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Of Mice and Men: 
Algorithms for Evolutionary Distances Between Genomes with Translocation 

John D. Kececioglut R. Ravi* 

Abstract 

A new and largely unexplored area of computational 
biology is combinatorial algorithms for genome rear- 
rangement. In the course of its evolution, the genome 
of an organism mutates by processes that can rear- 
range whole segments of a chromosome in a single 
event. These rearrangement mechanisms include in- 
version, transposition, duplication, and translocation, 
and a basic problem is to determine the minimum 
number of such events that transform one genome to 
another. This number is called the rearrangement dis- 
tance between the two genomes, and gives a lower 
bound on the number of events that must have oc- 
curred since their divergence, assuming evolution pro- 
ceeds according to the processes of the study. 

In this paper, we begin the algorithmic study of 
genome rearrangement by translocation. A transloca- 
tion exchanges material at the end of two chrome 
somes within a genome. We model this as a pro- 
cess that exchanges prefixes and suffixes of strings, 
where each string represents a sequence of distinct 
markers along a chromosome in the genome. For the 
general problem of determining the translocation dis- 
tance between two such sets of strings, we present a 
2-approximation algorithm. For a theoretical model 
in which the exchanged sub&rings are of equal length, 
we derive an optimal algorithm for translocation dis- 
tance. 

We also examine for the first time two types of 
rearrangements in concert. An inversion reverses the 
order of markers within a substring, and flips the 
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orientation of the markers. For genomes that have 
evolved by translocation and inversion, we show there 
is a simple 2-approximation algorithm for data in 
which the orientation of markers is unknown, and a $- 
approximation algorithm when orientation is known. 

These results take a step towards extending the 
area from the analysis of simple organisms, whose 
genomes consist of a single chromosome, and whose 
evolution has largely involved a single type of rear- 
rangement event, to the analysis of organisms such 
as man and mouse, whose genomes contain many 
chromosomes, and whose history since divergence 
has largely consisted of inversion and translocation 
events. 

1 Introduction and motivation 

Molecular biology is entering a new era in which data 
will soon become available on the entire complement 
of DNA, known as the genome, of man and model or- 
ganisms such the mouse [4]. Genomes of these and 
other complex organisms are organized into chromo- 
somes, which contain the genes of the organism ar- 
ranged in a linear order. Much of the current data 
for genomes is in the form of maps, which identify the 
location of genes and other markers of interest along 
the chromosomes. Maps are now becoming available 
that show the location of markers common to both 
man and mouse [lo], and such data permits for the 
first time the study of the evolution of such organisms 
at the scale of the genome [9]. 

In contrast to evolution at the level of individ- 
ual genes, which proceeds by local operations, such as 
point mutation, which substitutes, inserts, and deletes 
individual letters of the DNA sequence, evolution at 
the level of the genome proceeds by non-local, large- 
scale operations, which can rearrange a whole seg- 
ment of the chromosome in one evolutionary event. 
These non-local operations include: inversion, which 
replaces a segment of a chromosome with its reverse 
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Figure 1 An example of a translocation between two 
chromosomes. A segment from the end of each chromo- 
some is exchanged. 

DNA sequence, and has the effect of reversing the or- 
der and orientation of markers within the segment; 
trawposition, which moves a segment to a new loca- 
tion in the genome; duplication, which copies a seg- 
ment to a new location; and ban&cation, which ex- 
changes segments between the ends of two chromo- 
somes (see Figure 1). Such large-scale rearrangements 
occur at a much slower rate than point mutations, and 
are now a subject of intensive study, as they may per- 
mit the reconstruction of evolutionary history for long- 
diverged organisms whose divergence-times cannot be 
recovered from study of point mutations alone [ll, 121. 

In this paper, we take a first step towards the algo- 
rithmic study of genome rearrangement by transloca- 
tion. Generally, genome reanvrngement is concerned 
with determining the minimum number of rearrange- 
ment events that transform one genome into another. 
This number is often called the rearrangement dis- 
tance between the genomes. We present approxima 
tion algorithms for rearrangement distances. An cr- 
approzimation algorithm for a minimization problem 
is a an algorithm that runs in polynomial time and 
delivers a solution whose value is at most a times the 
minimum. 

Prior algorithmic work on genome rearrangement 
has largely focused on analysis of a single chromosome, 
in terms of inversions, and more recently in terms 
of transpositions. Markers correspond to unique seg- 
ments of DNA, which have a left-to-right orientation. 
With inversion, which flips the orientation of markers 
as well as reversing their order, there are two forms of 
the inversion distance problem, according to whether 
or not the orientation of markers is known. Kece- 
cioglu and Sankoff [7] undertook the first formal study 
of algorithms for inversion distance; they developed 
a 2-approximation algorithm and an exact algorithm 
using branch-and-bound and linear programming for 
data in which the orientation of markers is unknown; 
this was simplified in [8] for the case of oriented mark- 
ers. Bafna and Pevzner [I] improved the approxima- 
tion guarantees significantly, to i for unoriented mark- 

ers, and $j for oriented markers; they also determined 
the exact inversion-distance diameter. Most recently, 
Bafna and Pevzner discovered a $approximation al- 
gorithm for transposition distance (21, and applica- 
tion of these results to biological data is now under- 
way [3, 51. 

In the next section, we formulate our problems, 
and su mmarize the results. In Section 3, we consider 
the case of translocations alone, and in Section 4, 
translocations and inversions together. We conclude 
with some directions for further research. 

2 Problem formulations and 
results 

We consider the basic problem of comparing two 
genomes. Formally a genome is a collection of chro- 
mosomes, each of which we represent as a string. 
Each character in the string corresponds to a genetic 
marker, such as an identified gene. We assume that all 
markers in a genome are distinct; in other words, no 
character is repeated in the strings. We also assume 
that the alphabet of the two genomes is identical, as 
the rearrangements that we consider do not create or 
destroy markers. 

A translocation exchanges prefixes or suffixes of 
two strings in our model. Suppose that a translocation 
operates on the two strings v20 and zy, where v, w, 
CC, and y are non-empty substrings. A prefiz-prefiz 
translocation that exchanges v and a has the following 
effect: 

VW, xy H xw, vy. 

A prefix-suffix translocation that exchanges v and y 
has the effect 

VW, 2y w yRw, ZVR, 

where 8 denotes the reverse of string s.l We allow 
a prefix-suffix translocation to operate within one 
string, as long as the prefix and the suffix are non- 
overlapping.2 

All chromosomes contain a centromere, which is 
important for the proper function of the genome dur- 
ing cell division. Depending on the position of the 
centromere along the length of the chromosome, chro- 
mosomes may be classified into two types. In acre- 
centric chromo8ome8, the centromere occurs at one 

‘Note thet a suffix-suffix translocation is equivalent to a 
prefix-prefix translocation. Similarly, a suffix-prefix transloce- 

tion is equivalent to 8 prefix-s&ix translocation. 
2A tranalocation of this type is known as a pericentric 

inversion in the literature. 
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end of the chromosome. In metacentric chromosomes, 
the centromere occurs towards the middle. Within 
a genome, all chromosomes are either acrocentric or 
metacentric. 

In acrocentric chromosomes, the location of the 
centromere distinguishes the two ends of a chromo- 
some, and establishes a reading direction. When form- 
ing the string representing such a chromosome, we as- 
sume the markers are read from the end containing the 
centromere. After a viable translocation, both chro- 
mosomes must be left with a centromere. Thus, for 
organisms with acrocentric chromosomes, we can re- 
strict ourselves to prefix-prefix translocations. We de- 
fine the directed model to be one in which all translo- 
cations are prefix-prefix. 

When comparing genomes with metacentric chro- 
mosomes, we are concerned only with the adjacency 
of markers. In other words, the direction that a string 
corresponding to a chromosome is read is irrelevant. 
In this case, we allow both prefix-prefix and prefix- 
suffix translocations, since a prefix-prefix transloca- 
tion is equivalent to a prefix-suffix translocation when 
the second string is read in the reverse direction. We 
define the undirected model to be one in which translo 
cations may be both prefix-prefix and prefix-suffix. 

A special case that we study is equal-length twnslo- 
cation, in which the substrings exchanged are of equal 
length. In this case, we further assume that all strings 
in both genomes have the same length. The majority 
of the paper is devoted to the general case, with no im- 
plicit assumptions on the lengths of the substrings ex- 
changed, and the lengths of the strings in the genome. 

Physically, our markers correspond to short, fixed 
stretches of the DNA sequence. When a rearrange- 
ment reverses the order of markers, it changes the di- 
rection of the sequence for each marker. When form- 
ing the string for a chromosome, we can associate a 
sign with the character representing a marker as fol- 
lows. If when reading the chromosome, the fixed se- 
quence for a marker appears, we associate a positive 
sign with the character corresponding to the marker; 
if the reverse sequence appears, we associate a neg- 
ative sign. We treat signed data only in the case of 
chromosomes with no absolute reading direction. In 
this case, the string +a +b +c is identical to -c -b -u. 

We now summarize our results for these mod- 
els. Sorting by tranalocationa refers to transforming 
one genome into another using the fewest number of 
translocations. We denote the total number of mark- 
ers in a genome by m. 

Theorem 2.1 In both the directed and undirected 
models, there is an exact algorithm for sorting by 
equal-length translocations that runs in 0(m) time. 

The case of equal-length translocations may arise 
when the markers are obtained by sampling the same 
position across several chromosomes of uniform size. 
If no marker is present at a sampled position, we can 
denote this by recording a blank. Theorem 2.1 extends 
to such data. 

Theorem 2.2 For data containing blanks, in both 
the directed and undirected models, there is an exact 
aJgorithm for sorting by equal-length translocations 
that runs in O(m) time. 

For the general case of arbitrary-length transloca- 
tions we have the following results. 

Theorem 2.3 III both the directed and undirected 
models, there is a Zapproximetion algorithm for 
sorting by translocations that runs in O(m2) time. 

Our remaining results allow both translocations 
and inversions, and treat both signed and unsigned 
data, With signed data, a translocation that ex- 
changes a prefix with a suffix flips the signs of markers 
in the exchanged segments. Similarly, an inversion on 
signed data flips signs as well as reverses the order of 
markers. 

Theorem 2.4 For unsigned data, in both the 
directed and undirected models, there is a 2- 
approximation algorithm for sorting by translocations 
and inversions that runs in O(m2) time. 

We use the 2-approximation algorithm of Kece- 
cioglu and Sankoff [7] in this result. We note that 
for sorting unsigned data by inversions alone, Bafna 
and Pevzner have shown that a performance guarantee 
of s can be achieved [I]. 

Theorem 2.5 For signed data, in the undirected 
model, there is a i -approximation algorithm for sort- 
ing by translocations and inversions that runs in 
O(rr3) time. 

This makes use of the algorithm and analysis 
of Bafna and Pevzner [l] for sorting signed data 
by inversions alone, and has the same performance 
guarantee. 

3 Translocat ions alone 

For rearrangement distance with translocations alone, 
we first examine the equal-length case. 
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3.1 Equal-length translocations 

When all translocations in a series exchange segments 
of equal length, and the strings in both genomes are 
all of equal length, the problem of determining the 
translocation distance between two such sets of strings 
can be reduced a problem of sorting a matrix. 

For a genome containing n strings, each of length k, 
we form a k x n matrix of integers from the strings as 
follows. Each column corresponds to a string, and 
each row corresponds to a position in a string. Let 
us first consider the directed model in which translo- 
cations only exchange prefixes with prefixes. With 
equal-length translocation, a character at position i 
in a string remains at position i after moving to an- 
other string. Thus we can assign the characters in 
each row i integer names in the range 1 to n. Given a 
genome 71 to transform into a genome 72, we assign 
numbers to characters as follows. Arbitrarily number 
the strings in 7s from 1 to n, and assign the charac- 
ters in 72 the number of their string. This converts 71 
into strings of numbers as well. If we then arrange the 
strings of 71 in increasing order of the number at their 
kth position, the numbers at position i in the strings 
of 71 form a permutation Ai of 1 to n. 

Treating the permutations Ar through )rk as the 
rows of a k x n matrix, our problem is equivalent to 
sorting the rows into 12 . +. n by repeatedly selecting 
two columns, and a length I, and exchanging the 
elements in the first I rows of the two columns. The 
minimum number of such column-exchanges to sort 
the matrix gives the translocation distance between 71 
and 72. 

Denote a column exchange by a triple (i, j, i), 
where i and j specify the columns and 2 specifies the 
length of the prefix of the columns that is exchanged. 
We say a series of exchanges is b&tom-up if the third 
coordinate of the triples is nonincreasing, in other 
words, if the series progresses from the bottom to the 
top of the matrix. 

Lemma 3.1 Every matrix has an optimal sorting 
series that is bottom-up. 

Proof. A series that sorts a matrix and is not bottom- 
up contains a pair of consecutive exchanges 

(it,jt, k>, (&+I, j:+l, &+I), 

with 1, < &+I. Without loss of generality, sup- 
pose it # it+1 and it = &+I. In this case, performing 
exchange t + 1 first, followed by a slight modification 
of exchange t: 

( it+l,it+l, b+d (it, it+l, h), 

produces the same effect. Repeatedly applying this 
transformation to a shortest series yields one that is 
both optimal and bottom-up. 0 

We say a bottom-up series is locally optimal if, 
when sorting each row, it uses the minimum number 
of translocations to sort the row from its current state. 

Lemma 3.2 A bottom-up series that is locally opti- 
mal is globally optimal. 

Proof. Consider a bottom-up series just before it 
sorts row i + 1. Let s be the current state of row i+ 1, 
and & be the state of row i before any rows have been 
sorted. After the series sorts row i + 1, the state of 
row i is 

Ai 0 X-l, 

which is independent of the translocations used to 
sort row i + 1. Applying this inductively, the state 
of a row just before it is sorted is independent of the 
translocations that were used to sort the rows below 
it. In other words, the particular translocations that 
are used to sort higher-numbered rows do not affect 
the number of the translocations needed for lower- 
numbered rows. Hence using the fewest translocations 
to sort a row is optimal. cl 

Lemmas 3.1 and 3.2 reduce the problem of sorting 
a matrix by translocations to the problem of sorting 
a row by translocations. This is precisely the problem 
of sorting a permutation by the mininum number of 
transpositions, where a transposition on a permute 
tion exchanges the values at two arbitrary positions.3 

This classical problem was solved by Cayley 
in 1849 (see [6]). The solution is to associate a 
graph G(x) with the given permutation x. For each el- 
ement i of s there is a vertex vi, and an edge is directed 
from vi to uj if s(i) = j. As every vertex of G(s) has 
exactly one in-edge and one out-edge, G(r) consists 
of vertex-disjoint cycles. Denote the number of cyclee 
of G(s) by 9(s). 

Lemma 3.3 (Cayley) The minimum number of 
transpositions to sort a permutation X on n elements 
is 

n - *t(r). 

Combining Lemmas 3.1, 3.2, and 3.3 yields the al- 
gorithm of Figure 2. The algorithm proceeds bottom- 
up. It accumulates the effect of sorting prior rows 
in permutation s, and accumulates the number of 

3Note that this differs from the use of the term in molecular 

biology. 
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algorithm EquaILengthTranslocationDistance(7) begin 
Denote the rows of the k x n matrix 7 by XI, . . . , Ah. 
*:=12-..n 
d := 0 
for i := k downto 1 do begin 

* := Ai 0 K-l 
d :=d+n-S@(r) 

end 
return d 

end 

Figure 2 Exact algorithm for sorting by equal-length 
translocations. 

translocations to sort the rows in d. The work for a 
given row, which involves computing an inverse, com- 
posing two permutations, and computing the number 
of cycles, can be performed in O(n) time, which gives 
all O(kn) = O(m) time algorithm, which is optimal. 
This proves the first part of Theorem 2.1. 

Extension to the undirected model 

To handle the undirected model, which adds prefix- 
s&x translocations, we reduce it to the directed 
model. With equal-length translocations, every 
translocation can be considered to exchange sub- 
strings of length at most [$J, where k is the length 
of the strings in the genome. Hence we can double-up 
the ends of each string, and assign each of the k posi- 
tions of a string a depth between 1 and [:I, by their 
distance from the nearest end.’ It is then straightfor- 
ward to show there is an optimal series that progresses 
from greater to smaller depths, and is locally optimal 
at each depth, in analogy to Lemmas 3.1 and 3.2. 

The only question is how to get started at 
depth Ii]. Once the characters at this depth are cor- 
rectly paired, we can separate each string into halves 
at depth 141, and treat the halves independently in 
a directed problem over a [k/2J x 2n matrix. The 
problem of pairing the characters at depth [$J by 
the fewest translocations has a solution similar to 
Lemma 3.3. This leads to the second part of Theo 
rem 2.1. 

Extension to data with blanks 

We can extend our results to genomes that contain 
a blank character as follows. When a row contains 
blanks, we define impartial sorting to mean getting 

‘When k is odd, the positions at depth [$I can be ignored. 

the nonblank elements into position, while treating 
all columns with blanks alike. In other words, when 
sorting the nonblank elements, we do not care which 
blank elements are displaced. As before, we say a 
bottom-up series is locally optimal if, when impartially 
sorting a given row, it uses the minimum number of 
translocations for that row. 

Lemma 3.4 Every matrix with blanks has a 
bottom-up series that is optimal. Furthermore, ev- 
ery impartial bottom-up series that is locally optimal 

is globally optimal. 

The problem of finding an impartial series that is 
locally optimal can be solved by defining the graph of 
Lemma 3.3 so that the number of cycles is maximum. 
Using this graph to identify an equanimous series 
results in Theorem 2.2. 

3.2 Arbitrary-length translocations 

In this section, we consider sorting by arbitrary-length 
translocations. Our undirected model implicitly al- 
lows inversions, since an inversion can be realized as a 
prefix-suffix translocation on the same string. 5 The- 
orem 2.4 implies the result in this case. The reminder 
of this section addresses the directed model. 

In the directed model, all strings in a genome have 
an implicit ordering of their markers. Define a marker 
that is at the left end of a string to be a top marker, 
and one that is at the right end of a string to be a 
bottom marker. Let 71 denote a genome that is to 
be sorted by translocations into genome 72. Since 
translocations exchange non-empty prefixes, the set 
of top markers in 72 is identical to the set of top 
markers in yr, and similarly for the bottom markers. 
We denote the top and bottom marker of a string A 
in 72 by TA and IA respectively. 

A lower bound construction 

We now describe the construction of an auxiliary 
digraph that will be used to derive a lower bound 
on translocation distance. We define a directed 

graph G(w) h w ose node set is the set of all mark- 
ers. The edges in G(rr) are of two types: solid and 
dashed edges. Solid edges represent adjacencies in the 
genome 72, while dashed edges represent adjacencies 

5Actually, an inversion performed on a prefix or suffix of a 
string cannot be realized by a translocation. Notice, however, 
that in the present context, arbitrary inversions are not allowed. 
This implies that the characters at the ends of the strings in the 
sorted genome are at the ends of strings in the unsorted genome, 
so such inversions will never be required by our algorithm. 
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in 71. In particular, for every string alas., .uP in 72, 
the graph G(7r) contains p - 1 solid edges (air oi+r) 
for 1 5 i < p. For every string brb2,. . . b, in 71, the 
graph G(7l) contains q - 1 dashed edges (bi, bi-1) for 
l<i<q. 

Define an alternating cycle to be a cycle in which 
the edges are alternately solid and dashed. The 
definition of the edges of G(7r) implies that every edge 
of a certain type that is directed into a node must 
be uniquely followed by the single edge of the other 
type directed out of this node in any alternating cycle. 
This pairing at every node defines a unique partition 
of the edges of G(n) into disjoint alternating cycles. 
Let *(7r) denote the number of alternating cycles in 
the partition of G(7r). Let m denote the number of 
markers, and n denote the number of strings. 

Lemma 3.5 Any series of trandocations that sorts 
a genome 71 has length at least m - n - *(71). 

Proof. A translocation performed on 71 affects only 
two dashed edges in G(7r), and exchanges the tails 
of these two edges. Depending on whether these two 
dashed edges are in different cycles or in the same 
cycle in G(n), this translocation either decreases or 
increases the cycle count by one. Notice that *(72) = 
m - n. Thus any series that sorts 71 must use at least 
m - n - *(7r) translocations. cl 

An approximation algorithm 

The greedy approximation algorithm motivated by 
this lower bound attempts to increase the cycle count 
by one at every step. Let 7 denote the current genome. 
Define a good translocation to be one that increases the 
number of cycles in the decomposition of G(7). The 
algorithm attempts to perform a good translocation 
at every step, preferring those that leave behind 
good translocations. There is a particularly simple 
implementation of a good translocation whenever two 
markers a and b that are adjacent in 7s with b 
following a, are in two distinct strings in 7. In 
this case, the translocation that brings b immediately 
below a increases the alternating cycle count by one. 

Define a pair of markers a, b to be out of order 
in 7 if b immediately follows a in 72 while u follows 
b (not necessarily immediately) in 7. If no good 
translocations are available in 7 and 7 # 72, then 
7 contains a pair of markers that are out of order. In 
this case, our algorithm first performs a preparatory 
translocation that separates these two markers onto 
different strings. Then it continues to find and 
perform good translocations. We view the algorithm 
as working in rounds where each round begins with a 

algorithm TranslocationSort(~) begin 
i:=o; 
while 7 is not sorted do begin 

i:=i+l 
if 7 has a good translocation then 

Choose a good translocation T;, favoring 
tranalocations that leave behind good 
tranalocationa. 

else begin 
(Start a new round.) 
Find a pair of markers a and b that are 
out of order in 7. 
Choose a translocation 7; that separates 
a and b onto different strings. 

end 
.y:=rori 

end 
return i, T1172 - * - Ti 

end 

Figure 3 Greedy algorithm for sorting by translocations 
in the directed model. 

preparatory translocation, followed by a series of good 
translocations. The algorithm is presented in detail in 
Figure 3. 

Lemma 3.6 Every round of the greedy algorithm 
contains at least three good translocations. 

Proof. Consider a round that begins with a prepara- 
tory translocation involving a pair of markers a and b 
that are out of order. The key observation is that any 
good translocation following the preparatory translo- 
cation leaves a genome that permits two subsequent 
good translocations. This proves the lemma. 

We identify good translocations by finding pairs 
of markers that are adjacent in 72 but in distinct 
strings in 7. Figure 4 (a) illustrates a genome 
with two markers u and b that are out of order in 
the current genome; Figure 4 (b) depicts the result 
of a tranelocation separating a and b. The good 
translocation that makes a and b adjacent in 7 results 
in Figure 4 (c). Tracing along the path of solid edges 
in G(7) from TA to IA, we identify a pair of markers 
p and q connected by a solid edge but in separate 
strings. Marker q is depicted above u in Figure 4 (c). 
The good translocation that makes p and q adjacent in 
7 leaves TA and IA in different strings (Figure 4 (d)). 
Again, tracing the path of solid edges from TA to IA, 
we identify yet another pair of separated markers P 
and s, leading to a third good translocation. 0 
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(r) (4 (d) 

Figure 4 The first four translocstions in a typical round 
of the greedy algorithm. There is always a path of solid 
edges from TA to IA containing all the markers in A; 
portions of this path are depicted by wavy edges. The 

positions at which translocations cut are indicated by 
dashed lines. 

Lemma 3.7 The greedy algorithm sorts any genome 
7 in at most 2(m - n - q(7)) translocations. 

Proof. The first translocation in any round of the 
greedy algorithm decreases Q(7) by one. Combin- 
ing this observation with Lemma 3.6, during every 
round of the approximation algorithm, Q(7) increases 
at the rate of at least two per four translocations. Fur- 
thermore, before the first round, every translocation 
the algorithm performs increase8 the cycle count by 
one. Since the unsorted genome 7 ha8 q(7) cycles 
and the sorted genome ha8 m - n cycles, the num- 
ber of translocations performed by the algorithm is at 
most 2(m - n - *l(y)). Cl 

Combining the above lemma with Lemma 3.5 proves 
the performance ratio. It is straightforward to show 
an O(m”) running time which complete8 the proof of 
Theorem 2.3. 

4 Translocations together with 
inversions 

We now consider the problem of transforming one 
genome into another by a shortest series of translo- 
cations and inversions. we discuss our result for un- 
signed data very briefly, and devote most of the section 
to signed data in the undirected model. 

Given an unsigned genome 71 to transform into 72, 
define a breakpoint in 71 to be a pair of characters a 

and b that are consecutive in 71, but not in 72. Notice 
that any unsorted genome 71 contains a breakpoint, 
while the sorted genome 7s contains none. When- 
ever 71 contain8 a pair of character8 that are on the 
same 8tring in 72, but are separated onto different 
strings in 71, there is a translocation that removes a 
breakpoint. Thus, until character8 are properly segre- 
gated into strings, we can remove at least one break- 
point per translocation. Once characters are prop 
erly segregated, we can use the inversion algorithm of 
Kececioglu and Sankoff [7] to finish the sorting; thia 
algorithm removes at least one breakpoint per inver- 
sion. Since any translocation or inversion can remove 
at most two breakpoints, a performance guarantee of 2 
follows. This leads to Theorem 2.4. 

We now turn to signed data in the undirected 
model. As before, we associate a graph G with 
genomes 71 and 72. Vertices in G correspond to char- 
acters, and edges record the adjacency of characters 
in 71 and 72. With signed data and inversions, the 
construction becomes a little more complicated; it 
use8 the idea of a bidirected edge from Kececioglu and 
Sankoff [7], and an alternating path from Bafna and 
Pevzner [ 11. 

A lower bound construction 

For the construction we choose an arbitrary read- 
ing direction for each string, both in the unsorted 
genome 71 and the sorted genome 72. This estabhahes 
a 8ucces8or for each character in the initial genome 71 
and the final genome 72. 

We establish a sign for each character a8 follows. 
All characters in 7s are considered to be positive. A 
character a in a string of 71 is positive if, when reading 
the corresponding chromosome of 71 in the chosen 
direction, the sequence for the marker corresponding 
to a appear8 in the 8ame direction a8 in 72. Otherwise, 
character a is negative in 71~ Notice that reading a 
string +a+b+c of 71 in the reverse direction gives 
string -c-b-o. Graph G will be invariant under this 
transformation. 

To simplify the remainder of the presentation, we 
will consider the final sorted genome 72 to be fixed 
and implicit, and define graph G in term8 of what we 
call the current genome 7. At the start, 7 is the initial 
unsorted genome 71, but 7 changes as translocations 
and inversions are performed. 

With these conventions, graph G(7) is formally 
defined as follows. For every character there is a 
vertex in G, and for every string in 7 there are four 
dummy vertices. For a character a at the left end of 
a string in 7, one dummy vertex represent8 the null 
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predecessor of a; for a character b at the right end of 
a string in 7, one dummy vertex represents the null 
successor of 5. Similarly, two more sets of dummy 
vertices represent null predecessors and successors in 
the final sorted configuration. 

Edges of G are bidirected,6 and of two colors: solid 
and dashed. Solid edges represent the adjacency of 
characters in the final sorted genome, while dashed 
edges represent adjacencies in the current unsorted 
genome. We assign directions to these edges as follows. 
A dashed edge between a character a and its successor 
in the current unsorted genome, a&,t, is always 
directed from the successor to the predecessor: 

fa ++ ~4urrent 

A solid edge between a character Q and its successor 
in the final sorted genome, a;inal, has a direction that 
depends on the signs of the two characters in the 
current genome, and is given as follows: 

-a ++ +a;“4 
-a ++ -4GKd 

The key property of this construction is that the 
edge set of G can be uniquely decomposed into disjoint 
alternating paths and cycles. By a path in a bidirected 
graph we mean a sequence of distinct edges, where 
a vertex that is encountered via an in-edge in the 
sequence is left via an out-edge, and vice versa. A 
vertex may be visited repeatedly in such a path. 
A cycle is a path where the first and last vertices 
coincide. A path or cycle is alternating if the edges 
alternate in color between solid and dashed. 

The decomposition is specified by pairing each 
solid edge incident to non-dummy vertex v with a 
dashed edge incident to v. Notice that every non- 
dummy vertex has exactly two incident solid edges, 
one an in-edge and one an out-edge. Similarly, every 
non-dummy vertex has exactly two incident dashed 
edges, again one an in-edge and one an out-edge. This 
implies there is a unique pairing that correctly mates 
edge directions, hence a unique decomposition into 
maximal alternating paths and cycles. 

Using this decomposition we can derive the fol- 
lowing lower bound. For a genome 7, we denote 

‘A bidincted edge has arrowheads at both ends that can be 

independently directed into or out of its endpoints. A normal 

directed edge is an out-edge for one endpoint, and an in-edge 

for the other endpoint. A bidirected edge can in addition be an 

in-edge for both endpoints, or an out-edge for both endpoints. 
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Figure 5 The effect of a translocation or inversion on 
G(r). The structure of the paths that connect the four 
dangling solid edges does not change. 

the number of cycles in the decomposition of G(7) 
by i&((y). The number of paths in the decomposition 
is always 2n. 

Lemma 4.1 The minimum number of translocations 
and inversions to sort a genome 7 of n chromosomes 
and m markers, with signed data in the undirected 
model, is at least 

(n - n) - *(7)* 

Proofsketch. Consider the effect on G(7) of a 
translocation or inversion in 7 (see Figure 5). The 
construction of G is carefully designed to ensure that 
the edge decomposition changes only where the chr+ 
mosome is cut, by simply reconnecting the two dashed 
edges corresponding to the cut sites. With a case 
analysis, one can then show that any translocation 
or inversion changes the number of cycles by A* E 
{-l,O, +I}. 

When the current genome coincides with the final 
genome, the number of cycles in the decomposition 
is m - n. As any series that sorts 7 must raise the 
number of cycles from +(y) to this number, any such 
a series must use as least m - n - *(7) translocations 
and inversions. 0 

An approximation algorithm 

We obtain an approximation algorithm that comes 
within $ of the lower bound using the idea of a 
breakpoint. A string in the current genome 7 has a 
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algorithm SignedTranslocationInversionSort(-y) begin 
i := 0 
while 7 contains a breakpoint do begin 

(1) 

(2) 

(3) 

(4) 

(5) 

i:=i+l 
if 7 has a 2-translocation 7 then 

jbi := 7 
else if 7 has a 24nversion then 

Choose a 2-inversion p, favoring inversions 
that leave behind 2- or l-inversions. 

fii := (I 
ebe if 7 has a I-tramlocation T then 

/bi := T 
else if 7 has a l-inversion then 

Choose a l-inversion p, favoring inversions 
that leave behind 2- or l-inversions. 

JLi := p 
else begin 

Choose a O-inversion p for which A9 2 0, 
favoring inversions that leave behind 
2-inversions. 

fii := p 
end 
7 :=70/L; 

Figure 6 Greedy algorithm for sorting signed data by 
translocations and inversions in the undirected model. 

breakpoint between two consecutive characters if they 
are not of the form . - * +a +a&,, or -akna, -a . . a. 
We denote the number of breakpoint8 in a genome y 

by @(d. 
Notice that any translocation or inversion 

changes the number of breakpoints by A@ c 

(-2, -l,O, +1,+2}, since the operations cut at ex- 
actly two positions. We say a translocation T is a 
k-translocation if ACP = -k on performing r. Simi- 
larly, an inversion p is a k-inversion if A@ = -k on 
performing p. Thus 2-translocations and 2-inversions 
remove two breakpoints. 

A natural strategy for sorting 7 is to repeatedly 
pick a translocation or inversion that removes the 
most breakpoints, since for every 7 that is not sorted, 
a(7) > 0, while the sorted configuration has zero 
breakpoints. 

This results in the greedy algorithm of Figure 6. 
Cases (2) and (4) are from the inversion algorithm 
of Kececioglu and Sankoff [8], while case (5) is the 
refinement of Bafna and Pevzner [l]. Our proof of the 
performance guarantee is based on their analysis. 

In the following, *k(7) denotes the number of 
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cycles of length k in G(7). 

Lemma 4.2 The greedy algorithm sorts any 
genome 7 with signed data in the undirected model 
in at most 

G(7) - $47) 

translocations and inversions. 

Proofsketch. Notice that a configuration has a l- 
or 2-translocation iff there is a pair of characters 
that should be on the same string in the sorted 
configuration, but are separated onto different strings 
in the current genome. Hence all translocations are 
performed before any 0-inverson. This gives a natural 
division of the algorithm into two phases: the first 
phase consists of all rearrangments preceding the first 
O-inversion; the second phase contains all remaining 
rearrangements. At the conclusion of the first phase, 
all characters are correctly segregated onto strings; 
the second phase consists of sorting each string by 
inversions. 

Bafna and Pevzner have shown that cases (2), (4), 
and (5) sort by inversions within the bound of the 
lemma [l]. Thus it suffices to show that for every 
rearrangement operation performed by the algorithm 
in the first phase, 

where A@ measures the decrease in the number of 
breakpoints, and A\Ea measures the decrease in the 
number of cycles of length 4, due to performing the 
operation. This inequality holds both for 2- and l- 
translocations, and 2- and l-inversions. 0 

This implies the following performance guarantee. 

Theorem 4.1 The greedy algorithm is a $- 
approximation algorithm for sorting signed data by 
translocations and inversions in the undirected model. 

Proof Notice that the number of breakpoints can 
be rewritten as a(7) = m - n - *z(7), Then by 
Lemma 4.1, 

Opt(r) s (m-n) - Q(7) 

= (Q(7) + *2(r)) - %(Y) 

= G(7) - (q4(7)+ *.26(r)) 

2 a(7) - (94(Y) + 33(7)-2*4(r))) 

= 3*(Y) - $4(7)), 

where the last inequality follows from the observation 
that every cycle of length 6 or more contains at least 
three breakpoints. Applying Lemma 4.2 yields the 
theorem. 0 
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5 Further research 

It appears that a significant obstacle to obtaining 
improved approximation8 for tranalocations alone is 
deriving a lower bound that reflects the constraint 
that a translocation must exchange segments from 
distinct chromosomes. In particular, is there a lower 
bound sensitive to the following: when markers are 
properly segregated onto chromosomes but not in 
sorted order, translocations that separate markers but 
do not increase the cycle count are required. 

One important issue we do not address is the com- 
parison of genomes with differing number8 of chromo- 
somes. For such organisms, the evolutionary history 
must consider chromosome fissions and fusions, which 
split and join chromosomes, in addition to the other 
rearrangement operations. While we do not know of 
any performance guarantees for sorting with fissions 
and fusions, we do know that any history involving 
translocations, fissions, and fusions has a normal form 
in which all fissions precede all translocations, which 
precede all fusions. Thus we can restrict our atten- 
tion to series of this form in the search for a shortest 
history. 

The position of the centromere influences the 
model of translocation, as no viable exchange can pro- 
duce a chromosome lacking a centromere. This moti- 
vated us to define the directed and undirected mod- 
els. A more faithful formulation, however, would be 
desirable, that explicitly models the location of the 
centromere, and take8 this into account when defining 
the 8et of allowable exchanges. 

These variants suggest several avenues for further 
research. 
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