
Operations Research Letters 50 (2022) 693–698

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Coloring down: 3/2-approximation for special cases of the weighted

tree augmentation problem

Jennifer Iglesias a, R. Ravi b,∗
a Waymo Inc., 1600 Amphitheatre Pkwy, Mountain View, 94043, CA, USA
b Tepper School of Business, Carnegie Mellon University, 15213, Pittsburgh, PA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 July 2021
Received in revised form 11 October 2022
Accepted 12 October 2022
Available online 26 October 2022

Keywords:
Approximation algorithm
Network design
Integrality gap

In this paper, we investigate the weighted tree augmentation problem (TAP), where the goal is to
augment a tree with a minimum cost set of edges such that the graph becomes two edge connected.
First we show that in weighted TAP, we can restrict our attention to trees which are binary and where
all the non-tree edges go between two leaves of the tree. We then give a top-down coloring algorithm
that differs from known techniques for approximating TAP.
The algorithm we describe always gives a 2-approximation starting from any feasible fractional solution
to the natural tree cut covering LP. When the structure of the fractional solution is such that all the edges
with non-zero weight are at least α, then this algorithm achieves a 2

1+α -approximation.
We also investigate a variant of TAP where every tree edge must belong to a cycle of length three
(triangle) in the solution. We give a �(log n)-approximation algorithm for this problem in the weighted
case in n-node graphs and a 4-approximation in the unweighted case.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

We consider the weighted tree augmentation problem (TAP): Given
an undirected graph G = (V , E) with non-negative weights c on
the edges, and a spanning tree T , find a minimum cost subset
of edges A ⊆ E(G) \ E(T) such that (V , E(T) ∪ A) is two-edge-
connected. We will refer to the elements of E(T) as (tree) edges
and those of E(L) = E(G) \ E(T) as links for convenience. A graph is
two-edge connected if the removal of any edge does not disconnect
the graph, i.e., it does not have any cut edges. Since cut edges are
also sometimes called bridges, this problem has also been called
bridge connectivity augmentation in prior work [12].

While TAP is well studied in both the weighted and unweighted
case [12,18,22,9,5,19,1,11], it is NP-hard even when the tree has
diameter 4 [12] or when the set of available links form a single
cycle on the leaves of the tree T [7]. Weighted TAP was one of
the simplest network design problems without a better than 2-
approximation in the case of general (unbounded) link costs and
arbitrary depth trees, until recently [24,23].

* Corresponding author.
E-mail address: ravi@andrew.cmu.edu (R. Ravi).
https://doi.org/10.1016/j.orl.2022.10.007
0167-6377/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
1.1. LP relaxations

TAP can also be viewed as a covering problem. The cuts in a
tree which have a single tree edge crossing them are exactly the
cuts that must be covered. A link � is said to cover an edge e if the
unique cycle of � + T contains e. By rooting the tree at an arbitrary
node, we define Se be the node set of the subtree under the tree
edge e. We use δL(S) and δT (S) for S ⊂ V to denote the set of links
and tree edges with exactly one endpoint in S respectively. Then
δL(Se) for a tree edge e denotes the set of links which cover e. The
natural covering linear programming relaxation for the problem,
EDGE-LP, is a special instance of a set covering problem with one
requirement (element) corresponding to each cut edge in the tree
(since the sets Se form a laminar family, this is also equivalent to
a laminar cover problem [7]).

min
∑

�∈E

c�x�

x(δL(Se)) ≥ 1 ∀e ∈ E(T) (1)

x� ≥ 0 ∀� ∈ E(L) (2)

Fredrickson and Jájá showed that the integrality gap of the
EDGE-LP can not exceed 2 [12] and also studied the related prob-
lem of augmenting the tree to be two-node-connected (bicon-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.orl.2022.10.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2022.10.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ravi@andrew.cmu.edu
https://doi.org/10.1016/j.orl.2022.10.007
http://creativecommons.org/licenses/by/4.0/

J. Iglesias and R. Ravi Operations Research Letters 50 (2022) 693–698
nectivity versus bridge-connectivity augmentation) [13]. Cheriyan,
Jordán, and Ravi, who studied half-integral solutions to EDGE-LP
and proved an integrality gap of 4

3 for such solutions, also con-
jectured that the overall integrality gap of EDGE-LP was at most
4
3 [7]. However, Cheriyan et al. [8] demonstrated an instance for
which the integrality gap of the EDGE-LP is at least 3/2.

1.2. Related work

Weighted TAP has several 2-approximation algorithms. Fred-
erickson and JáJá [12] convert the problem into one of find-
ing a minimum weight arborescence in an appropriate directed
graph. Khuller and Thurimella improved the runtime of this algo-
rithm [18]. Later, other 2-approximation algorithms have been de-
vised for weighted TAP using other techniques such as the primal-
dual method [22] and iterative rounding [17].

Special cases of weighted TAP have also been investigated.
Cheriyan, Jordán and Ravi [7] developed a 4

3 -approximation for TAP
when the optimal fractional solution is half-integral. Another spe-
cial case of weighted TAP is when the tree has bounded depth. In
this special case, Cohen and Nutov showed there exists a (1 + ln 2)-
approximation [9]. Very recently, this approach has been extended
to provide an approximation to the general case of the prob-
lem with the same performance guarantee by Traub and Zen-
klusen [24]. A follow-up paper by the same authors [23] improved
the approximation ratio to nearly 1.5. However, this work does not
provide any new results on the integrality gap of any of the LP
relaxations above.

Adjiashvili [1] showed a 1.96-approximation for another spe-
cial case of weighted TAP where all link weights are between 1
and some constant M by using a bundling type linear program.
Building on this work, Fiorini et al. [11] generalized the constraints
from [20] and combined them with the bundle constraints from [1]
to propose a new ODD-LP and achieved a 3

2 + ε approximation for
the same special case (when all the costs are between 1 and some
constant M). Another recent paper by Nutov takes a subset of Ad-
jiashvili’s constraints and achieves a 12

7 + ε approximation when
all the costs are in the range [1, O (log n)] where n is the num-
ber of nodes in the tree [21]. A line of work leading to Cecchetto
et al. [4] also supply better than 1.5 approximations for the un-
weighted case of TAP. Many of these techniques rely heavily on
the bundle constraints that are focused on link weights being in a
bounded range; hence they do not seem to be generalizable to the
case of arbitrary weights. We believe the general problem requires
a more polyhedral approach of the type we investigate.

Numerous papers attempted to reach a target 3
2 -approximation

in the unweighted case of TAP when all links have the same
weight. One paper by Kortsarz and Nutov [20] presents a new lin-
ear program with a 1.75-approximation for the unweighted case,
in the hope that this linear program could help break the 2-
approximation barrier for the weighted case. This LP used proper-
ties of an optimal solution for the unweighted case to add multiple
new constraints; In retrospect, these additional constraints are all
included in the ODD-LP. Two papers achieved a 3

2 -approximation
for the unweighted case using the same algorithm but with very
different analyses. The earlier paper by Kortsarz and Nutov [19]
extends the approach of [10] that relies on a unique token giving
argument. Later work by Cheriyan and Gao [5,6] shows an inte-
grality gap of 3

2 of a related semidefinite program. While both of
these approaches to proving the gap are different, they still heavily
rely on the fact that all the links have the same weight. For un-
weighted TAP, Nutov [21] showed that the integrality gap of the
EGDE-LP is at most 28/15, and that of ODD-LP is at most 7/4.
694
1.3. Our results

Our results give new approaches to determine the integrality
gap of weighted TAP: our methods provide constructive proofs of
convex decompositions of given fractional solutions appropriately
scaled into integer solutions.

1. We show that any instance of weighted TAP can be reduced to
equivalent instances where the underlying tree is binary and
all the links have their endpoints at leaves (Theorem 2.1 in
Section 2). While the reduction to leaf-to-leaf instances was
known before, the reduction to binary trees is new. The sim-
pler structure of input instances help us in several of our
proofs and may be useful in future approaches to settle the in-
tegrality gap of the standard EDGE-LP relaxation of weighted
TAP.

2. We give a simple new top-down coloring algorithm that gives
a constructive proof of the integrality gap of 2 for EDGE-LP by
providing a convex decomposition. Furthermore, if the mini-
mum non-zero value in the solution for any link is at least α
then we can achieve an improved 2

1+α -approximation (Theo-
rem 3.1 in Section 3). This generalizes the result of Cheriyan
et al. [7] which we can recover by setting α = 1

2 . Even more
interestingly, this provides a new 3

2 -approximation when all
nonzero values in the solution are at least 1

3 .
3. In Section 4, we provide a complete study of 3TAP in which

every tree edge must be in a triangle in the final two-
connected augmentation of the input tree. Via a reduction
from set cover, we show an �(log n)-inapproximability re-
sult and give a matching approximation algorithm. In the un-
weighted case, we show that any minimal solution gives a
4-approximation.

Our approach is a top-down coloring algorithm on the scaled
fractional solution where each color class is a feasible solution. In
particular, 3

2 times the fractional solution is decomposed into a
convex combination of integer solutions. This provides not only
an approximation algorithm but also directly proves the inte-
grality gaps for the corresponding covering LP [3]. In addition,
this technique of top-down coloring differs from all current 3

2 -
approximation algorithms on unweighted TAP and all current al-
gorithms which achieve better than 2-approximations for special
cases of weighted TAP. Since our methods decompose scaled frac-
tional solutions, they also have the potential to extend to give tight
integrality gap proofs.

2. Reduction to binary trees and a stronger LP

In this section, we show that we can restrict our attention to
only certain instances of weighted TAP. Our reduction restricts not
only the structure of the links but also the structure of the result-
ing tree. Our reduction converts the tree to be covered to a binary
tree. Using this feature, we extend the EDGE-LP constraint from a
single tree edge to all odd cuts in the resulting binary tree and
show its validity.

2.1. Reduction to binary trees

Theorem 2.1. Any instance of weighted TAP (T , c, L) can be reduced to
a corresponding instance of weighted TAP (T ′, c′, L′) where the tree T ′
is binary and all the links in L′ go between two leaves. In addition, every
feasible solution to (T , c, L) provides a feasible solution to (T ′, c′, L′) of
equal cost and vice versa. If the number of nodes in T is n of which l are
leaves, the number of nodes in T ′ is 4n − 2l − 1.

J. Iglesias and R. Ravi Operations Research Letters 50 (2022) 693–698

v

v1 v2 v3

v ′

v v ′
1

v1 v ′
2

v2 v ′
3

v3 v ′
4

Fig. 1. An example of an internal node v with three children before and after the transformation at v .
Proof. The construction is a local operation performed on all the
nodes of T in a top-down fashion. Let v be an internal node in the
tree with children v1, v2, . . . vk (if v is a leaf then no operation will
be done). Let (T , c, L) be the initial tree. The transformation on an
internal node v will give us a new instance (T v , cv , Lv). We will
add a dummy node v ′ for v , v ′

i for every child i, and an additional
dummy node v ′

k+1 also for v . We remove the edges X = {v vi}i

and add the edges Y = {v v ′} ∪ {vi v ′
i}i ∪ {v ′

i v ′
i+1}i . We leave all the

existing links at their corresponding nodes. The only link we add
is a link called �v from v to v ′

k+1 of cost 0. The new instance has
changed as follows:

V (T v) = V (T) ∪ {v ′} ∪ {v ′
i}i

E(T v) = E(T) − X + Y

Lv = L ∪ {v v ′
k+1}

Fig. 1 gives an example of this transformation on a node with three
children. Note that by adding the link v v ′

k+1 that has cost zero, all
added dummy nodes v ′

i are shrunk back into v , with the same
set of children and the same link connections as in the original
instance.

To transform the whole instance, we apply the above operation
sequentially on internal nodes of the tree in any top-down order,
i.e., the parent is processed with this operation before any node
is. Note that for every internal node v with k children, we added
two dummy nodes v ′ and v ′

k+1, as well as one additional dummy
node v ′

i per child. Thus the total number of additional nodes of
the former type is twice the number of internal nodes, and there
is exactly one dummy node of the latter type per edge of the tree.
This gives a total of 2(n − l) + (n − 1) total additional nodes which
along with the original n nodes in T gives the claimed size of T ′ .
We will now show that transforming any TAP instance in this way
produces an instance of TAP with a binary tree and leaf-to-leaf
links with corresponding feasible solutions to the original problem.

First we observe that this transformation adds nodes v ′, v ′
1,

. . . v ′
k all of degree 3, adds node v ′

k+1 of degree 1, and node v
ends with degree 1. The transformation also keeps the degree of
v1, v2 . . . vk unchanged. Once this transformation has been applied
to all non-leaves of T then the resulting tree T ′ will have only
nodes of degree 1 and 3, giving a binary tree as desired.

Now observe that every original node is a leaf in T ′ . The only
links we added were �v which have the form v ′

k+1 to v where
v ′

k+1 is also a leaf under the transformation. The resulting set of
links L′ is thus leaf-to-leaf.

We will now consider any feasible solution A to (T , c, L). De-
noting the non-leaf nodes of V by N , let A′ = A ∪ {�v}v∈N . The
695
cost of A and A′ are the same as we added only links �v which
were given cost 0. First observe that �v covers all the edges of the
form v ′

i v ′
i+1 and v ′v . Now consider an edge v ′

i vi after the transfor-
mation. There is some link � ∈ A which covers v vi in T and now
that same link must cover v ′

i vi in T ′ . So, A′ is a valid solution to
(T ′, c′, L′) of the same cost.

Now let A′ be a feasible solution (T ′, c′, L′) and suppose there
is a vertex v ∈ N which was not initially a leaf node in T . It must
be the case that A′ contains �v as this is the only link in L′ which
covers v ′

k v ′
k+1. So, let A = A′ − {�v}v∈N . Now by the same argu-

ment as before, as A′ is a feasible solution for T ′ and the only
edges in T ′ not in T are those covered by the �v then A is a valid
solution to (T , c, L). Notice that A and A′ have the same cost as
we only removed links of cost 0 from the solution. �
2.2. A stronger LP relaxation than the EDGE-LP

Since we have shown that we can assume the tree is binary, ev-
ery node has odd degree (1 or 3) in the input tree. Thus if S ⊆ V
is odd, then it follows that δ(S) ∩ T is also odd. Using this obser-
vation, we can formulate a STRONG-LP as follows.

min
∑

�∈E

c�x�

x(δL(S))+
∑

e∈δT (S)

x(δL(Se))≥|δ(S) ∩ T |+1 ∀S⊆V , |S| odd

x� ≥ 0 ∀� ∈ E(L)

(3)

Lemma 2.2. The constraints in STRONG-LP are valid for any integer so-
lution to TAP.

Proof. Consider an odd set of vertices S . By adding together the
edge constraints for tree edges in δT (S) we get:
∑

e∈δT (S)

x(δL(Se)) ≥ |δ(S) ∩ T |.

Now we can add any non-negative terms to the left hand side and
still remain feasible. Therefore

x(δL(S)) +
∑

e∈δT (S)

x(δL(Se)) ≥ |δ(S) ∩ T |

is also feasible. Now consider any link �. If x� appears an even
number of times in

∑
e∈δT (S) x(δL(Se)) then � is not in δL(S). Sim-

ilarly, if x� appears an odd number of times in
∑

e∈δ (S) x(δL(Se))
T

J. Iglesias and R. Ravi Operations Research Letters 50 (2022) 693–698
then � is in δL(S). So, the coefficient of every x� on the left hand
side of this expression is even. In particular, for any integer so-
lution the left hand side is even and the right hand side is odd.
Therefore, we can strengthen the right hand side by increasing it
by one, and the resulting constraint will still be feasible for any
integer solution. The constraint

x(δL(S)) +
∑

e∈δT (S)

x(δL(Se)) ≥ |δ(S) ∩ T | + 1

is thus valid for any integer solution to TAP as desired. �
3. Rounding LP-solutions with large non-zero values

The main result of this section is the following theorem.

Theorem 3.1. Suppose we are given a solution x to the EDGE-LP with
x� ≥ α whenever x� > 0 and m is the number of non-zero links in x.
Then there exists integer solutions x1, x2, . . . x2m to EDGE-LP and non-
negative multipliers λ1, . . . , λ2m with

∑2m
i=1 λi = 1 such that

2

1 + α
x ≥

2m∑

i=1

λi x
i

and this convex combination can be found in strongly polynomial time.

This gives an alternative proof of the main result of Cheriyan,
Jordán and Ravi [7] that considered the case α = 1

2 . In particular, it
gives a 4

3 -approximation when we start with a fractional solution
where all non-zero links have weight at least 1

2 .

3.1. Algorithm

We will be working with a tree rooted at an arbitrary node, r.
The least common ancestor (LCA) of a link is the least common
ancestor of its endpoints. For every link, we choose one endpoint
as ‘left’ and the other as ‘right’ (say, based on a specific planar
drawing of the tree). We let L� and R� be the path in the tree
from the LCA of � to the left and right endpoint of � respectively
(one of these paths could be empty).

Given a fractional solution, x let α = min�:x� �=0 x� , and let β =
2

1+α . Let k be the smallest integer such that kβx is an even integer
for all entries. In order to find our convex decomposition in the al-
gorithm below, we will decompose kβx into k different color such
that each color is a feasible tree augmentation.

The main idea of how the algorithm works is that it goes down
the tree looking at links which have their LCA at the current node
and colors all the copies of each link with different colors so as to
help cover the edges as much as possible with new colors (see Al-
gorithm 1). This guarantees that the first αβk links (copies of one
link) which are colored through an edge all get distinct colors. Af-
terward, we only guarantee that of the remaining links that cover
an edge half of them give a new color to that edge.

We will now show that this coloring does indeed give us a con-
vex combination as desired.

Theorem 3.2. Algorithm 1 guarantees that every edge is covered by a
link in every one of the k colors.

Proof. For a given tree edge e without links of all k colors cover-
ing it, every time a link that covers e receives a pair of colors (in
the inner while loop of the algorithm), one of those colors is new
to e. Let us consider some link � through e. Each inner while loop
of the algorithm gives two colors to copies of �. One of the two
paths L�, R� must contain e; without loss of generality let e ∈ L� .
696
Algorithm 1: The coloring algorithm.
Data: T a tree, x LP solution, β approximation factor, k colors
Result: Decomposition of kβx into k different colors where each color is a

feasible tree augmentation
Make kβx� copies of each link �;
while some link is not colored do

� has the highest LCA among uncolored links;
while not all copies of � are colored do

Color a copy of � with the first color not present on a link that
covers some edge of L�;

if all edges of L� are covered by all k colors then
Color a copy of � with any color not already on a copy of �;

end
Color a copy of � with the first color not present on a link that

covers some edge of R�;
if all edges of R� are covered by all k colors then

Color a copy of � with any color not already on a copy of �;
end

end
end

Consider the highest edge f ∈ L� without links of all k colors cov-
ering it. If f is missing a color c among the colored links covering
it, then e must also be missing color c among the colored links
covering it. We have only colored links whose LCA is above f ,
therefore any link with a color which covers e must also cover
f . So, for each pair of colors chosen for a link through e, at least
one of them is a new color for e. In other words, half of the time
a link covering e gets colored, it is a new color for e.

The first time a link through an edge e is colored, then all its
colors are distinct (unless βx� > 1). For a given link �, every time a
color is picked for a copy of � it has to be a color not on one of the
edges � covers or a color not on any copy of �. If βx� > 1, then we
can color the copies of � with all k colors and all the edges which
� covers will be covered by all k colors. In this case, e would get
all k colors.

Thus the first time an edge has one of its links colored it re-
ceives at least αβk distinct colors. Combining this with the fact
that every edge gets colors at rate 1

2 subsequently, the total num-
ber of colors e receives in this process is at least

αβk + 1 − α

2
βk = 1 + α

2
βk = k. �

Now we will show how this implies Theorem 3.1.

Proof of Theorem 3.1. By scaling our x up by kβ we can write this
scaled version as the sum of k different feasible colors (integer
solutions). This gives us that:

kβx =
k∑

i=1

xi

where the xi are integer solutions. Dividing by k gives the desired
result. �

Algorithm 1 does not need to first multiply by βk before being
run. The algorithm can be run by just multiplying the solution by
β . As the algorithm runs, it will keep track of a convex combina-
tion of integer partial solutions. In each while loop when a link � is
added, � will be fully added to some integer partial solutions and
added to a fraction of at most two partial integer solutions (one
for R� and one for L�). This creates at most two more integer par-
tial solutions. The number of different integer solutions at the end
can be bounded by 2m where m is the number of non-zero links.
This guarantees this algorithm can be run in strongly polynomial
time.

J. Iglesias and R. Ravi Operations Research Letters 50 (2022) 693–698
4. Three-cycle TAP

Recall that the requirement in 3TAP is that every tree edge
must be in a triangle in the final two-connected augmentation of
the input tree. Such a triangle is either a link and two tree edges
or two links and a single tree edge.

4.1. Weighted version

In this section, we will consider the weighted version of 3TAP
where the weights on the links can have any non-negative values.
We first present an O (log n) approximation algorithm, and then
we present a matching lower bound of �(log n), where n is the
number of nodes in the tree.

Theorem 4.1. There is a O (logn) approximation algorithm for weighted
3TAP on n nodes.

Proof. Consider any feasible solution A to 3TAP, such that T ∪ A
has every tree edge in a 3-cycle. For a vertex v , let δ(v) be the
edges of T ∪ A adjacent to v . For the rest of this proof, assume
that the edges of T have zero weight.

To turn this problem into a set cover problem, we let the edges
of E(T) be the elements. Any tree edge e is covered in a triangle
that is centered at some node v that is not an endpoint of e; either
both or one of the two edges covering e in the triangle is a link.
Motivated by this, for any subset of edges and links adjacent to
a vertex v , (the star) S v , we construct a set with weight c(S v)

(where tree edges in S v have zero weight). This set covers the tree
edges induced by the endpoints of the edges and links in S v not
containing v .

By doubling each edge in the feasible solution, then we can
decompose the entire solution into these stars. In this way, given
a solution to 3TAP of total weight C , the corresponding set cover
has a solution of weight at most 2C . Given any solution to the
set cover problem, then we simply add all the edges specified by
the stars to the tree (with maybe some duplicates when edges are
added from both endpoints’ stars). Thus, any solution of weight
C to the set cover gives a solution to the original 3TAP solution
of weight between C/2 and C . Therefore the optimal solutions to
these two problems are within a factor of two of each other.

It is well known that minimum-cost set cover with n elements
has an O (log n) approximation as long as the densest set (that has
the maximum ratio of newly covered elements divided by the cost
of the set) can be found in polynomial time. For a fixed vertex v ,
we can find the maximum density star centered at v as follows.
Due to a result by Goldberg, one can find the maximum density
subgraph S ⊂ V which minimizes |E(S)|

c(S)
in polynomial time [14].

For the given center v , we build a graph G v whose nodes are the
neighbors of v using links and tree edges. The edges of G v are the
tree edges induced by these nodes. We set the cost of any vertex u
to which v has a link to be c(uv); if uv is a tree edge, then u has
cost 0. We can now use the maximum density subgraph algorithm
on G v . By repeating this for every choice of center vertex v , we
can find a maximum density star in polynomial time. This gives
the maximum density set for the set cover problem in polynomial
time. Then we can use the greedy algorithm for set cover to get an
O (log n) approximation for 3TAP. �

Notice that in the above algorithm we used no properties of
the original graph T . This algorithm will thus work for any graph
T where the goal is to augment such that every edge in T is in a
3-cycle in the augmented graph.
697
s

r
S1 S2 · · ·

Sm

t

e1 e2

· · ·
en

Fig. 2. The 3TAP instance created from a set cover instance.

Corollary 4.2. The problem of finding a minimum cost augmentation of
any graph G where every edge of G must be in a 3-cycle in the augmented
graph has an O (logn) approximation.

The above approximation is tight as the weighted 3TAP problem
captures set-cover exactly. We will now show the matching lower
bound.

Theorem 4.3. 3TAP does not have a o(log n)-approximation unless
N P ⊆ P .

Proof. Consider an instance of set cover with sets S1, S2, . . . , Sm

and elements e1, e2, . . . en and cost function c on the sets. We use
the tree shown in Fig. 2. The vertex set is

{r, s, t} ∪ {Si}m
i=1 ∪ {e j}n

j=1

with the following costs on the links:

• Links from s to vertices {r, t} ∪ {Si}m
i=1 have zero cost

• Links from t to Si have cost c(Si)

• If e j ∈ Si then the link from e j to Si has cost 0
• All remaining links have cost 1 + ∑m

i=1 c(Si). Call the set of
these remaining edges L.

In any optimal solution, we will not use any links from L as
taking all the links not in that set has smaller cost and gives a
feasible solution. The zero edges from s allow every edge except
for the te j edges to be in a three-cycle and they have cost 0. Now
the only way to have an edge te j in a three cycle is for t Si and
e j Si to be used for some Si such that e j ∈ Si . Thus, the non-zero
edges bought correspond to sets being chosen.

Given any feasible solution to set cover Si1 , . . . Sik , this can be
turned into a feasible solution to 3TAP of the same cost. All the
zero cost links in addition to the t Si� edges form a feasible solu-
tion. All tree edges except for the te j edges are in a three cycle
with zero cost links. Consider any j ∈ [n]. There is some Sit that
contains j. The edge te j is then in a three cycle with t Si� and
Si� e j . Hence, every feasible solution to the set cover instance gives
a feasible solution of the same cost to the 3TAP instance.

Consider any feasible solution to our 3TAP instance. If the 3TAP
solution contains a link from L then this solution has weight at
least 1 + ∑m

i=1 c(Si), but by taking all the sets Si we get a feasible
solution of lower cost. Therefore suppose there are no links from
L in the feasible solution for the 3TAP instance. Let t Si1 , . . . t Sit be
the non-zero cost links in the solution. Then Si1 , . . . Sit is a feasible
solution to the set cover instance. Consider any element e j . The
edge te j must be in a three cycle with t and some Si� , therefore
Si� contains e j and is a set in our solution to set cover. Therefore
every feasible solution to 3TAP gives a corresponding solution to
set cover with the same or smaller cost.

Any feasible solution to set cover gives a solution to 3TAP of the
same cost. Any feasible solution to 3TAP, gives a feasible solution to

J. Iglesias and R. Ravi Operations Research Letters 50 (2022) 693–698
set cover of the same or smaller cost. Therefore, by the hardness of
approximating set cover [2], it is impossible to approximate three-
cycle TAP to within a �(log n) factor unless N P ⊆ P . �

Remark: Suppose we were given an empty initial graph to aug-
ment and wish to find a minimum-cost two-edge-connected span-
ning subgraph where every edge is in a triangle, it is not hard to
adapt the above hardness: We give all edges in the tree zero cost.
By further subdividing the path of set nodes S1, S2, . . . , Sk to add
new dummy nodes between every pair of set nodes, we can ensure
that every element node e j is covered only by triangles containing
edge (t, e j). This requires that the other edges in the cycle are of
the form (t, Si), (Si, e j) for some set Si containing the element e j .

4.2. Unweighted version

While weighted 3TAP has many similarities to set cover, the
unweighted version admits a constant approximation unlike set
cover. Here we consider the case that every non-tree edge has cost
either 1 or infinity, and every tree edge is present (and has cost
0). This 4-approximation comes from lower bounding the cost of
every feasible solution to unweighted 3TAP.

Lemma 4.4. Every feasible unweighted 3TAP solution has cost at least
n−1

2 .

Proof. Consider any solution S . Duplicate all the links of S and
edges T and decompose this doubled graph into stars around every
vertex consisting of the edges adjacent to it. Call the star around
v , S v . This doubles the cost of the solution, but now we can see
that every tree edge is covered by some star. At every vertex, we
can further decompose S v into S1

v , . . . S�v
v such that we get stars

that cover different connected components of the tree and every
star contains at most one tree edge.

Now consider any star Si
v . If Si

v has l links, then the number
of tree edges it can cover with 3-cycles is at most l. So, in the
doubled instance of S there are at least n − 1 tree edges that are
covered. Every link is in at most 2 stars, so there must be at least
n−1

2 links in any feasible solution. �
Corollary 4.5. Unweighted 3TAP has a 4-approximation.

Proof. We can get a 4 approximation by simply taking any min-
imal feasible solution. For every tree edge ab, pick a v such that
av, bv both have cost 0 or 1. If no such vertex exists, then no
feasible solution exists. Otherwise, the algorithm chooses at most
2(n − 1) links. This gives a 4 approximation as desired. �
5. Conclusions

We have introduced a new top-down coloring method that
gives a strict improvement over existing 2-approximation algo-
rithms for weighted TAP, with better improvements for larger min-
imum values in the LP. Our method gives a constructive convex
decomposition of a scaled solution of EDGE-LP into feasible in-
tegral solutions. When applied to the STRONG-LP, it has much
potential to settle the integrality gap of TAP. Indeed, our coloring
method and its extensions have already been applied to finding
better convex combinations of two-edge-connected subgraphs in
certain well-behaved instances [16,15]. We also settled the ap-
proximation complexity of the special case when all tree edges in

the final solution must be in triangles – the extensions to short
constant-length cycles in place of triangles is immediate.

Acknowledgements

This material is based upon work supported by the U.S. Office
of Naval Research under award number N00014-21-1-2243 to RR.

References

[1] David Adjiashvili, Beating approximation factor two for weighted tree augmen-
tation with bounded costs, ACM Trans. Algorithms 15 (2) (2018) 1–26.

[2] Sanjeev Arora, Madhu Sudan, Improved low-degree testing and its applications,
Combinatorica 23 (3) (2003) 365–426.

[3] Robert Carr, Santosh Vempala, Randomized metarounding, in: Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, 2000,
pp. 58–62.

[4] Federica Cecchetto, Vera Traub, Rico Zenklusen, Bridging the gap between tree
and connectivity augmentation: unified and stronger approaches, in: Proceed-
ings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
2021, pp. 370–383.

[5] Joseph Cheriyan, Zhihan Gao, Approximating (unweighted) tree augmentation
via lift-and-project, part i: stemless tap, Algorithmica 80 (2) (2018) 530–559.

[6] Joseph Cheriyan, Zhihan Gao, Approximating (unweighted) tree augmentation
via lift-and-project, part ii, Algorithmica 80 (2) (2018) 608–651.

[7] Joseph Cheriyan, Tibor Jordán, R. Ravi, On 2-coverings and 2-packings of lami-
nar families, in: Algorithms-ESA’99, 1999, p. 72.

[8] Joseph Cheriyan, Howard Karloff, Rohit Khandekar, Jochen Könemann, On the
integrality ratio for tree augmentation, Oper. Res. Lett. 36 (4) (2008) 399–401.

[9] Nachshon Cohen, Zeev Nutov, A (1+ ln2)-approximation algorithm for
minimum-cost 2-edge-connectivity augmentation of trees with constant radius,
Theor. Comput. Sci. 489 (2013) 67–74.

[10] Guy Even, Jon Feldman, Guy Kortsarz, Zeev Nutov, A 1.8-approximation for aug-
menting edge-connectivity of a graph from 1 to 2, ACM Trans. Algorithms 5 (2)
(2009).

[11] Samuel Fiorini, Martin Groß, Jochen Könemann, Laura Sanità, Approximating
weighted tree augmentation via Chvátal-Gomory cuts, in: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
2018, pp. 817–831.

[12] Greg N. Frederickson, Joseph Jájá, Approximation algorithms for several graph
augmentation problems, SIAM J. Comput. 10 (2) (1981) 270–283.

[13] Greg N. Fredrickson, Joseph Jájá, On the relationship between the biconnectiv-
ity augmentation and traveling salesman problem, Theor. Comput. Sci. 19 (2)
(1982) 189–201.

[14] Andrew V. Goldberg, Finding a maximum density subgraph, Technical Report
UCB/CSD-84-171, EECS Department, University of California, Berkeley, 1984.

[15] Arash Haddadan, Alantha Newman, Efficient constructions of convex combina-
tions for 2-edge-connected subgraphs on fundamental classes, Discrete Optim.
42 (2021) 100659.

[16] Arash Haddadan, Alantha Newman, R. Ravi, Shorter tours and longer detours:
uniform covers and a bit beyond, Math. Program. 185 (1) (2021) 245–273.

[17] Kamal Jain, A factor 2 approximation algorithm for the generalized Steiner net-
work problem, Combinatorica 21 (1) (2001) 39–60.

[18] Samir Khuller, Ramakrishna Thurimella, Approximation algorithms for graph
augmentation, J. Algorithms 14 (2) (1993) 214–225.

[19] Guy Kortsarz, Zeev Nutov, A simplified 3/2 ratio approximation algorithm for
the tree augmentation problem, ACM Trans. Algorithms 12 (2) (2016) 23.

[20] Guy Kortsarz, Zeev Nutov, Lp-relaxations for tree augmentation, Discrete Appl.
Math. 239 (2018) 94–105.

[21] Zeev Nutov, On the tree augmentation problem, in: 25th Annual European
Symposium on Algorithms (ESA 2017), Leibniz International Proceedings in In-
formatics (LIPIcs), 2017, 61.

[22] R. Ravi, Steiner Trees and Beyond: Approximation Algorithms for Network De-
sign, PhD thesis, Brown University, 1994.

[23] Vera Traub, Rico Zenklusen, Local search for weighted tree augmentation and
Steiner tree, in: Proceedings of the 2022 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), SIAM, 2022, pp. 3253–3272.

[24] Vera Traub, Riko Zenklusen, A better-than-2 approximation for weighted tree
augmentation, in: Proceedings of the 62nd IEEE FOCS, 2021, CoRR, arXiv:2104 .
07114 [abs], 2021.
698

http://refhub.elsevier.com/S0167-6377(22)00133-X/bib962FCF289EECC1B7642633EE74A51294s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib962FCF289EECC1B7642633EE74A51294s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib9AE316049A2D40DF85C317403CF71ED3s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib9AE316049A2D40DF85C317403CF71ED3s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib3D08D40CBA930E57EAC6350EDFACF697s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib3D08D40CBA930E57EAC6350EDFACF697s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib3D08D40CBA930E57EAC6350EDFACF697s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib228CD2BB53B66A8982D5BE9E1339CB75s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib228CD2BB53B66A8982D5BE9E1339CB75s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib228CD2BB53B66A8982D5BE9E1339CB75s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib228CD2BB53B66A8982D5BE9E1339CB75s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibD3E124DE37FA5B922399A92BA2CD58ECs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibD3E124DE37FA5B922399A92BA2CD58ECs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib0687BC21B88D35D63FB9559EC39E417Bs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib0687BC21B88D35D63FB9559EC39E417Bs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib264F946C99D3E7AEEDCD425C0AC79C8Bs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib264F946C99D3E7AEEDCD425C0AC79C8Bs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibDBF983B8A5189E794902750A87E2627Cs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibDBF983B8A5189E794902750A87E2627Cs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibEDEF0F50182146684B8D52BFA940C11As1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibEDEF0F50182146684B8D52BFA940C11As1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibEDEF0F50182146684B8D52BFA940C11As1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib9CF8D8FACD70B12385D1961D03FF0F7As1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib9CF8D8FACD70B12385D1961D03FF0F7As1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib9CF8D8FACD70B12385D1961D03FF0F7As1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib974CE650F7A441F9F42000E2415AA882s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib974CE650F7A441F9F42000E2415AA882s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib974CE650F7A441F9F42000E2415AA882s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib974CE650F7A441F9F42000E2415AA882s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib3D207A50540557EC5BA093AAD5387FE6s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib3D207A50540557EC5BA093AAD5387FE6s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibB25AB1A885C3FF456BEE093F880F0DE1s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibB25AB1A885C3FF456BEE093F880F0DE1s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibB25AB1A885C3FF456BEE093F880F0DE1s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibE89E209C6F62BCF6D20529F733AFDBC9s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibE89E209C6F62BCF6D20529F733AFDBC9s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibA0146BD36A3A160CF4FD6D39D2C73EE1s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibA0146BD36A3A160CF4FD6D39D2C73EE1s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibA0146BD36A3A160CF4FD6D39D2C73EE1s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib2DF486AF422B76BFB74B8C7615146DD8s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib2DF486AF422B76BFB74B8C7615146DD8s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib067844DCEFB0CA5397DC21E87E545BF6s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib067844DCEFB0CA5397DC21E87E545BF6s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibE105CBFF31A80670350BB3FCDBBE5612s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibE105CBFF31A80670350BB3FCDBBE5612s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib3AD1AFA8822890E3B319765A5F7C417Fs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib3AD1AFA8822890E3B319765A5F7C417Fs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibBA19E827681F21AB8BA31953B4673E81s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bibBA19E827681F21AB8BA31953B4673E81s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib21997EC5C72EE6CF5FB2A03572A913F5s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib21997EC5C72EE6CF5FB2A03572A913F5s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib21997EC5C72EE6CF5FB2A03572A913F5s1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib7130B75175FD0B3367EA069F169FD0EAs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib7130B75175FD0B3367EA069F169FD0EAs1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib15ACCCA5F09ADE902ABC0A876AED0E9As1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib15ACCCA5F09ADE902ABC0A876AED0E9As1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib15ACCCA5F09ADE902ABC0A876AED0E9As1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib48062CD2B79A3FF40988148203206E8Ds1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib48062CD2B79A3FF40988148203206E8Ds1
http://refhub.elsevier.com/S0167-6377(22)00133-X/bib48062CD2B79A3FF40988148203206E8Ds1

	Coloring down: 3/2-approximation for special cases of the weighted tree augmentation problem
	1 Introduction
	1.1 LP relaxations
	1.2 Related work
	1.3 Our results

	2 Reduction to binary trees and a stronger LP
	2.1 Reduction to binary trees
	2.2 A stronger LP relaxation than the EDGE-LP

	3 Rounding LP-solutions with large non-zero values
	3.1 Algorithm

	4 Three-cycle TAP
	4.1 Weighted version
	4.2 Unweighted version

	5 Conclusions
	Acknowledgements
	References

