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Abstract—We analyze a general problem in a crowd-sourced
setting where one user asks a question (also called item) and
other users return answers (also called labels) for this question.
Different from existing crowd sourcing work which focuses on
finding the most appropriate label for the question (the “truth”),
our problem is to determine a ranking of the users based on
their ability to answer questions. We call this problem “ability
discovery” to emphasize the connection to and duality with the
more well-studied problem of “truth discovery”.

To model items and their labels in a principled way, we draw
upon Item Response Theory (IRT) which is the widely accepted
theory behind standardized tests such as SAT and GRE. We
start from an idealized setting where the relative performance
of users is consistent across items and better users choose better
fitting labels for each item. We posit that a principled algorithmic
solution to our more general problem should solve this ideal
setting correctly and observe that the response matrices in this
setting obey the Consecutive Ones Property (C1P). While C1P is
well understood algorithmically with various discrete algorithms,
we devise a novel variant of the HITS algorithm which we call
“HITSNDIFFS” (or HND), and prove that it can recover the
ideal C1P-permutation in case it exists. Unlike fast combinatorial
algorithms for finding the consecutive ones permutation (if it
exists), HND also returns an ordering when such a permutation
does not exist. Thus it provides a principled heuristic for our
problem that is guaranteed to return the correct answer in the ideal
setting. Our experiments show that HND produces user rankings
with robustly high accuracy compared to state-of-the-art truth
discovery methods. We also show that our novel variant of HITS
scales better in the number of users than ABH, the only prior
spectral C1P reconstruction algorithm.

Index Terms—truth discovery, item response theory, consecu-
tive ones property

I. INTRODUCTION

Motivation. We first present a couple of examples from a

class to a more general crowdsourcing context.

Example 1 (Student ranking). Kiyana, an innovative instruc-
tor for an online class who suffered from the leakage of
previous exam questions and difficulty of creating new ones,
notices a lot of interactions in student forums like Piazza [2]
and pilots a new learning approach. Since students are
willing to ask and answer questions, Kiyana aims to utilize
such communication for both practice and assessment of the

class by requiring students to suggest and answer multiple-
choice questions (MCQs) themselves. The task of students
is to come up with meaningful MCQs (including question
stems and choices) related to the topics of the class and
answer the questions from others. In this way, the initiative of
and interactions between students are encouraged, and their
performances can be used as another important measure
(e.g., a “participation” score) towards the grade assessment,
in addition to traditional exam scores. To assess students,
Kiyana first simply counts how many times a student answers
questions, which is the traditional way for an instructor to
give a participation score for students in a forum. However,
in this way, the grades are biased towards students who
answer a lot of questions randomly. The second attempt is to
require all students to answer the same number of questions
and rank them by how many questions they answer correctly,
which still requires a lot of efforts for her to figure out
all the correct answers and suffers from the problem that
each question has quite different difficulties. Kiyana wonders
whether there is a more principled way for ranking students
by their abilities to answer questions correctly.

Example 2 (Crowd workers ranking). Daiyu wants to release
a human intelligence task which consists of a set of ques-
tions at a crowdsourcing platform like Amazon Mechanical
Turk [1]. Suffering from low-quality answers from the crowd
workers, she wonders whether there is a better way to select
top crowd workers instead of simply setting thresholds for the
number of tasks they have finished or finished successfully.

The above examples motivate our problem of “ability dis-

covery” which ranks the users (students/workers) based on

their abilities to answer questions correctly.

The ability discovery problem. We have m users and n
items.1 Each item has up to k labels,2 and the labels usually

vary between items (the items are thus “heterogeneous”). Each

user chooses up to one label to each of the items, and two

1We use item/question and label/option/answer/choice interchangeably.
2In other words, the item(s) with the most unique labels has k different

labels. Labels can be proposed either from questioners or answerers.
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users may choose the same label to the same item. Our goal

is to derive a principled way for determining a ranking of the
users in terms of their ability to pick correct labels for the
items based solely on the user responses.

Connection to truth discovery. Ability discovery can be

considered a dual problem of the widely studied truth discov-
ery problem [69]. The setup is similar; the difference is that the

truth discovery problem measures success in finding the truth

(thus the correct label for each item) whereas our problem

focuses on finding the correct ranking of the users by their

relative abilities. While the truth discovery problem occurs in a

wide range of problems related to crowdsourcing and has been

of intense focus for the data management community [69], the

ability discovery problem gets little attention and is usually

treated as a sub-problem: if one knows the truth, it is easier

to rank the users based on the choices they make. In turn, if

one knows the order of user abilities, it is easier to determine

the truth. However, we show in Section IV that it is not

straightforward to rank users correctly, even when given the

correct answers to the questions beforehand, which means

even the perfect truth discovery method is not guaranteed to

perform well for the ability discovery problem. Furthermore,

we argue that ability discovery is much more than a sub-

problem of truth discovery and highlight its importance in

two aspects: 1) It has different application scenarios as we

discussed in the examples. 2) Different from correctness of

answers, user abilities are abstract and cannot to be measured
directly, which makes ability discovery results valuable but

also hard to evaluate with no acknowledged ground truth.

Assumptions. Similar as in truth discovery, we assume an

objective total order on the labels of each item based on their

correctness, and a total order on the users based on their latent

one-dimensional abilities for choosing the correct labels.

Our approach. We first define an idealized scenario in

which the user responses are consistent with their abilities

across the items and characterize it as the response matrix

having the Consecutive Ones Property (C1P). We then suggest

an efficient spectral method that we call HITSNDIFFS (HND)

for reconstructing such ideal orderings if they exist. We prove

that in the ideal error-free scenario (better users always make

better choices) our method is guaranteed to find the correct

ranking, which puts our approach on a stronger theoretical

footing as a cross between a heuristic and an exact algorithm.

Importantly, our method generalizes to the general non-ideal

case and allows us to compare it with existing truth discovery

methods for ranking users. One key innovation in our work

is the use of Item Response Theory (IRT) [57] to model both

label rankings as well as the propensity of users of different

abilities to choose such labels, and the previously not made

connection to C1P. We utilize 3 different generative models

from the IRT literature to generate realistic synthetic data.

Experiments on these data show that (i) our new method is

more accurate than existing truth discovery methods, and (ii) it

can also serve as scalable approach that reconstructs the C1P
order if it exists and generalizes much better on non-ideal
inputs than the only other C1P order reconstruction method

that works in the non-ideal scenario.

Contributions. (1) We connect the notion of consistent
responses in heterogeneous multiclass classification to the

well-known Consecutive Ones Property (C1P) from seriation

theory [4], [21], [27]. We argue that any principled solution to

ranking users by their abilities should be able to recover the

correct ranking when responses are consistent with abilities.

(2) We propose a novel yet simple adaptation of the HITS

algorithm [29] that we call HITSNDIFFS (HND) for ranking

users based on their abilities. We prove the surprising result

that HND recovers the consecutive ones ranking of users

when a unique such order exists. Unlike fast combinatorial

algorithms for finding the C1P ordering if it exists, HND

can also deal with the general case when no such order
exists. This makes HND an ideal candidate for our problem

(and even becomes an exact algorithm in special settings).

We compare HND against ABH [4], which is the only other

spectral approach that has these properties, and give intuitive

and experimental evidence for why HND performs better.

(3) We show how Item Response Theory (IRT) [57], which is

widely deployed in educational testing, provides a natural and

mathematically principled theory (including generative mod-

els) for modeling heterogeneous item ranking that includes the

C1P as a special case of consistent responses.

(4) We conduct extensive experiments on synthetic datasets

generated by 3 polytomous IRT models and show that HND

can outperform other existing truth discovery approaches in

terms of accuracy of the user ranking. We also show (both

in theory and with experiments) that HND has better scala-

bility and accuracy than ABH (which is the only other C1P

reconstruction approach known today that can be used for the

general ranking problem).

Outline. Section II defines our problem, draws the connec-

tion to the C1P property, and introduces IRT as generalization

of C1P. Section III introduces our approach, gives its formal

properties and compares it to closely related work. Section IV

presents experiments. Section V discusses additional related

work on truth discovery before Section VI concludes. Code,

proofs and more experiments are available online [8], [9].

II. FORMAL SETUP

A. Ability discovery problem formulation

Consider a setting with m users choosing among k options

for each of n items. Items are heterogeneous in that they have

different options, as is the case in MCQs used in standardized

test settings (see Figure 1a). This setup is different from typical

multiclass classification [12] where all n items have the same

class of k labels. To emphasize the difference, we refer to our

setup as heterogeneous multiclass classification.

User responses can be represented in one-hot encoding as

a (m× kn) binary response matrix C (see Figure 1b) where

each row represents the choices of a user and each column

represents an option for some item. The number of non-zeros

in C is mn and the number of non-zeros in each row n.

We assume that each user j has a latent one-dimensional

ability θj that represents the user’s ability to choose high-
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quality options for each item. Our goal is to rank the users by

their abilities to choose high-quality options.

Definition 1 (Ability discovery). Given m users and their
choices among k options for n heterogeneous items as binary
response matrix C.3 Rank the users by their abilities to choose
higher quality options for each item.

Several approaches on homogeneous items assume the prob-

abilities of users getting a correct answer to be identical across

questions and encode user abilities as a (k × k) dimensional

confusion matrix per user [12], [69]. In our setting, this is

not the case: each option h for item i may have a different

“quality” ηih. The higher the quality is, the more likely it

is picked by better students. The probability of answering a

question correctly (i.e. choosing the highest-quality option)

then depends on the interplay between the user ability and

the option qualities. This setup perfectly fits Item Response
Theory (IRT) [36], [57], summarized in detail in Section II-D.

Example 3. Figure 1a shows m=4 users answering n=3
MCQs. Each question has k = 3 choices labeled A to C
in decreasing order of quality. Figure 1b shows a response
matrix C′ and its binary form C. Assuming that users’
choices are “consistent” with their abilities (i.e. correctness
of labeling increases with ability), the only possible ranking
of users for the observed C′ is 1, 2, 3, 4, or its reverse. Figure
1c illustrates an IRT model for the probability of picking the
correct answer A for each item as function of user abilities
when the correct ranking is 1, 2, 3, 4. For example, user
2 has the ability to label items 1 and 2 correctly and thus
chooses the correct answer A for both items. Our problem is
to rank the users by their mastery of the subject based solely
on the users’ choices without knowing the correct labels.

B. The ideal case with consistent responses
We call a response matrix “consistent” if there is a (total)

order of the users (based on their abilities) that is consistently

reflected in their responses across all items. In this ideal case,

if a user j1 chooses a better option (i.e. one of higher quality)
than user j2 for an item, then user j1 must also choose an
equal or better option than user j2 for any other item. This

implies that there are also, for each item, a total order among

the options from best to worst, and the better users choose

better or equal options for every item.
In other words, assume that the user abilities θj are all

distinct, and also that for every item i, the qualities ηih of

its options are all distinct, then there is a unique total order
of the users, and of the options for each item.

Definition 2 (Consistent Responses). A response matrix C is
consistent if there exists an assignment of user abilities θ and
option qualities η, s.t. for any pair of users j1 and j2 with
θj1 > θj2 , and for any item i where user j1 chooses option
h1 and user j2 chooses option h2, we have ηih1

≥ ηih2
.

3To simplify the discussion and different from Section I, we assume here
that each item has exactly k choices. For items with k′<k choices, we can
assume them to have k−k′ more choices and nobody choosing them.
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Fig. 1: (a) Ability discovery problem: m=4 users choose one from
k=3 choices of labels A, B, C for each of n = 3 items. (b) Input: the
(m×k) response matrix C′, or equally its flattened (m×kn) binary
response matrix C. (c) Model: the probability of picking the correct
answer in terms of the user ability for Items 1,2,3. The abilities of
all 4 users are marked on the horizontal axis.

C. Relation to Consecutive ones Property (C1P)

We observe that consistent response matrices, when row-

sorted according to user abilities, satisfy a widely studied

ordering property in seriation, called the consecutive ones
property (C1P) [4], [21], [27]. We follow the notation from

seriation theory and call it a P-matrix.

Definition 3 (C1P, P-matrix & pre-P-matrix [4]). A binary
matrix satisfies C1P and is called a P-matrix if in each column,
all the 1’s are consecutive. If the rows of a matrix can be
permuted so it becomes a P-matrix, we call it a pre-P-matrix.

In other words, no 0’s appear between any two 1’s in

a column in a P-matrix (see C in Figure 1b). To see that

consistent responses with users sorted by abilities θ give a P-

matrix, suppose for a contradiction that a column correspond-

ing to an option for an item has two or more blocks of ones.

Then the users corresponding to the zeros in between these

blocks will have chosen another option for which the quality

is strictly higher or lower than that of this option since the

option qualities are assumed to be distinct. But this violates

consistency since the rows are ordered by user ability.

Observation 1 (Consistent Responses imply C1P). A response
matrix C is consistent iff it is a pre-P-matrix.

Consequently, ranking the users in a scenario of consistent

responses corresponds to the problem of determining a per-

mutation of the rows of C so that the result obeys C1P.

State-of-the-art on C1P. Booth and Leuker [6] (“BL”)

proposed the fastest known algorithm for finding all possible

permutations of the rows that reconstruct the C1P ordering in
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time linear in the number of nonzero entries in the matrix,

taking time O(mn) in our setting. However, their method

fails to produce an ordering of the rows when the matrix

is not a pre-P-matrix, and therefore cannot be used as a

general heuristic for simulated or real-world datasets that are

not ideal. In contrast, Atkins et al. [4] (“ABH”) proposed

an elegant spectral method to determine whether a matrix

obeys C1P, thus giving a rare continuous method to solve

a combinatorial ordering problem. Moreover, it can also be

adapted as a heuristic when the input matrix is not a pre-P-

matrix. To the best of our knowledge, this is the only currently

known method that can be used for ability discovery that is

also guaranteed to recover a C1P ranking if it exists.

Our goal. Our goal is to develop a fast and principled

algorithm that just like ABH (i) returns a P-matrix in the

special case of pre-P matrix inputs, and (ii) can solve the

problem in the more general case when the response matrix

is not pre-P. As we show, the performance of ABH quickly

drops in the non-ideal setting (the general IRT setting in

Section II-D) which makes it unusable for ability discovery.

We show that our method is more robust and generalizes better,

thus being the first method with a useful accuracy for ability

discovery that is also guaranteed to solve the ideal case.

D. Relation to Item Response Theory (IRT)

Brief introduction of IRT models. A large body of work

from psychological and educational researchers called Item
Response Theory (IRT) [36], [57] studies the mathematical

functions relating the probability of an examinee’s response on

a test item to an underlying ability. All major educational tests,

such as the Scholastic Aptitude Test (SAT) [36] and Graduate

Record Examination (GRE) [28], are based on IRT. IRT

forms a mathematically principled, experimentally validated,

and widely used theory on how users answer items. Figure 2

summarizes the connections between various IRT models, and

our online appendix [9] contains the full details on IRT.

Dichotomous IRT models can be seen as variations of the

standard logistic or sigmoid function σ : R → [0, 1] defined

by σ(z) = ez

1+ez = 1
1+e−z , which is widely used in machine

learning models and a smooth relaxation of the Heaviside

step function H(z) = I(z ≥ 0) [40]. These models describe

the probability Pi(θ) for a student with ability θ to answer

a question i correctly. We discuss here only the 3PL model

(other binary models follow based on Figure 2). Parameter θ
is the latent user ability, and a, b, c are latent item factors

characterizing the questions and their options, representing

discrimination, difficulty and random guessing, respectively:

P
3PL
i (θ) = ci + (1−ci)σ

(
ai(θ − bi)

)
= ci +

1− ci
1 + e−ai(θ−bi)

Multinomial IRT models measure the probability Pih(θ) for

a student with ability θ to choose an option h for a question i.
Thus different from binary models whose parameters belong

to questions, multinomial IRT models have parameters for
each option. For example, the Graded Response Model (GRM)
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Fig. 2: Correspondences between the discussed IRT models. Orange
numbers show number of free parameters per question. Arrows mean
“specializes into.” White arrows require special assumptions for the
specialization: Bock to GRM holds only approximately after fixing
aBock
h =h · aGRM, Samejima to 3PL for k=2 when c=1/k. It turns

out that 2PL is isomorphic to standard logistic regression, and Bock
is identical to multinomial logistic regression.

model [50] assumes one discrimination ai parameter for each

question i, and one difficulty parameter bih per option:

P
GRM
ih (θ) = P

∗GRM
ih (θ)− P

∗GRM
i,h+1(θ)

P
∗GRM
ih (θ) = σ

(
ai(θ − bih)

)
=

1

1 + e−ai(θ−bih)

−∞ = bi0 < bi1 < ... < bi,k−1 < bik = ∞
The Bock model [5] further assigns a discrimination parameter

aih for each option h, and the Samejima model [49] takes into

account random guessing by adding a dummy option.
Option qualities. Notice that the option discrimination

parameters in IRT determine the order of options in terms of

quality (or correctness). Intuitively, the higher ai for a question

i is, the more “discriminating” it is (the probability of cho-

sen the correct answers more quickly increases with student

ability). The probability of answering a question correctly is

then a function of the user ability and all the question and

option parameters (discrimination scores and difficulties). This

provides a flexible way to model the option quality.
Another way to model the option qualities is to define the

option quality as a function of the user abilities of users who

choose this option (e.g., HITS sums up the user abilities), as

we discuss in Section III-A.
Connection between IRT and C1P. We introduced the

definition of consistent responses in Section II-B, When a

response matrix is consistent, it is a pre-P-matrix and can be

permuted to become a P-matrix which has the consecutive ones

property (C1P). If the response matrix is a pre-P-matrix, the

corresponding response function of the probability for a user

to choose a specific option h ∈ {0, . . . , k−1} can be expressed

as the difference between two Heaviside step functions:

Pih(θ) = H(θ − bih)−H(θ − bi,h+1)

for appropriately chosen bih such that:

−∞ = bi0 < bi1 < ... < bi,k−1 < bik = ∞
Notice that this response function is exactly the GRM model

in the limit of a → ∞: Whenever the user ability θ is between

bih and bi,h+1, then this student chooses option h.
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To summarize, IRT models can be seen as a relaxed version

of the response function in the ideal case when the response

matrix can be permuted to obey C1P. As widely accepted

models for MCQs, they strongly support our principle of

satisfying the more strict C1P in the ideal case and can be

used to generate data in non-ideal cases (see Section IV).

III. A FAMILY OF HITS ALGORITHMS

We review the HITS algorithm and variants that have

been proposed for truth discovery. We then describe a natural

averaging version of HITS that we call “AVGHITS.” Our key

observation is that the eigenvector corresponding to the 2nd
largest eigenvalue of its update matrix reconstructs the user (or

row) ordering with C1P if one exists and is unique.4 We then

describe a variant that we call “HITSNDIFFS” (or HND in

short) on a tripartite graph to find this eigenvector efficiently:

it keeps an additional vector of differences between adjacent

scores and updates it in the loop of the AVGHITS algorithm

to compute the ordering of users that we require. We prove

that HND returns the correct ordering when the user responses

are consistent and compare its time complexity and expected

accuracy for non-consistent responses with other methods.

Required background from spectral graph theory. We

say that v is an eigenvector of (n × n) quadratic matrix A
with eigenvalue λ if v �= 0 and Av = λv. If A is symmetric,

then all eigenvalues are real [31]. We use indices to refer to

eigenvalues sorted algebraically: λ1 ≥ λ2 ≥ . . . λn−1 ≥ λn.

We write vi to refer to the eigenvector corresponding to

eigenvalue λi and will be cavalier in referring to it as “the i-
th largest eigenvector” when we really mean “the eigenvector

corresponding to the i-th largest eigenvalue.”

If the matrix is non-negative and irreducible, then according

to the Perron-Frobenius theorem [20], [39], [45] the first

eigenvector is also the largest by amplitude (λ1 = maxi |λi|)
and the corresponding eigenvector v1 is positive.

A. “HITS” and its variants for truth discovery

Hubs and Authorities (HITS) [29]5 is a classic spectral

approach that several truth discovery approaches have built

upon. The original aim of the algorithm is to rate web pages

by two scores: authority and hub score. These scores are

recursively defined such that the hub scores are proportional

to the sum of the authority scores of the nodes they point to,

and the authority scores are proportional to the sum of the

scores of the hubs pointing to them, thus reflecting a mutually

consistent set of scores [41].

In the context of truth discovery, the authority and hub

scores can be interpreted as the user abilities and option

correctness scores, respectively. Let C represent the m × n
binary response matrix where Cj,i = 1 iff user j chooses item

i, and s be the m-dimensional user score vector, and w be

4We consider an ordering and its reverse ordering to be the same.
5HITS originally stood for “Hyperlink-Induced Topic Search.”

the n-dimensional item weight vector. In matrix notation, the

scores are recursively defined as:

s ← βCw w ← αC�s

where α and β are normalization constants and C� is the

transpose of C. The algorithm starts from an initial assign-

ment, such as s = e and iteratively updates then normalizes

w and s. The user scores s will converge to the 1st eigenvector

of the matrix CC�.

TruthFinder [64] modifies HITS by first taking the average
instead of the sum of the chosen item scores as user scores and

interpreting them as probabilities of the users being correct on

any question. It then defines an item’s score as the probability

of it being true given the independent probabilities of all the

users choosing the item. When appropriately initialized, the

approach does not require normalization. In the following

matrix formulation, let Crow represent the row-normalized

response matrix C:

s ← Croww w ← 1− exp
(
C� log(1− s)

)

Investment [44] calculates the ability of users as the sum of

the scores of their chosen options, weighted by the user ability

they invested in the previous iteration. PooledInvestment [44]

extends Investment by using a different formula for the item

scores. Both variants use non-linear scaling of the item scores

with different user-specified hyperparameters.

Our method. We build upon this key idea of updating

scores in a bipartite graph of users and items by iteratively

summing scores from one side to update the other. However, in

contrast to other methods, we focus on the 2nd largest instead

of the dominant eigenvector of a new variant and show that

this approach is guaranteed to recover the correct ranking in
case of consistent responses. As we will show in Section IV,

no other existing truth discovery method can do that.

B. “AVGHITS”

In our setup, there are nk different choices (k choices for

each of n items). Consider a bipartite graph G = (L ∪R,E)
that corresponds to the (m×nk) response matrix C: Partition

L contains a vertex for each of m users: L = {u1, ..., um}.

Partition R is a collection of n vertex sets R = {I1, ..., In},

one for each item. Each set Ii contains ki ≤ k vertices Ii =
{ci1, ..., ciki

} where cih represents option h of item i. We add

an edge to between a user uj and an option cih E if user j
chooses option h for item i.

To make our derivations easier to follow, we will con-

veniently assume that each item i has the same number

ki = k of options. Notice however, that this is not required

for our approach. We further assume C to be connected.

This requirement applies to all spectral truth ranking methods

including HITS as otherwise the relative ranking of users

(or items) from different components can’t be established.6

Finally, define s as a (m × 1) user score vector and w as a

6PageRank achieves the connectivity with the teleport operation.

239

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on April 03,2025 at 21:00:04 UTC from IEEE Xplore.  Restrictions apply. 



(kn × 1) option weight vector denoting weights for each of

the kn options according to their order in C.

We call AVGHITS the modification of the HITS update

rule that uses averages instead of sums to iteratively update

the user scores and option weights in both directions: the user

score sj is updated to be the average of the weights of all the

options that user j picked, and an option weight cih is updated

to be the average of the scores of all users who picked it. In

the following matrix formulation, let Crow represent the row-

normalized and Ccol the column-normalized response matrix

C. At each iteration (until convergence), we update the user

score vector s and the option weight vector w as follows:

s ← Croww w ← (Ccol)�s

By combining the above two update equations, we can

update user scores between iterations directly by replacing the

two normalized response matrices with one update matrix U:

s ← Crow(Ccol)�︸ ︷︷ ︸
U

s (1)

These iterations are not yet very helpful. Indeed, we observe

that the largest eigenvector of U is the all-ones vector e, and

this is the vector of user scores that AVGHITS converges to.

It turns out that it is the eigenvector corresponding to the 2nd
largest eigenvalue of U that we seek.

C. Our algorithm “HITSNDIFFS” (HND)

In the following, we show a simple algorithm to find the 2nd

largest eigenvector ordering of U and prove that it can be used

to find the unique consecutive ones ordering of the response

matrix C. By “the eigenvector ordering”, we mean the ranking

of entries in this eigenvector in terms of their values. For

example, v1 = {0.36, 0.8, 0.48} and v2 = {0.48, 0.64, 0.6}
have the identical ordering {3, 1, 2} or its reverse {1, 3, 2}.

Our algorithm does not return the 2nd largest eigenvector of

U but instead returns a vector with the identical ordering.

The 2nd largest eigenvector of a matrix can be found using

a variant of the deflation method [38], [40], which we will

discuss in detail in Section III-F. Here we present a novel,

conceptually simple, and faster algorithm that we term “HITS

and DIFFS” (HITSNDIFFS or HND) that extends AVGHITS

from a bipartite to a tripartite graph and whose iterative

updates converge to a user ranking that is guaranteed to be
C1P in the ideal case, and that performs well also in more
general settings. This approach leverages particular properties

of our problem that don’t apply to the 2nd largest eigenvector

orderings of any matrix from more general settings.

First, we propose a new intermediate step that calculates

differences between user scores in the iterative updates of

AVGHITS. Rather than updating the user scores iteratively,

HITSNDIFFS updates the differences between adjacent user

scores by using a suitably modified update matrix, and results

in the scores converging to the ordering according to the

second largest eigenvector of U. Furthermore, this modifica-

tion only adds a linear overhead of computing the user score

difference vectors and normalizing it in every iteration. As
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Fig. 3: HITSNDIFFS uses a 3-partite graph of option weights, user
scores, and user diffs. Contrast this graph with Figure 1. The update
equations (see Algorithm 1) use two re-shaping matrices S and T.

we will show in Theorem 2, when the response matrix obeys

C1P, then HND reconstructs the correct ordering of the rows.

As shown in Figure 3, we define a new vector sdiff of

differences in user scores with entries sdiff
j = sj+1 − sj ,

j ∈ [m−1]. This is equal to sdiff
j = Ss where S ∈ R

(m−1)×m is

shown in Figure 3. In the reverse direction, there are infinitely

many vectors s that can be generated from a given sdiff, all

shifted by different constants. Since we only want a final

ordering of users, we can WLOG set the first element of the

vector s to be 0. The transformation then is s = Tsdiff where

T ∈ R
m×(m−1) is the lower unit triangular matrix7.

We can now get a user difference score update rule:

sdiff ← Ss = SCrow(Ccol)�s = SCrow(Ccol)�T︸ ︷︷ ︸
Udiff

sdiff (2)

In other words, Udiff = SUT is a “difference update” matrix

that is used to update sdiff from one iteration to the next.

With these update equations, sdiff converges to the largest

eigenvector of Udiff. Our algorithm HND that implements this

is described in Algorithm 1.

We now prove the connection between the 1st eigenvector

of Udiff and the 2nd largest eigenvector of U.

Lemma 1 (Eigenvector correspondence). x is the 2nd largest
eigenvector of U iff y = Sx is the largest eigenvector of Udiff.

Proof sketch. Due to the limit of space, we only provide

the high-level ideas of our proofs in the paper. First, we can

find out that each row of U has sum 1. Using this, we can

prove that the largest eigenvector of U is in the direction of

the all ones vector e = 1m if the largest eigenvalue of U has

multiplicity 1 (i.e. the graph is a single connected component).

Let x be an eigenvector of U that is not in the direction of

the all ones vector, i.e. x �= αe. Note that TS = (Im − ee�1 )

7It is this fixing that intuitively keeps the ordering, but changes the actual
amplitudes.
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Algorithm 1: HITSNDIFFS (HND-power): A fast implemen-
tation of equation (2) to calculate the 2nd eigenvector ordering
of U = Crow(Ccol)�

Input: Response matrix C, randomly initialized user scores s0
Output: User scores s

1: sdiff ← sdiff
0 // initialize user score differences

2: repeat
3: s ← Tsdiff // update user scores

4: w ← (Ccol)�s // update option weights
5: s ← Croww // update user scores

6: sdiff ← Ss // update user score differences

7: Normalize sdiff to be a unit vector
8: until convergence or iteration limit
9: s ← Tsdiff

and each row of SU sums to 0. Then,

Ux = λx

SUx = λSx

SU(Im − ee�1 )x = λSx

SUTSx = λSx

Udiffy = λy, where y = Sx (3)

Therefore, Udiff has exactly the same eigenvalues as U
except the largest eigenvalue 1, and the eigenvectors of Udiff

are the differences between the entries of the corresponding

eigenvector of U. Thus we prove the lemma.

Theorem 1 (2nd eigenvector of AVGHITS recovers C1P). If
C is a pre-P-matrix with a unique consecutive ones ordering
of its rows and each row has the same row sum, then this
ordering of the rows of C is given by the ranking of the rows
sorted by values in the 2nd largest eigenvector of U.

Proof sketch. We can first prove that if C is a pre-P-matrix

with a unique consecutive ones ordering of its rows and each

row has the same row sum, U is an R-matrix (defined in

[4]) where in each row and column, the entries closer to the

diagonal are larger than or equal to the further entries. Using

this, we can prove every entry in Udiff is non-negative by

computing each entry in Udiff step by step according to its

definition, which means Udiff is a non-negative matrix. We

can now apply the Perron-Frobenius Theorem [20], [45]: there

exists a non-negative eigenvector of Udiff corresponding to

the largest eigenvalue of Udiff. We know Udiff has exactly the

same eigenvalues as U, except the largest eigenvalue 1, and the

eigenvectors of Udiff are the differences between the elements

of the corresponding eigenvector of U. Since the differences

between the elements of the eigenvector corresponding to the

2nd largest eigenvalue of U (largest eigenvalue of Udiff) is

non-negative, that eigenvector of U is monotonic. Therefore,

sorting the rows according to the second largest eigenvector

ordering of the corresponding update matrix U gives a P-

matrix, proving the theorem.

Theorem 2. If C is a pre-P-matrix with a unique C1P
ordering of its rows and each row has the same row sum, then

HND reconstructs the consistent ordering of the users taking
linear time in the number of nonzeros in U per iteration.

Proof sketch. From Lemma 1, we know by converting the

converged largest eigenvector of Udiff back into a user score,

we regain the ordering of the rows according to values in the

second largest eigenvector of U. This, along with Theorem 1,

proves this theorem that HND detailed in Algorithm 1 recon-

structs the ideal consistent ordering.

D. Decile entropy-based symmetry breaking

Notice that reversing the order of a P-matrix still leaves

it as a P-matrix. Thus all methods for solving C1P suffer

from a natural symmetry breaking problem: they have to decide

between the order returned by an algorithm or its exact inverse.

Our solution to this symmetry-breaking problem is moti-

vated by the following observation: users with higher ability
tend to converge on the correct option as a majority answer,

while users with lower ability at the other end of the ordering

tend to answer randomly. This idea is similar to the main

argument in [33] that experts tend to answer similar correct

answers. Thus the lower end of the user ordering has a higher
entropy in the choices picked than the higher quality end.

Notice that this idea is also implicit in IRT models with ran-

dom guessing where users with low ability choose uniformly

random among the options (hence have high entropy), whereas

users of high ability pick the single correct choice.

We operationalize this idea in a new heuristic that is very

effective in practice: Given a ranking of the users, we compute,

for the top and the bottom user decile, the average entropy of

the chosen item options across all items. We pick the side

with lower entropy as the users with higher quality. We use

this “decile entropy method” for both HND and ABH in our

experiments.

E. Why HND works better than ABH

HND and ABH rely on strikingly similar intuitions about

spectral properties of matrices: HND ranks users by the 2nd

largest eigenvector of U (whose difference is the largest

eigenvector of Udiff = SCrow(Ccol)�T), whereas it can be

shown that ABH ranks users by the 2nd smallest eigenvector

of the Laplacian matrix L of CC� (whose difference is the

smallest eigenvector of M = SLT). In an ideal scenario with

consistent responses (thus in an IRT scenario with very large

discriminations), both methods are guaranteed to return the

correct C1P ordering.8

We can also expect the accuracy to be identical in the other

extreme scenario where all questions have 0 discrimination.

But how can we expect their accuracy to compare in the more

general scenario?

We interpret the general IRT scenario as random pertur-

bations [54] from the ideal C1P case. Now notice that the

smallest eigenvector of M is identical to the largest eigenvec-

tor of βIm−1 −M where β is larger than all the entries and

8Recall that they are guaranteed to return the same ordering, but not the
same eigenvector.
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all the eigenvalues of M.9 Thus the comparison of HND and

ABH corresponds to the largest eigenvector of Udiff against

βI − M. Since both matrices have all non-negative entries

in the ideal scenario, we know from the Perron-Frobenius

theorem [20], [45] that all values in their largest eigenvector

are non-negative.

The user score of the kth user equals to the cumulative

sum of the first k − 1 entries in the eigenvector. In the ideal

case when C is a C1P matrix, every entry of sdiff is non-

negative so s give us a perfect ranking of the students. In the

non-ideal scenario when C is not a C1P matrix and the users

are permuted by their abilities, the sign of the entries in sdiff

change. When the eigenvector is even, a simple sign change

in one of the entries does not influence the entire ranking of

s but when the eigenvector has a large variance, a simple sign

change in one large entry can break the entire ranking. For

example, if the kth entry of sdiff is quite large but the sign is

negative, the error of the ranking of the (k+1)th students can

be very large.

Based on our observation above, we expect HND to work

better than ABH as the variance of largest eigenvector of βI−
M should be much larger compared to Udiff. The result is

verified with dedicated experiments in Section IV-D: Figure 6a

shows our observations on the variances of the sdiff for βI−M
and Udiff. Figure 6b and Figure 6c verify that ABH is less

accurate and less stable than HND.

F. Complexity Comparison

We analyze the asymptotic time complexity of the var-

ious methods. We compare HND against (i) existing C1P

reconstruction algorithms BL and ABH, and (ii) the deflation

method [38], [40] as an alternative method to compute the 2nd

largest eigenvector for AVGHITS.

The time complexity depends on the number of users m, the

number of questions n, and the number of iterations t which

may be different for different methods. We assume t 
 n
and t 
 m and thus only focus on m and n. Notice that

although the response matrix C is a (m × kn)-matrix, it has

only O(mn) non-zero entries since every user can pick only

one label per question.

HITSNDIFFS. A naive way to calculate the ranking is

to first compute Udiff and then use the power method on it.

However, computing Udiff requires a matrix-matrix multipli-

cations before the iterations with time complexity O(m2n).
Since Udiff is a (m−1)×(m−1) matrix, the time complexity

to run the power method on Udiff is O(m2) per iteration. This

gives a total time complexity for the naive implementation

as O(m2n) + O(m2t) = O(m2n). By instead running the

mutual updates of w, s and sdiff as described in Algorithm 1,

we can replace matrix-matrix multiplications with several

matrix-vector multiplications and thereby get a more effi-

cient implementation of HITSNDIFFS in O(mnt) . In other

9To see that, assume Av = λv. Then (A + βI)v = Av + βIv =
λv + βv = (λ + β)v. Thus if v is an eigenvector of A with eigenvalue
λ, then v is also an eigenvector of the spectrally shifted matrix A+ βI, but
with eigenvalue λ+ β.

words, the speed-up results from applying the associativity

law and replacing the calculation s ← (SCrow(Ccol)�T)sdiff

with s ← S(Crow((Ccol)�(Tsdiff))). One detail is that we

need however to implement Line 3 differently. Materializing

the matrix T would take O(m2). Instead, we calculate the

entries for s from sdiff via cumulative summation (e.g. via

numpy.cumsum in Python).

The deflation method. Theorem 1 showed that our problem

can be formulated as finding the 2nd largest eigenvector v2

of U. The problem of finding the eigenvector corresponding

to the second largest eigenvalue of a given matrix A can be

solved with the deflation method [38], [40]. The idea is to first

calculate the dominant eigenvector v1, and then eliminate the

influence of the v1 from A to get a new matrix B whose 1st

eigenvector is the 2nd eigenvector of A. Then v2 of A can

be obtained by using the power method on B. We next argue

(and later show experimentally in Section IV-C) that using

the deflation method is slightly less efficient than HND (in

addition to being not as simple to formulate as HND-power).

The most widely known deflation method [38], [40] only

works for symmetric matrices and does not apply to the

asymmetric U. [60] presents several more variants of the

deflation method including some that work for non-symmetric

matrices. Most of those methods either require matrix-matrix

multiplication or both the left dominant eigenvector and the

right dominant eigenvector. The only exception is Wilkinson’s

vector annihilation [62] which only needs the right dominant

eigenvector (which we know is a unit vector in the direction

of the all ones vector in our case). However, [60] claimed that

this method is difficult to apply in practice because of the need

to conduct annihilation between the power iterations and we

found no open-source implementation.

For our experiments in Section IV we implement Hotelling’s
matrix deflation [61] which uses both the left and right largest

eigenvectors and thus requires one more round of the power

iteration.10 The experimental result in Section IV-C verifies

that HND is not just conceptually simpler but also slightly

more efficient than the deflation method.

ABH [4]. To reconstruct the C1P ordering, ABH requires

the computation of the Fiedler vector [17], which is the

eigenvector corresponding to the 2nd smallest eigenvalue of

the related Laplacian matrix L.

The original ABH paper [4] does not propose an explicit

solution and instead refers to the Lanczos algorithm [30], [43],

whose time complexity is O(dmt) with d being the average

number of non-zero entries in a row of a given (m×m) matrix

A. When the Laplacian matrix is dense as in our scenarios

the time complexity of the Lanczos algorithm is O(m2t). It

is efficient for eigenvector computations on large symmetric

matrices [10], and the state-of-the-art Fiedler vector solver [25]

uses Lanczos. However, implementation by libraries such as

Scipy [58] and Tenpy [23], require the full matrix as input,

which would require us to compute the Laplacian matrix first.

10We first calculate the dominant left eigenvector via power iteration, then
deflate the matrix, and then calculate the dominant right eigenvector on the
deflated matrix.
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This calculation involves matrix-matrix multiplications and, as

we show in Section IV-C, results in O(m2n) .

We provide another solution for ABH which is not in the

original paper [4]. Similar to how we implement HND as

Algorithm 1, we can also implement ABH by using the power

method on the matrix βIm−1−M to get its largest eigenvector

without having matrix-matrix multiplications. As we discussed

in Section III-E, this largest eigenvector of βIm−1 − M is

identical to the smallest eigenvector of M which can be used

to compute the order of the 2nd smallest eigenvector of L in

the same way as Algorithm 1. The total time complexity for

this algorithm is O(mnt+m2t) . When m and n are close

or m < n, the time complexity becomes O(mnt) which is the

same as HND. However, when m � n, the time complexity

becomes O(m2t), which is larger than O(mnt) of HND.

BL [6]. The original paper by Booth and Leuker (BL) [6]

for reconstructing the C1P property can work directly on the

initial response matrix and runs in O(mk + n + f), where

f is the non-zero entries in the matrix. In our setup where

f = O(mn), the time complexity is O(mn). Therefore, BL

is the fastest method when it works. Since it cannot be used

for solving ability discovery in general, we are not using it in

our experiments.

HITS [29], Truthfinder [64], Investment [44], PooledIn-
vestment [44]. All these methods are iteration-based variants

of HITS that take at least O(mnt) and differ in how they

iterate between the user and the item scores. In practice,

only HITS can be defined as an eigenvector problem with

a closed-form solution and efficient linear algebra implemen-

tation. Truthfinder converges in practice, while Investment and

PooledInvestment can not converge and return different results

depending on initialization. Our approach in contrast comes

with the same computational properties as HITS: guarantee

of convergence, unique solution, an intuitive formulation as a

spectral problem, and an efficient matrix implementation.

IV. EXPERIMENTS

Our experiments compare the accuracy of ability discovery

and the scalability of the various methods. The main take-

aways from the experiments are: 1) HND robustly returns

rankings for users with accuracy on average better than or
equal to other truth discovery methods; 2) HND is competitive

with two “cheating competitors” (that are provided the ground

truth information about the correct options for each question

that is usually not available); 3) HND has better scalability as

a C1P reconstruction algorithm than ABH.

A. Experimental setup

Environment. All scalability experiments are run on Intel

Xeon E5-2680 CPUs with an exclusive environment and 128G

allocated memory. We implemented HND in Python 3.8.1.

Benchmarks. [52] provides an extensive benchmark for the

truth discovery problem, and [69] provides a broad survey of

existing truth discovery methods. Two points stand out: 1)

All open-source datasets used in the two papers lack ground
truth for user abilities. 2) All 20 datasets fall under the setting

with homogeneous items. As we discussed in Section I, it is

easy to understand the lack of ground truth for the ability

discovery problem because the user abilities are abstract and
not able to be obtained from external knowledge. To make up

for it, we first create synthetic data based on the polytomous

models from Item Response Theory (IRT) (recall Section II-D).

Moreover, we use a real-world MCQ dataset with approximate

(but not accurate enough) ground truth as a supplementary

evidence to verify the usefulness of HND in Section IV-E.

Polytomous synthetic data generator. We use the three

polytomous IRT models from Section II-D (GRM [50],

Bock [5] and Samejima [49]) to generate synthetic data sets

with known ground truth. Samejima model takes random

guessing into account so it models the educational test scenario

where students try to maximize their scores. Bock and GRM

models with no random guessing models the crowdsourcing

scenario where workers usually do not guess.

By default, we set user ability θ to be within [0, 1], item dif-

ficulty b to be within [−0.5, 0.5], and the item discrimination

a to be within [0, 10], all uniformly random. Besides varying

the number of users, items and options, Section IV-B also

has experiments with shifted b’s (chosen to achieve a certain

percentage of users giving correct answers).11

Methods and their implementations. For a thorough

evaluation, we created three alternative implementations of

HND and two alternative implementations of ABH. HND-
power follows Algorithm 1 which only involves matrix-vector

multiplications. ABH-power is our novel kimplementation of

ABH that avoids matrix-matrix multiplications by using the

power method on the matrix βIm−1 − M. ABH-direct is

the implementation of ABH using the Lanczos algorithm as

suggested by [4]. Section III-F discussed the drawback of

requiring matrix-matrix multiplications. We use an efficient

sparse Linear Algebra Python library called Scipy [58]. HND-
direct implements HND similarly by directly computing the

2nd largest eigenvector of U by using the Arnoldi algorithm

[3], which can be considered the general version of the

Lanczos algorithm on asymmetric matrices, also using Scipy.

HND-deflation implements HND with the deflation method

discussed also in Section III-F. For HND-power, ABH-power

and HND-deflation, the criterion for convergence is a maximal

L2-norm of 10−5 over the change. For our experiments (other

than Section IV-C) we used “HND-power” for HND and

“ABH-direct” for ABH since they turned out to be the fastest

implementations.

We also implemented HITS [29], TruthFinder [64], In-
vestment and PooledInvestment [44]. Since none of those

iteration-based approaches (except HITS) allows an efficient

matrix formulation, our implementation in Python uses loops

and is not efficient. We thus do not report scalability exper-

iments on those methods as native implementation in C++

would bring those close to HND as discussed in Section III-F.

11For experiments with GRM data, we use the data generator from the
GIRTH package which requires at least k = 3 options. We implemented Bock
and Samejima generators ourselves and thus options can start from k = 2.
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For Investment and PooledInvestment (which do not converge)

we use 10 iterations instead of tuning the number of iterations.
Two cheating baselines. To show the effectiveness of HND,

we also compare HND with two “cheating competitors” that

are given additional ground truth information about questions

that is usually not available: True-answer has information

about which choices are correct for each question (which is

usually not known in our scenario) and then ranks users by

the number of correctly answered questions. GRM-estimator
uses a Python package called GIRTH [51] that estimates the

parameters of a GRM model including user abilities. However,

it requires knowing the order of options for each question

by correctness. Our comparison with this approach is notable

because it is the theoretically “best” model to fit data generated

by the same synthetic GRM process.

B. Accuracy on synthetic data
Accuracy. To determine the accuracy of a method, we

calculate Spearman’s rank correlation coefficient [53] between

the returned user ranking and the ground truth ranking by

their actual abilities. Spearman’s correlation is defined as

the Pearson correlation between the rankings of two scoring

functions and ranges between −1 and 1. It is similar to

Kendall’s correlation, yet strictly preferred if there are ties

in the data [46]. There can be negative accuracy at times

(not shown in Figure 4), which means the returned ranking

is negatively correlated or random whose coefficient is near 0.
Setup. We conduct experiments to determine the accuracy

as function of the 1) number of items n, 2) number of users
m, 3) number of options k, 4) option difficulties bih, and 5)

probability of questions to be answered p. In the first experi-

ment, we use data generated according to the three polytomous

models (GRM, Bock, Samejima) from Section II-D to also

show the robust performance of HND for all three models. In

other experiments, we only use data generated according to

the Samejima model since it is the most general one to avoid

redundancy. To verify the ability of algorithms to recover a

C1P ranking, we also generate data that 6) follows the consis-
tent response property (which as discussed in Section II-C is

the case for IRT models when the discrimination aih → ∞).

Every question has the same number of options, and every user

answers every question. By default, we set the users m = 100,

items n = 100, and options k = 3.
1. Varying number of questions n (Figures 4a to 4c12).

HND has better than or equal accuracy as the other methods

even including the two cheating competitors over data gener-

ated by all three models. Notice that the GRM-estimator works

poorly for Samejima as it does not model random guessing.
2. Varying number of users m (Figure 4d). HND works

also better than or equal to other approaches (except for the

data point with low m where the cheating competitors win).
3. Varying number of options k (Figure 4e). HND stays

top and accurate, even slightly outperforming True-answer.
4. Varying question difficulties bih (Figure 4f). Here,

we change the difficulty range from the default [−0.5, 0.5]

12The GRM estimator does not work when the question number is large.

to 7 different ranges, [−1, 0], [−0.75, 0.25], [−0.5, 0.5],
[−0.25, 0.75], [0, 1], [0.25, 1.25], [0.5, 1.5], while user abilities

θj remain at [0, 1]. Thus even the least able user has a high

probability to answer a difficult question in the easiest setting,

while even the best user can be incorrect for some easy

questions in the hardest setting. The x-axis here is the average
accuracy on the questions across all the users. In all scenarios,

we see HND outperforms other competitors.

5. Varying probability p of answering a question (Fig-
ure 4g). To show that HND works for more general scenarios

where users answer different number of questions, we vary

the probability of questions to be answered. For each pair of

question and user, there is the probability of p for the user

to answer the question. We see that HND performs well even

when the dataset is not complete.

6. C1P (Figure 4h).13 In addition to the three multinomial

IRT models, we also generate response matrices that are

consistent and can be reconstructed to be a P-matrix. These

responses correspond to a random GRM instance with very

strong discrimination a. We use these matrices to verify the

effectiveness of HND in reconstructing a C1P permutation. To

avoid ties in the rankings and provide a unique C1P ordering,

we set both the user ability θ and the difficulty parameter b
to be within [0, 1], randomly chosen. We see that HND and

ABH are indeed the only two methods that can reconstruct

the C1P permutation if there exists one.

Summary. HITSNDIFFS is a robust method that outper-

forms the other approaches in most setups, especially those

with high discrimination. We see this as vindication for

designing an approach based on the principle that consistent
answers need to be solved correctly. HND is also competitive

even against the two cheating approaches which have the best

item answer given (i.e. they have access to an oracle that can

solve the entire problem of truth discovery). Moreover, we

verified that HND and ABH are indeed the only ones that

can reconstruct a C1P permutation if it exists.

C. Scalability experiments

Figures 5a and 5b show the scalability in number of users

(m) and questions (n) of our various implementations of ABH

and HND, as well as the GRM-estimator. Each shown data

point is the median over 5 runs, and we set a timeout of 1,000

seconds. HND vs. ABH. Figure 5a shows that ABH-direct

and HND-direct scale with O(m2k) in the number of users

as predicted in Section III-F. The theoretic time complexity

of ABH-power is O(m2t) when m is much larger than n,

and thus it also takes quadratic time. In contrast, HND-power

can scale linearly and is about 20% faster than HND-deflation

on average for m > 1000 users as it needs only one round of

the power method. Figure 5b shows that although ABH-direct

is slightly faster for fixed few users, all implementations are

efficient even for a large number of questions.

GRM-estimator. As a representative of max likelihood pa-

rameter estimation, the GRM-estimator is expected to perform

13In the experiments, PooledInv returned all negative coefficients but we
consider its ranking to be the reverse one.
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(a) Varying n (GRM) (b) Varying n (Bock) (c) Varying n (Samejima) (d) Varying m (Samejima)

(e) Varying k (Samejima) (f) Varying bih (Samejima) (g) Varying p (Samejima) (h) Varying n (C1P)

Fig. 4: Section IV-B: Results of accuracy experiments (the legend is in the first figure).

(a) Scalability with users (m). (b) Scalability with items (n).

Fig. 5: Section IV-C: Scalability experiments with n = 100 items
and increasing numbers of users m in (a), or m = 100 users
and increasing numbers of items n in (b). The experiments confirm
that our method (HnD) scales linearly in the number of items and
users, whereas ABH (even trying various alternative methods) has an
unavoidable quadratic scalability in the number of users.

best on GRM data. However, Figure 5 shows that it is by orders

of magnitude slower than HND.

Summary. HND scales asymptotically and practically better

than the other existing C1P reconstruction algorithm ABH in

the number of users. Moreover, our intuitive Algorithm 1 is

slightly faster than an adaptation of the deflation method.

D. Stability experiments for ABH and HND

We next experimentally verify our prediction from Sec-

tion III-E that HND generalizes better from the ideal case

than ABH. In this setup, we fix m = 100 users, n = 100
items, k = 3 options, with user abilities and item difficulties

equally spaced between [0, 1] and [−0.5, 0.5] respectively. For

one item, all the option difficulties are the same. All items have

identical discrimination a and all the options in one question

have equally spaced a (as in the GRM model). We then

vary the discriminations and compare the (i) variance of the

respective eigenvectors used for ranking; (ii) the normalized

average difference in rank between each user’s ranking;14 and

14Here difference means the average difference of each user’s rankings from
different runs, scaled down to [0, 1] by the user number.

(iii) the average accuracy of the predicted rankings for HND

and ABH across repeatedly sampled response matrices.

Figure 6a shows our observation from Section III-E that the

variance of the largest eigenvector of Udiff of HND is much

smaller than βIm−1 − M, which is expected to lead to the

better stability and accuracy of the HND rankings. Figure 6b

confirms that the ranking of a user is more stable for HND.

Figure 6c shows the resulting increase in the accuracy of

HND over ABH. This confirms our original goal to develop

a spectral method that can achieve the same C1P ranking as

ABH, yet generalizing better in the non-ideal case.

E. Accuracy experiments on real-world data

As mentioned in Section IV-A, we do not know any existing
benchmark with a known true ranking of users by their

abilities. In order to still verify the performance of HND on

real-world datasets we use the ranking of the “True-answer”
baseline as the ground truth. Notice that although this baseline

performs well in our synthetic experiments, it is far from the

perfect gold standard (sometimes even outperformed by HND)

so the experimental result in this subsection should be seen

only as a supplementary evidence. The six used real world

MCQ datasets are from [33].

Figure 7 shows the average experimental result of six

datasets where PooledInvestment and HITS perform slightly

better than HND. However, we need to emphasize several

points: (1) All datasets are very small in terms of question

numbers (from 20 to 36) but have double user numbers on

average, which indicates their limited discrimination. (2) There

is no consistent winner on all six datasets (see detailed result

in our online appendix [9]), an observation also made by [69]

for the related truth discovery problem. (3) All other models

except ABH with poor performance tend to have more similar

accuracy than HND while HND tops them by far on 2 of the 6

datasets, which shows the novelty of HND and its usefulness

on data of different distributions.
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(a) Variance of eigenvector used by
HND or ABH

(b) Normalized user displacement (c) Accuracy of user ranking

Fig. 6: Section IV-D: Stability experiments: (a) The variance of the eigenvector used by HND is smaller than that used by ABH, which
makes it more robust to perturbations from the ideal C1P case. This leads to HND having lower difference in the user ranking (b) and higher
accuracy (c).

Fig. 7: Section IV-E: Correlation of user ranking on real-world
datasets with the “True-answer” baseline that serves us as approx-
imate gold standard user ranking. Notice that the true ranking of
users by ability is not known.

V. ADDITIONAL RELATED WORK

In this section, we discuss additional approaches for the

truth discovery problem. This is in addition to existing C1P

reconstruction algorithms discussed in Section II-C and HITS-

based truth discovery approaches discussed in Section III-A.

Spectral approaches. Dalvi et al. [11] proposed two meth-

ods that output the user abilities and item labels with the

help of eigenvector computation. Ghosh et al. [22] proposed

a method that only outputs the item labels, which involves

calculating the first eigenvector of a symmetric matrix. Both

approaches work only for binary problems and are not obvious

to generalize for k > 2 options.

Other truth discovery approaches. [33] proposes the

concept of experts and utilizes the observation that experts

are more likely to reach consensus on a set of single questions

(called hyper-questions in the paper) to conduct majority vote

on hyper-questions instead of single questions but cannot

quantify user abilities nor rank them. [37] relies on embed-

dings that cannot be easily converted into a ranking on users.

[34] uses confidence and focus on long-tail data. [12], [26] are

optimization-based methods that only consider homogeneous

questions (recall Section II-A).

Other truth discovery problems. Many approaches have

been proposed for truth discovery. Most have different setups

and are not applicable to our problem. [55], [63] change the

setup of the problem by assigning different tasks to two groups

of workers, where the first group answers the questions and the

second group evaluates the answers. [15], [47], [67], [70] work

on the problem of how to assign questions to only a subset of

the sources. [13], [14] pay attention to the sources of informa-

tion, yet focus on the copying relationships between sources.

In our setup, no information is copied between users. [48]

discusses the problem of how much training data is needed

to gain high-quality models. [42] studies truth discovery in

quantitative applications, such as percentage annotation and

object counting.

Crowdsourcing. The ability discovery problem is closely

connected to the truth discovery problem which occur in a

wide range of data management problems related to crowd-

sourcing [32], [69]. Various crowdsourcing systems have been

proposed [16], [68], and the crowdsourcing approach has been

refined for various tasks, such as query answering [19], entity

resolution [7], annotating Twitter data [18], top-k algorithms

[66] and various other labeling tasks [24], [56], [59].

Expert finding. The expert finding problem [35], [65] also

aims to assess the trustworthiness of users. The difference is

that it focuses on finding experts with expertise (skills) specific
to a given question while our ability discovery problem aims

to assess an overall user ability.

VI. CONCLUSIONS

We proposed HITSNDIFFS, a novel variant of HITS,

with surprising theoretical and practical properties for ability

discovery. On the theoretical side, we showed that 1) C1P

of the response matrix models consistent solutions for the

problem; 2) our method reconstructs the correct user rankings

in the consistent case; 3) does so in linear time and 4) can

handle more general cases (in contrast to other linear discrete

algorithms). On the practical side, we showed that HND

handles the problem of ability discovery with robust accuracy

and greater scalability in terms of the number of users than

the only existing C1P reconstruction algorithm that works for

general cases.
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