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Expertise in Online Markets

Abstract

We examine the effect of the presence of expert buyers on other buyers, the platform,

and the sellers in online markets. We model buyer expertise as the ability to accurately

predict the quality, or condition, of an item, modeled as its common value. We show

that non-experts may bid more aggressively, even above their expected valuation, to

compensate for their lack of information. As a consequence, we obtain two interesting

implications. First, auctions with a hard close may generate higher revenue than

those with a soft close. Second, contrary to the linkage principle, an auction platform

may obtain a higher revenue by hiding the item’s common-value information from the

buyers. We also consider markets where both auctions and posted prices are available

and show that the presence of experts allows the sellers of high quality items to signal

their quality by choosing to sell via auctions.

1 Introduction

The advent of online auctions such as those in eBay led to the first massive-scale deployment

of simple second-price auction mechanisms for consumer products. Even though eBay started

as a platform for consumer-to-consumer auctions for selling items out of one’s garage, it is

now a large selling platform enabling over $200 billion commerce volume and reaching over

200 million users annually.1 The addition of posted-price sales has fueled this growth by

allowing it to serve as a competitor to other online retail sites. The growth of this new

segment of online markets that combine auctions with posted prices raises important new

questions about the optimal strategies for buyers and sellers as well as questions about the

best design of the platform.
1http://venturebeat.com/2013/10/16/ebay-earnings-sales-up-21-revenue-up-14-and-double-digit-paypal -

user-growth/
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The eBay auction format enforces a “hard close” or ending time at which the item is sold to

the highest (winning) bid. In the hours leading up to closing time, the auction is open and

simulates the open outcry English auction. If all bidders had only private values, traditional

auction theory dictates that the dominant strategy for every bidder is to bid up to his true

value. To enable this, eBay offers a proxy bidding tool that allows a bidder to specify

his maximum value, and the tool automatically bids the minimum bid increment above the

current highest bid (as long as it is below the bidder-specified value). Thus, it was something

of a paradox when a majority of eBay auctions exhibited sniping – the phenomenon where a

bidder submits his only bid in the last few seconds of the auction, thus avoiding any response

from other bidders.

While several explanations for this behavior have been advanced, one of the most intuitive

and accepted ones is that of experienced bidders (Wilcox, 2000) or dealers/experts (Roth

and Ockenfels, 2002). For example, Roth and Ockenfels (2002) argue, and provide empirical

evidence, that the existence of sniping in online markets is partly due to buyers’ heterogeneity

in their experience with online markets and their expertise in the product category: “... there

may be bidders who are dealers/experts and who are better able to identify high-value antiques.

These well-informed bidders ... may wish to bid late because other bidders will recognize that

their bid is a signal that the object is unusually valuable.”

In this line of reasoning, the item auctioned off is assumed to have a common value which

these experts have a better knowledge of, and submitting a sniping bid is a way for experts

to withhold this information to reap the advantage of this information asymmetry in the

resulting price. While several papers have subsequently built upon and refined this expla-

nation of sniping (Bajari and Hortacsu 2003; Rasmusen 2006; Hossain and Morgan 2006;

Ockenfels and Roth 2006; Hossain 2008; Ely and Hossain 2009), all of them have examined

the phenomenon only from the bidders’ perspective. More broadly, to best of our knowledge,

no other paper has studied the strategic impact of buyers’ heterogeneity in expertise (which
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causes the sniping behavior) on the platform and sellers’ strategies in online markets. In this

paper, we examine the effect of the existence of expert buyers on all of the stakeholders in

online markets: the expert and non-expert buyers, the sellers, and the platform. We discuss

the following research questions:

1. How do non-expert buyers adjust their strategies to compete with experts?

2. How does the presence of experts affect the platform revenue?

3. How does the presence of experts affect the sellers’ strategies in online markets?

Our Contributions

First, we show that the presence of experts encourages the non-experts to bid more aggres-

sively. In particular, we show that because of the sniping strategy of the expert buyers in

hard-close auctions, non-expert buyers have to bid more than their expected value; other-

wise they only win items of low quality against the expert buyers. Quantifying this, we

show in Proposition 1 that the higher the proportion of experts among the bidders, the more

aggressively the non-experts bid above their expected value for the item.

Next, we consider the impact of the presence of experts on the platform’s strategies. In

particular, should the platform maintain the hard-close format for the auction, which allows

the experts to snipe, rather than switch to the soft-close format? Also, if the platform knows

the quality value of the item and can credibly reveal it to the buyers, should it commit

to sharing this information with them? We find interesting answers to these questions.

Regarding the first question, at the outset, it appears that the hard-close format may hurt

platform revenue since without the sniping behavior of experts, non-expert buyers could

respond to bids of experts, and the item would sell at a higher price. Since the platform’s fee is

usually a fixed fraction of the selling price, the platform would then have an incentive to favor

the soft close format.2 Contrary to this expectation, we show that the aggressive bidding
2In fact, some auction platforms such as the now defunct Amazon Auctions and Trademe, removed sniping

3



behavior of the non-experts that we describe above implies that the platform’s overall revenue

increases in the hard-close format for a wide range of parameter values (Proposition 2). This

is a potential new explanation as to why online auction companies such as eBay3 retain the

hard close auction format from a revenue perspective. We note, however, that the strategic

choice of soft- versus hard-close format is a complex decision affected by competition among

auction platforms as well as a variety of other bidder considerations such as the avoidance

of potentially costly bidding wars in hard close auctions. Our observation above exposes a

new facet in a variety of such potential explanations for the popularity of this format.

This result has another important and interesting implication regarding the second question:

the platform can benefit from committing to withholding the quality information (Corol-

lary 1). This is in contrast to the celebrated linkage principle4 (Milgrom and Weber, 1982),

and is driven by buyers’ heterogeneity in their level of expertise. Proposition 1 can also

be interpreted as a reverse winner’s curse. In auctions with common values, bidders bid

lower than their valuation to avoid the winner’s curse. However, our result shows that when

bidders are heterogeneous in their level of information, non-informed bidders bid more than

their valuation to make up for their lack of information.

Finally, we consider the impact of the presence of expert buyers on the sellers’ strategies. In

particular, we investigate the choice of selling mechanisms between the auction and a posted

price sale when they are both available (as is common in most online auction-houses). In the

presence of expert buyers, under certain conditions, we show that by selling in an auction,

a seller can credibly signal5 the quality value of his item (Proposition 3). By selling in an

auction, the seller shows that he can rely on the market (specifically, on the expert buyers) to

decide the value of the item. This is a risk that a seller with a low quality-value item cannot

by implementing a soft close that automatically extended the auction time whenever a bid is submitted.
3EZsniper.com provides an extensive list of auction sites with a hard close.
4The linkage principle argues that the auction house always benefits from committing to revealing all

available information.
5Note that the signal that we discuss here is the seller’s choice of the selling mechanism. This is different

from bids by other bidders, which can also be signals of the quality of the product.
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take. Furthermore, this signaling is possible only if there are enough experts, who know the

value of the item, in the market. Otherwise, the seller of a high quality-value item will not

be able to separate himself from the seller of a low-value item. In other words, the existence

of experts in the market allows the sellers of high-quality products to separate themselves by

selling in auctions. This finding is in line with auction houses’ claim that auctions increase

buyers’ confidence. For example, Fraise Auction6 argues that one of the benefits of selling

in auction is that the “competitive bidding format creates confidence among the buyers when

they see other people willing to pay a similar amount for the property.” To best of our

knowledge, this result is a new explanation for the popularity of auctions in certain product

categories. We reiterate that the strategic choice of auction versus posted-price is a complex

decision affected by several factors. Our observation above proposes a new explanation for

why some sellers may choose to use auctions.

Taken together, we initiate the first comprehensive study of the effect of the presence of

expert buyers in online markets featuring auctions with a hard close and posted prices, and

establish the following results.

1. Non-expert buyers must adjust their strategies in response to experts’ sniping, and,

under certain conditions, have to bid more than their expected value in hard close

auctions in equilibrium.

2. As a consequence, the platform revenue is higher in the hard-close auction than in the

soft close format for a wide range of parameter values.

3. Finally, the presence of experts in markets with hard close auctions and posted prices

allows the seller of high-quality items to credibly signal the quality of the item by

selling in the auction and separating himself from sellers of low-quality items who sell

using posted prices, under certain conditions.

Note that despite the explosive growth of auctions particularly in the consumer-to-consumer
6http://fraiseauction.com/why-auction/
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arena, our findings are relevant mainly to items with a significant common value component

(such as collectibles, antiques, art, and used items of uncertain quality).

In what follows, we review related literature. Section 2 introduces the main model, Section 3

solves the equilibria of the model with a hard close, and Section 4 compares them with the

corresponding equilibria of the auction with a soft close, which does not allow for sniping.

In Section 5, we analyze the sellers’ game of choosing among selling formats. We conclude

the paper in Section 6. All proofs and further details are relegated to the Appendices.

Related Literature

Our work relates to the literature on online auctions with common values and a hard close,

intermediaries’ incentives to reveal product quality information, sellers’ strategies to signal

product quality, and the advantages and disadvantages of auctions versus posted prices. In

the following, we review the related literature on each topic.

Bajari and Hortacsu (2003) argue that last-minute bidding is an equilibrium in a stylized

model of eBay auctions with common values. They develop and estimate a structural

econometric model of bidding in eBay auctions with common value and endogenous en-

try. Wilcox (2000) and Rasmusen (2006) use common values to model sniping and bidders’

behavior on Ebay auctions. Wilcox (2000) shows that sniping increases as buyers’ experi-

ence increases. Furthermore, the increase in the sniping behavior of the more experienced

bidders is more pronounced for the type of items that are more likely to have a common

value component. Similarly, a model with no common value as in Yoganarasimhan (2013)

demonstrates no sniping behavior. Rasmusen (2006) considers a model where bidders incur

a cost for learning the common value of the item. As a result, those who acquire the informa-

tion snipe to hide their information from other bidders. Similar to the previous literature,7

7The literature on trying to explain sniping in online auctions is vast. Other than previously mentioned
papers, see also Hossain and Morgan (2006), Ockenfels and Roth (2006), Hossain (2008), Wintr (2008), and
Ely and Hossain (2009).
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sniping emerges as an equilibrium strategy in our model as well. However, our focus is the

effect of the presence of experts on non-experts’, sellers’, and the platform’s strategies and

revenues, which is crucially missing in the earlier literature. Glover and Raviv (2012) show

that when sellers can choose between hard-close and soft-close formats, soft close leads to a

higher revenue, and experienced sellers are more likely to choose soft close. We discuss their

result in Section 5, and show that soft close emerges as the unique pooling equilibrium if

sellers can choose the closing format. Our result provides a new theoretical explanation for

their empirical findings. In contrast to earlier work by Ockenfels and Roth (2006), who show

an example in which seller revenue is lower at the equilibrium for hard-close than in the soft-

close case, in our model, we show that the hard-close format increases revenue compared to

the soft-close format. More specifically, we provide an explanation as to why online auction

companies such as eBay retain the auction format that allows for sniping from a revenue

perspective that takes into account the aggressive bidding behavior of the non-experts.

In this paper, we show that an intermediary could benefit from withholding information

about the quality of the items in an auction. This is in contrast with the well-known linkage

principle by Milgrom and Weber (1982). The linkage principle argues that the auction house

always benefits from committing to reveal all available information. The intuition behind

the principle is that revealing the information can mitigate the winner’s curse and motivates

the buyers to bid more aggressively. We arrive at the contrast due to buyers’ heterogeneity

in terms of their information about the quality value of the item, as modeled by their

expert status. More specifically, the result of Milgrom and Weber (1982) is established

when valuation of bidders depend symmetrically on the unobserved signals of the other

bidders, a condition that is not satisfied in our setup.8 Withholding information, under

certain circumstances, has also been shown to increase social welfare, by Zhang (2013), in

the context of product labeling. Gal-Or et al. (2007) show that, under certain conditions, a
8Failure of the linkage principle has also been argued in a few other papers in the auction theory literature.

For example, Perry and Reny (1999), Chapter 8.1 of Krishna (2002), and Fang and Parreiras (2003) show
the failure in setups with multiple items, ex-ante asymmetries, and budget constraints, respectively.
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buyer benefits from withholding information in procurement schemes.

Many researchers in marketing have studied signaling unobserved quality under information

asymmetry. Moorthy and Srinivasan (1995) and Soberman (2003) show that sellers can use

warranties such as money-back guarantees to signal the quality of their items. Bhardwaj

et al. (2005) show that by letting the customers request information about an item, rather

than revealing it without solicitation, a seller can signal the quality of his item. Mayzlin

and Shin (2011) show that uninformative advertising, as an invitation for search, can be

used to signal product quality. Li et al. (2009) investigate auction features such as pictures

and reserve price that enable sellers to reveal more information about their credibility and

product quality, and empirically examine how different types of indicators help alleviate

uncertainty. Finally, Subramanian and Rao (2015) show that, by displaying daily deal sales,

a platform can leverage its sales to experienced customers to signal its type and attract new

customers. This is relevant to our result as in both Subramanian and Rao’s paper and our

paper, the existence of experts (or experienced customers) can help the sellers to extract

more revenue from the non-expert customers. However, the higher revenue is achieved using

very different tools, displaying daily deal sales versus selling in auctions, in the two papers.

Compared to the previous literature, we introduce a new dimension for sellers to signal the

quality of their items. In particular, for product categories with a common value component

where assessing the common value needs expertise (e.g., in the antiques category), we show

that selling via auction can signal that the item has a high common value.

Finally, we review the related literature that compares auctions to posted price selling mech-

anisms. Einav et al. (2013) propose a model to explain the shift from Internet auctions to

posted prices and consider two hypotheses: a shift in buyer demand away from auctions,

and general narrowing of seller margins that favors posted prices. By using eBay data, they

find that the former is more important. There is a significant economics literature that com-

pares auctions to posted price mechanisms. Notably, Wang (1993) compares auctions with
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posted prices and shows that auctions become preferable when buyers’ valuations are more

dispersed. In another important paper, Bulow and Klemperer (1996) have shown that the

additional revenue one can obtain by attracting one more bidder in an auction without re-

serve price is greater than the additional revenue by setting the optimal reserve price, hence

in a sense establishing that “value of negotiating skills is small relative to value of additional

competition.” In an empirical work, Bajari et al. (2009) conclude that the choice of sales

mechanism may be influenced by the characteristics of the product being sold. To the best of

our knowledge, our paper is the first work that considers the signaling effects of the choice of

the mechanism on buyers’ beliefs. Specifically, we show that the choice of selling mechanism

can be used by sellers of high-quality items as a signal of their item’s quality.

2 Model

We consider a model with two buyers and one item. We assume that there are two types

of buyers, experts and non-experts, and each buyer is an expert with probability p. Given

anonymity of online marketplaces, we assume that each buyer does not know whether his

opponent is an expert or not.9

In our model, the items sold in online auctions have differing levels of “quality value,” which

may reflect the condition of a used good or the relative efficacy of a product among its

competitors. Note that this value is similar to a common value in that its benefit accrues

equally to both expert bidders (who can accurately predict quality value) and non-expert

bidders (who do not know the quality value). We assume that the quality value, denoted by a

binary random variable C with realizations 0 and c > 0, is known only by experts and is the

same for both experts and non-experts (therefore it can be described as a common value).

Moreover, the items sold in online auctions also have differing levels of “private value,” which
9On eBay and most other auction platforms, identities of bidders are revealed only after an auction ends.

Furthermore, bidders can easily hide their type by creating and using a new account online.
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may reflect bidders’ private tastes for the items, or whether they have immediate needs for

the items. Each bidder may have a different private value. We assume that the private value,

denoted by a binary random variable V with realizations 0 and v > 0, is learned privately

by both experts and non-experts.

The total value of the item for a bidder is the sum of the quality value and an additional

private value component. More specifically, we assume that C has a binary distribution:

Pr (C = c) = q (high common value) and Pr (C = 0) = 1 − q (low common value), also

V (for each bidder) has a binary distribution: Pr (V = v) = r (high private value) and

Pr (V = 0) = 1 − r (low private value). We assume that c, v, p, q and r are common

knowledge. Moreover, buyers’ private value types are privately known by all buyers, and

the realization of C is privately known only by experts (non-experts know only the prior

probability distribution). The total value of the item for each bidder is simply C+V , where

C is the quality value of the item and V is the buyer’s specific private value.

We model the online auction with a hard close as a two-stage bidding game where the second

stage represents the very last opportunity to submit a bid (the sniping window), while the

first stage represents the whole window of time preceding the close. Even though in practice

the period before the sniping window is a dynamic game, we model it (Stage 1) by allowing

each bidder to submit a single bid: to reconcile this with reality, we can think of the highest

bid that a bidder submitted before the sniping window as the first-stage bid. Bidders can

observe competitors’ bids of Stage 1 and respond to them in Stage 2; however, they do not

have enough time to respond to competitors’ bids of Stage 2. It is worth mentioning that we

can derive all of our results with a more realistic dynamic game model of the first stage.10

However, though it is a bit more involved, it does not add any further insight to our analysis,

so we use the simpler two-stage formulation here.

Motivated by the fact that bidding in the sniping window has the risk of losing the bid due
10We can consider a dynamic auction in the time interval [0, 1) and sniping at time 1.
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to erratic internet traffic, we assume that a bid in stage 2 goes through only with probability

1 − δ for sufficiently small δ ≥ 0. Throughout the paper, we assume that 0 ≤ δ ≤ δ̄ where

δ̄ is defined in Appendix A.3. This assumption implies that the risk of the bid not going

through, due to δ, is not large enough to outweigh the benefit of sniping for experts. We

provide an example of equilibrium structure when δ > δ̄ in the Online Appendix B.2. The

assumption of small δ is also consistent with industry numbers that show that the rate of

failure of sniping bids is less than 1%.11

Figure 1: Timeline of the game

The timing of the model is as follows (see also Figure 1). Before Stage 1, each buyer knows

his own type (expert or non-expert), but not the type of the other buyer. If a buyer is

an expert, he also knows the common value (whether C = 0 or C = c). All buyers also

know their buyer-specific private values (whether V = 0 or V = v). In Stage 1, both buyers

simultaneously submit their bids. After Stage 1 and before Stage 2, both buyers observe the

other buyer’s bid, and may be able to infer their opponent’s type (and values). In Stage 2,

both buyers simultaneously decide if they want to increase their bid from Stage 1, and if so

by how much. In other words, bids of Stage 2 have to be greater than or equal to bids of

Stage 1. Stage 2 bids are received by the auctioneer with probability 1 − δ. If the bid of

Stage 2 is lost for a bidder (with probability δ), the auctioneer continues to use the bid of

Stage 1 for that bidder. After Stage 2, the item is given to the buyer with the highest bid at

the price of the second-highest bid. If there is a tie between two bidders of different values,
11For example, see https://www.quicksnipe.com/faq.php.
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then the item goes to the one of higher value; if both have the same value but are of different

types, the tie is broken in favor of the non-expert; if both bidders have the same value and

type, the tie is broken randomly.12

In auctions with a soft close, there are possibly an infinite number of stages. If a bid is

submitted at any stage, bidders can submit another bid in the next stage. The game ends

when no bid is submitted in some stage. We also consider posted prices in Section 4. In this

game, the seller posts a price z and the bidders then decide whether to buy at this price.

The trade takes place at the posted price z if and only if at least one bidder is interested

in the item. If both bidders want the item, each of them gets the item with probability 1
2 .

Finally, in both types of auctions, soft and hard close, and in posted price, we assume that

the platform fee is a constant fraction ξ of the selling price and is paid by the seller.

3 Effect of Experts on Buyer Strategies

In this section, we describe the equilibria of the auction game (a formal complete treatment

is in Appendix A.1). We derive conditions under which experts use sniping, in equilibrium,

to protect their information about the common value of the item. Furthermore, we show

that, under certain conditions, non-experts with high private value bid aggressively—even

above their expected valuation—to compete with experts.

We call an expert/non-expert with high/low private value a high/low expert/non-expert. Our

main lemma characterizing the equilibrium (Lemma 2 in the appendix) splits the values of

v into nine ranges depending on the relative values of c, v, p, r, and q. Our characterization

labels the strategies for each of the four types of players as one of five different behaviors:

(i) a sniping strategy is adopted only by experts and involves mimicking the non-experts in
12For a full description and motivation of the tie-breaking rule, please see the Online Appendix B.3. We

demonstrate that our results continue to hold if we change the rule to break the tie in favor of experts rather
than non-experts.
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the first stage and bidding their true value only in the second stage; (ii) a truthful strategy

involves bidding the truthful (expected) value and revising it in the second stage under any

additional relevant information; (iii) an aggressive strategy is adopted only by high non-

experts and involves bidding over the expected value to have a chance of winning against

the experts – we discuss this strategy in detail in subsection 3.2; (iv) a mixed strategy is a

mixed version of the truthful and aggressive strategies; (v) an underbidding strategy is used

only by low non-experts, where they bid lower than their expected value for the item.

3.1 Experts Induce Sniping.

Lemma 2 presents necessary and sufficient conditions for each of the above strategies to

emerge in equilibrium for each type of bidder. In particular, we show that low experts use

the sniping strategy if and only if v ≤ c · (1−p)(1−q)r
2pq(1−r)+(1−p)r , while high experts always use a

sniping strategy.

Note that the expression c · (1−p)(1−q)r
2pq(1−r)+(1−p)r is decreasing in q and p, and increasing in r and

c. In other words, a low expert’s incentive to snipe increases as p or q decrease, and as r or

c increase.

To see why, first note that a low expert snipes only if the common value is high. A low value

of p (i.e., there are few experts in the market), a low value of q (i.e., there are few high quality

items in the market), or a high value of c (i.e., quality difference between low-quality and

high-quality items is large), all indicate that the low expert’s information, that the common

value is high, is valuable. This motivates the low expert to snipe and hide this information.

Therefore, as p decreases, q decreases, or c increases, the threshold on v for the low expert

to snipe increases. Moreover, a high value of r indicates that the opponent is likely to have a

high private value. Therefore, as r increases, the probability that the low expert would win

the item without sniping decreases, which increases his motivation to snipe. As a result, as

r increases, the threshold on v for the low expert to snipe increases.
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3.2 Impact of Experts on Non-experts’ Strategy

A high non-expert’s optimal strategy depends on the value of v. If v is sufficiently high

(cq + v ≥ c), a high non-expert’s expected value for the item is higher than c. In this

case, high non-experts always win the competition against low experts. For smaller values

of v, the situation is more interesting. By bidding their expected value against experts,

high non-experts win only when the common value is low. Therefore, high non-experts have

to bid higher than their expected value (aggressive strategy and mixed strategy) to win a

high-common-value item against low experts. Note that bidding above the expected value

does not necessarily mean that they have to pay more than their expected value, because

the auction format is second price. The only risk is that if two high non-experts compete

with each other, they may both bid above their expected value and end up paying more

than their expected value. In this case, a non-expert’s payoff could be negative. Our first

proposition discusses the conditions under which non-experts bid more than their expected

value.

v

Probability that 
a high non-

expert overbids

0

0

1

0.83 0.9

Figure 2: Probability that a high non-expert
overbids as v increases for p = 0.3, r = 0.5,
q = 0.1, and c = 1.

p 

Probability that 
a high non-

expert overbids 

0 

0 

1 

0.8 1 

Figure 3: Probability that a high non-expert
overbids as p increases for v = 0.5, r = 0.5,
q = 0.1, and c = 1.

Proposition 1. If the expected value of a high non-expert for the item is less than the

common value of the item (i.e., cq + v < c), the high non-expert may bid more than his

valuation for the item in equilibrium. Moreover, the probability of overbidding increases as
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the fraction of experts in the market (i.e., p) increases.

Proposition 1 shows that if the value of v is high enough, non-experts always take the risk of

over paying, and bid above their expected value in order to win against experts. However,

if v is not sufficiently large, a non-expert over bids only with some probability (depicted in

Figure 2). This mixed strategy allows the non-experts to mitigate the risk of over paying

due to competition with another non-expert. Furthermore, Proposition 1 shows that as the

probability p that the opponent is an expert increases, a non-expert’s willingness to take the

risk and bid above his expected value increases (depicted in Figure 3).

4 Effect of Experts on Platform Strategies

An important assumption in Proposition 1 is that experts can hide their information by snip-

ing. The platform can eliminate sniping by extending the duration of the auction whenever

a bid is submitted (this is the soft-close auction format). In this case, non-experts always

have enough time to respond to experts’ bids and, therefore, do not have to bid above their

expected valuation.

We show that, under certain conditions, non-experts’ aggressive behavior leads to higher

revenue for the platform to the extent that the platform benefits from allowing sniping (by

enforcing a hard close). In other words, experts’ ability to hide their information forces the

non-experts to bid more aggressively, and ultimately leads to higher revenue for sellers and

for the platform. This result also relates to platform strategies regarding the revelation of

information. In Section 4.3, we show the breakdown of the linkage principle by showing that

the platform may benefit from withholding quality information from the buyers when the

buyers are heterogeneous in their level of expertise.
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4.1 An Auction with a Soft Close

We now consider a model in which sniping is not possible. One way to prevent sniping is

by extending the duration of the auction by a few minutes every time there is a bid near

the current end time of the auction. This auction is called an auction with a soft close and

was used by the now defunct Amazon Auctions. A way to model this is by starting with

a game that has only one stage and every time there is a bid during the current stage, the

auction extends for one more stage. In other words, every time someone makes a bid, the

other buyers can see it and respond to it. In the next subsection, we first characterize the

equilibrium for a model of soft-close auctions—the details are in Lemma 3 in Appendix A.2.

Then we compare seller’s revenue and the platform’s revenue across the two models. The

goal is to see which ending rule results in better revenues for the sellers (and therefore for

the platform).

4.2 Effect of Experts on Platform Revenue

Here we summarize the key implications of Lemma 3 that appears in the Appendix: when

the soft close format is used, high non-experts bid their expected value. If they see a bid of

c, they infer that the opponent is a low expert and the common value is high. In that case,

they increase their bid to c to win the item at price c. On the other hand, with soft close,

experts always reveal the value of a high-common-value item to non-experts. This increases

the non-experts willingness to pay and in some cases leads to higher revenue for the seller.

However, when there is a soft close, non-experts do not have to bid above their valuation.

This reduces the competition and can hurt sellers’ revenue as well as the platform’s revenue.

In Lemma 1 we see that sellers can benefit from a hard close under certain conditions. We

use this lemma to analyze the platform’s incentive in having a hard close.

Lemma 1. When cq+v < c, the seller of an item with low common value always has higher

expected revenue in a hard close than in a soft close, whereas the seller of an item with high
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common value has higher revenue in hard than soft close if and only if p is sufficiently large.

Lemma 1 shows that the seller of an item with low common value always benefits from a

hard close. This is intuitive because a hard close causes sniping, which prevents the flow of

information from experts to non-experts. Therefore, when there is a hard close, non-experts

are more likely to overpay for an item with low common value. The interesting part is that

even the seller of an item with high common value benefits from a hard close if p is high

enough. This is because when there is a hard close, non-experts know that they will not

be able to infer the common value, and therefore, have to bid more aggressively to win

the item. As we observe in Proposition 1, this aggressive bidding behavior increases as p

increases. If p is sufficiently large, the positive effect of this aggressive bidding behavior on

seller’s revenue can dominate the negative effect of the lack of information flow, and result

in higher revenues for the seller of a high-quality item with a hard close than with a soft

close. Using the same argument, we can see that the platform can also benefit from a hard

close when p is sufficiently large. This result is formalized in Proposition 2.

Proposition 2. If the expected value of the high non-experts for the item is less than the

common value of the item (i.e., cq + v < c), and the fraction of experts in the market (i.e.,

p) is sufficiently large, the platform’s revenue from a hard close is higher than that from a

soft close.

A graphical illustration of Proposition 2 is depicted in Figure 4. When cq+ v < c (v/c < 0.9

in the figure), the region where a hard close provides higher revenue appears when v is

sufficiently larger than c, and p is sufficiently large. This is because higher v and higher p

both lead to non-experts’ aggressive bidding, as we saw in Figures 2 and 3 and Proposition 1.

Proposition 2 shows that for some items the platform’s revenue is higher in a hard close,

while for other items the revenue is higher in a soft close. Ideally, the optimal strategy

for a platform would be to use different policies for different items. However, in practice,

platforms may have to use the same policy for all items for other reasons (e.g. consistent
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0.9

Figure 4: The regions are labeled with the format that provides higher revenue for the
platform (for r = 0.5 and q = 0.1). Note that 0.9 = 1− q.

user experience). Therefore, the optimal policy will depend on the distribution of the items

and the volume of the transactions across the parameter space.

4.3 Experts and the Breakdown of the Linkage Principle

Finally, we discuss the connection between the hard-close format and revelation of informa-

tion in the marketplace. Note that a hard close allows the experts to protect their information

about the value of the item. We know that the platform sometimes benefits from a hard

close. This could suggest that the platform may also benefit from withholding information

about the value of the item. This is an important implication because it is in contrast with

the well-known “linkage principle” in auction theory (Milgrom and Weber, 1982).

The linkage principle states that auction platforms (e.g., auction houses) benefit from com-

mitting to reveal all available information about an item, positive or negative. The platform

revealing the information reduces the downside risk of winning the item, also known as the

winner’s curse. But we show that there is also a downside in revealing the information in the
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presence of heterogeneous bidders, and the platform may sometimes benefit from committing

to not revealing the information.

Our result shows that when bidders are asymmetric in terms of their information about the

value of the item, bidders with less information have to bid more aggressively, otherwise,

they only win the item when bidders with more information do not want the item (i.e., the

common value is low). This aggressive behavior incentivizes the platform to withhold any

information about the quality value of an item. This result is formalized in the following

corollary.

Corollary 1. In auctions with hard close, for medium values of p and v
c
, committing to

reveal the common value to the buyers decreases platform’s revenue.

We should note that the region in Figure 4 where the hard close format provides higher

revenue is the same as the region in Corollary 1 in which the platform prefers to withhold

the common value information.

Our model is different from the model in Milgrom and Weber (1982) in several aspects.

However, the breakdown of the linkage principle is due to only two differences in modeling

assumptions. First, we allow the bidders to be heterogenous in terms of their information

about the value of the item. Second, bidders do not know how much information other

bidders have in this regard. We can show that even in a sealed bid second price auction,

a special case of the model in Milgrom and Weber (1982), introducing these two aspects

can lead to the breakdown of the linkage principle. Furthermore, both of these aspects are

required for the linkage principle to break down. In particular, if bidders are asymmetric

in terms of how much information they have about the value of the item, but they know

how much information other bidders have (e.g., whether the opponent is an expert or not),

Campbell and Levin (2000) establish that the linkage principle still holds.

Finally, note that Corollary 1 applies only to settings in which the platform has access to

some valuable information about the item that is not easily available to all the bidders. For
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example, using historical market data, eBay provides a quality score for used items in certain

categories. Another example is the free vehicle history reports that eBay provided for some

time but later discontinued.13

So far we have discussed the effect of the existence of experts on non-experts’ and the

platform’s decisions. In the next section, we analyze the effect of experts on sellers’ choice of

selling mechanism. In particular, we show that the existence of experts can help the sellers

of items with a high common value to signal the value of their items to non-experts.

5 Effect of Experts on Seller Strategies

In this section, we show that the existence of experts in the market could help the sellers to

signal the quality/common value of their item to non-experts. We look at sellers’ choice of

selling mechanism between an auction and a posted price sale.14 We call the seller of an item

with high common value a high-type seller, and the seller of an item with low common value

a low-type seller. A seller is high-type with probability q where q is common knowledge.

A seller naturally knows his own type; experts also know the seller’s type (since they know

the common value of items being offered). But non-experts do not know the seller’s type.

We investigate whether a seller can signal his type using the selling mechanism (auction

versus posted price). In particular, we derive conditions for the existence of a separating

equilibrium. We show that existence of enough experts in the market is a necessary condition

for a separating equilibrium to exist; furthermore, when the fraction of experts in the market,

p, is sufficiently large, a separating equilibrium exists only for moderate values of v
c
.

A seller sets his selling mechanism M (posted price or auction). In case of posted price,

M also includes the price. For a mechanism M , we assume that all non-experts have the
13http://announcements.ebay.com/2009/11/free-vehicle-history-reports-on-ebay-motors/
14In the Online Appendix B.5, we further consider the seller’s choice of closing format (hard versus soft)

as a signaling mechanism.

20



same belief about a seller who uses M . In general, non-experts’ belief about a mechanism is

the probability that they think a seller using that mechanism is high-type. However, since

we consider only pure strategy Nash equilibria of the game, the non-experts’ belief about a

mechanism is limited to three possibilities: Low (L), High (H), and Unknown (X). In belief

L, non-experts believe that a seller using mechanism M is always a low-type seller. In belief

H, non-experts believe that a seller using mechanismM is always a high-type seller. Finally,

in belief X, non-experts cannot infer anything about the seller’s type and believe that the

seller is high-type with probability q.

Non-experts have beliefs about each mechanism M . In equilibrium, the beliefs must be

consistent with the sellers’ strategies. In particular, if both types of sellers use the same

mechanism in (a pooling) equilibrium, the non-experts’ belief for that mechanism must be

X. If the two types of sellers use different mechanisms in (a separating) equilibrium, the

non-experts’ belief for the mechanism used by the low-type seller must be L and for the

mechanism used by the high-type seller must be H. Furthermore, in an equilibrium, given

the non-experts’ beliefs, sellers should not be able to benefit from changing their strategies.

Note that sniping is relevant only when the buyers’ belief about some mechanism M is X.

Therefore, in a separating equilibrium, the platform’s decision on whether to use a soft or

hard close does not affect buyers’ equilibrium behavior or sellers’ strategies. In other words,

the following analysis applies to both soft- and hard-close cases.

In general, signaling games can have infinitely many equilibria, supported by different out-

of-equilibrium beliefs in the game. Therefore, proving just the existence of an equilibrium

with certain characteristics may not be a strong result. To further strengthen the support

for our result that selling in auction can be used by high-type sellers as a signal of quality, we

show that, under certain conditions, such an equilibrium is the only separating equilibrium

that survives the “Intuitive Criterion” refinement. The Intuitive Criterion, introduced by

Cho and Kreps (1987), is an equilibrium refinement that requires out-of-equilibrium beliefs
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to place zero weight on types that can never gain from deviating from a fixed equilibrium

outcome. The Intuitive Criterion has been used in various signaling papers in the marketing

literature including, but not limited to, Simester (1995), Desai and Srinivasan (1995) and

Jiang et al. (2011).

Proposition 3 below shows that when the fraction of experts in the market is sufficiently large

and the value of v
c
is moderate, there exists a unique separating equilibrium in which a high-

type seller chooses an auction and a low-type seller chooses posted price as their respective

selling mechanisms. A proof and related analysis are provided in the Appendix A.4. Figure 5

shows the regions in which this separating equilibrium exists and is unique as a function of

p and v/c.

Let us define

ν1 = min
(

(1− p)(1− p(1− 2r(1− r)))
2r(1− r) ,

(1− p)2

2(1− p(1− p))(1− r)r

)

ν2 = min
(

(1− pr)2

r(p(2− pr)− r) ,
1

2r(1− r)

)

ν3 = min
(

1− r
2r ,

(1− p)(2− r(1− p))
r (4 + (2− p(2− p))r2 − 2r(3− p))

)

Proposition 3. If v
c
∈ [ν1, ν2], there exists a separating equilibrium in which a high-type

seller uses an auction and a low-type seller uses a posted price v. Furthermore, if v
c
∈ (ν1, ν3),

this is the only separating equilibrium that survives the Intuitive Criterion refinement. Fi-

nally, there exists no separating equilibrium in which a low-type seller uses an auction.

The proof and a more elaborate discussion of Proposition 3 are relegated to the Appendix.

The intuition behind the proof of Proposition 3 is as follows. First, note that in general, an

auction is more favorable to a high-type than a low-type seller. This is because, in auctions,

the price is determined by bidders, and expert bidders do not bid high when the seller is low-

type. This allows the high-type seller to separate himself from the low-type seller by selling
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Figure 5: The graph shows the existence and uniqueness of a separating equilibrium in which
the high-type seller uses auction and the low-type seller uses posted price, assuming r = 1

4 .

in an auction. But for this separating equilibrium to exist, the low-type seller’s incentive to

mimic has to be sufficiently low and the high-type seller’s incentive to separate has to be

sufficiently high. These two forces give us the thresholds ν1 and ν2 for existence (and ν3 for

uniqueness under IC refinement) of this equilibrium.

In a separating equilibrium, even non-experts know that the low-type seller is low-type.

Hence, non-experts are willing to pay at most v for the item sold by the low-type seller.

Therefore, the low-type seller’s incentive to mimic increases as v or p decrease. If p and

v are sufficiently small, since the low-type seller’s incentive to mimic is sufficiently large, a

separating equilibrium does not exist. This is captured by condition v
c
≥ ν1 in Proposition 3,

and is represented by the left contour in Figure 5.

On the other hand, as v
c
increases, the common value matters less, and the high-type seller’s

incentive to signal his type (and to separate himself) decreases. When v
c
is large enough, we

show that the high-type seller chooses to sell via an auction only if p is sufficiently small. This
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gives us the second condition for existence of this separating equilibrium, namely, v
c
≤ ν2.

The condition for uniqueness of the equilibrium, v
c
≤ ν3, follows a similar intuition.

It is interesting to note that the seller’s strategy in a separating equilibrium, and the condi-

tions for existence of this equilibrium, do not depend on q. Intuitively, this is because buyers

can always infer the seller’s type in a separating equilibrium; therefore, when considering

the seller’s strategy and possible out-of-equilibrium deviations, the ex-ante probability that

the seller is high type does not matter.

A Note on Hard-close versus Soft-close Formats: In this section, motivated by eBay’s

platform, we studied sellers’ choice of auction versus posted price. It is theoretically inter-

esting to know what happens, when limited to using auctions, if sellers can choose between

hard-close and soft-close formats.15 This is the mechanism that was employed by the now

defunct Yahoo Auctions. In the Online Appendix B.5, we show that if sellers can choose

between soft-close and hard-close formats, the only equilibrium that survives D1 criterion

refinement16 is the one in which both types of sellers use the soft-close format (as a pure

strategy pooling equilibrium). Furthermore, non-experts’ belief in the hard-close format will

be low. This implies that sellers who choose the hard-close format (out of equilibrium) will

earn less revenue in expectation. Our results are consistent with the empirical findings of

Glover and Raviv (2012) that show that the soft-close format leads to higher revenue than

the hard-close format, and that sellers with less experience are more likely to use the hard-

close format. Our explanation, however, is different from theirs, as we attribute the revenue

difference to buyers’ beliefs and the underlying signaling mechanism as opposed to sniping.
15We are grateful to an anonymous referee for suggesting this question.
16Intuitively, D1 equilibrium refinement requires out-of-equilibrium beliefs to be supported on types that

have the most to gain from deviating from a fixed equilibrium. For an extended discussion, see Section 11.2
of Fudenberg and Tirole (1991).
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6 Conclusion

In this paper, we examined important questions for the buyers, sellers, and the platform

of an online market supporting auctions and posted prices. We answered questions about

optimal behavior for each of them using the well-documented presence of expertise among

the bidders as the key underlying assumption. In particular, we studied the impact of the

presence of expert bidders in online markets using a simple model of auctions with a hard

close and posted prices. Motivated by large number of used items sold in online markets such

as eBay.com, we supposed that items have differing levels of “quality” (which we model as

common values), and different bidders have different capacities (which we model as expertise)

to predict the quality. Bidders with low expertise may be affected by bids earlier in the

auction, as these can be interpreted as signals for the quality of the item. In our model,

sniping emerges as an equilibrium strategy for experts to hide their information about the

quality of the item in hard-close auctions.

Our results provide several important managerial implications.

• We show that, as a consequence of sniping behavior in equilibrium by the experts in

hard-close auctions, non-expert buyers with less information have to bid aggressively,

i.e., more than their expected value. This result highlights the compensatory behavior

adopted by the large majority of bidders (non-experts) that arises endogenously in

these common marketplaces.

• Surprisingly, given the aggressive behavior of non-experts, the platform’s revenue can

be higher in hard-close auctions (where sniping is prevalent) than in soft-close auctions

(where sniping cannot happen). This is a new, as-yet unexplored addition to the variety

of explanations of why many online auction sites use the hard-close rather than the

soft-close format.

• Another interesting implication of non-experts’ aggressive behavior is that the platform
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can benefit in its revenue from committing to hide the information. This result has

important managerial implications, as it suggests that when buyers are heterogeneous

in terms of their information about the value of the item, the linkage principle does

not always hold.

• When sellers can choose between auction and posted-price formats, a seller may be

able to signal the high quality (or authenticity) of his item to the buyers by selling

in an auction and thus separate himself from low-quality-item sellers as long as there

are enough experts in the market. This provides useful guidance to vendors in such

markets, where the magnitude and extent of these decisions can be moderated based

on the degree and extent of the presence of expert buyers in the mix. This result also

provides a new explanation for the success of auctions in categories such as antiques,

art, and collectibles, where common value and therefore expertise are important.

Collectively, our work sheds light on the important differences that arise when knowledgeable

or expert buyers are introduced to online marketplaces, and leads to useful guidelines for all

participants in such markets.
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A Appendix

In the Appendix, we present detailed explanations of the results in the three main sec-

tions of the paper. First, we discuss the analyses and proofs of Sections 3 and 4, in Sec-

tions A.1 and A.2, respectively. Then, we provide details of the role of the parameter δ in our

model in Section A.3. Finally, in Section A.4, we detail the results in Section 5 in the main

paper. Some of the proofs and longer discussions are relegated to the Online Appendix B.

A.1 Analyses and Proofs of Section 3

In this section, we formally characterize the equilibria of the auction game.

Based on the relation of the parameters c, v, p, r, and q, we split the set of possible parameter

values into nine mutually exclusive and collectively exhaustive ranges. In the first four ranges,

we have that cq + v < c and v < cq; in the next two, we have cq + v < c and v ≥ cq, in

the next two, we have cq + v ≥ c and v < cq, and in the last range, we have cq + v ≥ c and

v ≥ cq.

Consider the function

f(c, p, r, q) = c · (1− p)(1− q)r
2pq(1− r) + (1− p)r .

Let m1 = f(c, p, r, q),m2 = f(c, p, 1 − r, 1 − q),M1 = f(c, p, 1, q) = c · (1 − q), and M2 =

f(c, p, 1, 1−q) = c·q. It is easy to verify thatm1 ≤M1 andm2 ≤M2. We consider nine differ-

ent cases as follows: v ∈ [0,min{m1,m2}), v ∈ [m1,min{m2,M1}), v ∈ [m2,min{m1,M2}),

v ∈ [max{m1,m2},min{M1,M2}), v ∈ [M2,m1), v ∈ [max{m1,M2},M1), v ∈ [M1,m2),

v ∈ [max{m2,M1},M2), and v ∈ [max{M1,M2},+∞).

To describe an equilibrium, we use the notation (s1, s2, s3, s4), which means that a high

expert follows the strategy s1, a low expert follows the strategy s2, a high non-expert the

strategy s3, and a low non-expert the strategy s4. For the bidding strategies of each type
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we use the following notation:

• For a high expert, consider the following strategies:

– sHE1 : If C = 0, he bids v in the first stage and does nothing in the second stage. If

C = c, he bids cq+ v in the first stage and bids c+ v in the second stage (sniping

strategy).

– sHE2 : If C = 0, he bids v in the first stage and does nothing in the second stage.

If C = c, he bids c in the first stage and bids c + v in the second stage (sniping

strategy).

• For a low expert, consider the following strategies:

– sLE: If C = 0, he does nothing. If C = c, he bids cq + v in the first stage and c

in the second stage (sniping strategy).

– tLE: If C = 0, he does nothing. If C = c, he bids c in the first stage and nothing

in the second stage (truthful strategy).

• For a high non-expert, consider the following strategies:

– xHNE: He bids cq + v in the first stage. If he sees a bid other than 0, v, cq, or

cq + v in the first stage, he bids c + v in the second stage. Otherwise, he bids c

in the second stage with probability 1 − a, where a = 1 − 2p(1−r)qv
(1−p)r(c−(cq+v)) (mixed

strategy).

– oHNE: He bids c in the first stage. If he sees a bid other than 0, v, cq, or c in the

first stage, he bids c + v in the second stage. Otherwise, he does nothing in the

second stage (aggressive strategy).

– tHNE: He bids cq + v in the first stage. If he sees a bid other than 0, v, cq, c, or

cq + v in the first stage, he bids c+ v in the second stage (truthful strategy).

• For a low non-expert, consider the following strategies:
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– xLNE: He bids v in the first stage. He bids cq in the second stage with probability

1− g, where g =
2pr(1−q)v

(1−p)(1−r)(cq−v)−δ
1−δ (mixed strategy).

– uLNE: He bids v in the first stage and nothing in the second stage (underbidding

strategy).

– tLNE: He bids cq in the first stage and nothing in the second stage (truthful

strategy).

We describe equilibrium bidding strategies for buyers in the nine cases in the following

lemma.

Lemma 2. For the auction model described in Section 2, the buyers’ equilibrium bidding

strategies are given below.

1. If v ∈ [0,min{m1,m2}), the set of strategies (sHE1 , sLE, xHNE, xLNE) forms an equilib-

rium.

2. If v ∈ [m1,min{m2,M1}), the set of strategies (sHE2 , tLE, oHNE, xLNE) forms an equi-

librium.

3. If v ∈ [m2,min{m1,M2}), the set of strategies (sHE1 , sLE, xHNE, uLNE) forms an equi-

librium.

4. If v ∈ [max{m1,m2},min{M1,M2}), the set of strategies (sHE2 , tLE, oHNE, uLNE) forms

an equilibrium.

5. If v ∈ [M2,m1), the set of strategies (sHE1 , sLE, xHNE, tLNE) forms an equilibrium.

6. If v ∈ [max{m1,M2},M1), the set of strategies (sHE2 , tLE, oHNE, tLNE) forms an equi-

librium.

7. If v ∈ [M1,m2), the set of strategies (sHE1 , tLE, tHNE, xLNE) forms an equilibrium.

8. If v ∈ [max{m2,M1},M2), the set of strategies (sHE1 , tLE, tHNE, uLNE) forms an equi-

librium.
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9. If v ∈ [max{M1,M2},+∞), the set of strategies (sHE1 , tLE, tHNE, tLNE) forms an equi-

librium.

The proof of Lemma 2 is relegated to the Online Appendix B.1.

Proof of Proposition 1

Proof. This result comes directly from Lemma 2. We can see that when m1 ≤ v < M1, non-

experts overbid all the time, and when v < m1, they overbid with some probability. We can

check in the proof of Lemma 2 that the probability of over bidding is 1− a = 2p(1−r)qv
(1−p)r(c−(cq+v)) .

It is easy to see that this is an increasing function on p.

A.2 Analyses and Proofs of Section 4

Expert strategies for soft-close auctions

As before, for the bidding strategies of each type of buyer, we use the following notation:

• For a high expert, consider the following strategy:

– t′HE: If C = 0, he bids v in the first stage and nothing later. If C = c, he bids

c+ v in the first stage and nothing later (truthful strategy).

• For a low expert, consider the following strategy:

– t′LE: If C = 0, he does nothing. If C = c, he bids c in the first stage and nothing

later (truthful strategy).

• For a high non-expert, consider the following strategy:

– t′HNE: He bids cq+ v in the first stage. If he sees a bid of c or c+ v at some point

and cq + v < c, he bids c in the next stage (truthful strategy).

• For a low non-expert, consider the following strategies:
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– x′LNE: He bids v in the first stage. In the second stage, he bids cq with probability

1− w, where w = 2pr(1−q)v
(1−p)(1−r)(cq−v) , and nothing later (mixed strategy).

– u′LNE: He bids v in the first stage and nothing later (underbidding strategy).

– t′LNE: He bids cq in the first stage and nothing later (truthful strategy).

Lemma 3. In a platform with soft close:

1. If v ∈ [0,m2), the set of strategies (t′HE, t′LE, t′HNE, x′LNE) forms an equilibrium.

2. If v ∈ [m2,M2), the set of strategies (t′HE, t′LE, t′HNE, u′LNE) forms an equilibrium.

3. If v ∈ [M2,+∞), the set of strategies (t′HE, t′LE, t′HNE, t′LNE) forms an equilibrium.

Proof. With soft close, an expert is going to bid his true valuation at some point, because

anything less than the true valuation will result in a lower payoff. If there is a non-expert

opponent he is going to respond to that; therefore the expert may as well bid truthfully from

the first stage. More specifically, the strategies for the experts will be as follows:

• High Expert: If C = 0, bids v in the first stage and nothing later. If C = c, bids c+ v

in the first stage and nothing later (strategy t′HE).

• Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and nothing

later (strategy t′LE).

For the high non-expert, the strategy is simple as well. He will bid his expected valuation in

the first stage, which is cq + v. If the opponent bids c or c+ v in the first stage (or at some

later point), he will understand that he is an expert and that C = c, therefore if cq + v < c

he will bid c in the next stage (the minimum possible bid that maximizes his payoff). This

is strategy t′HNE.

If cq ≤ v (i.e. v ≥ M2), then a low non-expert will bid his expected valuation in the first

stage, which is cq, and then he will not do anything (strategy t′LNE). Because, even if, for

example, he sees a bid of c and realizes that the common value is high, by bidding c and
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winning the item, his payoff is still 0.

If v < cq (i.e. v < M2), then a low non-expert doesn’t want to bid cq from the beginning

because if the opponent is a high expert and C = 0, he will end up with negative payoff. So,

what he does is that he bids v in the first stage, i.e., the maximum he can without the risk

above, and waits. If he sees a bid other than v from the opponent, he will lose anyway, so

it doesn’t matter what strategy he will follow next, and we assume he will follow the same

strategy as if he sees a bid of v. If he sees a bid of v, then he bids cq in the second stage

with probability 1−w. No matter what happens in the second stage, he does nothing in the

third stage. We need now to calculate the probability w.

First of all, if he does nothing in the second stage and he sees a bid of cq, he realizes that the

opponent is another low non-expert, but there is no reason to bid something higher because

his expected payoff will be 0. If the opponent doesn’t bid as well, then the auction ends,

and there is no third stage. Therefore, his payoff if he sees a bid of v in the first stage and

he does nothing in the second, is

pr(1− q)
pr(1− q) + (1− p)(1− r)(0)

opponent is high expert and C=0

+ (1− p)(1− r)
pr(1− q) + (1− p)(1− r)(wcq − v2 + (1− w)0

opponent is low non-expert

).

If he bids cq in the second stage, his payoff is

pr(1− q)
pr(1− q) + (1− p)(1− r)(−v)

opponent is high expert and C=0

+ (1− p)(1− r)
pr(1− q) + (1− p)(1− r)(w(cq − v) + (1− w)0)

opponent is low non-expert

.

We need these two expressions to be equal, from which we get

w = 2pr(1− q)v
(1− p)(1− r)(cq − v) .
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This is always non-negative, and it is < 1 iff

v <
c(1− p)(1− r)q

2pr(1− q) + (1− p)(1− r) = m2.

Therefore, if v < m2, the low non-expert follows the strategy x′LNE.

If v ≥ c(1−p)(1−r)q
2pr(1−q)+(1−p)(1−r) = m2 (and v < M2), then it is sub optimal to bid cq, therefore we

set w = 1 (strategy u′LNE).

Proof of Lemma 1

Proof. For a low seller, a hard close is always better, because the bid of every bidder is

greater than or equal to his bid when there is a soft close.

For a high seller, we know from Proposition 1 that as p increases, high non-experts bid

more and more aggressively. This makes the revenue higher as p increases, in the hard-close

format. Therefore, to show the result, it is enough to show that for p ≈ 1 the revenue with

hard close is better than the revenue with soft close.

When p ≈ 1, it holds that m1 ≈ m2 ≈ 0; therefore there are only two relevant equilibria in

Lemma 2 (cases 4 and 6, since it is also v < M1) and two in Lemma 3 (cases 2 and 3). Case

4 of Lemma 2 corresponds to case 2 of Lemma 3 and case 6 of Lemma 2 corresponds to case

3 of Lemma 3. We can see that all bids are the same in both models except the bids of the

high non-expert, which are higher with a hard close (the high non-expert is overbidding in

the equilibria 4 and 6 of Lemma 2). Therefore, overall the expected revenue is higher for a

high seller with the hard-close format.

This is also illustrated in Figure 6, which shows which policy gives higher revenue to the

high seller in different regions of the parameter space. Notice that this is slightly different

from Figure 4, which refers to the platform’s revenue.
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(equivalent if δ = 0)
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Figure 6: The regions show whether a hard close provides higher revenue for a high seller
(for r = 0.5 and q = 0.1). This figure is slightly different from Figure 4 in that this compares
formats that provide higher revenue for a high seller versus the earlier figure that does the
same for the overall platform revenue.

Proof of Proposition 2

Proof. This result follows directly from Lemma 1. Since a low seller always benefits from a

hard close, and a high seller benefits for large p, the expected platform’s revenue is better

with a hard close for sufficiently large p.

The analogue of Figure 4 where the format that provides the higher revenue is labeled as a

function of other parameters in the model is presented in Figure 7. In particular, in Figure 7a

we can see that as r (the probability that a bidder has high private value) increases, the

region where a hard close provides higher revenue becomes smaller. This is because from

the perspective of a high non-expert, high r means higher probability that the other bidder

is a high non-expert too, which in turn means lower willingness to bid aggressively in the

hard-close format. This results in lower revenue for a hard close when r is large.
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(a) For p = 0.5 and q = 0.1.
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(b) For r = 0.5 and p = 0.5.

Figure 7: The regions are labeled with the format that provides higher revenue for the
platform. This figure is an analogue of Figure 4 in the main paper presenting the same
result for other parameter variations.
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Proof of Corollary 1

Proof. When the platform reveals the common value to everyone, all bidders bid their true

valuation. Therefore, in the region in which the aggressive bidding of high non-experts

makes hard close better than soft close for the platform (the middle region in Figure 4), the

platform prefers to hide the common value so that the high non-experts keep bidding higher

than their true valuation.

A.3 Upper-bound Condition on δ

In our model, we assume that δ is sufficiently small, i.e., δ ≤ δ̄. This upper-bound condition is

calculated as the minimum of at most three different thresholds coming from the indifference

conditions for the three of the types of players: high experts, low experts, and low non-

experts. These are the conditions that reflect the relations between the parameter values

at which the current set of strategies are no longer in equilibrium. Intuitively, when δ > δ̄,

the cost of sniping (i.e., the risk that the bid does not go through) out-weights its benefits.

Therefore, some types of bidders decide not to snipe. Since other types of bidders know this,

they also have to update their strategies. As a result, we get different (and several cases of)

equilibrium structures for δ > δ̄. We provide an example of this in Section B.2 in the Online

Appendix.

A thorough discussion and calculation of the thresholds for δ̄ is deferred to Section B.2 in the

Online Appendix. The exact definition of δ̄ is given in Lemma 4. To provide some intuition,

in Figure 8 we present plots of δ̄ as a function of v, of p, of q, and of r.
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v = 0.3.

Figure 8: Plots of the upper-bound δ̄ as a function of v, of p, of q, and of r.

A.4 Analyses and Proofs of Section 5

We use the following notation to explain the results of this section: Let πBT (M), where

T ∈ {L,H} and B ∈ {L,H,X} denote the expected profit of a seller who uses mechanism

M ∈ {A, (B, z)} (where A denotes auction, and (B, z) denotes posted price where the price

is z), has type T , and non-experts believe has type B. Let Mpool be the mechanism that

both types of sellers use in a pooling equilibrium.

The revenue of a high- or low-type seller in an auction, where non-experts have belief high
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or low, is given in the following formulas. Recall that p is the probability of being expert,

and r is the probability of having high value.

πHH (A) = c+ r2v

πLL(A) = r2v

πLH(A) =


cp2 + rv(2(1− p)p(1− r) + r) if v ≤ c

cp (2(1− p)r + p− 2(1− p)r2) + r2v if v > c.

πHL (A) =


c(1− p)2 + rv(2(1− p)p(1− r) + r) if v ≤ c

c(1− p)(p(2(1− r)r − 1) + 1) + r2v if v > c.

Similarly, the revenue of a high- or low-type seller using posted price with price z, in each

of the four cases, is

πHH (B, z) =



z if z ≤ c

(2r − r2)z if c < z ≤ c+ v

0 otherwise
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πLH(B, z) =



(1− (1− p)2(1− r)2)z if v ≤ c and z ≤ v

(2p− p2)z if v ≤ c and v < z ≤ c

(2pr − p2r2)z if v ≤ c and c < z ≤ c+ v

(1− (1− p)2(1− r)2)z if v > c and z ≤ c

(2r − r2)z if v > c and c < z ≤ v

(2pr − p2r2)z if v > c and v < z ≤ c+ v

0 otherwise

πHL (B, z) =



(1− p2(1− r)2)z if v ≤ c and z ≤ v

(2(1− p)− (1− p)2)z if v ≤ c and v < z ≤ c

(2r(1− p)− r2(1− p)2)z if v ≤ c and c < z ≤ c+ v

(1− p2(1− r)2)z if v > c and z ≤ c

(2r − r2)z if v > c and c < z ≤ v

(2r(1− p)− r2(1− p)2)z if v > c and v < z ≤ c+ v

0 otherwise

πLL(B, z) =


(2r − r2)z if z ≤ v

0 otherwise

Proof of Proposition 3

Proof. We prove the proposition in three parts. In part A, we show that there is no separating

equilibrium in which the high-type seller uses posted price and the low-type seller uses

auction. In part B, we show that when v ∈ [ν1, ν2], there exists a separating equilibrium in

which the high-type seller uses auction and the low-type seller uses posted price v. Finally, in
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part C, we show that for v ∈ (ν1, ν3), this is the only equilibrium that survives the Intuitive

Criterion refinement.

Part A: Note that πLL(A) < πLL(B, v), which means that conditioned on the type of sellers

being revealed, the low-type seller always prefers posted price v to auction. Therefore, the

low-type seller never uses an auction in a separating equilibrium.

Part B: Note that for a separating equilibrium in which the high-type uses auction and the

low-type uses posted price to exist, the following two conditions are necessary and sufficient:

πLL(B, z) ≤ πHL (A)

πHH (A) ≥ πLH(B, z)

The first condition guarantees that the low-type seller cannot benefit from deviating and

the second condition guarantees that the high-type seller cannot benefit from deviating.

πLL(B, z) is optimized at z = v, and is equal to (2r − r2)v. Having this less than or equal to

πHL (A), and using basic calculus, gives us the condition v
c
≥ ν1. Similarly, solving the second

inequality for v gives us condition v
c
≤ ν2. If non-expert buyers’ beliefs are L for posted

prices and H for auction, then ν1 ≤ v
c
≤ ν2 is also sufficient for existence of this equilibrium.

Part C: Finally, we show that if ν1 ≤ v
c
≤ ν3, the separating equilibrium in which the high-

type uses auction and the low-type uses posted price is the only pure strategy separating Nash

equilibrium that survives Intuitive Criterion refinement. Assume for sake of contradiction

that there exists another separating equilibrium. We already know from Part A of this proof

that the low-type cannot be using auction. Therefore, both types must be using posted

price (with different prices) in this equilibrium. Using the same argument as in Part B

of the proof, we know that the low-type must be using posted price v. Suppose that the

high-type is using posted price ζ. For this to be a separating equilibrium, the low-type

should not benefit from deviating and mimicking the high-type: πLL(B, v) ≥ πHL (B, ζ). Using
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basic calculus, we can show that this implies the following condition on ζ. We must have

ζ ≤ (r−2)v
(p−1)(pr−r+2) . Let π

∗ = πHH (B, ζ) be the profit of the high-type seller (in the hypothetical

separating equilibrium) subject to this constraint.

If πHH (A) > π∗, then the high-type seller benefits from deviating to auction unless non-

experts’ belief about auction is L. But note that if v
c
> ν1, non-experts’ belief about auction

cannot be L according to Intuitive Criterion refinement. Specifically, since the high-type

benefits from deviating to auction and the low-type never benefits from deviating to auction

even if buyers’ belief in auction is H, according to the Intuitive Criterion refinement, buyers’

belief in auction should beH. Therefore, if πHH (A) > π∗ the high-type benefits from deviating

to auction and the hypothetical equilibrium cannot exist. Using basic calculus, the condition

πHH (A) > π∗ reduces to v
c
≤ ν3. Therefore, for v

c
∈ (ν1, ν3), the separating equilibrium in

which the high-type uses auction and the low-type uses posted price is the only pure strategy

separating Nash equilibrium that survives the Intuitive Criterion refinement.
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