the arcs are directed towards the center
of the star. Let S = {sy,...,5,} denote the
subset of these stars that have at least two
nodes in them. For a star sy € S, the node
into which all the edges are directed is defined
as the midpoint and denoted cy.
For each star s, € S
For each node ¢, in sy that is not the mid-
point ¢, of this star, add the flow path
P, corresponding to the commodity for c,.
Note that this path joins ¢, to ¢, and has at
most A edges.
Denote the union of all the paths described
in the previous step along with the spanning
trees of all the clusters whose centers occur
in sy by Ey; the set of nodes in Ey form the
new cluster. The graph formed by the edges
in Ey is connected and may even be cyclic
or contain multiple copies of an edge. Define
the spanning tree for this new cluster as a
breadth-first tree of this graph rooted at the
midpoint ¢y. This node is also designated
the center of the new cluster.
Update C by removing all the clusters whose
centers occur in sy and inserting the new
cluster formed by merging these clusters.

=1+ 1.

209

16 Output the spanning tree of the single cluster in
C.

We now detail Step 7 by proving the following
lemma.

Lemma 3 Given a directed graph G' in which every
node has exactly one outgoing arc, we can find an edge-
induced subgraph H' of G' that is a forest of directed
trees, where each directed tree in the forest is an in-
ward arborescence on at least two nodes of G’ and ev-
ery node of G' is in exactly one of these trees.

Proof: We prove the lemma by exhibiting a simple
algorithm to construct such a forest. Starting at an
arbitrary vertex, consider the directed path defined by
tracing for every node, the unique arc going out of the
node, until this walk meets itself, i.e., the arc out of
the last node is directed to a node already in the path.

‘ontract this path into a supernode. This supernode
represents a collection of at least two nodes, with no
edges directed out of it in G’. Also the directed path
constructed defines an inward arborescence rooted at
the last node in the path.

We can now repeat the above algorithm starting at
another arbitrary vertex in G/, the only difference be-
ing that this walk may end in a supernode. In this
case, we add the nodes in the walk to the supernode
and also add the directed path leading to the supern-
ode to the arborescence for the supernode. We con-
tinue this process until no original vertex remains.

It is easy to see that the set of edges defined by the
arborescences for all the remaining supernodes defines
a subgraph H’ obeying the conditions in the Lemma.
o

The Performance Guarantees

We prove the performance guarantees using a series of
lemmas. Before that, we prove a simple property of
the algorithm that will be useful later. The following
lemma shows that though the same node of G may
appear in several clusters in the same iteration of the
algorithm, the centers of these clusters are all distinct
nodes of G. The proof is by a simple induction on the
iteration count and is omitted.

Lemma 4 At any iteralion i in the running of the
algorithm, the centers of the clusiers at the beginning
of this iteration are all distinct.

Next we show that the number of clusters reduces
by a constant factor at each iteration.

Lemma 5 At any iteration i in the above algorithm,
the number of clusters reduces by a factor of one-third
as a result of the merges done in this iteration.

Proof: The reduction in the number of clusters at any
iteration 1 is exactly equal to the number of arcs in all
the stars in the set S identified in this itertion by the
algorithm. As a result of the bicoloring and choosing
the bigger color class in Step 10, this is at least as
much as half the sum of all the edges in all the trees
T, in the auxiliary subgraph H; for this iteration. For
a tree Ty on t nodes, the contribution by this tree
to this sum is [£51]. Since ¢ > 2, this is at least ¢/3.
Since any node in G; is in some tree T by the property
of H;, and since |G;| = |C|, we have that).]%‘- is
at least Lgl- proving the lemma. 0O

Since the algorithm starts with n clusters where n
is the total number of nodes in the input graph, and
stops when there is one cluster, the following corollary
is immediate.

Corollary 1 The number of iterations of the above
algorithm s O(logn).

In the next lemma, we show that the diameter only
increases by an additive amount of 2A per iteration
as we merge clusters.

Lemma 6 Let C be a clusler formed at iteration i of
the algorithm. Then the diameter of the spanning tree
of C' maintained by the algorithm is al most 21A.

Proof: We prove the lemma by maintaining the fol-
lowing stronger claim inductively.

Claim 2 Let C be a cluster with cenler ¢, formed al
iteration t of the algorithm. Then any node u in C has
a path of length at most iA to cy n the the spanning
tree of C maintained by the algorithm.

Proof of claim: The proof is by induction on the
iteration count i. The basis when ¢ =1 is trivial.

To prove the induction step, consider a cluster '
formed at iteration ¢ (> 1) by merging many clusters
that are grouped in a star s, in H;. Recall that ¢, is
the midpoint of the star s,. Let Cy be the mid-cluster
in the group defined by s,. i.e., the one whose center is
¢y. Consider how the spanning tree for the new cluster
C is constructed in Step 13. We form the edge set Ey
by unioning all the paths of length at most A from
centers ¢, # ¢y in the star s, to the midpoint ¢y and
all the spanning trees for all the clusters in the group
of s,. We then choose a breadth-first tree rooted at c,
in this graph to obtain the spanning tree for the new
cluster with center ¢,. To prove the claim, we show

210

that any node u € C has a path of at most 1A edges
to cy.

Consider anode u € C. The node u must be a node
in either a cluster C; in the group of sy or in a flow
path P,. If u is in a flow path P,, since this path has
at most A edges, there is trivially a subpath of this
path from u to ¢, with at most A edges. If u is in
the mid-cluster Cy, then by the induction hypothesis
there is a path with at most (¢ — 1)A edges from u to
¢y in the spanning tree for Cy, and hence a path of
length at most A edges to ¢,. Finally if u is in some
cluster C, # Cy, concatenating the path from u to c,
with at most (i — 1)A edges in the spanning tree for
C, (by the induction hypothesis) and the flow path P,
between ¢, and cy, there is a path from u to ¢; with
at most 1A edges. Thus the Claim and the Lemma
are proved. 0

We have the following corollary from the above
lemma and Corollary 1.

Corollary 2 The diameter of the spanning tree out-
put by the above algorithm is O(Alogn).

The following lemma bounds the degree of any node
due to edges added in each iteration.

Lemma 7 Let D* be the minimum mazimum degree
of any spanning tree of the input graph with diameter
at most A. At each tteration i of the algorithm, the
mazimum degree of any node due lo edges added to
merge clusters in this iteration is O(D* + logn).

Proof: To prove the above lemma, we show that at
any iteration ¢ of the algorithm, there is an integral
solution to the concurrent flow problem set up in Step
4 of the algorithm of congestion at most 2D*. Since
this also yields a fractional flow with the same value
of congestion, it then follows from the performance
ratio in Theorem 9 that the set of flow paths found
in this iteration has congestion O(D* + logn) at any
node. But the paths chosen to merge clusters in this
iteration are a subset of all the flow paths, and the
maximum degree at any node due to these paths is at
most the node-congestion due to the flow paths at this
node, proving the lemma.

It remains to prove that there is an integral solu-
tion to the flow problem of congestion at most 2D* at
any iteration i. To see this, suppose that the number
of center nodes in G is even. Consider an optimal
solution T to the bicriteria problem, namely, a span-
ning tree of diameter at most A and maximum degree
at most D*. By Lemma 4, the centers in (; are all
distinct, so we can apply Lemma 2 to T* with the
nodes in G; as the marked nodes. This gives a pair-
ing of the centers such that the paths between pairs

in T* are edge-disjoint. Consider the integral solu-
tion to the concurrent flow problem where for a pair
(vj, vk) of centers in the pairing, we send one unit of
commodity j from v; to vy and one unit of commodity
k from vi to v; along the path in T7*. The length of
this path is at most A since the diameter of T* is at
most A. The congestion at any node due to all such
flow paths is at most 2D* since each edge in the tree is
used at most twice (once in each direction), the paths
between pairs in T* are disjoint, and the maximum
degree of any node in T* is D* by definition. This
provides the solution to the concurrent flow problem
as desired. When there are an odd number of nodes
in G;, we can omit one node and apply the above ar-
gument and finally route flow from the omitted node
to a closest node in 7™ while obeying the bound on
the node congestion. This completes the proof. 0O
We have the following corollary from Corollary 1 and
the above lemma.

Corollary 3 The mazimum degree of any node in
the spanning itree output by the above algorithm is
O(D™ logn + log® n).

Corollaries 2 and 3 together prove the performance
guarantees in Theorem 4. As mentioned earlier in the
remarks following Theorem 9, the flow-rounding step
can be accomplished in expected O(nmlogn) time
and this is the dominating step in each iteration of
the algorithm. The running times for the flow prob-
lems in the successive iterations reduces geometrically
since the number of commodities reduces geometri-
cally. Thus the total running time for all the flow
problems over all iterations is still O(nmlogn). This
completes the proof of Theorem 8.

4 Extensions

4.1 Bounded-degree graphs

For the special case of graphs with bounded degree
we can approximate the minimum broadcast time eas-
ily within a constant factor, the factor depending on
the bound on the maximum degree. We use the simple
observation below to obtain this result.

Lemma 8 Given a spanning tree with mazimum de-
gree D and diameter A, there is a broadcast scheme
starting from any node as the root that completes in
DA steps.

Any greedy broadcast scheme in which an inter-
nal node, after having received the message, commu-
nicates it to its children in any order in the subsequent

steps without any delay obeys the above lemma. This
is because the message to the last node to be informed
travels a path of length at most A with the possibility
of being delayed at each intermediate node for D steps
as a result of queuing.

Given the above lemma and bound on the maxi-
mum degree of the graph, the problem of computing
a good tree in which to accomplish the broadcast re-
duces to that of finding a tree of minimum diameter.
This problem is exactly solvable [2, 26] in polynomial
time. Observing that half the diameter of the graph
is a lower bound on the broadcast time and using a
minimum diameter tree to accomplish broadcast as in
Lemma 8 gives Theorem 6. The results in [2, 26] on
the minimum-diameter Steiner tree problem allow a
direct extension of Theorem 6 to the corresponding
multicast problem.

4.2 Bounded-diameter graphs

We now prove Theorem 7 showing that the case
of bounded-diameter graphs is nearly as hard as ar-
bitrary graphs with respect to approximability of the
minimum broadcast time problem.

Suppose we are given a p-approximation algorithm
for the minimum broadcast time problem for graphs
of diameter two. Given an arbitrary input graph GG
with minimum broadcast time b(G), we construct a
graph H from G by adding a new node r with edges
to all nodes in G. Clearly H has diameter two and
the minimum broadcast time of H denoted b(H) is at
most b(G) + 1.

Claim 3 Any broadcast scheme for H starting from
the node v and completing in C steps can be used to
accomplish broadcast in G in 2C + dia(G) steps where
dia(G) denotes the diameter of G.

A p-approximation to the minimum broadcast time
problem in H from r outputs a scheme taking at most
pb(H) < p(b(G) + 1) steps. Using this scheme and
Claim 3, we can obtain a scheme for broadcasting in
G from any node within 2p(b(G) + 1) + dia(G) steps.
Since b(G) > %29 this is at most (2p+2)b(G) steps
asymptotically, giving Theorem 7.

Proof of Claim: We show that any broadcast scheme
for H starting from the node r and completing in C
steps can be used to accomplish broadcast from any
source node s in G in 2C + dia(G) steps. From the
source s, we first send the message to all the nodes that
the root r informs directly in the scheme for H. Call
such nodes primary nodes. Since the whole broad-
cast in H takes at most C steps, there are at most

C primary nodes. To send the message from s to the
primary nodes, we use a breadth-first tree rooted at
s pruned appropriately to contain all primary nodes
and only the primary nodes as leaves. Thus this tree
has at most C leaves. Furthermore, any path in this
tree from s to a leaf has length at most dia(G) since
we chose a breadth-first tree. It is easy to now verify
that any greedy scheme that broadcasts using this tree
takes time at most C + dia(G) to complete. The key
observation is that the maximum time for the message
to reach any of the leaves is at most the sum of the
delays along the path from the source to this leaf. The
delay due to the length of the path is at most dia(G),
and the queuing delays along the path sum to at most
the sum of the degrees of all the nodes. This latter
sum is at most C, the total number of leaves in the
tree. To summarize, all the primary nodes in H can
be informed in G starting from any source s within
C + dia(G) steps. Emulating the scheme for H in G
for the next C steps ensures that all nodes in G are
informed within at most 2C + dia(G) steps in total.
This completes the proof of Theorem 7.

5 Open Problems

We have provided approximation algorithms for a
variety of problems involving message dissemination
in a network in the minimum number of steps under
a telephone model. Finding an approximation algo-
rithm for minimum broadcast time with a better per-
formance ratio is an important open problem. The
broadcast problem for digraphs modeling networks
with unidirectional links does not seem amenable to
our techniques. A good definition of a fault-tolerant
broadcast scheme for a given network (as opposed
to building fault-tolerant networks supporting rapid
broadcasting) and an approximation algorithm that
computes such a scheme would be useful. A dis-
tributed algorithm for broadcasting in approximately
minimum time would also be desirable.

Acknowledgements

I have greatly benefited in the course of this
work as a result of stimulating discussions with Ajit
Agrawal, Philip Klein, Madhav Marathe, and Balaji
Raghavachari. Thanks to Balaji also for reading over
an early version of this article and pointing out an
error and a correction leading to Theorem 7.

212

References

[1] A. Bagchi, S. L. Hakimi, J. Mitchem, and E.
Schmeichel, “Parallel algorithms for gossiping by
mail,” Inf. Proc. Lett. 34, pp. 197-202 (1990).

P. M. Camerini, G. Galbiati, and F. Maffioli,
“Complexity of spanning tree problems: Part 1,
Euro. J. of O. R. 5, (1980), pp. 346-352.

S. C. Chau and A. L. Leistman, “Construct-
ing fault-tolerant minimal broadcast networks,” J.
Combin. Info. & Syst. Sci., Vol. 11, No. 1m pp.
1-18 (1986).

M. J. Dinneen, M. R.. Fellows, and V. Faber,
“Algebraic construction of efficient broadcast net-
works,” Applied Algebra, Algebraic Algorithms,
and Error Correcting Codes 9, LNCS 539, pp. 152-
158 (1991).

(4]

(5]

A. M. Farley, “Minimum-time line broadcast net-
works,” Networks, Vol. 10, pp. 59-70, (1980).

[6] A. M. Farley, “Broadcast time in communication
networks,” SIAM J. Appl. Math. 39, pp. 385-390
(1980).

[7] A. M. Farley and S. T. Hedetniemi, “Broadcast-
ing in grid graphs,” Proc. 9th Southeastern Conf.
Combin., Graph Theory, Comput., pp. 275-288,
(1978)

(8] A. M. Farley and A. Proskurowski, “Broadcasting
in trees with multiple originators,” SIAM. J. Alg.
Disc. Meth., Vol. 2, pp. 381-386, (1981).

[9] U. Feige, D. Peleg, P. Raghavan, and E. Upfal,
“Randomized broadcast in networks,” Proceedings
of the 1990 SIGAL Symposium on Algorithms,
Springer-Verlag LNCS 450.

[10] M. R. Garey and D. S. Johnson, Computers
and Iniractability: A guide to the theory of NP-
completeness, W. H. Freeman, San Francisco
(1979).

[11] L. Gargano and U. Vaccaro, “On the construction
of minimal broadcast networks,” Networks 19, pp.

673-389 (1989).

[12] M. Grigni and D. Peleg, “Tight bounds on min-
imum broadcast networks,” SIAM J. on Disc.
Math., May 1991, pp. 207-222.

{13] S. M. Hedetniemi, S. T. Hedetniemi, and A. L.
Leistman, “A survey of gossiping and broadcasting
in communication networks,” Networks, Vol. 18,

pp. 319-349, (1988).

[14] P. N. Klein, and R. Ravi, “A nearly best-possible
approximation for node-weighted Steiner trees,”
Proceedings of the third MPS conference on Inte-
ger Programming and Combinatorial Optimization
Conference (1993), pp. 323-332.

[15] P. Klein, C. Stein, and E. Tardos, “Leighton-
Rao might be practical: Faster approximation al-
gorithms for concurrent flow with uniform capaci-
ties,” Proc. 22nd ACM Symposium on the Theory
of Computing, pp. 310-321, (1990).

[16] G. Kortsarz and D. Peleg, “Approximation algo-
rithm for minimum time broadcast,” Proceedings
of the 1992 Israel Symp. on Theor. Comp. Sci.,
Springer-Verlag LNCS 601.

[17] D. W. Krumme, G. Cybenko, and K. N.
Venkataraman, “Gossiping in minimal time,”
SIAM J. on Computing, Vol. 21, No. 1, pp. 111-
139, (1992).

[18] F. T. Leighton and S. Rao, “An approximate
max-flow min-cut theorem for uniform multicom-
modity flow problems with application to ap-
proximation algorithms,” Proceedings of the 29th
Symposium on Foundations of Computer Science
(1988), pp. 422-431.

[19] A. L. Leistman, “Fault-tolerant broadcast
graphs,” Networks, Vol. 15, pp. 159-171, (1985).

[20] A. L. Leistman and J. G. Peters, “Broadcast net-
works of bounded degree,” SIAM J. Disc. Math.,
Vol. 1, pp. 531-540, (1988).

[21] M. Middendorf, “Minimum Broadcast Time is
NP-complete for 3-regular planar graphs and dead-
line 2,” Inf. Proc. Leti. 46, pp. 281-287 (1993).

[22] P. Raghavan, “Probabilistic construction of de-
terministic algorithms: approximating packing in-
teger programs,” Proceedings, 27th Annual Sympo-
sium on Foundations of Computer Science (1986),
pp- 10-18.

[23] P. Raghavan and C.D. Thompson, “Provably
good routing in graphs: regular arrays,” in Pro-
ceedings, 17th Annual Symposium on Theory of
Computing (1985), pp. 79-87.

213

[24] R. Ravi, “An approximation algorithm for the
minimum broadcast time problem,” Technical Re-
port TR-CS-94-01, Dept. of Computer Science,
University of California, Davis, (January 1994).

[25] R. Ravi, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, and H.B. Hunt III, “Many birds
with one stone: Multi-objective approximation al-
gorithms,” Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing (1993),
pp. 438-447.

[26] R. Ravi, R. Sundaram, M. V. Marathe, S. S. Ravi,
and D. J. Rosenkrantz, “Spanning trees short or
small,” in Proceedings, Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, (1994), pp.
546-555.

[27] D. Richards and A. L. Leistman, “Generalizations
of broadcasting and gossiping,” Networks, Vol. 18,
pp. 125-138, (1988).

[28] F. Shahrokhi and D. W. Matula. “The maximum
concurrent flow problem,” Journal of the ACM, 37
(1990), pp. 318-334.

[29] P. Scheuermann and G. Wu, “Heuristic algo-
rithms for broadcasting in point-to-point computer
networks,” IEEE Trans. on Computers, Vol,. 33,
pp. 804-811, (1984).

[30] P. J. Slater, E. J. Cockayne, and S. T. Hedet-
niemi, “Information dissemination in trees,” SIAM
J. on Computing, Vol. 10, pp. 692-701, (1981).

[31] J. A. Ventura and X. Weng, “A new method for
constructing minimal broadcast networks,” Net-
works, 23, pp. 481-497 (1993).

[32] D. B. West, “A class of solutions to the gossip
problem; Part 1,” Disc. Math., Vol. 39, pp. 307-
326, (1982).

