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We study the Weighted Tree Augmentation Problem for general link costs. We show that the integrality 
gap of the odd-LP relaxation for the (weighted) Tree Augmentation Problem for a k-level tree instance 
is at most 2 − 1

2k−1 . For 2- and 3-level trees, these ratios are 3
2 and 7

4 respectively. Our proofs are 
constructive and yield polynomial-time approximation algorithms with matching guarantees.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We consider the weighted tree augmentation problem (TAP): Given an undirected graph G = (V , E) with non-negative weights c on the 
edges, and a spanning tree T , find a minimum cost subset of edges A ⊆ E(G) \ E(T ) such that (V , E(T ) ∪ A) is two-edge-connected. We 
will call the elements of E(T ) as (tree) edges and those of E(G) \ E(T ) as links for convenience. A graph is two-edge-connected if the 
removal of any edge does not disconnect the graph, i.e., it does not have any cut edges. Since cut edges are also sometimes called bridges, 
this problem has also been called bridge connectivity augmentation in prior work [10].

While TAP is well studied in both the weighted and unweighted case [10,14,17,8,5,16,1,9,12], it is NP-hard even when the tree has 
diameter 4 [10] or when the set of available links form a single cycle on the leaves of the tree T [6], and is also APX-hard [15]. Weighted 
TAP was one of the simplest network design problems without a better than 2-approximation in the case of general (unbounded) link 
costs and arbitrary depth trees, until very recently [18,19]. For the case of n-node trees with height k, Cohen and Nutov [8] gave a 
(1 + ln 2) � 1.69-approximation algorithm that runs in time n3k · poly(n) using an idea of Zelikovsy for approximating Steiner trees. Very 
recently, this approach has been extended to provide an approximation to the general case of the problem with the same performance 
guarantee by Traub and Zenklusen [18]. A follow-up paper by the same authors [19] improved the approximation ratio to nearly 1.5. 
However, these papers do not provide any new results on the integrality gap of some natural LP relaxations for the problem that we 
discuss next.

1.1. EDGE-LP relaxation

TAP can also be viewed as a set covering problem. The edges of the tree T define a laminar collection of cuts that are the elements 
to be covered using sets represented by the links. A link � is said to cover an edge e if the unique cycle of � + T contains e. Here we use 
cov(e) for a tree edge e to denote the set of links which cover e. The natural covering linear programming relaxation for the problem, 
EDGE-LP, is a special instance of a set covering problem with one requirement (element) corresponding to each cut edge in the tree. Since 
the tree edges define subtrees under them (after rooting it at an arbitrary node) that form a laminar family, this is also equivalent to a 
laminar cover problem [6].

min
∑
�∈E

c�x�

* Corresponding author.
E-mail addresses: odparek@sandia.gov (O. Parekh), ravi@cmu.edu (R. Ravi), mzlatin@andrew.cmu.edu (M. Zlatin).
https://doi.org/10.1016/j.orl.2022.10.002
0167-6377/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.orl.2022.10.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2022.10.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:odparek@sandia.gov
mailto:ravi@cmu.edu
mailto:mzlatin@andrew.cmu.edu
https://doi.org/10.1016/j.orl.2022.10.002
http://creativecommons.org/licenses/by-nc-nd/4.0/


O. Parekh, R. Ravi and M. Zlatin Operations Research Letters 50 (2022) 667–673
x(cov(e)) ≥ 1 ∀e ∈ E(T ) (1)

x� ≥ 0 ∀� ∈ E (2)

Fredrickson and Jájá showed that the integrality gap for EDGE-LP can not exceed 2 [10] and also studied the related problem of 
augmenting the tree to be two-node-connected (biconnectivity versus bridge-connectivity augmentation) [11]. Cheriyan, Jordán, and Ravi, 
who studied half-integral solutions to EDGE-LP and proved an integrality gap of 4

3 for such solutions, also conjectured that the overall 
integrality gap of EDGE-LP was at most 4

3 [6]. However, Cheriyan et al. [7] later demonstrated an instance for which the integrality gap of 
EDGE-LP is at least 3

2 .

1.2. ODD-LP relaxation

Fiorini et al. studied the relaxation consisting of all {0, 12 }-Chvátal-Gomory cuts of the EDGE-LP [9]. We call their extended linear 
program the ODD-LP.

We define δ(S) for S ⊂ V as the set of all links and edges with exactly one endpoint in S , and recall that cov(e) for a tree edge e is 
the set of links that cover e. We use E(T ) to refer to the set of tree edges, and L is the set of links, E(G) \ E(T ).

min
∑
�∈E

c�x�

x(δ(S) ∩ L) +
∑

e∈δ(S)∩E(T )

x(cov(e)) ≥ |δ(S) ∩ E(T )| + 1 ∀S ⊆ V , |δ(S) ∩ E(T )| is odd (3)

x� ≥ 0 ∀� ∈ E

We describe here the validity of the constraints in ODD-LP using a proof due to Robert Carr. Consider a set of vertices S such that 
|δ(S) ∩ E(T )| is odd. By adding together the edge constraints for δ(S) ∩ E(T ) we get:∑

e∈δ(S)∩E(T )

x(cov(e)) ≥ |δ(S) ∩ E(T )|

Now we can add any non-negative terms to the left hand side and still remain feasible. Therefore

x(δ(S) ∩ L) +
∑

e∈δ(S)∩E(T )

x(cov(e)) ≥ |δ(S) ∩ E(T )|

is also feasible. Now consider any link �. If x� appears an even number of times in 
∑

e∈δ(S)∩E(T ) x(cov(e)) then � is not in δ(S). Similarly, 
if x� appears an odd number of times in 

∑
e∈δ(S)∩E(T ) x(cov(e)) then � is in δ(S). So, the coefficient of every x� on the left hand side 

of this expression is even. In particular, for any integer solution the left hand side is even and the right hand side is odd. Therefore, we 
can strengthen the right hand side by increasing it by one, and the resulting constraint will still be feasible for any integer solution. The 
constraint,

x(δ(S) ∩ L) +
∑

e∈δ(S)∩E(T )

x(cov(e)) ≥ |δ(S) ∩ E(T )| + 1

is thus valid for any integer solution to TAP as desired.
We prove a lemma about how a transformation of a feasible solution to the ODD-LP that we call a link subdivision continues to 

preserve feasibility, that we use later in our integrality gap proofs.

Lemma 1.1. Let (T , L) be a TAP instance and let x̄ be a feasible solution to ODD-LP(T , L). Fix some link � = (a, b) ∈ L, and let (a, v1, . . . , vk, b) be an 
ordered sequence of distinct nodes on the path from a to b in T . Let � = {(a, v1), (v1, v2), . . . (vk−1, vk), (vk, b))} and let L′ = (L \ (a, b)) ∪ � (call 
this a link subdivision). Then the solution ȳ obtained from x̄ by setting ȳ� = x̄(a,b) for all � ∈ � is feasible for ODD-LP(T , L′).

Proof. Fix a set of vertices S ⊆ V such that |δ(S) ∩ E(T )| is odd. Since x̄ is feasible, we have

x̄(δ(S) ∩ L) +
∑

e∈δ(S)∩E(T )

x̄(cov(e)) ≥ |δ(S) ∩ E(T )| + 1.

Since the links in � cover exactly the set of edges along the path between a and b in T , we have∑
e∈δ(S)∩E(T )

x̄(cov(e)) =
∑

e∈δ(S)∩E(T )

ȳ(cov(e)).

We now consider two cases. If a, b ∈ S , then (a, b) /∈ δ(S) ∩ L, and so clearly ȳ(δ(S) ∩ L) ≥ x̄(δ(S) ∩ L)). Otherwise, suppose without loss 
of generality that a ∈ S and b /∈ S . Then the path between a and b in T contains an odd number of edges in δ(S) ∩ E(T ). Each link in �
which is not δ(S) ∩ L covers an even number of edges in δ(S) ∩ E(T ). Therefore, there must be some link � in � contained in δ(S) ∩ L. 
This link has value ȳ� = x̄(a,b) , hence we have

ȳ(δ(S) ∩ L) ≥ x̄(δ(S) ∩ L),

and the claim follows. �
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Fig. 1. Transformation to a leaf to leaf instance.

2. Preliminaries

We will use the following theorem about the ODD-LP [9]. For a choice of a root r, we call links which connect two different components 
of T − r as cross-links, and those that go from a node of T to its ancestor as up-links.

Theorem 2.1 ([9], Theorem 1.1). The ODD-LP is integral for weighted TAP instances that contain only cross- and up-links.

The integrality of the formulation is shown by demonstrating that the constraint matrix is an example of a binet matrix [2,3], a 
generalization of network matrices that are a well-known class of totally unimodular matrices. Moreover, while general Chvátal-Gomory 
closures are NP-hard to optimize over, these restricted versions over half-integral combinations can be optimized in polynomial time [4]. 
Such instances with only cross- and up-links are informally called “star-shaped” with the center of the star being the chosen root, so we 
will refer to the above result as saying that the ODD-LP for star-shaped instances centered at a root have integrality gap 1 and solutions 
to such instances can be obtained in polynomial time.

Without loss of generality, we may consider TAP instances where all links go between two leaves [13]. We reproduce the proof here 
for completeness.

Lemma 2.2. Given an instance (T , L, c) of weighted TAP, there is a corresponding, polynomial-sized instance (T ′, L′, c′) with all links having both 
endpoints as leaves, such that there is a cost-preserving bijection between the solutions to the two instances.

Proof. The proof proceeds by a simple graph reduction. Suppose we are given an instance defined by a graph G with associated tree T
for the weighted TAP. We create a new instance of the leaf-to-leaf version as follows: For every internal node u in the original tree T , we 
add two new leaf nodes u′ and u′′ both adjacent to u to get a new tree T ′ . For every link f = (v, u) in the original instance, we reconnect 
the link to now end in the leaf u′ rather than the internal node u in the tree T ′ . Thus, if both v and u are internal nodes, the new link 
is (v ′, u′); if only u is internal, the new link is (v, u′) and if both are leaves, the new link is the same (u, v) as in G . Note that the new 
graph G ′ is a leaf-to-leaf instance. In addition, for every internal node u in the original tree T , we add a new link of zero cost between 
u′ and u′′ - this will serve to cover the newly added edges (u, u′) and (u, u′′) without changing the coverage of any of the edges in the 
original tree T . See Fig. 1. �
Remark 2.3. The cost-preserving bijection described above can be extended to map fractional solutions of odd-LP(T , L) to odd-LP(T ′, L′). 
In other words, every weighted TAP problem can be reduced to an instance where all links go between a pair of leaves without loss of 
generality for investigating approximation ratios for the problem and integrality gaps of the odd-LP.

Note that given a rooted tree of k levels (i.e., the maximum distance of any leaf from the root is k), the above transformation results 
in a leaf-to-leaf instance also with k levels.

3. Improved integrality gaps for trees of depth 2 and 3

Theorem 3.1. The integrality gap of the ODD-LP for a two-level tree instance is at most 3
2 . A solution with this approximation ratio for these instances 

can be obtained in polynomial time.

Proof. Given a two-level TAP instance on tree T and links L, we first show how to transform the instance into two instances that we can 
solve exactly. We then apply the same transformation to the components of any integral solution A to obtain feasible solutions to the two 
new instances, the better of which has value at most 3

2 · c(A). We will then use the same reductions on fractional feasible solutions to 
the ODD-LP, and use Lemma 1.1 to show that the resulting star-shaped instances are feasible for the ODD-LP and then use Theorem 2.1 to 
arrive at the stated integrality gap and resulting algorithm.

We say that the root r is at level 1 and its children {c1, c2, . . . , cd} are internal nodes at level 2, where d is the number of non-leaf 
children of the root. First using Lemma 2.2, we assume that all links go between a pair of leaves. We partition L into L1∪̇L2, where Li is 
the set of links whose least common ancestor (henceforth lca) is a node at level i in the tree.
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Fig. 2. Transformation to a star-shaped instance for the root.
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Fig. 3. Transformation to three star-shaped instances around the root and its two internal children.

We will create two new instances (T , L1) and (T , L2). The first instance (T , L1) is obtained by replacing every link (u, v) in L2 with lca 
c say, with two up-links (u, c) and (v, c) of the same cost. Notice that (T , L1) is a star-shaped instance with root r. The second instance 
(T , L2) is obtained by replacing every link (u, v) in L1 with lca the root r, with two up-links (u, r) and (r, v) of the same cost. (T , L2) can 
be decomposed into d + 1 disjoint star shaped instances: d of these are defined by the star around each non-leaf child of the root, and the 
last is the star defined by the root and its leaf-children. Thus, (T , L2) is a disjoint collection of star-shaped instances which can be solved 
by solving each of these d + 1 induced star-shaped instances separately and taking the union of their solutions. See Figs. 2 and 3.

Given an optimal solution A to (T , L), we now construct two solutions A1 and A2, feasible to (T , L1) and (T , L2) respectively, by 
applying the same reduction as above to the corresponding components in A. Let A = A1∪̇A2 where Ai the set of links whose lca is a 
node in level i of the tree. To create A1, we replace each link (u, v) in A2 with the two up-links (u, c) and (v, c) in L1. Note that this 
set of links along with A1 gives a feasible solution to (T , L1) and has cost c(A1) + 2c(A2). To create A2, we replace each link (u, v) in 
A1 with the two up-links (u, r) and (v, r) in L2. Note that this set of links along with A2 gives a feasible solution to (T , L2) and has cost 
2c(A1) + c(A2).

As described above, each of A1 and A2 can be transformed into a feasible solution to (T , L) with the same cost. Therefore, by taking 
the better of the two, there is a solution of cost at most min{c(A1) + 2c(A2), 2c(A1) + c(A2)} ≤ 3

2 c(A).
Note that the link replacements in both transformations are link subdivisions. Hence, by Lemma 1.1, we can apply the same transfor-

mation to any fractional solution feasible to ODD-LP(T , L) to obtain two fractional solutions feasible to ODD-LP(T , L1) and ODD-LP(T , L2) 
respectively. Since the resulting star shaped instances have integrality gap 1 by Theorem 2.1, the claims about the integrality gap and a 
polynomial-time approximation algorithm with this ratio also follow. �

Theorem 3.2. The integrality gap of the odd-LP for a three-level tree instance is at most 7
4 . A solution with this approximation ratio for these instances 

can be obtained in polynomial time.

Proof. As before, we first show how to transform the instance into new instances, and show that the same applied to any integral 
solution A gives a solution of value at most 7

4 · c(A). Again, the same reduction will also apply to fractional solutions that obey the 
ODD-LP constraints to prove the claim.

Using Lemma 2.2, we assume that all links go between a pair of leaves. We partition L into L1∪̇L2∪̇L3, where Li is the set of links 
whose lca is a node at level i in the tree. We say that the root r is at level 1 and its non-leaf children {c1, c2, . . . , cd} are at level 2, and the 
children of these nodes that are internal nodes are in level 3 of the tree. We will create three new instances (T , L1), (T , L2) and (T , L3)

as follows.

• The first instance (T , L1) is obtained by replacing every link (u, v) in L2 ∪ L3 with lca c say, with two up-links (u, c) and (v, c) of the 
same cost. See Fig. 4. Notice that (T , L1) is a star-shaped instance with root r.

• The second instance (T , L2) is obtained by replacing every link (u, v) in L1 ∪ L3 with lca c say, with two up-links (u, c) and (c, v) of 
the same cost. Notice, that (T , L2) can be decomposed into d + 1 different star shaped instances. One of these star-shaped instances 
is a one-level instance centered at the root and consisting of the root and all of its leaf children. Each of the remaining d instances 
corresponds to a non-leaf child of the root vi , consisting of the whole subtree Ti rooted at vi and its edge to the root (vi, r). Notice 
that these instances are pairwise disjoint and are star-shaped with centers vi . See Fig. 5.

• Finally, the third instance (see Fig. 6), is obtained as follows. For each link (a, b) ∈ L2, with lca c say, we replace it with two up-links 
(a, c) and (b, c) of the same cost. The interesting transformation is for links in L1, where we now make up to three copies. For every 
670
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Fig. 4. Transformation to a star-shaped instance centered at the root.
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Fig. 5. Transformation to three star-shaped instances centered at the root and its two internal children.

link (a, b) ∈ L1, let ca and cb denote the ancestor of a and b respectively in level 2. (if either a or b is in level 2 itself, then its ancestor 
in level 2 is itself). We now add three links (a, ca), (ca, cb), (cb, b) of the same cost as (a, b). Again, this instance can be solved exactly 
by decomposing it into pairwise disjoint star-shaped instances: one for each star around the internal nodes, say v1, . . . , vq in level 3, 
and one more tree around the root consisting of the set of all tree edges not in the stars around the vi ’s.

Given an optimal solution A to (T , L), we now construct three solutions A1, A2 and A3, feasible to (T , L1), (T , L2) and (T , L3) respec-
tively. Let A = A1∪̇A2∪̇A3 where Ai the set of links whose lca is a node in level i of the tree. The solutions A1, A2 and A3 are obtained 
from by transforming the links in A exactly as we transformed the corresponding type of links in L to obtain L1, L2 and L3. Finally, each 
of A1, A2 and A3 can be transformed into a feasible solution to (T , L) with the same cost. Therefore, by taking the best of the three, we 
can find a solution in polynomial time with cost at most min{c(A1) +2c(A2) +2c(A3), 2c(A1) +c(A2) +2c(A3), 3c(A1) +2c(A2) +c(A3)} ≤
7
4 c(A).

Note that the link replacements in both transformations are link subdivisions. Hence, by Lemma 1.1, we can apply the same transfor-
mation to any fractional solution feasible to ODD-LP(T , L) to obtain three fractional solutions feasible to ODD-LP(T , L1), ODD-LP(T , L2), 
and ODD-LP(T , L3) respectively. Since the resulting star shaped instances have integrality gap 1 by Theorem 2.1, the claims about the 
integrality gap and a polynomial-time approximation algorithm with this ratio also follow. �

4. Integrality gap for k-level trees

With the above cases, we can now calculate an upper bound on the value of the integrality gap for general k-level trees where the 
depth of any leaf from the root is k.

Theorem 4.1. The integrality gap of the ODD-LP for a k-level tree instance is at most 2 − 1
2k−1 . A solution with this approximation ratio for these 

instances can be obtained in polynomial time for any fixed k.

Proof. We will show how to transform a given k-level TAP instance (T , L) into k new instances, and show that the same applied to any 
integral solution A gives a solution of value at most (2 − 1

2k−1 ) · c(A). Again, the same reduction will also apply to fractional solutions that 
obey the ODD-LP constraints to prove the claim.
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Fig. 6. Transformation to three star-shaped instances centered at the root and the stars around the two internal nodes in level 3.

Partition the links in L into subsets of links L = L1∪̇L2 . . . ∪̇Lk where L� is the subset whose lca is a node in level l of the tree for 
� = 1, . . . , k. As before, we set up k new TAP instances (T , L1), . . . , (T , Lk), where in (T , L�) we preserve the links in L� .

For � = 1, we replace each link (u, v) in L2, . . . , Lk with two links (u, c) and (v, c), where c is the lca of u and v , yielding a star-shaped 
instance (T , L1).

Suppose 1 < � ≤ k. For any link (a, b) ∈ L�−1 ∪ ⋃
p>� Lp, we replace it with the two links (a, lca(a, b)) and (b, lca(a, b)). For links 

(a, b) ∈ Lq for 1 < q < � − 1, let the ancestors of a and b in level � − 1 be ua and ub respectively, if they exist. We replace (a, b) with one 
of the following sets, with at most four links: {(a, ua), (ua, lca(ua, ub)), (lca(ua, ub), ub), (ub, b)}, or {(a, lca(a, ub)), (lca(a, ub), ub), (ub, b)}, 
or {(a, ua), (ua, lca(ua, b)), (lca(ua, b), b)}, or {(a, lca(a, b)), (lca(a, b), b)}, depending on which of ua and ub exist. Analogously, for q = 1, 
we instead use the following sets, with at most three links: {(a, ua), (ua, ub), (ub, b)}, {(a, ub), (ub, b)}, {(a, ua), (ua, b)}, {(a, b)}. Denote the 
obtained instance by (T , L�).

We now show that (T , L�) can be decomposed into pairwise disjoint star-shaped instances, thereby allowing us to solve these instances 
exactly. For every internal node v at level �, we consider the instance on the subtree below it, along with the edge to its parent. These 
will be star-shaped instances with centers v . In addition, we consider a final instance, which will be a star-shaped instance around the 
root, whose tree edges are disjoint from the others.

We will show that each link is a cross-link or an up-link in one of the star-shaped instances. First consider the instances around the 
internal nodes v in level �. Links in L� are already cross-links in these. Links in Lp for p > � have been replaced with two links that 
become up links in these instances. Consider a link (a, b) ∈ Ll−1, such that va and vb are the ancestors of a and b respectively that are in 
level l. We replaced this link with the two links (a, lca(a, b)) and (b, lca(a, b)). Now lca(a, b) is a parent of va and vb since (a, b) ∈ Ll−1 so 
these links form cross links for the star-shaped instances around va and vb .

All the tree edges not in any of these star-shaped instances are considered in a final star-shaped instance rooted at r. For links 
(a, b) ∈ Lq for 1 < q < � − 1, let the ancestors of a and b in level � − 1 be ua and ub respectively, if they exist. For q > 1, all the links in 
these links become cross links for the star-shaped instances around the level � internal nodes or up links for the instance rooted at r. The 
same holds for links in L1, except that these sets also include cross links for the instance rooted at r.

Given an optimal solution A to (T , L), we can construct k solutions A1, A2, . . . , Ak , feasible to (T , L1), (T , L2), . . . , (T , Lk) respectively. 
To get Ak , we simply apply the same transformations to the links of A which were applied to L to obtain Lk . Let A = A1∪̇A2, · · · , ∪̇Ak , 
where Ai is the set of links in A with lca at level i, and let ci denote the cost of the links in Ai . Each A� corresponds to a solution to 
(T , L) with at most the cost.

Based on the above construction, an upper bound on the cost of this set of candidate solutions is

C1 = c1 + 2c2 + 2c3 + 2c4 + . . . + 2ck, if � = 1

C2 = 2c1 + c2 + 2c3 + 2c4 + . . . + 2ck, if � = 2

C3 = 3c1 + 2c2 + c3 + 2c4 + . . . + 2ck, if � = 3

C� = 3c1 + 4c2 + . . . + 4c�−2 + 2c�−1 + c� + 2c�+1 + . . . + 2ck, i f 3 < � ≤ k.

The best of these solutions has cost at most min{C1, . . . , Ck} ≤ ∑k
i=1 λi Ci for any setting of weights such that λi ≥ 0 for all i and ∑k

i=1 λi = 1.

Let J (n) := 2n−(−1)n

3 . Let λi = 1
2k−1

J (k − i + 1) for i ≥ 2. If k is even, let λ1 = λ2. If k is odd, let λ1 = λ2 + 1. With this choice of 
λ = (λ1, . . . , λk), it is straightforward to verify that

k∑
i=1

λiCi =
(

2k − 1

2k−1

)
(c1 + . . . + c2).

The key observation to verify this is that J (n) satisfies the recurrence J (n) = J (n − 1) + 2 J (n − 2) for n ≥ 2, which reflects the changes 
in the coefficients of c�, c�−1 and c�−2 in going from C�−1 to C� . With J (1) = 1 and J (0) = 0, this defines the Jacobsthal sequence, see 
(https://oeis .org /A001045).
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Thus, we have min{C1, . . . , Ck} ≤
(

2 − 1
2k−1

)
(c1 + . . . + ck) =

(
2 − 1

2k−1

)
c(A).

As before, all link replacements correspond to link subdivisions. Thus, by Lemma 1.1, we can apply the same transformation to any frac-
tional solution feasible to ODD-LP(T , L) to obtain k fractional solutions feasible to ODD-LP(T , L�) for each � = 1, . . . , k. Since the resulting 
star shaped instances have integrality gap 1 by Theorem 2.1, the claims about the integrality gap and a polynomial-time approximation 
algorithm with this ratio also follow. �

While the above analysis shows integrality gaps of the ODD-LP converging to 2 as the depth of the tree grows, the main open question 
in our opinion is to show that the integrality gap of 3

2 that we showed for 2-level trees is indeed the upper bound for all trees.
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