
Chapter 66

Of Mice and Men:
Algorithms for Evolutionary Distances Between Genomes with Translocation

John D. Kececioglut R. Ravi*

Abstract

A new and largely unexplored area of computational
biology is combinatorial algorithms for genome rear-
rangement. In the course of its evolution, the genome
of an organism mutates by processes that can rear-
range whole segments of a chromosome in a single
event. These rearrangement mechanisms include in-
version, transposition, duplication, and translocation,
and a basic problem is to determine the minimum
number of such events that transform one genome to
another. This number is called the rearrangement dis-
tance between the two genomes, and gives a lower
bound on the number of events that must have oc-
curred since their divergence, assuming evolution pro-
ceeds according to the processes of the study.

In this paper, we begin the algorithmic study of
genome rearrangement by translocation. A transloca-
tion exchanges material at the end of two chrome
somes within a genome. We model this as a pro-
cess that exchanges prefixes and suffixes of strings,
where each string represents a sequence of distinct
markers along a chromosome in the genome. For the
general problem of determining the translocation dis-
tance between two such sets of strings, we present a
2-approximation algorithm. For a theoretical model
in which the exchanged sub&rings are of equal length,
we derive an optimal algorithm for translocation dis-
tance.

We also examine for the first time two types of
rearrangements in concert. An inversion reverses the
order of markers within a substring, and flips the

‘work carried out while the authors were at the Department
of Computer Science of the University of California, Davis.

iDepartment of Computer Science, The University of Geor-
gia, Athens, GA 30602. Electronic mail: kecoQcs.uga.sdu.
This research was supported by a DOE Human Genome Dis-
tinguished Postdoctoral Fellowship.

tDepartment of Computer Science, Princeton University,
Princeton, NJ 08544. Electronic mail: ravi@cs .prinoeton. l du.
Research supported by DOE Grant DEFG03-90ER60999 and
a DIMACS Postdoctoral Fellowship.

orientation of the markers. For genomes that have
evolved by translocation and inversion, we show there
is a simple 2-approximation algorithm for data in
which the orientation of markers is unknown, and a $-
approximation algorithm when orientation is known.

These results take a step towards extending the
area from the analysis of simple organisms, whose
genomes consist of a single chromosome, and whose
evolution has largely involved a single type of rear-
rangement event, to the analysis of organisms such
as man and mouse, whose genomes contain many
chromosomes, and whose history since divergence
has largely consisted of inversion and translocation
events.

1 Introduction and motivation

Molecular biology is entering a new era in which data
will soon become available on the entire complement
of DNA, known as the genome, of man and model or-
ganisms such the mouse [4]. Genomes of these and
other complex organisms are organized into chromo-
somes, which contain the genes of the organism ar-
ranged in a linear order. Much of the current data
for genomes is in the form of maps, which identify the
location of genes and other markers of interest along
the chromosomes. Maps are now becoming available
that show the location of markers common to both
man and mouse [lo], and such data permits for the
first time the study of the evolution of such organisms
at the scale of the genome [9].

In contrast to evolution at the level of individ-
ual genes, which proceeds by local operations, such as
point mutation, which substitutes, inserts, and deletes
individual letters of the DNA sequence, evolution at
the level of the genome proceeds by non-local, large-
scale operations, which can rearrange a whole seg-
ment of the chromosome in one evolutionary event.
These non-local operations include: inversion, which
replaces a segment of a chromosome with its reverse

604

EVOLUTIONARY DISTANCES WITH TRANSLOCATION 605

Figure 1 An example of a translocation between two
chromosomes. A segment from the end of each chromo-
some is exchanged.

DNA sequence, and has the effect of reversing the or-
der and orientation of markers within the segment;
trawposition, which moves a segment to a new loca-
tion in the genome; duplication, which copies a seg-
ment to a new location; and ban&cation, which ex-
changes segments between the ends of two chromo-
somes (see Figure 1). Such large-scale rearrangements
occur at a much slower rate than point mutations, and
are now a subject of intensive study, as they may per-
mit the reconstruction of evolutionary history for long-
diverged organisms whose divergence-times cannot be
recovered from study of point mutations alone [ll, 121.

In this paper, we take a first step towards the algo-
rithmic study of genome rearrangement by transloca-
tion. Generally, genome reanvrngement is concerned
with determining the minimum number of rearrange-
ment events that transform one genome into another.
This number is often called the rearrangement dis-
tance between the genomes. We present approxima
tion algorithms for rearrangement distances. An cr-
approzimation algorithm for a minimization problem
is a an algorithm that runs in polynomial time and
delivers a solution whose value is at most a times the
minimum.

Prior algorithmic work on genome rearrangement
has largely focused on analysis of a single chromosome,
in terms of inversions, and more recently in terms
of transpositions. Markers correspond to unique seg-
ments of DNA, which have a left-to-right orientation.
With inversion, which flips the orientation of markers
as well as reversing their order, there are two forms of
the inversion distance problem, according to whether
or not the orientation of markers is known. Kece-
cioglu and Sankoff [7] undertook the first formal study
of algorithms for inversion distance; they developed
a 2-approximation algorithm and an exact algorithm
using branch-and-bound and linear programming for
data in which the orientation of markers is unknown;
this was simplified in [8] for the case of oriented mark-
ers. Bafna and Pevzner [I] improved the approxima-
tion guarantees significantly, to i for unoriented mark-

ers, and $j for oriented markers; they also determined
the exact inversion-distance diameter. Most recently,
Bafna and Pevzner discovered a $approximation al-
gorithm for transposition distance (21, and applica-
tion of these results to biological data is now under-
way [3, 51.

In the next section, we formulate our problems,
and su mmarize the results. In Section 3, we consider
the case of translocations alone, and in Section 4,
translocations and inversions together. We conclude
with some directions for further research.

2 Problem formulations and
results

We consider the basic problem of comparing two
genomes. Formally a genome is a collection of chro-
mosomes, each of which we represent as a string.
Each character in the string corresponds to a genetic
marker, such as an identified gene. We assume that all
markers in a genome are distinct; in other words, no
character is repeated in the strings. We also assume
that the alphabet of the two genomes is identical, as
the rearrangements that we consider do not create or
destroy markers.

A translocation exchanges prefixes or suffixes of
two strings in our model. Suppose that a translocation
operates on the two strings v20 and zy, where v, w,
CC, and y are non-empty substrings. A prefiz-prefiz
translocation that exchanges v and a has the following
effect:

VW, xy H xw, vy.

A prefix-suffix translocation that exchanges v and y
has the effect

VW, 2y w yRw, ZVR,

where 8 denotes the reverse of string s.l We allow
a prefix-suffix translocation to operate within one
string, as long as the prefix and the suffix are non-
overlapping.2

All chromosomes contain a centromere, which is
important for the proper function of the genome dur-
ing cell division. Depending on the position of the
centromere along the length of the chromosome, chro-
mosomes may be classified into two types. In acre-
centric chromo8ome8, the centromere occurs at one

‘Note thet a suffix-suffix translocation is equivalent to a
prefix-prefix translocation. Similarly, a suffix-prefix transloce-

tion is equivalent to 8 prefix-s&ix translocation.
2A tranalocation of this type is known as a pericentric

inversion in the literature.

606 KECECIOGLU AND RAW

end of the chromosome. In metacentric chromosomes,
the centromere occurs towards the middle. Within
a genome, all chromosomes are either acrocentric or
metacentric.

In acrocentric chromosomes, the location of the
centromere distinguishes the two ends of a chromo-
some, and establishes a reading direction. When form-
ing the string representing such a chromosome, we as-
sume the markers are read from the end containing the
centromere. After a viable translocation, both chro-
mosomes must be left with a centromere. Thus, for
organisms with acrocentric chromosomes, we can re-
strict ourselves to prefix-prefix translocations. We de-
fine the directed model to be one in which all translo-
cations are prefix-prefix.

When comparing genomes with metacentric chro-
mosomes, we are concerned only with the adjacency
of markers. In other words, the direction that a string
corresponding to a chromosome is read is irrelevant.
In this case, we allow both prefix-prefix and prefix-
suffix translocations, since a prefix-prefix transloca-
tion is equivalent to a prefix-suffix translocation when
the second string is read in the reverse direction. We
define the undirected model to be one in which translo
cations may be both prefix-prefix and prefix-suffix.

A special case that we study is equal-length twnslo-
cation, in which the substrings exchanged are of equal
length. In this case, we further assume that all strings
in both genomes have the same length. The majority
of the paper is devoted to the general case, with no im-
plicit assumptions on the lengths of the substrings ex-
changed, and the lengths of the strings in the genome.

Physically, our markers correspond to short, fixed
stretches of the DNA sequence. When a rearrange-
ment reverses the order of markers, it changes the di-
rection of the sequence for each marker. When form-
ing the string for a chromosome, we can associate a
sign with the character representing a marker as fol-
lows. If when reading the chromosome, the fixed se-
quence for a marker appears, we associate a positive
sign with the character corresponding to the marker;
if the reverse sequence appears, we associate a neg-
ative sign. We treat signed data only in the case of
chromosomes with no absolute reading direction. In
this case, the string +a +b +c is identical to -c -b -u.

We now summarize our results for these mod-
els. Sorting by tranalocationa refers to transforming
one genome into another using the fewest number of
translocations. We denote the total number of mark-
ers in a genome by m.

Theorem 2.1 In both the directed and undirected
models, there is an exact algorithm for sorting by
equal-length translocations that runs in 0(m) time.

The case of equal-length translocations may arise
when the markers are obtained by sampling the same
position across several chromosomes of uniform size.
If no marker is present at a sampled position, we can
denote this by recording a blank. Theorem 2.1 extends
to such data.

Theorem 2.2 For data containing blanks, in both
the directed and undirected models, there is an exact
aJgorithm for sorting by equal-length translocations
that runs in O(m) time.

For the general case of arbitrary-length transloca-
tions we have the following results.

Theorem 2.3 III both the directed and undirected
models, there is a Zapproximetion algorithm for
sorting by translocations that runs in O(m2) time.

Our remaining results allow both translocations
and inversions, and treat both signed and unsigned
data, With signed data, a translocation that ex-
changes a prefix with a suffix flips the signs of markers
in the exchanged segments. Similarly, an inversion on
signed data flips signs as well as reverses the order of
markers.

Theorem 2.4 For unsigned data, in both the
directed and undirected models, there is a 2-
approximation algorithm for sorting by translocations
and inversions that runs in O(m2) time.

We use the 2-approximation algorithm of Kece-
cioglu and Sankoff [7] in this result. We note that
for sorting unsigned data by inversions alone, Bafna
and Pevzner have shown that a performance guarantee
of s can be achieved [I].

Theorem 2.5 For signed data, in the undirected
model, there is a i -approximation algorithm for sort-
ing by translocations and inversions that runs in
O(rr3) time.

This makes use of the algorithm and analysis
of Bafna and Pevzner [l] for sorting signed data
by inversions alone, and has the same performance
guarantee.

3 Translocat ions alone

For rearrangement distance with translocations alone,
we first examine the equal-length case.

EVOLUTIONARY DISTANCES WITH TRANSLOCATION 607

3.1 Equal-length translocations

When all translocations in a series exchange segments
of equal length, and the strings in both genomes are
all of equal length, the problem of determining the
translocation distance between two such sets of strings
can be reduced a problem of sorting a matrix.

For a genome containing n strings, each of length k,
we form a k x n matrix of integers from the strings as
follows. Each column corresponds to a string, and
each row corresponds to a position in a string. Let
us first consider the directed model in which translo-
cations only exchange prefixes with prefixes. With
equal-length translocation, a character at position i
in a string remains at position i after moving to an-
other string. Thus we can assign the characters in
each row i integer names in the range 1 to n. Given a
genome 71 to transform into a genome 72, we assign
numbers to characters as follows. Arbitrarily number
the strings in 7s from 1 to n, and assign the charac-
ters in 72 the number of their string. This converts 71
into strings of numbers as well. If we then arrange the
strings of 71 in increasing order of the number at their
kth position, the numbers at position i in the strings
of 71 form a permutation Ai of 1 to n.

Treating the permutations Ar through)rk as the
rows of a k x n matrix, our problem is equivalent to
sorting the rows into 12 . +. n by repeatedly selecting
two columns, and a length I, and exchanging the
elements in the first I rows of the two columns. The
minimum number of such column-exchanges to sort
the matrix gives the translocation distance between 71
and 72.

Denote a column exchange by a triple (i, j, i),
where i and j specify the columns and 2 specifies the
length of the prefix of the columns that is exchanged.
We say a series of exchanges is b&tom-up if the third
coordinate of the triples is nonincreasing, in other
words, if the series progresses from the bottom to the
top of the matrix.

Lemma 3.1 Every matrix has an optimal sorting
series that is bottom-up.

Proof. A series that sorts a matrix and is not bottom-
up contains a pair of consecutive exchanges

(it,jt, k>, (&+I, j:+l, &+I),

with 1, < &+I. Without loss of generality, sup-
pose it # it+1 and it = &+I. In this case, performing
exchange t + 1 first, followed by a slight modification
of exchange t:

(it+l,it+l, b+d (it, it+l, h),

produces the same effect. Repeatedly applying this
transformation to a shortest series yields one that is
both optimal and bottom-up. 0

We say a bottom-up series is locally optimal if,
when sorting each row, it uses the minimum number
of translocations to sort the row from its current state.

Lemma 3.2 A bottom-up series that is locally opti-
mal is globally optimal.

Proof. Consider a bottom-up series just before it
sorts row i + 1. Let s be the current state of row i+ 1,
and & be the state of row i before any rows have been
sorted. After the series sorts row i + 1, the state of
row i is

Ai 0 X-l,

which is independent of the translocations used to
sort row i + 1. Applying this inductively, the state
of a row just before it is sorted is independent of the
translocations that were used to sort the rows below
it. In other words, the particular translocations that
are used to sort higher-numbered rows do not affect
the number of the translocations needed for lower-
numbered rows. Hence using the fewest translocations
to sort a row is optimal. cl

Lemmas 3.1 and 3.2 reduce the problem of sorting
a matrix by translocations to the problem of sorting
a row by translocations. This is precisely the problem
of sorting a permutation by the mininum number of
transpositions, where a transposition on a permute
tion exchanges the values at two arbitrary positions.3

This classical problem was solved by Cayley
in 1849 (see [6]). The solution is to associate a
graph G(x) with the given permutation x. For each el-
ement i of s there is a vertex vi, and an edge is directed
from vi to uj if s(i) = j. As every vertex of G(s) has
exactly one in-edge and one out-edge, G(r) consists
of vertex-disjoint cycles. Denote the number of cyclee
of G(s) by 9(s).

Lemma 3.3 (Cayley) The minimum number of
transpositions to sort a permutation X on n elements
is

n - *t(r).

Combining Lemmas 3.1, 3.2, and 3.3 yields the al-
gorithm of Figure 2. The algorithm proceeds bottom-
up. It accumulates the effect of sorting prior rows
in permutation s, and accumulates the number of

3Note that this differs from the use of the term in molecular

biology.

608 KECE~IOGLU AND R)~VI

algorithm EquaILengthTranslocationDistance(7) begin
Denote the rows of the k x n matrix 7 by XI, . . . , Ah.
*:=12-..n
d := 0
for i := k downto 1 do begin

* := Ai 0 K-l
d :=d+n-S@(r)

end
return d

end

Figure 2 Exact algorithm for sorting by equal-length
translocations.

translocations to sort the rows in d. The work for a
given row, which involves computing an inverse, com-
posing two permutations, and computing the number
of cycles, can be performed in O(n) time, which gives
all O(kn) = O(m) time algorithm, which is optimal.
This proves the first part of Theorem 2.1.

Extension to the undirected model

To handle the undirected model, which adds prefix-
s&x translocations, we reduce it to the directed
model. With equal-length translocations, every
translocation can be considered to exchange sub-
strings of length at most [$J, where k is the length
of the strings in the genome. Hence we can double-up
the ends of each string, and assign each of the k posi-
tions of a string a depth between 1 and [:I, by their
distance from the nearest end.’ It is then straightfor-
ward to show there is an optimal series that progresses
from greater to smaller depths, and is locally optimal
at each depth, in analogy to Lemmas 3.1 and 3.2.

The only question is how to get started at
depth Ii]. Once the characters at this depth are cor-
rectly paired, we can separate each string into halves
at depth 141, and treat the halves independently in
a directed problem over a [k/2J x 2n matrix. The
problem of pairing the characters at depth [$J by
the fewest translocations has a solution similar to
Lemma 3.3. This leads to the second part of Theo
rem 2.1.

Extension to data with blanks

We can extend our results to genomes that contain
a blank character as follows. When a row contains
blanks, we define impartial sorting to mean getting

‘When k is odd, the positions at depth [$I can be ignored.

the nonblank elements into position, while treating
all columns with blanks alike. In other words, when
sorting the nonblank elements, we do not care which
blank elements are displaced. As before, we say a
bottom-up series is locally optimal if, when impartially
sorting a given row, it uses the minimum number of
translocations for that row.

Lemma 3.4 Every matrix with blanks has a
bottom-up series that is optimal. Furthermore, ev-
ery impartial bottom-up series that is locally optimal

is globally optimal.

The problem of finding an impartial series that is
locally optimal can be solved by defining the graph of
Lemma 3.3 so that the number of cycles is maximum.
Using this graph to identify an equanimous series
results in Theorem 2.2.

3.2 Arbitrary-length translocations

In this section, we consider sorting by arbitrary-length
translocations. Our undirected model implicitly al-
lows inversions, since an inversion can be realized as a
prefix-suffix translocation on the same string. 5 The-
orem 2.4 implies the result in this case. The reminder
of this section addresses the directed model.

In the directed model, all strings in a genome have
an implicit ordering of their markers. Define a marker
that is at the left end of a string to be a top marker,
and one that is at the right end of a string to be a
bottom marker. Let 71 denote a genome that is to
be sorted by translocations into genome 72. Since
translocations exchange non-empty prefixes, the set
of top markers in 72 is identical to the set of top
markers in yr, and similarly for the bottom markers.
We denote the top and bottom marker of a string A
in 72 by TA and IA respectively.

A lower bound construction

We now describe the construction of an auxiliary
digraph that will be used to derive a lower bound
on translocation distance. We define a directed

graph G(w) h w ose node set is the set of all mark-
ers. The edges in G(rr) are of two types: solid and
dashed edges. Solid edges represent adjacencies in the
genome 72, while dashed edges represent adjacencies

5Actually, an inversion performed on a prefix or suffix of a
string cannot be realized by a translocation. Notice, however,
that in the present context, arbitrary inversions are not allowed.
This implies that the characters at the ends of the strings in the
sorted genome are at the ends of strings in the unsorted genome,
so such inversions will never be required by our algorithm.

EVOLUTIONARY DISTANCES WITH TRANSLOCATION 609

in 71. In particular, for every string alas., .uP in 72,
the graph G(7r) contains p - 1 solid edges (air oi+r)
for 1 5 i < p. For every string brb2,. . . b, in 71, the
graph G(7l) contains q - 1 dashed edges (bi, bi-1) for
l<i<q.

Define an alternating cycle to be a cycle in which
the edges are alternately solid and dashed. The
definition of the edges of G(7r) implies that every edge
of a certain type that is directed into a node must
be uniquely followed by the single edge of the other
type directed out of this node in any alternating cycle.
This pairing at every node defines a unique partition
of the edges of G(n) into disjoint alternating cycles.
Let *(7r) denote the number of alternating cycles in
the partition of G(7r). Let m denote the number of
markers, and n denote the number of strings.

Lemma 3.5 Any series of trandocations that sorts
a genome 71 has length at least m - n - *(71).

Proof. A translocation performed on 71 affects only
two dashed edges in G(7r), and exchanges the tails
of these two edges. Depending on whether these two
dashed edges are in different cycles or in the same
cycle in G(n), this translocation either decreases or
increases the cycle count by one. Notice that *(72) =
m - n. Thus any series that sorts 71 must use at least
m - n - *(7r) translocations. cl

An approximation algorithm

The greedy approximation algorithm motivated by
this lower bound attempts to increase the cycle count
by one at every step. Let 7 denote the current genome.
Define a good translocation to be one that increases the
number of cycles in the decomposition of G(7). The
algorithm attempts to perform a good translocation
at every step, preferring those that leave behind
good translocations. There is a particularly simple
implementation of a good translocation whenever two
markers a and b that are adjacent in 7s with b
following a, are in two distinct strings in 7. In
this case, the translocation that brings b immediately
below a increases the alternating cycle count by one.

Define a pair of markers a, b to be out of order
in 7 if b immediately follows a in 72 while u follows
b (not necessarily immediately) in 7. If no good
translocations are available in 7 and 7 # 72, then
7 contains a pair of markers that are out of order. In
this case, our algorithm first performs a preparatory
translocation that separates these two markers onto
different strings. Then it continues to find and
perform good translocations. We view the algorithm
as working in rounds where each round begins with a

algorithm TranslocationSort(~) begin
i:=o;
while 7 is not sorted do begin

i:=i+l
if 7 has a good translocation then

Choose a good translocation T;, favoring
tranalocations that leave behind good
tranalocationa.

else begin
(Start a new round.)
Find a pair of markers a and b that are
out of order in 7.
Choose a translocation 7; that separates
a and b onto different strings.

end
.y:=rori

end
return i, T1172 - * - Ti

end

Figure 3 Greedy algorithm for sorting by translocations
in the directed model.

preparatory translocation, followed by a series of good
translocations. The algorithm is presented in detail in
Figure 3.

Lemma 3.6 Every round of the greedy algorithm
contains at least three good translocations.

Proof. Consider a round that begins with a prepara-
tory translocation involving a pair of markers a and b
that are out of order. The key observation is that any
good translocation following the preparatory translo-
cation leaves a genome that permits two subsequent
good translocations. This proves the lemma.

We identify good translocations by finding pairs
of markers that are adjacent in 72 but in distinct
strings in 7. Figure 4 (a) illustrates a genome
with two markers u and b that are out of order in
the current genome; Figure 4 (b) depicts the result
of a tranelocation separating a and b. The good
translocation that makes a and b adjacent in 7 results
in Figure 4 (c). Tracing along the path of solid edges
in G(7) from TA to IA, we identify a pair of markers
p and q connected by a solid edge but in separate
strings. Marker q is depicted above u in Figure 4 (c).
The good translocation that makes p and q adjacent in
7 leaves TA and IA in different strings (Figure 4 (d)).
Again, tracing the path of solid edges from TA to IA,
we identify yet another pair of separated markers P
and s, leading to a third good translocation. 0

610 KECECIOGLU AND RAW

(r) (4 (d)

Figure 4 The first four translocstions in a typical round
of the greedy algorithm. There is always a path of solid
edges from TA to IA containing all the markers in A;
portions of this path are depicted by wavy edges. The

positions at which translocations cut are indicated by
dashed lines.

Lemma 3.7 The greedy algorithm sorts any genome
7 in at most 2(m - n - q(7)) translocations.

Proof. The first translocation in any round of the
greedy algorithm decreases Q(7) by one. Combin-
ing this observation with Lemma 3.6, during every
round of the approximation algorithm, Q(7) increases
at the rate of at least two per four translocations. Fur-
thermore, before the first round, every translocation
the algorithm performs increase8 the cycle count by
one. Since the unsorted genome 7 ha8 q(7) cycles
and the sorted genome ha8 m - n cycles, the num-
ber of translocations performed by the algorithm is at
most 2(m - n - *l(y)). Cl

Combining the above lemma with Lemma 3.5 proves
the performance ratio. It is straightforward to show
an O(m”) running time which complete8 the proof of
Theorem 2.3.

4 Translocations together with
inversions

We now consider the problem of transforming one
genome into another by a shortest series of translo-
cations and inversions. we discuss our result for un-
signed data very briefly, and devote most of the section
to signed data in the undirected model.

Given an unsigned genome 71 to transform into 72,
define a breakpoint in 71 to be a pair of characters a

and b that are consecutive in 71, but not in 72. Notice
that any unsorted genome 71 contains a breakpoint,
while the sorted genome 7s contains none. When-
ever 71 contain8 a pair of character8 that are on the
same 8tring in 72, but are separated onto different
strings in 71, there is a translocation that removes a
breakpoint. Thus, until character8 are properly segre-
gated into strings, we can remove at least one break-
point per translocation. Once characters are prop
erly segregated, we can use the inversion algorithm of
Kececioglu and Sankoff [7] to finish the sorting; thia
algorithm removes at least one breakpoint per inver-
sion. Since any translocation or inversion can remove
at most two breakpoints, a performance guarantee of 2
follows. This leads to Theorem 2.4.

We now turn to signed data in the undirected
model. As before, we associate a graph G with
genomes 71 and 72. Vertices in G correspond to char-
acters, and edges record the adjacency of characters
in 71 and 72. With signed data and inversions, the
construction becomes a little more complicated; it
use8 the idea of a bidirected edge from Kececioglu and
Sankoff [7], and an alternating path from Bafna and
Pevzner [11.

A lower bound construction

For the construction we choose an arbitrary read-
ing direction for each string, both in the unsorted
genome 71 and the sorted genome 72. This estabhahes
a 8ucces8or for each character in the initial genome 71
and the final genome 72.

We establish a sign for each character a8 follows.
All characters in 7s are considered to be positive. A
character a in a string of 71 is positive if, when reading
the corresponding chromosome of 71 in the chosen
direction, the sequence for the marker corresponding
to a appear8 in the 8ame direction a8 in 72. Otherwise,
character a is negative in 71~ Notice that reading a
string +a+b+c of 71 in the reverse direction gives
string -c-b-o. Graph G will be invariant under this
transformation.

To simplify the remainder of the presentation, we
will consider the final sorted genome 72 to be fixed
and implicit, and define graph G in term8 of what we
call the current genome 7. At the start, 7 is the initial
unsorted genome 71, but 7 changes as translocations
and inversions are performed.

With these conventions, graph G(7) is formally
defined as follows. For every character there is a
vertex in G, and for every string in 7 there are four
dummy vertices. For a character a at the left end of
a string in 7, one dummy vertex represent8 the null

EVOLUTIONARY DISTANCES WITH TRANSLOCATION

predecessor of a; for a character b at the right end of
a string in 7, one dummy vertex represents the null
successor of 5. Similarly, two more sets of dummy
vertices represent null predecessors and successors in
the final sorted configuration.

Edges of G are bidirected,6 and of two colors: solid
and dashed. Solid edges represent the adjacency of
characters in the final sorted genome, while dashed
edges represent adjacencies in the current unsorted
genome. We assign directions to these edges as follows.
A dashed edge between a character a and its successor
in the current unsorted genome, a&,t, is always
directed from the successor to the predecessor:

fa ++ ~4urrent

A solid edge between a character Q and its successor
in the final sorted genome, a;inal, has a direction that
depends on the signs of the two characters in the
current genome, and is given as follows:

-a ++ +a;“4
-a ++ -4GKd

The key property of this construction is that the
edge set of G can be uniquely decomposed into disjoint
alternating paths and cycles. By a path in a bidirected
graph we mean a sequence of distinct edges, where
a vertex that is encountered via an in-edge in the
sequence is left via an out-edge, and vice versa. A
vertex may be visited repeatedly in such a path.
A cycle is a path where the first and last vertices
coincide. A path or cycle is alternating if the edges
alternate in color between solid and dashed.

The decomposition is specified by pairing each
solid edge incident to non-dummy vertex v with a
dashed edge incident to v. Notice that every non-
dummy vertex has exactly two incident solid edges,
one an in-edge and one an out-edge. Similarly, every
non-dummy vertex has exactly two incident dashed
edges, again one an in-edge and one an out-edge. This
implies there is a unique pairing that correctly mates
edge directions, hence a unique decomposition into
maximal alternating paths and cycles.

Using this decomposition we can derive the fol-
lowing lower bound. For a genome 7, we denote

‘A bidincted edge has arrowheads at both ends that can be

independently directed into or out of its endpoints. A normal

directed edge is an out-edge for one endpoint, and an in-edge

for the other endpoint. A bidirected edge can in addition be an

in-edge for both endpoints, or an out-edge for both endpoints.

611

Figure 5 The effect of a translocation or inversion on
G(r). The structure of the paths that connect the four
dangling solid edges does not change.

the number of cycles in the decomposition of G(7)
by i&((y). The number of paths in the decomposition
is always 2n.

Lemma 4.1 The minimum number of translocations
and inversions to sort a genome 7 of n chromosomes
and m markers, with signed data in the undirected
model, is at least

(n - n) - *(7)*

Proofsketch. Consider the effect on G(7) of a
translocation or inversion in 7 (see Figure 5). The
construction of G is carefully designed to ensure that
the edge decomposition changes only where the chr+
mosome is cut, by simply reconnecting the two dashed
edges corresponding to the cut sites. With a case
analysis, one can then show that any translocation
or inversion changes the number of cycles by A* E
{-l,O, +I}.

When the current genome coincides with the final
genome, the number of cycles in the decomposition
is m - n. As any series that sorts 7 must raise the
number of cycles from +(y) to this number, any such
a series must use as least m - n - *(7) translocations
and inversions. 0

An approximation algorithm

We obtain an approximation algorithm that comes
within $ of the lower bound using the idea of a
breakpoint. A string in the current genome 7 has a

612

algorithm SignedTranslocationInversionSort(-y) begin
i := 0
while 7 contains a breakpoint do begin

(1)

(2)

(3)

(4)

(5)

i:=i+l
if 7 has a 2-translocation 7 then

jbi := 7
else if 7 has a 24nversion then

Choose a 2-inversion p, favoring inversions
that leave behind 2- or l-inversions.

fii := (I
ebe if 7 has a I-tramlocation T then

/bi := T
else if 7 has a l-inversion then

Choose a l-inversion p, favoring inversions
that leave behind 2- or l-inversions.

JLi := p
else begin

Choose a O-inversion p for which A9 2 0,
favoring inversions that leave behind
2-inversions.

fii := p
end
7 :=70/L;

Figure 6 Greedy algorithm for sorting signed data by
translocations and inversions in the undirected model.

breakpoint between two consecutive characters if they
are not of the form . - * +a +a&,, or -akna, -a . . a.
We denote the number of breakpoint8 in a genome y

by @(d.
Notice that any translocation or inversion

changes the number of breakpoints by A@ c

(-2, -l,O, +1,+2}, since the operations cut at ex-
actly two positions. We say a translocation T is a
k-translocation if ACP = -k on performing r. Simi-
larly, an inversion p is a k-inversion if A@ = -k on
performing p. Thus 2-translocations and 2-inversions
remove two breakpoints.

A natural strategy for sorting 7 is to repeatedly
pick a translocation or inversion that removes the
most breakpoints, since for every 7 that is not sorted,
a(7) > 0, while the sorted configuration has zero
breakpoints.

This results in the greedy algorithm of Figure 6.
Cases (2) and (4) are from the inversion algorithm
of Kececioglu and Sankoff [8], while case (5) is the
refinement of Bafna and Pevzner [l]. Our proof of the
performance guarantee is based on their analysis.

In the following, *k(7) denotes the number of

KECECIOGLU AND RAW

cycles of length k in G(7).

Lemma 4.2 The greedy algorithm sorts any
genome 7 with signed data in the undirected model
in at most

G(7) - $47)

translocations and inversions.

Proofsketch. Notice that a configuration has a l-
or 2-translocation iff there is a pair of characters
that should be on the same string in the sorted
configuration, but are separated onto different strings
in the current genome. Hence all translocations are
performed before any 0-inverson. This gives a natural
division of the algorithm into two phases: the first
phase consists of all rearrangments preceding the first
O-inversion; the second phase contains all remaining
rearrangements. At the conclusion of the first phase,
all characters are correctly segregated onto strings;
the second phase consists of sorting each string by
inversions.

Bafna and Pevzner have shown that cases (2), (4),
and (5) sort by inversions within the bound of the
lemma [l]. Thus it suffices to show that for every
rearrangement operation performed by the algorithm
in the first phase,

where A@ measures the decrease in the number of
breakpoints, and A\Ea measures the decrease in the
number of cycles of length 4, due to performing the
operation. This inequality holds both for 2- and l-
translocations, and 2- and l-inversions. 0

This implies the following performance guarantee.

Theorem 4.1 The greedy algorithm is a $-
approximation algorithm for sorting signed data by
translocations and inversions in the undirected model.

Proof Notice that the number of breakpoints can
be rewritten as a(7) = m - n - *z(7), Then by
Lemma 4.1,

Opt(r) s (m-n) - Q(7)

= (Q(7) + *2(r)) - %(Y)

= G(7) - (q4(7)+ *.26(r))

2 a(7) - (94(Y) + 33(7)-2*4(r)))

= 3*(Y) - $4(7)),

where the last inequality follows from the observation
that every cycle of length 6 or more contains at least
three breakpoints. Applying Lemma 4.2 yields the
theorem. 0

EVOLUTIONARY DISTANCES WITH TRANSLOCATION 613

5 Further research

It appears that a significant obstacle to obtaining
improved approximation8 for tranalocations alone is
deriving a lower bound that reflects the constraint
that a translocation must exchange segments from
distinct chromosomes. In particular, is there a lower
bound sensitive to the following: when markers are
properly segregated onto chromosomes but not in
sorted order, translocations that separate markers but
do not increase the cycle count are required.

One important issue we do not address is the com-
parison of genomes with differing number8 of chromo-
somes. For such organisms, the evolutionary history
must consider chromosome fissions and fusions, which
split and join chromosomes, in addition to the other
rearrangement operations. While we do not know of
any performance guarantees for sorting with fissions
and fusions, we do know that any history involving
translocations, fissions, and fusions has a normal form
in which all fissions precede all translocations, which
precede all fusions. Thus we can restrict our atten-
tion to series of this form in the search for a shortest
history.

The position of the centromere influences the
model of translocation, as no viable exchange can pro-
duce a chromosome lacking a centromere. This moti-
vated us to define the directed and undirected mod-
els. A more faithful formulation, however, would be
desirable, that explicitly models the location of the
centromere, and take8 this into account when defining
the 8et of allowable exchanges.

These variants suggest several avenues for further
research.

Acknowledgments

The first author wishes to thank David Sankoff for
many helpful discussions, and for suggesting the prob-
lem with equal-length translocations.

References

[l] Bafna, Vineet and Pave1 A. Pevsner. ‘Genome rear-
rangements and sorting by reversals.” Proceedings
of the 34th Symposium on Foundations of Computer
Science, 148-157, November 1993.

[2] Bafna, Vineet and Pave1 A. Pevzner. “Sorting by
transpositions.* Proceedings of the 6th ACM-SIAM
Symposium on Discrete Algorithms, January 1995.

[3] Bafna, Vineet and Pave1 A. Pevzner. “Sorting by
reversals: genome rearrangements in plant organelles

and evolutionary history of X chromosome.” Tech-
nical Report CSE-94-032, Department of Computer
Science, Pennsylvania State University, April 1994.

[4] Copeland, N.G., N.A. Jenkins, D.J. Gilbert, J.T.
Eppig, L.J. Maltais, J.C. Miller, W.F. Dietrich, A.
Weaver, S.E. Lincoln, R.G. Steen, L.D. Stein, J.H.
Nadeau, E.S. Lander. “A genetic linkage map of the
mouse: current applications and future prospects.”
Science 262, 57-66, 1993.

[6] Hannenhalli, Sridhar, Colombe Chappey, Eugene V.
Koonin, and Pave1 A. Pevzner. uAlgorithms for
genome rearrangements: herpesvirus evolution as a
test case.” To appear in Proceedings of the 3rd In-
ternational Conference on Bioinfomaatics and Com-

plex Genome Analysis, 1994.

PI J errum, Mark R. ‘The complexity of finding
minimum-length generator sequences.” Theoretical
Computer Science 36, 265-289, 1985.

[7] Kececioglu, John and David Sankoff. “Exact and
approximation algorithms for sorting by reversals,
with application to genome rearrangement.” To ap

pear in Algorithmica, 1994. (An earlier version ap
peared as “Exact and approximation algorithms for
the inversion distance between two chromosomes,”
Proceedings of the 4th Symposium on Combinatorial
Pattern Matching, Springer-Verlag Lecture Notes in
Computer Science 684, 87-105, June 1993.)

[8] Kececioglu, John and David Sankoff. “Efficient
bounds for oriented chromosome-inversion distance.”
Proceedings of the 5th Symposium on Combinatorial
Pattern Matching, Springer-Verlag Lecture Notes in
Computer Science 807, 307-325, June 1994.

[9] Nadeau, Joseph H. and Benjamin A. Taylor.
‘Lengths of chromoeomal segments conserved since
divergence of man and mouse.” Proceedings of the

National Academy of Sciences USA 81, 814-818,
1984.

[lo] O’Brien, S.J., J.E. Womack, L.A. Lyons, K.J. Moore,
N.A. Jenkins, and N.G. Copeland. “Anchored refer-
ence loci for comparative genome mapping in mam-
mals.” Nature Genetics 3, 103-112, 1993.

[ll] Saukoff, David. “Edit distance for genome compar-
ison based on non-local operations.” Proceedings of
the 3rd Symposium on Combinatorial Pattern Match-
ing, Springer-Verlag Lecture Notes in Computer Sci-
ence 644, 121-135, April-May 1992.

[12] Sankoff, David, Guillaume Leduc, Natalie Antoine,
Bruno Paquin, B. Franz Lang, and Robert Cedergren.
‘*Gene order comparisons for phylogenetic inference:
evolution of the mitochondrial genome.” Proceed-

ings of the National Academy of Sciences USA 89,
6575-6579, 1992.

