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Abstract
We introduce a generic technique to obtain linear relaxations of semidefinite pro-
grams with provable guarantees based on the commutativity of the constraint and the
objective matrices. We study conditions under which the optimal value of the SDP
and the proposed linear relaxation match, which we then relax to provide a flexible
methodology to derive effective linear relaxations. We specialize these results to pro-
vide linear programs that approximate well-known semidefinite programs for the max
cut problem proposed by Poljak and Rendl, and the Lovász theta number; we prove
that the linear program proposed for max cut certifies a known eigenvalue bound for
the maximum cut value and is in fact stronger. Our ideas can be used to warm-start
algorithms that solve semidefinite programs by iterative polyhedral approximation of
the feasible region. We verify this capability through multiple experiments on the max
cut semidefinite program, the Lovász theta number and on three families of semidef-
inite programs obtained as convex relaxations of certain quadratically constrained
quadratic problems.
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1 Introduction

Semidefinite optimization, i.e., the optimization of a linear function over the set of pos-
itive semidefinite matrices intersected with an affine subspace [71], is one of the most
active research areas in convex mathematical optimization. The generic formulation
for a semidefinite optimization problem (SDP) is

min
X∈Sn 〈C, X〉

s.t: 〈Ai , X〉 = bi , ∀i ∈ [r ],
X � 0

(SDP)

where Sn denotes the set n × n symmetric matrices, C ∈ S
n is a symmetric (without

loss of generality) cost matrix, 〈·, ·〉 denotes the Frobenius inner product, r ∈ N, [r ]
denotes the set of integers {1, . . . , r} and a symmetric n × n matrix X is positive
semidefinite, denoted X � 0, if and only if v�Xv ≥ 0 for all v ∈ R

n .
SDPs arise naturally in combinatorial optimization [4, 33, 46, 54], control theory

[1, 37, 57], polynomial optimization [44, 57, 58], machine learning [22, 43] and are
solvable in polynomial time up to an arbitrary accuracy via the theory of interior-
point methods [53]. Nonetheless, it is well known that SDPs are challenging to solve
in practice. Typical off-the-shelf solvers use interior-point methods, which require
computation of large Hessian matrices (and their inverses) and are often intractable
due to memory limitations. For an illustration, see [11, chapter 6.7], [50], and [12]
where it is mentioned that state-of-the-art solver such as MOSEK [6] cannot solve
semidefinite problems with a symmetric matrix X on more than 250 rows. Inspired by
these practical limitations, researchers have proposed several ideas to solve large-scale
semidefinite programs. Among them, we have i) exploiting structure of the problem
(such as sparsity and symmetry), i i) producing low rank solutions, i i i) algorithms
based on augmented Lagrangians and the alternating direction method of multipliers,
and iv) approaches that trade scalability with conservatism by iteratively finding inner
and outer polyhedral approximations of the semidefinite problem. See [49] for a survey
of all of these methods.

Although all of these techniques enjoy a rich literature, the algorithms of iv) are of
special theoretical interest. The cornerstone of these methods is constructing inner and
outer polyhedral approximations of the semidefinite cone in order to find a sequence
of improving feasible solutions together with tighter bounds on the objective of the
SDP, allowing one to trade off between scalability and conservatism.

Research on this class of algorithms is relevant due to its intimate connection with
a fundamental question in convex geometry: can the positive semidefinite cone be
approximated by polyhedra? Taking the perspective of the field of optimization, this
question can be framed by asking if linear programs are strong enough to approximate
semidefinite ones. These twin questions, relevant in the fields of optimization and
convex geometry respectively, have given rise to a thriving body of research [2, 12,
18, 26].

123



Instance-specific linear relaxations of…

Outer approximations have been the focus of substantial effort since the hardness of
SDP comes from the semidefinite constraint and so one may drop it and and add linear
constraints on X implied by X � 0. In this case, (SDP) is relaxed to a linear program.
A typical example is to add the constraints Xi,i ≥ 0, ∀i ∈ [n] and Xii +X j j ±2Xi, j ≥
0, ∀i ∈ [n], ∀ j ∈ [n]which are valid for any X � 0. These relaxations tend to beweak
and seldom used in practice [14, 17]. A well studied example of this phenomenon is
the maximum cut problem and the theoretical hardness of approximating it with linear
programs which we will discuss in depth in Sect. 3.

The previous approach can be improved using ideas of Kelley [40]. The strategy
is to sequentially refine the linear relaxations by aggregation of cutting planes. More
concretely, consider the linear relaxation of SDP given by

min
X∈Sn 〈C, X〉

s.t: 〈Ai , X〉 = bi , ∀i ∈ [r ],
v�Xv ≥ 0 ∀ v ∈ S

(LS )

where S is a finite subset of Rn . Here, we simply insist that v�Xv ≥ 0 only for the
elements v of the setS . If a solution to this program is not positive semidefinite, we
may update S iteratively. This results in the following algorithm:

Algorithm 1
1: Fix a finite setS ⊆ R

n . Drop the semidefinite constraint X � 0 of program SDP and solve the resulting
linear program LS finding a minimizer X∗.

2: while X∗ has a negative eigenvalue do
3: Find a eigenvector v corresponding to the most negative eigenvalue of X∗. Add v to S .
4: Solve the updated linear program to find a new minimizer X∗.
5: end while
6: return X∗.

The specific implementations of this algorithm mainly differ in how one updates
the setS . In [2, 3],the authors use the extreme rays of the set of diagonally dominant
matrices, which are then rotated by matrices obtained from a Cholesky decomposition
of an optimal solution to the dual of (LS ). They also propose an inner approximation of
the positive semidefinite cone based on the so-called DSOSn and SDSOSn,d cones.
In a different line of work [7, 24, 62, 66, 76] chose the elements v of S favoring
sparsity, with the idea that the resulting linear programs will be easier to solve. Bundle
methods, such as the spectral bundle method of Helmberg and Rendl [35] work with
the dual of (SDP), under the further restriction that X has a constant trace. [42] presents
a unifying framework for the latter and similar methods. In [12], the constraint X � 0
is replaced for infinitely many constraints of the form f (X ,Y ) ≤ 0 which must hold
for every Y in some convex set Y and where f is a Lipschitz continuous function.
The authors further argue that one should instead solve a second-order cone relaxation,
adding the constraints
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∥
∥
∥
∥

(

2Xi, j

Xi,i − X j, j

)∥
∥
∥
∥
2

≤ Xi,i + X j, j , ∀i ∈ [n], ∀ j ∈ [n],

which are valid for (SDP).
It is noteworthy that mostly all of these works discuss how to updateS , but seldom

consider how to initialize it. Typically S is set to the standard basis of Rn , resulting
in the linear constraints Xii ≥ 0, i ∈ {1, . . . , n}, which are implied by the constraint
X � 0. Interestingly, under mild conditions, there exists a finite set S that ensures
that the optimal values of the SDP and the linear relaxation LS match, supporting the
approach of using Algorithm 1.

Observation 1 Suppose that both (SDP) and its dual, given by the following semi-
definite optimization program

max
y∈Rr

b�y

s.t: C −
r

∑

i=1

yi Ai � 0
(DSDP)

are strictly feasible. Let y∗ be an optimal solution to (DSDP). Let v1, . . . , vn be
an orthonormal basis of Rn of eigenvectors of C − ∑m

i=1 y
∗
i Ai = S∗ with S∗ =

∑n
i=1 βivv�, and βi the eigenvalues of S∗. Let S ∗ = {v1, . . . , vn}. Then, LS ∗ is

solvable, and its optimal value matches the optimal value of (SDP).

The proof of this observation is deferred to the Appendix A. Similar versions
of Observation 1 can be found in [42] and [68]. In fact, [68] proves that if S =
{u1, . . . , ul} are the vectors generated by the spectral bundle method of [35] of Rendl
et al. to solve DSDP, the objective value of (LS ) matches that of (SDP), but this is
hardly surprising: if we knew in advance the set of vectors S ∗ given by Observation
1, we could set S = S ∗ and solve (SDP) as a linear program. More importantly,
we emphasize that finding the sets S ∗ and {u1, . . . , ul} requires solving another
comparable SDP, namely DSDP.

In this paper, we tackle the task of finding a better set S to initialize Algorithm 1
under certain computational restrictions by drawing inspiration from the question of
when - if ever- one can avoid the iterative procedure suggested by Kelley and exactly
solve the semidefinite program with a linear program. By “exactly solving" we mean
finding a linear relaxation of the SDP whose optimal value equals that of the SDP.

Technically,Observation1 indicates that the questionof exactly solving anSDPwith
a linear problem is ill-posed if one does not restrict the set of algorithms one is allowed
to use to process the instance. We can consider at least three possible approaches to
amend this issue. First, restricting the access one has to the given instance. For example,
say we are not shown a full SDP instance, but one is allowed to sample a small subset
of the entries of the objective and constraints matrices. Second, to only have access to
algorithms with at most a certain computational complexity, say matrix multiplication
complexity. However, this would require fixing a concrete computational model and
proving lower bounds for the complexity of the algorithms to be used, which are
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typically very hard to obtain. A third approach, which we take in this paper, is to
fix an oracle O , that we can query at most a constant number of times. Concretely,
we will assume that we have at our disposal an oracle that can compute a eigenvector
decomposition of a symmetricmatrix, and that can solve linear programsof polynomial
size. If the SDP can in fact be solved with such an oracle, we say it is solvable under
O .

1.1 Hardness of approximation of themax cut problem

The question of finding a good set S to initialize Algorithm 1 amounts to finding a
linear approximations to a semidefinite programs together with a guarantee that the
approximation is good. This line of research is motivated by the question of whether
the maximum cut (max cut henceforth) problem can be approximated using a linear
program by a factor strictly better than 2. This problem consists in finding a bipartition
of the nodes of a given graph that maximizes the number of edges with one end in
both parts. The results of Poljak, Rendl, Goemans and Williamson [33, 60] show
that max cut can be approximated to within a factor of 1.13 by an SDP relaxation.
Therefore, a linear approximation of factor at most 1.769 to that SDP would result
in a linear approximation the the max cut problem with an approximation better than
2.1 Such a result would be striking as the common belief is that max cut cannot be
approximated within a factor better than 2 with a linear program in the restricted case
that the feasible region of the program is independent of the graph and solely depends
on the number of vertices [14, 17, 18, 41, 72]. In Sect. 3, we explore in detail the
hardness of approximation results for max cut.

Drawing inspiration from the study of exact solvability of an SDP with an LP, we
make the case thatwe can obtain “good starting" linear approximations for semidefinite
programs if one is allowed to let S depend on the dual of the semidefinite program.
The heart of the argument is that the obstructions mentioned for max cut emerge
specifically when the polytopes being optimized are determined solely by the number
of variables (node pairs for max cut) in a given instance. Hence, we propose to let
S depend on the matrices C and A1, . . . , Ar which determine the objective and the
constraints of (SDP), and consequently on the feasible region ofDSDP. Crucially, such
formulations trivially avoid the results in [14] and [41]. We call linear approximations
with such dependence “instance-specific". Notice that making some assumption on the
algorithms that we can use to interact with the instance is essential here. To illustrate
this point, imagine we wish to write a linear program to find the max cut valuemc(G)

of a graph G. To do so, we can compute a max cut of the graph using brute force and
then write an LP with a linear constraint insisting that the objective equals mc(G).

1.2 Exact linear relaxations underO

To find candidate setsS that guarantee that the linear program LS is a strong relax-
ation of SDP we first explore sufficient conditions under which the SDP is solvable

1 Since 1.77 · 1.13 = 2.

123



D. de Roux et al.

under the oracle O . Although Observation 1 suggests an answer, such a set of vectors
cannot, as far as we are aware, be obtained with the oracles we are considering. In Sec-
tion 2, we present Theorems 1 and 2 which will provide solvability under O without
requiring the solution of a semidefinite program. Our results are tied to the geometry of
the dual feasible region of SDP, and a relevant case is when the dual feasible region is
a polyhedron. If such is the case and an explicit description of it is available, then pro-
gram DSDP can be solved as a linear program. Theorem 1 shows that under the same
condition the primal SDP can be solved with a linear program as well. Unfortunately,
this theorem is not very useful as it requires enumerating the vertices of the feasible
region, which may grow exponentially. The polyhedral assumption has received atten-
tion from the literature in the context of quadratically constrained quadratic problems
(QCQPs) [74], and perhaps more so a weakening of it: simultaneous diagonalizability.

Definition 1 A set of matrices {Ai }i∈I ⊆ R
n×n where I is some set of indices which

may be infinite, is said to be simultaneously diagonalizable (SD) if there exists an
invertible, orthogonal matrixU ∈ R

n such that every element of the set {U�AiU }i∈I
is a diagonal matrix. Note that U�U = UU� = In as U is orthogonal.

It turns out that if the set of matrices defining the dual feasible region � of SDP is
simultaneously diagonalizable, then � is a polyhedron [74].

A set of matrices {Ai }i∈I ⊆ R
n×n where I is some set of indices, is said to be

simultaneously diagonalizable if there exists an invertible, orthogonal matrixU ∈ R
n

such that every element of the set {U�AiU }i∈I is a diagonal matrix.
{C, A1, . . . , Ar } is simultaneously diagonalizable if there exists U orthogonal s.t.

U�CU , U�A1U , . . . , U�ArU

are all diagonal.

Observation 2 Let � be a spectrahedron given by the representation � = {y ∈ R
n :

C − ∑r
i Ai yi ) � 0}. If the set of matrices {C, {Ai }i∈[r ]} is simultaneously diagonal-

izable, then � is polyhedral.

We prove this fact in Sect. 2, and point out that the given condition is sufficient but
not necessary. Under this more stringent condition, we prove in Theorem 2 thatO can
be used to solve SDP.

It will typically not be the case that the dual feasible set � is polyhedral, and
much less that the matrices C, {Ai }i∈[r ] are simultaneously diagonalizable. In Sect. 2
we prove that this condition is equivalent to the simultaneous diagonalizability of
matrices C − ∑

i Ai pi and C − ∑

i Aiqi for all p and q in Rr . This characterization
suggests that we only insist of the commutativity of the matrices C − ∑

i Ai pi and
C−∑

i Aiqi for some p and q. It turns out that this is the key idea to initialize the setS
inAlgorithm1. InSect. 2we set the theoretical backgroundof these considerations, and
in the following sections we explore their applications to three families of semidefinite
optimization problems: the max cut problem, The Lovász theta number and the more
generic Shor SDP relaxation of quadratically constrained quadratic problems.

We stress that the intention of the presented approach is to further explore when
an SDP can be solved with a linear program, and to improve on existing cutting
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plane approaches to solve SDPs (such as the conservative methods described in [49]).
This family of methods is not the de-facto choice to solve large scale semidefinite
programs, and very strong methods exist which can scale substantially such as [56,
75, 77, 79, 81]. Nevertheless, We point out that these methods might come with their
own limitations and in settings where SDPs appear naturally, such as in the sum-of-
squares hierarchy for polynomial optimization [78], or whenever optimal solutions to
the SDPs are not low rank. In these regimes, polyhedral approximations might be a
good alternative. In addition, developing stronger polyhedral approximations to SDPs
has consequences in approaches to integer semidefinite programs, which has received
attention recently [20, 30, 31, 38, 80] and in spatial branch-and-bound algorithms for
non-convex quadratic problems.

1.3 Overview and outline of this paper

(a) In Sect. 2 we derive two sufficient conditions for solvability of an SDP under O .
These conditions are then weakened to produce a strategy to provide candidate
starting sets S0 for outer polyhedral approximation algorithms to solve SDPs.

(b) In Sect. 3, we study the setting of finding a maximum cut of a graph G using the
semidefinite relaxation of Poljak, Rendel, Goemans andWilliamson [33, 60]. Even
though the conditions for exact solvability are not met, we use the relaxed version
to provide a linear program that certifies a spectral bound in contrast to previous
linear relaxations for themaximum cut problem.We then derive a solvability result
under O , recovering and generalizing a theorem of Alon and Sudakov [5].

(c) In Sect. 4 we introduce linear relaxations of the Lovász theta number SDP and
Shor’s semidefinite relaxation for quadratically constrained quadratic programs.
We recall as well our linear relaxation of max cut, and introduce a linear strength-
ening of the max cut SDP.

(d) In Sect. 5 we extensively test our methods empirically on random instances of the
problems introduced in Sect. 4.Wediscuss solving times of the proposed programs.

(e) InAppendixA,we proveObservation 1 and provide an alternative proof of Lemma
7. In Appendix B,2 we show the performance of our linear program in the case
where the original SDP is itself a relaxation of an underlying optimization problem.
We study the case of the max cut problem and the sparse PCA problem, where
both the SDPs and our linear relaxations can be used to recover a solution to the
underlying problem.We show that the quality of our linear programs is competitive
with that of the SDPs. For max cut, we compare with results obtained by Mirka
and Williamson in [51]. In Appendix C,3 we include additional figures for the
experiments in Sect. 5.

2 Appendix B is included in the online companion of this paper.
3 Appendix C is included in the online companion of this paper.
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1.4 Notation

We denote the set of square, real, n × n symmetric matrices by S
n . We denote the

cardinality of a set I by |I |.
We denote by e1, . . . , en the standard basis ofRn and the n×n identitymatrix by In .

For a symmetric matrixW we let λ1(W ) ≥ λ2(W ) ≥ · · · ≥ λn(W) be its eigenvalues.
When thematrix is clear from the context, we drop the terms in parentheses and simply
write λ1 ≥ · · · ≥ λn . For A ∈ S

n wewrite tr(A) for the trace of A: tr(A) = ∑n
i=1 Aii

and write ‖A‖F to denote the Frobenius norm of A: ‖A‖F =
√

∑n
i=1

∑n
j=1 A

2
i j .

The �1 norm of A is given by ‖A‖1 = ∑

i, j |Ai j |. We denote by 〈·, ·〉 the usual
Frobenius inner product of two matrices in Sn , recalling that for two matrices A, B ∈
S
n, 〈A, B〉 = tr(AT B) = tr(AB). We denote by 
1 the vector of all ones in R

n and
by J the matrix of all ones. If A is a matrix, we denote by diag(A) the vector given be
the diagonal of A. If u is a vector, diag(u) denotes the matrix with u on its diagonal.
We denote by E (A) an arbitrary orthonormal basis consisting of eigenvectors of A. In
particular, if A ∈ S

n and E (A) = {v1, . . . , vn} then we have A = ∑n
i=1 λiviv

�
i [39].

Finally, given a weighted graph G we denote, respectively, the value of the maximum
cut of G, the adjacency matrix, the number of edges and the laplacian matrix by
mc(G),W (G), m andL (G). If G is clear from the context, we drop the dependency
on G and simply write mc,W ,m and L .

2 Instance-specific linear relaxations of semidefinite optimization
problems

In this section we explore the question of exact solvability of semidefinite programs
given access to an oracle O , with the following properties:

– Given a set of simultaneously diagonalizable matrices {A1, . . . , Ar }, O can be
called once to compute an orthogonal matrix U such that U�AiU are diagonal
matrices for i = 1, . . . r . For an implementation of such an oracle see [34].

– O can be called a constant number of times to find an optimal solution to a linear
program of polynomial size in the bit representation of the information of the SDP,
namely the objective and constraint matrices.

In case we can find the optimal value of program SDP by querying O at most a
constant number of times, we say that the SDP is solvable underO , and our intention is
to derive sufficient conditions that guarantee solvability of the SDP. It is to be expected
that such conditions are not applicable except in some rare cases. We posit that we can
derive weakenings of them to provide a starting set S for Algorithm 1. Recall that a
generic SDP is given by

min
X∈Sn 〈C, X〉

s.t: 〈Ai , X〉 = bi , ∀i ∈ {1, . . . , r},
X � 0.

(SDP)
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The dual of this program is:

max
y∈Rn

b�y

s.t: C −
m

∑

i=1

yi Ai � 0.
(DSDP)

Throughout this paper, we will assume ”generic SDPs" and their duals are strictly
feasible, and therefore strong duality holds. A spectrahedron � is the intersection of
the cone of positive semidefinite matrices and an affine subspace. If we identify the
affine subspace with Rr then we can write � as:

� = {y ∈ R
r : y1A1 + · · · + yr Ar + Ar+1 � 0}

where A1, . . . , Ar , Ar+1 are symmetric n×nmatrices. In general, themapA : Rr →
S
n given byA (y) = y1A1 + · · · + yr Ar + Ar+1 is called an affine symmetric matrix

map. Through duality, one can see that spectrahedrons are to semidefinite programs
what polyhedra are to linear programs [73]. It is clear that whenever � is polytope and
we have an explicit representation of it given by a system of linear equations Ax ≤ d,
then program DSDP reduces to a linear program. More interestingly perhaps is that
the primal problem SDP can also be solved as a linear program, albeit on potentially
an exponential number of constraints.

Theorem 1 Consider a generic semidefinite optimization problem SDP, with dual
given by DSDP. Suppose that the set

� = C −
r

∑

i=1

yi Ai � 0

is a polytope with extreme points p1 . . . , pk, and defineS := ⋃k
i=1 E (C −A (pk)).

Then, LS is a linear program and solves SDP.

Proof The maximum value of the function b�y over � is achieved at some vertex p
of �. By strong duality and the solvability of DSDP, there exists some X∗ � 0 which
solves program SDP. In particular, program LS with S := ⋃k

i=1 E (C − A (pk))
where p1, . . . , pk are the vertices of � is feasible. Let X̂ be an optimal solution to this
program. Let {v1 . . . vn} ⊆ S be an orthonormal eigenbasis for the matrixC−A (p).
Since this matrix is positive semidefinite, we can write C − A (p) = ∑n

i=1 βiviv
�
i

where the βi , i ∈ [n] are the (non-negative) eigenvalues of C − A (p). By feasibility
of X̂ , v�

i X̂vi ≥ 0 for all i ∈ [n]. Multiplying each term by βi ≥ 0 we derive

n
∑

i=1

βi

〈

X̂ , viv
T
i

〉

=
〈

X̂ ,

n
∑

i=1

βiviv
T
i

〉

=
〈

X̂ ,C − A (p)
〉

≥ 0.
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This implies that
〈

X̂ ,C
〉

≥
〈

X̂ ,A (p)
〉

.

To conclude, recall that for j ∈ [r ], 〈X , A j
〉 = b j giving the inequality

〈

X̂ ,C
〉

≥
b� p. Again by strong duality and since the LP is a relaxation of the SDP, we have

b� p = 〈C, X∗〉 ≥
〈

C, X̂
〉

yielding the desired equality b� p = 〈C, X∗〉. ��
In [63] is its shown that deciding if a spectrahedron is a polyhedron is in co-NP, and

an algorithm for deciding polyhedrality is given. [13] generalizes and improves the
previous results. The algorithm presented in the latter paper runs in exponential time,
as it requires enumerating the vertices of a certain polyhedron. Even if we knew that �
is polyhedral, we do not have exact solvability under O , as the previous problem has
an exponential number of constraints. A particular case in which � is polyhedral and
that has received attention in the literature is whenever the matrices C and Ai , i ∈ [r ]
are simultaneously diagonalizable. This is the content of observation 2, which we now
prove.

Proof (Proof of Observation 2. Also see [74], Lemma 9)
LetU be a matrix that simultaneously diagonalizes matrices C and Ai , i ∈ [r ] i.e.

the matrices C ′ = U�CU and A′
i = U�AiU are all diagonal. By Silvester’s law of

inertia [39], we have that C −A (y) � 0 if and only if U� [C − A (y)]U � 0 if and
only if C ′ − ∑r

i=1 yi A
′
i � 0. Hence, we have

� = {y ∈ R
r : C ′ −

r
∑

i=1

yi A
′
i � 0}

which is a polyhedral set since all matrices involved are diagonal. ��
For a clear exposition of the implications of this observation to QCQPs see [74]

and the references therein. In addition, the authors show that the region � might be
polyhedral even if thematricesC and {Ai } i∈[r ] are not simultaneously diagonalizable.
Although the latter condition is much more stringent, it allows us to avoid the need to
have the vertices of � given to us explicitly, as Theorem 1 requires.

Theorem 2 Let SDP be a semidefinite program with dual DSDP. Suppose that the set
of matrices {C, A1, . . . , Ar } is simultaneously diagonalizable. Then, SDP is solvable
under O .

Proof LetU be a orthogonalmatrix that simultaneously diagonalizesC and Ai for each
i ∈ [r ]. Let v1, . . . .vn denote the columns ofU and setS = {v1, . . . , vn}. Let p∗ be a
dual optimal solution with C −A (p∗) = S∗ where S∗ is positive semidefinite. Since
U diagonalizes each Ai , i ∈ [r ] and C , it is clear that the matrix U� [C − A (p)]U
is diagonal. In other words, the matrixU�S∗U = D for some diagonal matrix D with
non-negative entries. This means that we can express S∗ as

S∗ =
n

∑

i=1

β∗
i viv

�
i , β∗

i ∈ R+ ∀ i ∈ [n].
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We turn our attention the linear relaxation of SDP defined byS , defined in Sect. 1,
which we recall is given by

min
X∈Sn 〈C, X〉

s.t: 〈Ai , X〉 = bi , ∀i ∈ [r ],
v�Xv ≥ 0 ∀ v ∈ S .

(LS )

This program is linear and is a relaxation of SDP as any feasible solution to it is
feasible for LS . Its dual is given by

max
y,∈Rn ,β∈Rn+

b�y

s.t: C −
r

∑

i=1

yi Ai =
n

∑

i=1

βiviv
�
i .

(DLS )

Observe that this program is a strengheningof programDSDP, and that S∗ is feasible
for this program. Therefore, their optimal values must match, and in particular the
optimal value of DLS is finite. By strong duality of linear programs, LS is solvable
and its optimal value equals the optimal value of both DSDP and DLS . Again by our
strong duality assumption of programs SDP and DSDP, program LS solves SDP. ��

A class of problems that has been extensively studied in the literature and where
the hypothesis of our previous theorem applies are simultaneously-diagonalizable
QCQPs. Recall that a QCQP is a problem of the form

inf
x∈Rn

q0(x) : qi (x) ≤ 0 ∀ i ∈ [r ]. (QCQP)

where qi (x) = x�Ai x + 2b�
i x + ci with Ai ∈ S

n , b ∈ R
n and ci ∈ R for all

i ∈ {0, . . . , r}. QCQPs are NP-hard to solve in general but admit tractable convex
relaxations. The SDP relaxation of a QCQP is given by the following semidefinite
program [8, 67]:

inf
x∈Rn ,X∈Sn

〈A0, X〉 + 2b�
0 x + c0

s.t : 〈Ai , X〉 +2b�
i x + ci ≤ 0 ∀i ∈ {1, . . . , r},

x ∈ {0, 1}n, diag(X) = x,
[

X x
x� 1

]

� 0.

(1)

Whenever the Ai are simultaneously diagonalizable and we have access to a matrix
U such that Ai = U�DiU for i ∈ {0, . . . , r}, we can perform the change of variables
y = Ux and b̃i = Ubi , i ∈ {0, . . . , r} to obtain the a diagonalized version of the
problem
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inf
y∈Rn

q0(y) : qi (y) ≤ 0 ∀ i ∈ [r ] (2)

However, we have qi (y) = a�
i y2 + 2b̃�

i y + ci , di ∈ R
n , b̃i ∈ R

n and ci ∈ R

for each i ∈ [0, . . . , r ]. Here, y2 ∈ R
n is the vector whose entries are the squared

entries of the vector y ∈ R
n . Ben-Tal and den Hertog [10] and Locatelli [45] study a

certain second order cone relaxation of this problem, and show that the optimal value
of that relaxation and that of the SDP relaxation match. Our results imply that in fact,
given access to a matrix U that simultaneously diagonalizes the Ai , i ∈ [0, . . . , r ]
we can solve the SDP relaxation (1) with the linear program LS where S is the set
of columns of U .

Corollary 1 Consider a quadratically constrained quadratic problem given as in
QCQP and such that the matrices {Ai }i∈{0,...,r} are simultaneously diagonalizable
by an orthogonal matrix U. Let opt be the optimal value of relaxation (1) of QCQP.
LetS be the set of columns of U. Then, the objective value z of the linear relaxation
SPS of (1) equals opt.

Proof The proof is immediate from Theorem 2. ��

2.1 Finding initial sets

Aswehave seen inTheorem2,weknowsomevectorswhose inclusion inS guarantees
solvability under O . The reason this worked was that we were able to produce a
feasible solution to DLS which matches the objective of an optimal solution to
DSDP. Nonetheless, the previous argument still holds for a generic feasible solution
toDSDP: any dual feasible solutionwill generate setsS that satisfy the corresponding
dual bound.

Lemma 1 Consider a generic SDP problem and let ŷ be a feasible solution to the dual
of the SDP with objective value b� ŷ. Let S = E (C − A (ŷ)). Then, the objective
value z∗ of program LS satisfies

z∗ ≥ b� ŷ.

The proof of this lemma is very similar to that of Theorem 2. This result indicates
that finding a good set S amounts to finding feasible solutions to the dual of SDP
whose objective value is close to optimal. This task is akin to finding good feasible
solutions to SDP, or at worse to solve a semidefinite feasibility problem, which in
principle may be as hard as solving the original problem. However, the results of the
previous subsection suggest a way to get around this issue by exploiting simultaneous
diagonalizability. Under a weakening of this assumption, we will be able to construct
solutions, which will be automatically feasible for the the DSDP. To begin, we give in
Proposition 1 a characterization of simultaneous diagonalizability which we will then
relax.
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Lemma 2 Let {Ai }i∈I ⊆ S
n be a set of symmetric matrices. Then, there exists a basis

of orthonormal vectors {u1, . . . , un} that simultaneously diagonalizes {Ai }i∈I if and
only if Ai and A j commute for every i and j ∈ I , i.e, Ai A j = A j Ai ∀i, j ∈ I .

See [21] for a proof.
The set of matrices {A1, . . . Ar } ⊆ S

n is simultaneously diagonalizable if and only
if for every p and q ∈ R

r the matrices A (p) = ∑r
i=1 pi Ai and A (q) = ∑r

i=1 qi Ai

commute.

Proposition 1 The set of matrices {A1, . . . Ar } ⊆ S
n is simultaneously diagonalizable

if and only if for every p and q ∈ R
r the matrices A (p) = ∑r

i=1 pi Ai and A (q) =
∑r

i=1 qi Ai commute, and hence are simultaneously diagonalizable.

Proof Necessity is trivial by having p and q range over the standard basis of Rr and
Lemma 2. For sufficiency, Let U be an orthonormal matrix such that the matrices
U�AiU = Di are diagonal ∀i ∈ [r ]. Given p and q ∈ R

r we have:

U�A (p)U = U�
(

r
∑

i=1

pi Ai

)

U =
r

∑

i=1

pi Di .

Similarly we have U�A (q)U = ∑m
i=1 qi Di . Since diagonal matrices commute we

have
(

r
∑

i=1

pi Di

)(
r

∑

i=1

qi Di

)

=
(

r
∑

i=1

qi Di

)(
r

∑

i=1

pi Di

)

.

Given that U�U = I , pre-and post-multiplying by U and U� respectively gives:

U

(
r

∑

i=1

pi Di

)

U�U
(

r
∑

i=1

qi Di

)

U� = U

(
r

∑

i=1

qi Di

)

U�U
(

r
∑

i=1

pi Di

)

U�

and finally

A (p)A (q) = A (q)A (p).

Since these matrices commute, they are simultaneously diagonalizable. ��
Given that commutativity of the set {C, A1, . . . , Ar }will typically not hold,we relax

the equivalent condition given by the previous lemma to require that commutativity
holds only for special class of p’s and q’s. In particular we will set p = er+1 and q
such that for some subset J ⊆ [r ] we have ∑

j∈J q j A j = In . The idea is that if we
have a point y ∈ R

n , not necessarily dual feasible for which the matrices C andA (y)
commute, then taking S to be the columns of a matrix that diagonalizes them will
yield a linear program with objective value as good as the best dual feasible solution
that lies on the set

{A ∈ S
n : ∃ x, t ∈ R : A = t In + x

∑

j∈[r ]\J
q j A j }.
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Theorem 3 Consider a generic semidefinite optimization problem of the form SDP,
with dual DSDP. Suppose that there exists vectors q1, q2 ∈ R

r whose support is
disjoint such that

∑r
j=1 q

1
j A j = In and such that the matrices C and

∑r
j=1 q

2
j A j

commute and therefore are simultaneously diagonalizable by some orthogonal matrix
U. LetS to be the set of columns of such an U. Then, the optimal value z of program
LS satisfies the bound

⎛

⎝

r
∑

j=1

b jq
2
j

⎞

⎠ x +
⎛

⎝

r
∑

j=1

b jq
1
j

⎞

⎠ t ≤ z

for any x and t such that the matrix C − x
(
∑r

j=1 q j A j

)

+ t In is positive semidef-

inite.

Proof Let U be a matrix that simultaneously diagonalizes C and A (q2) =
∑r

j=1 q
2
j A j . Let z be the optimal value of program LS whereS is the set of columns

v1, . . . , vn of U . Recall that the dual of this program is given by

max
y,∈Rn ,β∈Rn+

b�y

s.t: C −
r

∑

i=1

yi Ai =
n

∑

i=1

βiviv
�
i .

(DLS )

Since U diagonalizes C , any column v of U is an eigenvector of C with some
corresponding eigenvalue λ, and the same holds for A (q) with some eigenvalue γ .
Hence, v is a eigenvector ofC−xA (q)+t In with corresponding eigenvalueλ−xγ +t .
Since we are looking for x and t values such that C − xA (q) + t In is psd, this gives
rise to the equation λ − xγ + t ≥ 0, and we have such one equation for every column
ofU . This system is always feasible as the t variable is free. Hence, there exists x∗, t∗
for which the matrix C − x∗A (q) + t∗ In is positive semidefinite. As U diagonalizes
C ,A (q) and In asU� InU = U�U = In ,C− x∗A (q)+ t∗ In is diagonalizable byU
and thus can be written as

∑

i ηiviv
�
i with ηi ≥ 0 for i ∈ [n]. Thus, setting y j = x∗q2j

if j belongs to the support of q2 and y j = t∗q1j if j belongs to the support of q1 (here
recall that q1 and q2 have disjoint support) gives a feasible solution to program DLS
by setting ηi = βi for i ∈ [n]. The objective value of this solution is

⎛

⎝

r
∑

j=1

b jq
2
j

⎞

⎠ x∗ +
⎛

⎝

r
∑

j=1

b jq
1
j

⎞

⎠ t∗. (3)

��
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We make a few observations about this theorem. First and foremost, we didn’t
require that the matrix In +∑r

j=1 q j A j is feasible for program DSDP. Second, notice
that we have required that we can aggregate some of the A j to form the identity matrix.
Although this seems quite constraining, it is always the case that such a combination
exists by our assumption that DSDP is strictly feasible, i.e if there exists q ∈ R

r such
that C −A (q) � 0. In principle, finding such q would require finding finding a point
in the interior of the dual feasible region, whichmight be non-trivial. This suggests that
our theorem is easier to apply in regimes where it is more directly “obvious " which
combination of the A j forms the identity. This is the case in the max cut problem,
the Lovász theta number, the sparse PCA problem, the extended trust region SDP
relaxation and many others. Finally, we observe that even though the bound given in
Eq.3 is the best bound we can prove, there might be other “hidden " dual feasible
solutions that certify a better bound for LS .

Observation 3 (Hidden basis property) Let ŷ be a dual feasible solution for program
DSDP with objective value b� ŷ. Suppose that y ∈ R

r is a point such that the matrices
C−A (ŷ) and C−A (y) (which is not necessarily PSD) share a basis of orthonormal
eigenvectors. LetS = E (C−A (y)) then, the optimal value z of program LS satisfies

b� ŷ ≤ z.

The proof of this observation is straightforward, but note that we have requiredS
to be some eigenbasis of C −A (y) rather than the set of columns of some orthogonal
matrix that simultaneously diagonalizes C andA (y). Clearly, if U diagonalizes both
of those matrices it diagonalizes any linear combination of them. As we will see in the
max cut experiments, Theorem 3 will certify a spectral bound, but the LP relaxation
will actually have a better objective than the boundofTheorem3guarantees in practice.

2.2 Finding commutingmatrices

To apply Theorem 3, we need first to find a combination of the constraints matrices
which commutes with the objectivematrixC of SDP . This can be accomplished using
a linear program. Picking L to be an arbitrary linear function on y gives the program

min
y∈Rn

L(y)

s.t: CA (y) = A (y)C .
(4)

min
y∈Rn

L(y)

s.t: C

(
∑

i

yi Ai

)

=
(
∑

i

yi Ai

)

C .
(5)

To select L , we propose a function that trades off between the �1 norm of the
matrix C − A (y) and the dual objective function b�y. The intention of the �1 term
is to promote solutions where C − A (y) is sparse, rendering the computation of
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an eigenbasis easier. The term −b�y encourages having solutions with good dual
objective value. This yields the program

min
y∈Rn

∑

i, j

∣
∣[C − A (y)]i j

∣
∣ − b�y

s.t: CA (y) = A (y)C .

(CG)

Note that the null vector is always a feasible solution to this program. In Sect. 5 we
experimentally test this idea.

3 Linear relaxations of themax cut semidefinite program

The question of exactly - or approximately - solving an SDP with a linear program
finds one of its historical roots in the max cut problem, where in a given undirected
graph, we seek a bipartition of the nodes tomaximize the number of edgeswith one end
in both parts. Since linear programming has been one of the main paradigms to tackle
NP-hard combinatorial optimization problems through the relax-and-round paradigm,
substantial efforts were dedicated to find a linear programming relaxation of the max
cut problem. A graph withm edges has always a cut of size at least 12m and any cut can
cut at mostm edges, so it is trivial to provide an algorithm with integrality gap4 2. For
example, a randomized algorithm picking vertices at random or a greedy algorithm
will have this guarantee. The question was then if there exists a linear program that
could have an approximation ratio better than 2.

The starting point of this line of research was perhaps the linear relaxation for max
cut given by [9, 61]. Let G = (V , E) be an undirected, simple graph on m edges and
W its adjacency matrix. We define

α(G) := max〈W , X〉
Xi j + Xik + Xkj ≤ 2 ∀i, j, k ∈ V

Xi j − Xik − X jk ≤ 0 ∀i, j, k ∈ V

0 ≤ Xi j ≤ 1 ∀i, j ∈ V .

(6)

Here we use a binary variable Xi j for each pair of vertices {i, j} to denote if the
edge between them is cut. The first set of ‘triangle’ constraints specify that at most two
edges can be picked in a cut from any triangle, while the second set rules out exactly
one edge from any triangle from being selected in a cut. In [61], Poljak and Tuza prove
that for sparse and dense versions of Erdős-Rényi random graphs, the integrality gaps
of this LP tend to 2− o(1) and 4

3 − o(1) respectively. Here, Gn,p denotes the class of
random graphs on n nodes where every edge is included independently of others with
probability p.

Theorem 4 (Poljak, Tuza) [61] Let mc(G) denote the size of the max cut of G.

4 In this paper, we employ the convention that the integrality gap is a number that is at least 1 and hence is
the ratio of the value of the relaxation to the optimal value of the max cut.
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– (Sparse graphs). Let p(n) be a function such that 0 < p < 1, p(n) · n → ∞ and

p · n1−a → 0 for every a > 0, then the expected relative error
α(Gn,p)−mc(Gn,p)

mc(Gn,p)

tends to 1 as n → ∞ with probability 1 − o(1).

– (Dense graphs). Let p(n)bea function such that0 < p < 1, p(n) = 	

(√
log(n)

n

)

.

Then the expected relative error
α(Gn,p)−mc(Gn,p)

mc(Gn,p)
, tends to 1

3 as n → ∞ with

probability 1 − o(1).

Such integrality gap lower bounds for the basic LP encouraged two distinct
approaches to solve the problem. The first one focused on adding valid constraints
to formulation (6), such as ”hypermetric", and ”gap" constraints. See [25, 55] for
more details. Nonetheless, a long line of research culminated in showing that such
direct strengthenings will fail to provide an approximation factor better than 2 [17,
18, 72]. In particular, Kothari et al. [41] prove that this problem - and more gener-
ally Constraint Satisfaction Problems - is resistant to this strategy by showing that
extended linear formulations are as powerful as the Sherali-Adams hierarchy, which
in turn requires an exponential number of rounds (in ε) to certify an integrality gap
better than 2 − ε. The second approach, perhaps much more influential, considered
stronger optimization relaxations, such as the vector optimization relaxation of Poljak
and Rendel [60], shown to be SDP-representable and providing an approximation ratio
of ∼ 1.13 in the seminal work of Goemans and Williamson [33]. Naturally, this leads
to the question if linear programs can well approximate semidefinite ones. In [14]
Braun et. al. show that in principle one needs an exponential number of a constraints
in an LP to correctly approximate an SDP. These two combined results extinguish the
hope that linear programmingmay be used to approximate max cut. Since the question
of finding a good setS to initialize Algorithm 1 amounts to finding a linear approxi-
mation to a semidefinite program, these results suggest that no systematic procedure
can generate a good setS as in particular they would provide an approach to obtain a
low-gap linear programming approximation to the max cut problem. In this sense, we
propose to use instance-specific information to avoid the hardness of approximation
results, in particular by exploiting bounds relating the spectrum of the graph to the
value of the max cut, resulting in linear relaxations with better approximation ratios.

For a graph G = (V , E) we set m = |E | and denote by W its adjacency matrix.
Recall that the semidefinite relaxation for max cut due to of Poljak, Rendl, Goemans
and Williamson [33, 60] is given by

1

2
m + 1

4
max
X

〈−W , X〉
s.t: X � 0, Xii = 1, ∀ i ∈ [n].

(GW)

with dual

1

2
m + 1

4
min
γ∈Rn

n
∑

i=1

γi

s.t: W + diag(γ ) � 0.

(DGW)
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It is known that strong duality holds for this pair of programs: both (GW) and
(DGW) are solvable and their objectives coincide. Delorme and Poljak show [23] that
the max cut value of G on n nodes is upper bounded by the quantity

min
u∈Rn :∑i ui=0

n

4
λ1(L (G) + diag(u)).

It turns out that this program is equivalent to program DGW [33]. In their seminal
work, Goemans and Williamson show that this program achieves an approximation
ratio of roughly 1

0.878 ∼ 1.138. Through this equivalence, one can show that the
semidefinite program GW satisfies a series of eigenvalue bounds. For instance, one
may take u such that

∑n
i=1 ui = 0 and all of the diagonal entries of the matrix

L (G) + diag(u) equal 2m
n . This results in what is usually known as the eigenvalue

bound for max cut due to Mohar and Poljak [52]

mc(G) ≤ 1

2
m + n

4
λ1(−W ) = 1

2
m − n

4
λn(W ) (7)

To see the second equality, recall that for any matrix A, λn = λ1(−A)). See [5,
52] for an elementary proofs of this inequality. As mentioned in [55], conventional
wisdom is that LPs cannot certify even the eigenvalue bound, and we are not aware of
a polynomially sized linear program that certifies this bound.

3.1 Instance-specific linear relaxations

The specialization of program LS to the max cut problem results in a polynomially
sized linear program that explicitly depends of the adjacency matrix W on G, allow-
ing us to circumvent the theoretical limitations of linear relaxations described in the
introduction of this section. Using Theorem 3 this LP will be shown to satisfy the
eigenvalue bound (7) wheneverS is chosen appropriately. FixingS = {v1, . . . , vk},
program LS specializes to a linear program which we denote by program SPS .

max
X∈Sn

1

2
m + 1

4
〈−W , X〉

s.t: v�Xv ≥ 0 ∀ v ∈ S , Xii = 1, ∀ i ∈ [n], ‖X‖∞ ≤ 1.
(SPS )

In this program we have included the constraint ‖X‖∞ ≤ 1. As the following
observation shows, this is a valid constraint for GW. Adding it is useful because it will
guarantee that the dual of SPS is always feasible, regardless of G.

Observation 4 Let X be feasible for program (GW). Then, it is feasible for program
SPS for any set S ⊆ R

n.

Proof Let X be feasible for (GW). This means X is positive semidefinite, and that
there exists a set of vectors x1, . . . , xn such that Xi j = x�

i x j for all i, j ∈ [n]. For
each i ∈ [n] we have Xii = 1 and thus we see that ‖xi‖2 = 1. It follows that each
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entry of the vectors xi is bounded by 1 and therefore that Xi j is bounded by 1 for all
i and j . The other two constraints of the linear program are clearly satisfied by X . ��

It will be also be useful to consider the following strenghening of program GW
depending of S = {v1, . . . , vk}.

1

2
m + 1

4
max
η∈Rk

〈

−W ,

k
∑

i=1

ηiviv
�
i

〉

s.t: diag

(
k

∑

i=1

ηiviv
T
i

)

≤ 1, ηi ≥ 0, vi ∈ S ∀i ∈ [k], k = |S |.
(SDS )

Here, and for the rest of the paper, we denote by zSPS , zGW , zDGW , zSDS the
optimal values of SPS , GW, DGW and SDS ignoring the additive constant 1

2m and
the multiplicative constant 1

4 , respectively. For illustration, we have:

zGW = max 〈−W , X〉 s.t: X � 0, Xii = 1, ∀ i ∈ [n].

By duality, we get the following relationships between these optimal values

zSDS ≤ zGW = zDGW ≤ zSPS .

Observe that we may employ different setsS to define SP and SD and the above
relations will continue to hold. As a sanity check, we first observe that program SPS
satisfies the trivial bound for max cut.

Lemma 3 Let S be an arbitrary subset of Rn. Then zSPS satisfies:

zSPS ≤ 2m

and therefore 1
2m + 1

4 zSPS ≤ m.

Proof Let S = {v1, . . . , vk}. The dual of program SPS is given by

min
λ,α,δ,β,�

1

2
m − 1

4

⎡

⎣tr(�) −
∑

i �= j

δi j −
∑

i �= j

αi j

⎤

⎦

s.t: W − � =
k

∑

i=1

βiviv
�
i ,

δi j ≥ 0 ∀i �= j ∈ [n],
αi j ≥ 0 ∀i �= j ∈ [n],
λi ∈ R ∀i ∈ [n],
βi ≥ 0 ∀i ∈ [n],

� ∈ S
n,�i j =δi j − αi j ∀i �= j ∈ [n],�i i = λi ∀i ∈ [n].

(DSPS )
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The proof of this fact is deferred to Appendix A. Letting βi = 0 ∀i ∈ [n], � = W
where δi j = 1, αi j = 0 whenever Wi j = 1 and 0 otherwise, we obtain a feasible
solution for the previous program with tr(�) − ∑

i �= j δi j − ∑

i �= j αi j = −2m. ��
It can be checked that for an arbitrary graph G, the feasible region of program

DGW, namely � = {γ ∈ R
n : W + diag(γ ) � 0} is not necessarily polyhedral.

However, we can exploit Theorem 3 to derive a set S for the relaxation SPS that
has a good objective value. Although this statement can be proven directly by simply
giving a judicious choice of S , we derive the result in a way that explicitly uses the
theorem.

Theorem 5 Let G be a graph on n vertices and W its adjacency matrix. Let λn denote
the smallest eigenvalue of W. Set S = E (W ). Then

zSPS ≤ −nλn := χ(G).

Proof For i = 1, . . . , n let the matrix Ai denote the matrix of all zeros but with a
single 1 in its i-th diagonal entry. Hence, � can be expressed as:

� = {γ ∈ R
n : W +

n
∑

i

γi Ai � 0}.

To apply Theorem 3, we express the identity as some combination of the Ai .
concretely, we let γ̂ = 
1 be the vector of all ones in R

n so that we have that
∑n

i=1 γ̂i Ai = In . By Theorem 3, it follows that if S = E (W ) then the optimal
value zSPS of program SPS satisfies

zSPS ≤ t · n

for any t such that W + t I is positive semidefinite. Observe that W − λn I is positive
semidefinite. In particular, we obtain

zSPS ≤ −nλn . ��

We provide an alternate direct proof of this result in Appendix A by directly setting
S = E (W ) and using the dual of program SPS . Interestingly, this result allows us to
show that the linear relaxation SPS is strictly stronger than the linear formulation for
max cut given in program (6), in the sense that it gives -in contrast to the previous LP-
the correct value of max cut for the graphs considered in Theorem 4. Perhaps more
interestingly, we show that for random d−regular graphs the linear program SPS with
S = E (W ) approximates max cut with an approximation factor of 1+ O( 1√

d
). This

result is quite striking as it is precisely for random d− regular graphs (with d ∈ O(1))
that the hardness of approximation for max cut using the Sherali-Adams hierarchy was
shown [17, 18, 41, 72]. These two claims are the content of the next two corollaries.

Corollary 2 Let G = G(n, p) be sampled according to the Erdős-Rényi model [29]
where p is a function of n. Let g(n) be a non-decreasing function of n. Then, the
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ratio
1
2m+ 1

4χ(G)
1
2m

is at most 1 +
√

2
g(n)

as long as np is at least g(n)
2 log(n), with high

probability. In particular, for all dense graphs of Theorem 4, np ≥ g(n) ≥ √
n and

the quotient converges to 1. For sparse graphs of Theorem 4 where np = c log(n), the

quotient is at most 1 +
√

2
c .

Proof Let p = p(n) and G = G(n, p) be sampled according to the Erdős-Rényi
model with np ∈ 	(

g(n)
2 log(n)). Letting ε = 1

n and applying Theorem 1 of [19] we
have that with probability at least 1 − 1

n

−λn ≤
√

4np ln

(
2n

ε

)

+ p.

Recalling that the number of edgesm of G is θ(n2 p) with high probability, a direct

computation of the quantity
1
2m− 1

4 nλn
1
2m

gives the result. ��

Corollary 3 Suppose that G is a d-regular graph with−λn ≤ c ·√d for some constant
c and S = E (W ). Then, the following inequality holds:

zSPS
zSDS

≤ 1 + c√
d

.

Proof Recall that a d-regular graph has m = nd
2 edges. This gives n = 2m

d . Suppose
−λn ≤ c · √

d . Then, by Theorem 5 and that zGW ≥ 0 for any graph G we get

1
2m + 1

4 zSPS
1
2m + 1

4 zGW
≤

1
2m − 1

4nλn
1
2m

=
1
2m − 1

4λn
2m
d

1
2m

= 1 − λn

d
≤ 1 + c√

d
.

��
It is known that random d−regular graphs satisfy the hypothesis of the theorem

[27, 28, 70], justifying our previous claim on the guarantees of our linear relaxation
on random d−regular graphs. Another class of graphs which satisfies the hypothesis
of the theorem are the Ramanujan expander graphs [48], where c = 2. We contrast
this result with the fact that the relative error of α(G)- defined above in LP(6)- relative
to the max cut of G tends to 1 for Ramanujan graphs [61].

To the best of our knowledge, this is the first linear relaxation of max cut with these
two guarantees.

3.2 Hidden basis property and stronger guarantees

In the previous subsection, we considered a bound given by Theorem 3 using the
fact that −λn
1 is feasible for program DGW. However, it might very well be the
case that there are other “hidden" dual feasible solutions. Although we are not aware
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of any such solutions, it is illustrative to check whether or not program SPS gives
better solutions than the eigenvalue bound. This raises the question of the quality
of our linear relaxation in the setup where the eigenvalue bounds fails to give an
approximation factor better than 2 for the maximum cut value of a graph. Indeed, the
eigenvalue bound is not powerful enough to provide an approximation factor better
than 2−ε > 0 for any given ε > 0 in general. As a matter of fact, for any given ε > 0,
there exist a family of graphs whose maximum cut is bounded above by 1

2m+ εm, but
the eigenvalue bound cannot certify a bound better than 2− ε. We give an example of
such as class in our next definition, which is inspired by a remark in [55].

Definition 2 We say that a graph G is sampled from the class of random graphs
G (n, d, l) if G has n vertices and two disjoint components G1 and G2 where G1
is a random d-regular graph, G2 is complete bipartite graph where each side of the
bipartition has

√
n nodes, and l random edges connect the G1 and G2.

Observe that the absolute value of most negative eigenvalue of the adjacencymatrix
of a graph sampled from G (n, d, l) is 	(

√
n) due to the bipartite component. If

d ∈ O(1) then the number of edges in G is linear in n and so is the maxcut of G.
However, the eigenvalue bound is weak: it certifies that the maxcut size is at most
O(n1.5) (notice that this is worse even than the trivial upper bound of m). This class
of graphs is suggested as an example in [55] as a class of graphs where the eigenvalue
bound behaves poorly. However, our LP certifies a much better value, when l = 0, as
the next observation shows:

Lemma 4 Let G be a graph with two disconnected components G1 and G2, where
|V (G1)| = n1, |V (G2)| = n2, λ1 is the smallest eigenvalue of the adjacency matrix
of graph G1 and λ2 is the smallest eigenvalue of the adjacency matrix of G2. Let
S = E (W ). Then, SPS certifies:

zSPS ≤ n1λ
1 + n2λ

2.

Proof The proof is basically the same as the proof of Theorem 5 by observing that the
support of eigenvectors corresponding to disjoint components of a graph are disjoint.

��
This result may seem artificial in the sense thatG is a disconnected graph. However,

we show through extensive experiments in Tables 1 and 2 in Sect. 5 that the quotient
of the optimal value SPS to the GW relaxation is significantly better than the quotient
of χ(G) to the GW relaxation, even when edges are added between the components
in these difficult examples for the eigenvalue bound.

3.3 Solvability of maxcut underO

In the previous subsection, we have seen that we can derive a good starting setS . In
general, program LS does not solve the max cut SDP. In this subsection we will show
that whenever G is a distance regular graph then we have solvability of the max cut
SDP under O . The class of distance-regular graphs contains strongly regular graphs,
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which have been extensively studied for their algebraic, combinatorial and spectral
properties [15, 69]. Famous graphs such as the Petersen graph belongs to this class. In
what follows, we give a sufficient condition that ensures that the value of SPS equals
the optimal value of the GW relaxation, provided that S includes an orthonormal
eigenbasis of W .

Definition 3 (Distance-regular graphs) For a graphG and u, v vertices in V (G) define
G j (u) to be the set of vertices ofG at distance exactly j of u, i.e., the vertices v ∈ V (G)

such that the shortest path joining u and v has length j . We say G is distance regular
if it is connected, d-regular for some d and there exists integers ci , bi , i ∈ N such
that for any two vertices u, v at distance i = d(u, v) there are precisely ci neighbours
of v in Gi+1(u) and bi neighbours of v in Gi−1(u).

Examples of such graphs are all strongly regular graphs,Hamminggraphs, complete
graphs, cycles, and odd graphs (such as the Petersen graph) [15]. The next theorem
will allow us to prove that our linear relaxations are tight for this class of graphs.

Theorem 6 Let G be a graph and W its adjacency matrix. Let S = E (W ) and Wn

be the eigenspace of W corresponding to λn. Suppose the dimension of Wn is k with
n > k ≥ 1. Suppose there exists an orthonormal basisU = {u1, . . . , uk} of Wn such
that the matrix A with rows u1, . . . , uk has columns with constant 2- norm, i.e. there
exists some c ∈ R

+ such that ‖A j‖2 = c ∀ j ∈ [n] where A j denotes the j-th column
of A. Then, zSDS equals −nλn and in particular

zSPS = zGW = zSDS .

Proof The proof requires two steps. First, we show that if such basis U exists and
we let S = U then the theorem holds. Second, we show that we may set S to
be an arbitrary orthonormal basis of Wn . This is necessary since the dimension of
Wn ≥ 2 and hence orthonormal bases are not unique. This might break the theorem if
we choose any other orthonormal basis for S instead of U . We begin with the first

step. Notice that c =
√

k
n . Indeed, since the ui are unitary vectors we have that for

all i ∈ [k] ∑n
j=1 A

2
i, j = 1. Summing over i gives

∑k
i=1

∑n
j=1 A

2
i, j = k. By our

assumption of constant sum of the column vectors, we get
∑k

i=1 A
2
i, j = c2 ∀ j ∈ [n].

Summing over j gives
∑n

j=1
∑k

i=1 A
2
i, j = nc2 and we get k = nc2. Let B =

√
n
k A

�

and Y = BB�. Let vi denote the i th row of B, and recall that vi has norm
√

k
n . This

implies that Yii = vi · vi = n
k · k

n = 1. Finally, observe that Y = n
k

∑k
i ui (ui )

�. It
follows that Y is feasible for SDS withS = U . This solution has an objective value

zSDS ≥
〈

−W , BT B
〉

≥
〈

−W ,
n

k

k
∑

i=1

uiu
T
i

〉

= −nλn .

For the second part, we show that we can takeS to be any arbitrary orthonormal basis
of Wn . Notice that the only fact that we used from U is that the matrix A formed
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by stacking the vectors ui as rows has constant column norm. Therefore, it suffices
to show that any matrix A′ formed in the same way from an arbitrary basis U ′ has
this same property. Hence, let U ′ = {w1, . . . , wk} be an arbitrary basis of Wn and
suppose that the basis U exists.

Since the vectors{u1, . . . , uk} are an orthonormal basis of Wn which is a lin-
eal subspace of Rn , we can extend this set of vectors to a full orthonormal basis
{u1, . . . , uk, uk+1, . . . un} of Rn . Further, observe that

∑n
i=1 ui (ui )

� = In where In
is the n×n identity matrix. To see this, let v = r1u1 +· · ·+rnun ∈ R

n be an arbitrary
vector expressed in the ui , i ∈ [n] basis. We have

(
n

∑

i=1

uiu
�
i

)

v =
n

∑

i=1

〈ui , v〉ui =
n

∑

i=1

ri ui = v. (8)

We derive that
∑n

i=1 uiu
�
i equals the identitymatrix. Notice that this equation remains

true if we replace the ui for any arbitrary orthonormal basis of Rn . Since the diagonal
entries of A�A equal k

n = c2 we see that the diagonal entries of
∑n

i=k+1 uiu
�
i equal

1 − c2. Finally it follows that {w1, . . . , wk, uk+1, . . . , un} is as well a basis for Rn

and thus by Equation (8) we have
∑k

i=1 wiw
�
i +∑n

i=k+1 uiu
�
i = In . This shows that

every diagonal entry of the matrix
∑k

i=1 wiw
�
i must equal c, and hence the matrix A′

formed by stacking the vectors wi as rows has constant column norm. The conclusion
of the theorem follows from the inequality zSDS ≤ zGW ≤ zSPS ≤ −nλn . ��

Alon and Sudakov proved something similar to the first part of our proof in [5]. In
the paper, the authors prove that zGW = 1

2m − 1
4nλn under the hypothesis that there

exists a feasible solutionY = B�B for the (GW ) relaxation such that the columns of B
are unitary vectors v1, . . . , vn and its rows u1, . . . uk , 1 ≤ k ≤ n are eigenvectors ofW
corresponding to λn . We conclude this section with the corollary for distance-regular
graphs.

Corollary 4 Let G be a distance-regular graph. Let S = E (W ). Then

zSPS = zGW = zSDS .

Proof The results follows from the following theorem. It states that the eigenspaces
of distance regular graphs satisfy the hypothesis of Theorem 6. ��
Theorem 7 ([15], Theorem 4.1.4) Let G be a distance regular graph and λ an eigen-
value of G. Then, there exists a symmetric matrix whose columns span the eigenspace
corresponding to λ and that have a constant norm.

4 Applications to semidefinite programs

To verify the applicability of the ideas presented, we consider three families of semi-
definite optimization problems, each illustrating an aspect of our work. The first
problem considered is the semidefinite relaxation of the maxcut problem which we
presented in Sect. 3. We present our experimental results in Sect. 5.
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4.1 Maximum cut

The max cut problem is a prime example of how our methodology can be applied as
it is a hard combinatorial problem that linear programs fail to approximate. We will
test our ideas using two linear programs, already introduced in Sect. 3.

max
X∈Sn

1

2
m + 1

4
〈−W , X〉

s.t: v�Xv ≥ 0 ∀ v ∈ S , Xii = 1, ∀ i ∈ [n], ‖X‖∞ ≤ 1.
(SPS )

By the results of Sect. 3, we know that as n → +∞, the optimal value of this
program will converge to the optimal value of max cut for Erdős-Rényi graphs and
random d-regular graphs whenever S contains a basis of eigenvector of the matrix
W . We test the quality of the linear relaxation on such graphs, as well as on graphs
of the family G (n, l, k) which was introduced in Sect. 3. This family was designed to
have a trivial eigenvalue bound. In Appendix B5 we include as well experiments on
the quality of relaxations on 16 graphs taken from TSPLIB [64] and 14 graphs from
the network repository [65]. Furthermore, we consider program

1

2
m + 1

4
max
η∈Rk

〈

−W ,

k
∑

i=1

ηi xi x
�
i

〉

s.t: diag

(
k

∑

i=1

ηi xi x
T
i

)

≤ 1, ηi ≥ 0, xi ∈ S ∀i ∈ [k], k = |S |.
(SDS )

This program is useful as we can obtain graph cuts from its solution using the rounding
procedure of Goemans andWilliamson [33]. Since the focus of this paper is comparing
the optimal value of the different linear relaxations versus the optimal value of the
SDPs, we defer results on rounded solutions to Appendix B.

4.2 Lovász theta number

The second problem we consider is the Lovász theta number ϑ(G) introduced by
Lovász in the seminal paper [46] as a convex relaxation for the stability number of
a graph G. ϑ can be computed in polynomial time using a semidefinite program.
Since ϑ(Ḡ) -where Ḡ is the complement of G- is lower and upper bounded resp. by
the clique number and the chromatic number of G, it allows one to compute those
numbers in polynomial time for graphs for which these two quantities coincide e.g.,
perfect graphs.

5 Appendix B is included in the online companion of this paper.
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ϑ(G) can be computed by the following semidefinite optimization program:

max
S∈Rn

〈J , X〉
s.t: tr(X) = 1, Xi, j = 0 ∀(i, j) ∈ E,

X � 0.

(Tn)

This problem is related to our setup, as it is known that the feasible region of the dual
program is polyhedral whenever the considered graph is perfect. This striking results
coincides with the fact that it is precisely for these graphs where the theta number
coincides with the independence number of the graph.

We apply the ideas developed in Sect. 2 on two families of graphs. The first class
is that of regular graphs. Notice that the constraints Xi, j = 0 ∀(i, j) ∈ E can be
expressed as

〈

X , Ai j
〉 = 0 where Ai j is matrix of all zeros except it has a 1 in its i j , j i

entries whenever G contains edge i j . It is clear that if A is the adjacency matrix of G,
we have A = ∑

i j,∈E Ai j . Regular graphs are interesting in our setting as it is easy to
check that whenever G is regular graphs, A its adjacency matrix, and J the matrix of
all ones, we have J A = AJ . The second class of graphs we consider are Erdős-Rényi
random graphs, which are typically not regular and it is not obvious how to combine
the Ai j to obtain a matrix that commutes with J . We will use program (CG) to find
such matrices.

Given a finite set S , we obtain the linear relaxation of program (Tn):

max
X∈Sn 〈J , X〉

s.t: tr(X) = 1, Xi, j = 0 ∀(i, j) ∈ E,

v�Xv ≥ 0 ∀ v ∈ S

(LTn)

In Sect. 5, we compare the objective value of programs (Tn) and (LTn), on Erdős-
Rényi random graphs and d−regular graphs. Interestingly, this problem is much more
resistant to the the cut generation strategy for solving the corresponding SDP proposed
in Algorithm 1. As we will see, generating cuts through the separation oracle of
the semidefinite cone fails completely on both Erdős-Rényi graphs and d−regular
graphs. On the contrary, settingS to be the columns of a matrix that simultaneously
diagonalizes J and A -where A is the adjacency matrix of G in the case of regular
graphs or amatrix given by program (CG) in the case of Erdős-Rényi graphs - performs
significantly better.

In our discussion on the max cut problem we showed that there is a eigenvalue
bound for the max cut value that every graph satisfies, and one might wonder if there
such a bound for the theta number. This is indeed the case, albeit only for regular
graphs.

Remark 1 Let G be a d − regular graph with n vertices. Let W be the adjacency
matrix of G with largest eigenvalue λ1 and smallest eigenvalue λn , then the Lovász
theta number ϑ(G) satisfies
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ϑ(G) ≤ −nλn

λ1 − λn
(9)

For a proof of this result, see [46]. We conjecture that the objective value of the
linear program (LTn) is also upper bound by −nλn

λ1−λn
as this was the case in all the

experiments we performed for d−regular graphs.

4.3 QCQPs

We consider more general SDPs obtained as the Shor relaxation [67] of certain QCQPs
to test the proposed methodology in three different settings, each highlighting an
interesting point. General QCQPs were introduced in Sect. 2, but in this section and
Sect. 5 we will consider a more specialized version of them, following [8], of the form

inf
x∈Rn

x�A0x + b�
0 x + c0

s.t: x�Ai x+b�
i x ≤ bi ∀i ∈ [r ],

Dx = d,

l ≤x ≤ u,

(10)

where r denotes the number of quadratic constraints and is at least 1. Ai , i = {0, . . . , r}
are symmetric matrices, not necessarily PSD, bi , i = {0, . . . r} are vectors in R

n , D
is a q × n real matrix and d ∈ R

q . l and u are vectors in R
n and we assume that

−∞ < l ≤ u < +∞ so that the bounding boxes are non-empty and bounded. If the
bounding boxes are of the form [l, u]n we can do a linear change of variables so that
x ∈ [0, 1]n . Such problems admit the following SDP relaxation:

inf
x∈Rn ,X∈Sn

〈A0, X〉 + b�
0 x + c0

s.t: 〈Ai , X〉 + b�
i x ≤ ci ∀i ∈ [r ],

Dx = d,

0 ≤ xi ≤ 1 ∀i ∈ [n],
0 ≤ Xi, j ≤ 1 ∀i, j ∈ [n],

[

X x
x� 1

]

� 0.

(11)

By letting Âi :=
[

Ai bi
b�
i ci

]

, i ∈ {0, 1, . . . ,m}, X̂ :=
[

X x
x� 1

]

and by X̂n+1 the

n + 1’th column of X̂ we can write the previous problem in the SDP form
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inf
X̂∈Sn+1

〈

Â0, X̂
〉

s.t :
〈

Âi , X̂
〉

≤ 0 ∀i ∈ [r ],
DX̂n+1 = d,

0 ≤ X̂i, j ≤ 1 ∀i, j ∈ [n + 1],
Xn+1,n+1 = 1,

X̂ � 0.

(QSDP)

In Sect. 5 we test our methodology on random QCQPs using instances generated
as in [8].

4.4 Quadratic knapsack problem

An interesting point ariseswhenever the quadratic forms determining the objective and
the constraints do not have linear and constant terms, i.e. bi = ci = 0 ∀i ∈ {0, . . . , r}.
In that case, our methodology takes S = {v1, . . . , vn+1} to be the eigenvectors of a
matrix in Sn+1 whose n+1’th row and column are 0. Hence, the constraints v� X̂v ≥ 0
in program QSDP essentially ignore the last row and column of X̂ and amount to the
constraints u�

i Xui ≥ 0 where u1, . . . , un are a basis of eigenvectors of an aggregation
of the Ai , i ∈ [r ]. This is a weaker constraint than what we actually want, which is
u�
i

(

X − xx�)

ui ≥ 0, i ∈ [n].
There are a few approaches we can consider to deal with this issue. For instance, we

could choose to overlook it entirely and proceed by relaxing QSDP to an LP, ignoring
that the bi are 0. Alternatively, if we have a linear constraint b�

i x = c, we may set

Â0 =
[

A0 bi
b�
i −2c

]

which shifts the objective by a constant. Finally, and perhaps more

interestingly, we may use the constraints u�
i

(

X − xx�)

ui ≥ 0, i ∈ [n] directly,
which can be equivalently rewritten as:

u�
i Xui ≥ u�

i

(

xx�)

u�
i = (u�

i x)
2 ∀i ∈ [n]. (12)

These are second order cone constraints which result in a second order cone relax-
ation of program QCQP depending on a setS of vectors u in Rn . Such a program is
both a relaxation of QSDP , and a strenghening of the linear relaxation that changes
the constraint X̂ � 0 for u�Xu ≥ 0 with u ∈ S , for any finite set S .

We test these different possibilities in Sect. 5 on instances of the Quadratic Knap-
sack problem [59] which is a QCQP of the form

max
x∈Rn

x�A0x

s.t :
k

∑

j=1

w j x j ≤ C, x ∈ {0, 1}n
(QKP)
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where w ∈ R
n , A0 ∈ S

n , C ∈ R+. It has been noted in the literature that the usual
Shor semidefinite relaxation of this program is not very strong [36, 59] and one may
add certain valid inequalities which result in the following tighter SDP:

max
X∈Sn

〈A, X〉

s.t :
n

∑

j=1

w j Xi j − CXii ≤ 0 ∀ i ∈ [n],

X − diag(X)diag(X)� � 0.

(QKPSDP)

Using the idea before and a finite set S one may further relax this problem to
obtain the second order cone program

max
X∈Sn

〈A, X〉

s.t :
n

∑

j=1

w j Xi j − CXii ≤ 0 ∀ i ∈ [n],

u�Xu ≥
(

u�diag(X)
)2 ∀u ∈ S .

(QKSSOC)

4.4.1 Extended trust region

In the previous problems it is not obvious how to linearly combine the matrices Ai , i ∈
[r ], that determine the quadratic forms to form the identitymatrix, and hencewe cannot
apply Theorem 3 directly to arbitrary QCQPs. This motivates us to consider a variation
where the identity matrix is explicitly one of the constraint matrices. This is the case of
the generalized trust region problem [45]. That type of QCQPs consists in minimizing
a quadratic function over the intersection of the unit ball and some half-spaces:

min
x∈Rn

x�Qx + 2b�x,

s.t: x�x ≤ 1

Dx ≤ d

(TR)

with Q ∈ S
n , b ∈ R

n , D ∈ k × n for some k ∈ N and d ∈ R
k . Notice that the

constraint x�x ≤ 1 can be written as x� In x ≤ 1. In Sect. 5 we test our methodology
on a slightly more general version of this problem, where we keep some quadratic
constraints. Abusing the language, we still refer to this family of problems as extended
trust region problems. The SDP relaxation of these programs is as follows:
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min
x∈Rn ,X∈Rn

〈Q, X〉 + 2b�x,

s.t: 〈In, X〉 ≤ 1,

Dx ≤ d,
[

X x
x� 1

]

� 0.

(SDPTR)

5 Experimental results

In this section we present experimental results exhibiting the quality of our linear
relaxations for the semidefinite relaxation of max cut, Lovász’s theta number and on
the SDP relaxations of families of QCQPs described in Sect. 4. For each of these
problems, we will compare the optimal value of the linear relaxations to the opti-
mal value of the SDP which they respectively relax by means of the quotient of the
objective values. We contrast these quotients to the alternative of using Algorithm 1,
starting withS = e1, . . . , en and iteratively generating cuts using the SDP separation
oracle. Whenever we fix an semidefinite program with some label SDP , we denote
by I terk(SDP) the linear program obtained at the k − th iteration of Algorithm 1.
For instance, I ter0(SDP) is simply dropping the semidefinite constraint of the SDP
instance. We define zn as the optimal value of I tern(SDP). For each family of exper-
iments, where we consider a certain SDP , we will denote by zS the objective value
of the corresponding linear relaxation obtained by following the ideas of Sect. 1. zsdp
will denote the objective value of the SDP instance. Although we consider different
SDPs, there will not be danger of confusion as we caption of the figures and tables
indicate which SDP we are addressing.

All of the code used is available at https://github.com/dderoux/Instance_specific_
relaxations. To solve the resulting optimization programs we have used Mosek [6].6

5.1 Max cut

Denote by zsdp, zn and zS the objective values of programs (GW), I tern(GW ) and
(SPS )withS chosen as inSubsect 2.2. In this particular case, since the(GW) semidef-
inite program does not have linear constraints beyond the ones of the diagonal, the
identity I is the only constraint matrix and it commutes with the objective matrix W .
This means thatS is simply a eigenbasis for the matrixW . As we proved in Theorem
5, (SPS ) satisfies the eigenvalue bound for max cut. For each n ranging from 20 up to
200 in steps of 10, we generate 5 random graphs and plot the maximum, minimum and
median of the quotients zS

zsdp
. We present our results for Erdős-Rényi random graphs

in Figs. 1, 2 and 3. In Figs. 4, 5 and 6 we present those for d−regular random graphs.

6 The experiments were performed on a 32 GB RAM ThinkPad Lenovo T490s machine running windows
10 with a Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz 2.11 GHz.
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Fig. 1 Ratio of zS
zsdp

(Eigen cuts) and zn
zsdp

(Oracle cuts) for instances of max cut where the graph has been

sampled according to the Erdős-Rényi random model, with p = 0.5, as n grows

Fig. 2 Ratio of zS
zsdp

(Eigen cuts) and zn
zsdp

(Oracle cuts) for instances of max cut where the graph has been

sampled according to the Erdős-Rényi random model, with p = 0.9, as n grows

5.1.1 Comparison with the eigenvalue bound

In Tables 1 and 2, we compare the performance of zS and the eigenvalue bound
χ(G) := −nλn(G) on the graphs G (n, k, l)which we introduced Sect. 3, for different
values of n, k and l. Since all of our experiments are random, we present averaged
values over 5 instances, as well as the standard deviations of our results. Notice that the
eigenvalue bound fails to give a small upper bound on the max cut value for this family
of graphs. For the case n = 400, the bound fails completely, by giving a worse bound
that the trivial upper bound of m for max cut. However, the linear program succeeds,
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Fig. 3 Ratio of zS
zsdp

(Eigen cuts) and zn
zsdp

(Oracle cuts) for instances of max cut where the graph has been

sampled according to the Erdős-Rényi random model, with p = 3 log(n)
n , as n grows

Fig. 4 Ratio of zS
zsdp

(Eigen cuts) and zn
zsdp

(Oracle cuts) for instances of max cut where the graph is a

random d-regular graph, with d = 5, as n grows

in all of our experiments, to have a quotient of at most 1.04 within the optimal value
of the Goemans and Williamson relaxation.

5.2 Lovász theta number

Denote by zsdp, zn and zS the objective values of programs Tn, I tern(Tn) and LTn
with S chosen as in Subsect. 2.2, respectively. For each n ranging from 20 to 200 in
steps of 10,we generate 5 randomgraphs and plot themaximum,minimumandmedian
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Fig. 5 Ratio of zS
zsdp

(Eigen cuts) and zn
zsdp

(Oracle cuts) for instances of max cut where the graph is a

random d-regular graph, with d = √
n, as n grows

Fig. 6 Ratio of zS
zsdp

(Eigen cuts) and zn
zsdp

(Oracle cuts) for instances of max cut where the graph is a

random d-regular graph, with d = n
10 , as n grows

of the quotients zS
zsdp

and zn
zsdp

for these five instances. In the following subsections, we
present these plots for Erdős-Rényi and random d-regular graphs.

5.2.1 Erdős-Rényi random graphs

In Figs. 7, 8 and 9 we plot the mentioned quotients for Erdős-Rényi random graph
while we vary p, the probability of connecting two edges.
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Table 1 Ratio of χ(G) to zsdp
and ratio of zSPS to zsdp for
k = 4 and l = 5.

n χ(G)/zsdp : average(sd) zS /zsdp : average(sd)

64 1.241 (0.008) 1.020 (0.002)

100 1.417 (0.007) 1.017 (0.002)

196 1.760 (0.003) 1.012 (0.001)

400 2.289 (0.003) 1.010 (0.001)

Table 2 Ratio of χ(G) to zsdp
and ratio of zS to zsdp for
k = 6 and l = 10

n χ(G)/zsdp : average(sd) zS /zsdp : average(sd)

64 1.137 (0.008) 1.029 (0.002)

100 1.278 (0.007) 1.024 (0.001)

196 1.546 (0.005) 1.020 (0.001)

400 1.962 (0.002) 1.013 (0.001)

Fig. 7 Quotients for the Lovász theta number zS
zsdp

(Eigen cuts) and zn
zsdp

(Oracle cuts) as n grows for

Erdős-Rényi random graphs with p = 0.5

5.2.2 d-Regular random graphs

In Figs. 10, 11 and 12 we plot the mentioned quotients for d−regular random graph
while we vary d.

5.3 Quadratically constrained quadratic problems

In this subsection we test the proposed methodology on the different QCQPs intro-
duced in Sect. 4.
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Fig. 8 Quotients for the Lovász theta number zS
zsdp

(Eigen cuts) and zn
zsdp

(Oracle cuts) as n grows for

Erdős-Rényi random graphs with p = 0.9

Fig. 9 Quotients for the Lovász theta number zS
zsdp

(Eigen cuts) and zn
zsdp

(Oracle cuts) as n grows for

Erdős-Rényi random graphs with p = 3 log(n)
n

5.3.1 RandomQCQPs

We generate random QCQPs following the review [8], where the authors compare
various SDP relaxations of QCQPs in terms of percentage distance to the objective
and solution time. For these instances, the x variables are bounded in an unit box
[0, 1]n and the number of variables is varied from 20 up to 100 in steps of 10. The
vectors c, d in R

r+1 and R
q respectively and the matrices D ∈ R

q×n and Ai ∈ S
n ,

i ∈ {0, . . . , r} have entries drawn uniformly and independently at random from an
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Fig. 10 Quotients for the Lovász theta number zS
zsdp

and zn
zsdp

as n grows for random d-regular graphs with

d = 5

Fig. 11 Quotients for the Lovász theta number zS
zsdp

and zn
zsdp

as n grows for random d-regular graphs with

d = √
n

uniform distribution supported in [−1, 1]. The vector b ∈ R
r+1 has entries sampled

uniformly at random from an uniform distribution supported in [0, 100]. We set the
density � of A0 to 0.5, which corresponds to the percentage of nonzero elements of
the matrix, on average.

Since QCPQs are highly sensitive to the number of quadratic constraints, we test
different combinations of number of quadratic and linear constraints, according to the
following combinations:

– QCQPs with r = 1, q = n
10 .

– QCQPs with r = 1, q = n
5 .
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Fig. 12 Quotients for the Lovász theta number zS
zsdp

and zn
zsdp

as n grows for random d-regular graphs with

d = n
10

– QCQPs with r = n
2 , q = n

10
– QCQPs with r = n, q = n

10 .

For a given combination of these parameters and a value of n we generate 5 random
instances and solve the following optimization programs for each:

– Problem QSDP . We denote the objective value of this semidefinite program by
zsdp.

– The linear relaxation LS of QSDP where we letS the elements of a eigenvector
basis of the matrix A0. We denote the objective value of this problem by zS .

– The LP I tern(QSDP). We denote by zn the objective value of this program.
– The LP I ter0(QSDP). We denote by z0 the objective value of this program.
– The second order cone program obtained by dropping the constraint X̂ � 0 from

QSDP adding the constraints (12) withS the elements of a eigenvector basis of
the matrix A0. We denote the objective value of this problem by zsoc.

We average the values of ratios zS
zsdp

, zn
zsdp

, z0
zsdp

and zsoc
zsdp

over the five instances,

and plot the results in Figs. 13, 14, 15 and 16. In Appendix C7 we include figures for
varying values of the density �.

We observe that due to randomness, it will not be possible to linearly combine
the matrices A1, . . . , Am, Am+1 so that they commute with the objective matrix A0.
Therefore, program CG will typically return the 0 matrix, and S will simply be a
basis of eigenvectors of A0.

For these instances, the quality of all the relaxations is encouraging, with the trivial
relaxation obtained by dropping the semidefinite constraint getting a ratio of at most
4 in all of our experiments. The second order cone relaxation is typically the better as
soon as n exceeds 50. Whenever the density increases, we notice that the ratios zS

zsdp

7 Appendix C is included in the online companion of this paper.
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Fig. 13 Quality of the ratios zS
zsdp

(eigen cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts), and zsoc
zsdp

for random

QCQP instances with r = 1, and q = n
5

Fig. 14 Quality of the ratios zS
zsdp

(eigen cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts), and zsoc
zsdp

for random

QCQP instances with r = 1, and q = n
10

and zsoc
zsdp

get closer and closer, hinting at that the second order cone relaxation is not
much stronger than the linear relaxation. Although the LP I tern achieves a better ratio
for small n, this is no longer true for larger values of n. In addition, notice that for a
value of n this LP requires solving n LPs and n eigenvector decompositions.

5.3.2 Extended trust region problems

We now consider instances of the extended trust region problem with extra quadratic
constraints, as presented in Subsect. 4.3. These instances are the same as in the previous
subsection, but with the added quadratic constraint x� Inx ≤ 1. We present our results
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Fig. 15 Quality of the ratios zS
zsdp

(eigen cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts), and zsoc
zsdp

for random

QCQP instances with r = n
2 , and q = n

10

Fig. 16 Quality of the ratios zS
zsdp

(eigen cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts), and zsoc
zsdp

for random

QCQP instances with r = n, and q = n
10

in Figs. 17, 18, 19 and 20, where the density of the matrix A0 is set to � = 0.5. In
Appendix C we include figures for other values of �.

The results for these experiments are similar across the different densities. In all of
our experiments, the second order cone relaxation and the linear relaxation LS of the
extended trust region problem are very strongwith the ratio to the SDP relaxation being
very close to 1. Moreover, this ratio does not get worse as n increases, quite in sharp
contrast to the base relaxation I ter0 of objective value z0 and the LP I tern , which
gets a ratio worse than 50 whenever n exceeds 100. For these instances, program LS
specialized to the extended trust region problem and program QKSSOC certify the
dual bounds provided byTheorem3,whichwe believe is the reason of the effectiveness
of these relaxations.
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Fig. 17 Quality of the ratios zS
zsdp

(eigen cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts), and zsoc
zsdp

for instances

of the extended trust region problem with r = 1, and q = n
5

Fig. 18 Quality of the ratios zS
zsdp

(eigen cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts), and zsoc
zsdp

for instances

of the extended trust region problem with r = 1, and q = n
10

5.3.3 Quadratic knapsack problem

We now consider instances of the quadratic knapsack problem as presented in Sub-
sect. 4.3. In this family of problems, the linear term b0 in the objective is 0, and
therefore we can consider the different strategies mentioned in Sect. 4.3. Hence, for
each instance we solve 6 programs, as follows:

– Problem QKPSDP. We denote the objective value of this semidefinite program by
zsdp.
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Fig. 19 Quality of the ratios zS
zsdp

(eigen cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts), and zsoc
zsdp

for instances

of the extended trust region problem with r = n
2 , and q = n

10

Fig. 20 Quality of the ratios zS
zsdp

(eigen cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts), and zsoc
zsdp

for instances

of the extended trust region problem with r = n, and q = n
10

– The linear relaxation LS of QKPSDP where we let S the elements of a eigen-
vector basis of the matrix A0. We denote the objective value of this problem by
zS .

– The LP obtained by ignoring that the bi are 0. We denote the objective value of
this problem by z′S .

– The LP I tern(QSDP). We denote by zn the objective value of this program.
– The LP I ter0(QSDP). We denote by z0 the objective value of this program.
– The second order cone relaxation of QKPSDP given by program QKSSOC. We
denote by zSOC the objective value of this program.
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Fig. 21 Quality of the ratios zS
zsdp

(eigen cuts),
z′S
zsdp

(no_weight cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts),

and zsoc
zsdp

for instances of the quadratic knapsack problem with density � = 0.05

Fig. 22 Quality of the ratios zS
zsdp

(eigen cuts),
z′S
zsdp

(no_weight cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts),

and zsoc
zsdp

for instances of the quadratic knapsack problem with density � = 0.25

The instances were generated following [59], who specify instances that have
become the standard to computationally test this optimization problem. Namely, we
first set a density value � ∈ [0, 1], which corresponds to the percentage of nonzero
elements of thematrix A0. Eachweightw j , j ∈ [n] is uniformly randomly distributed
in [1, 50]. The i j entry of A0 equals the j i entry and is nonzero with probability �,
in which case it is uniformly distributed in [1, 100], i, j ∈ [n]. The capacity C of the
knapsack is taken uniformly at random from the interval [50,∑n

j=1 w j ]. We present
our results in Figs 21, 22, 23, 24, 25 and 26.

For this family of problems, all relaxations are within reasonable bounds of the
SDP objective value. It is nonetheless appealing that the second order cone relaxation
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Fig. 23 Quality of the ratios zS
zsdp

(eigen cuts),
z′S
zsdp

(no_weight cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts),

and zsoc
zsdp

for instances of the quadratic knapsack problem with density � = 0.5

Fig. 24 Quality of the ratios zS
zsdp

(eigen cuts),
z′S
zsdp

(no_weight cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts),

and zsoc
zsdp

for instances of the quadratic knapsack problem with density � = 0.75

performs very well, with the ratio to the objective of the SDP nearly 1, regardless of
the value of n. The relaxation LS seems to perform similarly to I tern .

5.4 Computational time considerations

Algorithm 1 offers a meta-algorithm to solve semidefinite programs. Ideally, choosing
appropriate starting setsS to initialize the algorithmwill result in better solving times.
It is critical then that solving program LS or a second order cone strenghening takes
significantly less time than solving the SDP. In what follows, we report solving times
of the different programs proposed.
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Fig. 25 Quality of the ratios zS
zsdp

(eigen cuts),
z′S
zsdp

(no_weight cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts),

and zsoc
zsdp

for instances of the quadratic knapsack problem with density � = 0.95

Fig. 26 Quality of the ratios zS
zsdp

(eigen cuts),
z′S
zsdp

(no_weight cuts), zn
zsdp

(oracle cuts), z0
zsdp

(base cuts),

and zsoc
zsdp

for instances of the quadratic knapsack problem with density � = 1

For the max cut and the Lovász theta number we consider Erdős-Rényi random
graphs on 270 and 200 vertices respectively. The probability of adding an edge between
two vertices is set to p = 0.75. We repeat the experiments for 3 instances and report
the average solving time and worst ratio of the LP to the SDP objective value among
the three instances.

– Max cut: The worst ratio found was 1.08. The average solving time of the SDP
was 0.47 seconds. The average solving time of the LP was 9.77 seconds.

– Theta number: The worst ratio found was 6.7. The average solving time of the
SDP was 2994 seconds. The average solving time of the LP was 39 seconds.
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We proceed by reporting the solving times for the quadratic knapsack, random
QCQPs and the Extended Trust Region problem. We consider problems with 270
variables. For the Trust Region and random QCQPs we set the number of quadratic
constraints to 10, and the number of linear constraints to 20. For each problem, we
generate 3 instances as described previously, setting the density � to 0.75. We report
the average solving time, worst ratio of the LP to the SDP objective and worst ratio of
the SOC to the SDP value among the three instances.

– Trust region:The average solving time of the SDPwas 7476 seconds. The average
solving time of the LP was 216 seconds. The average solving time of the SOC was
8.9 seconds. The worst ratio found for the LP was 2.49, and the worst ratio found
for the SOC was 1.17.

– Random QCQPs: The average solving time of the SDP was 6510 seconds. The
average solving time of the LP was 13 seconds. The average solving time of the
SOC was 21 seconds. The worst ratio found for the LP was 1.49, and the worst
ratio found for the SOC was 1.48.

– Knapsack: The average solving time of the SDP was 7422 seconds. The average
solving time of the LP was 15 seconds. The average solving time of the SOC was
20 seconds. The worst ratio found for the LP was 1.844, and the worst ratio found
for the SOC was 1.01.

It is noteworthy that solving themax cut SDP is faster by 4 orders of magnitude than
the all of the other semidefinite programs considered in this paper. In addition, it is
quite surprising that the SOC relaxations of theQCQPs have solving times comparable
to that of the LPs. In particular, the solving time of the SOC is two orders of magnitude
faster than the LP for the trust region problems. We point out that very strong, fast and
scalable, specialized algorithms for semidefinite programs such as themax cut problem
and the Lováz theta number exist, such as [32, 75, 77], and therefore alternatives such
as an outer approximation algorithm as 1 might not be appealing for these problems.

6 Summary and future work

In this work, we introduced a generic technique to obtain linear and second order cone
relaxations of semidefinite programs with provable guarantees based on the com-
mutativity of the constraints and objective matrices. We believe that other algebraic
properties of these matrices can be exploited to obtain further stronger relaxations.
Although we believe solving semidefinite programs with linear programs is an inter-
esting topic is its own right, we posit that our ideas can be exploited in settings where
linear approximations of convex regions is an essential component of state-of-the-art
algorithms, such as in copositive programming [16] and outer approximation algo-
rithms for semidefinite integer programs [47].

On the theoretical side, the main remaining question regarding the max cut prob-
lem is if the proposed linear program SPS provides a better-than-2 approximation
algorithm. From our computational tests, we are not aware of any instance where the
approximation factor is worse than 1.8.
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For the Lovász theta number, the main theoretical question is if our proposed linear
program satisfies the same inequalities that ϑ(Ḡ) does. Namely,

α(G) ≤ ϑ(Ḡ) ≤ χ(G)

where α(G) and χ(G) are the clique and chromatic numbers of G, respectively. It
would be interesting as well to find out if program Tn satisfies the bound (9) for
d−regular graphs. Finally, the second order cone relaxations for the knapsack and
extended trust region problems performed well in terms of both solving time and
objective value. It would be thenworthwhile to explore the specialization of Algorithm
1 to these problems, and to compare its behaviour to state of the art algorithms for
those problems.

A Missing proofs

Here we present a proof of Observation 1.

Proof We first describe the dual of program LS for a generic set S = {s1, . . . , sk}.
This program is given by:

max
y∈Rn , α∈Rn+

b�y

s.t: C −
r

∑

i=1

yi Ai =
k

∑

i=1

αi si s
�
i .

(DLS )

Notice that for any setS = {s1, . . . , sk}, program (DLS ) is a restriction of (DSDP)
as the matrices C − ∑

i yi Ai are restricted to belong to the convex cone generated
by the PSD matrices si sTi , i ∈ [k], rather than the whole set of positive semidefinite
matrices. It follows that the optimal value of (DSDP) upper bounds the optimal value of
(DLS ) for any setS . By hypothesis, both (SDP) and its dual are strictly feasible and
therefore solvable by strong conic duality. Hence, we letS ∗ be the elements of a basis
of Rn of orthonormal eigenvectors of an optimal solution S∗ of program DSDP. The
dual of LS ∗ is then maxy∈Rn α∈Rn+ b�y subject to C − ∑m

i=1 yi Ai = ∑k
i=1 αiviv

�
i .

Hence, letting yi = y∗
i and αi = βi gives a feasible solution to DLS ∗ which matches

the optimal value of DSDP and hence is optimal. To conclude, observe that strong
linear duality holds and therefore LS ∗ is solvable and its optimal value equals that of
DSDP. ��

We now present a direct proof of Theorem 5.

Proof of Theorem 5 (Proof of Theorem 5)
The inequality holds if we are able to show a feasible solution of the dual program

of (SPS ) whose objective value equals −nλn . Let S = {v1, v2, . . . , vn} = E (W ).
Consider an eigenvector v of W with corresponding eigenvalue λ, so that Wv = λv.
Observe that λ − λn ≥ 0 since λn is the most negative eigenvalue of W . Clearly,
the vector v is a eigenvector of the matrix W − λn In with corresponding eigenvalue
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λ − λn . By the spectral theorem, we have W − λn In = ∑n
i=1(λi − λn)viv

T
i , where

v1, . . . , vn are an orthonormal eigenbasis of W . In other words, we have:

λn In +
n

∑

i=1

(λi − λn)viv
T
i = W .

This yields the desired feasible solution � = −λn In which has an objective value
1
2m − n

4λn for DLS . ��
We next derive the dual of program SPS .

Lemma 5 The dual of program SPS is given by program DSPS .

Proof For this proof we ignore the constant 1
2m in the objective together with the

multiplicative term 1
4 . Introduce dual variables λi ∈ R for i ∈ [n] corresponding

to the constraints Xii = 1, βi ∈ R
n+ for i ∈ [k] corresponding to v�Xv ≥ 0 and

αi, j , δi, j ≥ 0 for i �= j ∈ [n], corresponding to Xi j ≤ 1 and Xi j ≥ −1 respectively,
for i �= j ∈ [n] (in fact we need only to consider the indices i < j since X is
symmetric but we will ignore this as it only complicates the proof). Multiplying the
dual variables with the constraints accordingly gives the inequality

n
∑

i=1

λi Xii +
k

∑

i=1

βi 〈X , viv
�
i 〉 −

∑

i �= j

αi j Xi j +
∑

i �= j

δi j Xi j ≥
n

∑

i=1

λi −
∑

i �= j

δi j −
∑

i �= j

αi j

Let�i j = δi j −αi j for i �= j and�i i = λi for all i ∈ [n]. This gives the inequality

〈�, X〉 +
k

∑

i=1

βi 〈X , viv
�
i 〉 ≥

n
∑

i=1

�i i −
∑

i �= j

�i j .

If we let � + ∑k
i=1 βiviv

�
i = W we get 〈−W , X〉 ≤ ∑

i �= j �i j − ∑n
i=1 �i i and

this completes the proof. ��
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