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that for every 1 � i; j � q, Si \Sj is exactly one of ;, Si or Sj . A k-cover of H isa multiset of edges, C, such that for every subset S in H, C has at least k edges(counting multiplicities) that have exactly one end in S. A k-packing of H is amultiset of edges, P , such that for every subset S in H, P has at most k � u(S)edges (counting multiplicities) that have exactly one end in S. Here, u assignsan integer capacity to each subset in H. Our main results are:1. Given a k-cover C of H, there is an e�cient algorithm to �nd a 1-covercontained in C of size � kjCj=(2k�1). For 2-covers, the factor of 2=3 is bestpossible.2. Given a 2-packing P of H, there is an e�cient algorithm to �nd a 1-packingcontained in P of size � jP j=3. The factor of 1=3 is best possible.All of these results extend to the weighted case, where the edges have non-negative weights. Also, we show that the following two problems are NP-hard:(1) Given a 2-cover C of H, �nd a minimum-size 1-cover that is contained inC. (2) Given a 2-packing P of H; u, �nd a maximum-size 1-packing that iscontained in P .The upper bound of 2=3 on the ratio of the minimum size of a 1-cover versusthe size of a (containing) 2-cover is tight. To see this, consider the completegraph K3, and the laminar family H consisting of three singleton sets. Let the2-cover be E(K3). A minimum 1-cover has 2 edges fromK3. The same example,with unit capacities for the three singleton sets in H, shows that the ratio ofthe maximum size of a 1-packing versus the size of a (containing) 2-packing mayequal 1=3. There is an in�nite family of similar examples.An edge is said to cover a subset S of V if the edge has exactly one end in S.Our algorithm for �nding a small-size 1-cover from a given 2-cover constructs a\good" 3-coloring of (the edges of) the 2-cover. In detail, the 3-coloring is suchthat for every subset S in the laminar family, at least two di�erent colors appearamong the edges covering S. The desired 1-cover is obtained by picking the twosmallest (least weight) color classes. Similarly, our algorithm for �nding a large-size 1-packing from a given 2-packing constructs a 3-coloring of (the edges of)the 2-packing such that for every subset S in the laminar family, at most u(S)of the edges covering S have the same color. The desired 1-packing is obtainedby picking the largest (most weight) color class.1.1 A Linear Programming RelaxationConsider the natural integer programming formulation (IP) of our minimum 1-cover problem. Let the given k-cover be denoted by E. There is a (nonnegative)integer variable xe for each edge e 2 E. For each subset S 2 H, there is aconstraint Xe2�(S)xe � 1, where �(S) denotes the set of edges covering S. Theobjective function is to minimizeXe wexe, where we is the weight of edge e. Let(LP) be the following linear program obtained by relaxing all of the integrality



constraints on the variables.(LP ) zLP = min Xe wexe s.t. f Xe2�(S)xe � 1; 8S 2 H; xe � 0; 8e 2 Eg:Clearly, (LP) is solvable in polynomial time. The k-cover gives a feasible solutionto (LP) by �xing xe = 1=k for each edge e in the k-cover.For the minimum 1-cover problem, Theorem 1 below shows that the optimalvalue of the integer program (IP) is � 4=3 times the optimal value of a half-integral solution to the LP relaxation (LP). (A feasible solution x to (LP) iscalled half-integral if xe 2 f0; 12 ; 1g, for all edges e.) There are examples wherethe LP relaxation has a unique optimal solution that is not half-integral. For themaximum 1-packing problem, Theorem 2 shows that the optimal value of theinteger program is � 2=3 times the optimal value of a half-integral solution tothe LP relaxation.Recall that a laminar family H may be represented as a tree T = T (H). (Thas a node for V as well as for each set Ai 2 H, and T has an edge AiAj ifAj 2 fV g [ H is the smallest set containing Ai 2 H.)Two special cases of the minimum 1-cover problem are worth mentioning.(i) If the laminar family H is such that the tree T (H) is a path, then the LPrelaxation has an integral optimal solution. This follows because the constraintsmatrix of the LP relaxation is essentially a network matrix, see [CCPS 98, The-orem 6.28], and hence the matrix is totally unimodular; consequently, everyextreme point solution (basic feasible solution) of the LP relaxation is integral.(ii) If the laminar family H is such that the tree T (H) is a star (i.e., the treehas one nonleaf node, and that is adjacent to all the leaf nodes) then the LPrelaxation has a half-integral optimal solution. This follows because in this casethe LP relaxation is essentially the same as the linear program of the frac-tional matching polytope, which has half-integral extreme point solutions, see[CCPS 98, Theorem 6.13].1.2 Equivalent ProblemsThe problem of �nding a minimum1-cover of a laminar familyH from among themultiedges of a k-cover E may be reformulated as a connectivity augmentationproblem. Let T = T (H) be the tree representing H; note that E(T ) is disjointfrom E. Then the problem is to �nd a minimum weight subset of edges E0contained in E such that T + E0 = (V (T ); E(T ) [ E0) is 2-edge connected; wemay assume that E0 has no multiedges. Instead of taking T to be a tree, wemay take T to be a connected graph. This gives the problem CBRA which wasinitially studied by Eswaran & Tarjan [ET 76], and by Frederickson & Ja'ja'[FJ 81].Similarly, the problem of �nding a maximum1-packing of a capacitated lam-inar family H; u from among the multiedges of a k-packing E may be refor-mulated as follows. Let T = T (H) be the tree representing H, and let the treeedges have (nonnegative) integer capacities u : E(T )!Z; the capacity of a set



Ai 2 H corresponds to the capacity of the tree edge ai representing Ai. Thek-packing E corresponds to a set of demand edges. The problem is to �nd amaximum integral multicommodity ow x : E!Z where the source-sink pairs(of the commodities) are as speci�ed by E. In more detail, the objective is tomaximize the total ow Pe2E xe, subject to the capacity constraints, namely,for each tree edge ai the sum of the x-values over the demand edges in the cutgiven by T � ai is � u(ai), and the constraints that x is integral and � 0.1.3 Approximation Algorithms for NP-hard Problems inConnectivity AugmentationOur results on 2-covers and 2-packings imply improved approximation algo-rithms for some NP-hard problems in connectivity augmentation and related top-ics. Frederickson and Ja'ja' [FJ 81] showed that problem CBRA is NP-hard andgave a 2-approximation algorithm. Later, Khuller and Vishkin [KV 94] gave an-other 2-approximation algorithm for a generalization, namely, �nd a minimum-weight k-edge connected spanning subgraph of a given weighted graph. Sub-sequently, Garg et al [GVY 97, Theorem 4.2] showed that problem CBRA ismax SNP-hard, implying that there is no polynomial-time approximation schemefor CBRA modulo the P6=NP conjecture. Currently, the best approximationguarantee known for CBRA is 2.Our work is partly motivated by the question of whether or not the approx-imation guarantee for problem CBRA can be improved to be strictly less than2 (i.e., to 2� � for a constant � > 0). We give a 4=3-approximation algorithm foran NP-hard problem that is a special case of CBRA, namely, the tree plus cycle(TPC) problem. See Section 4.Garg, Vazirani and Yannakakis [GVY 97] show that the above maximum1-packing problem (equivalently, the above multicommodity ow problem) isNP-hard and they give a 2-approximation algorithm. In fact, they show that theoptimal value of an integral 1-packing zIP is � 1=2 times the optimal value of afractional 1-packing zLP . We do not know whether the factor 1=2 here is tight.It should be noted that the maximum 1-packing problem for the special caseof unit capacities (i.e., u(Ai) = 1; 8Ai 2 H) is polynomial-time solvable. If thecapacities are either one or two, and the tree T (H) representing the laminarfamilyH has height two (i.e., every tree path has length � 4), then the problemmay be NP-hard, see [GVY 97, Lemma 4.3].Further discussion on related topics may be found in the survey papers byFrank [F 94], Hochbaum [Hoc 96], and Khuller [Kh 96]. Jain [J 98] has inter-esting recent results, including a 2-approximation algorithm for an importantgeneralization of problem CBRA.We close this section by introducing some notation. For a multigraph G =(V;E) and a node set S � V , let �E(S) denote the multiset of edges in E thathave exactly one end node in S, and let dE(S) denote j�E(S)j; so dE(S) is thenumber of multiedges in the cut (S; V � S).



2 Obtaining a 1-Cover from a k-CoverThis section has our main result on k-covers, namely, there exists a 1-coverwhose size (or weight) is at most k=(2k�1) times the size (or weight) of a givenk-cover. The main step (Proposition 1) is to show that there exists a \good"(2k � 1)-coloring of any k-cover. We start with a preliminary lemma.Lemma 1. Let V be a set of nodes, and let H be a laminar family on V . Let Ebe a minimal k-cover of H. Then there exists a set X 2 H such that dE(X) = kand no proper subset Y of X is in H.Proof. Since E is minimal, there exists at least one set X 2 H with dE(X) = k.We call a node set X � V a tight set if dE(X) = k. Consider an inclusionwiseminimal tight set X in H. Suppose there exists a Y � X such that Y 2 H. Ifeach edge of E that covers Y also covers X, then we have dE(Y ) = k. But thiscontradicts our choice of X. Thus there exists an edge xy 2 E covering Y withx; y 2 X. By the minimality of E, xy must cover a tight set Z 2 H. Since His a laminar family, Z must be a proper subset of X. This contradiction to ourchoice of X proves the lemma. utProposition 1. Let V be a set of nodes, and let H be a laminar family on V .Let E be a minimal k-cover of H. Then there is a (2k�1)-coloring of (the edgesin) E such that(i) each set X 2 H is covered by edges of at least k di�erent colors, and(ii) for every node v with dE(v) � k, all of the edges incident to v have distinctcolors.Proof. The proof is by induction on jHj. For jHj = 1 the results holds since thereare k edges in E (since E is minimal) and these can be assigned di�erent colors.(For jHj = 0, jEj = 0 so the result holds. However, even if E is nonempty, it iseasy to color the edges in an arbitrary order to achieve property (ii).)Now, suppose that the result holds for laminar families of cardinality � N .Consider a laminar familyH of cardinalityN+1, and let E be a minimal k-coverof H. By Lemma 1, there exists a tight set A 2 H (i.e., dE(A) = k) such that noY � A is in H. We contract the set A to one node vA, and accordingly updatethe laminar family H. Then we remove the singleton set fvAg from H. Let theresulting laminar family be H0, and note that it has cardinality N . Clearly, Eis a k-cover of H0. Let E0 � E be a minimal k-cover of H0. By the inductionhypothesis, E0 has a (2k � 1)-coloring that satis�es properties (i) and (ii), i.e.,E0 has a good (2k � 1)-coloring.If the node vA is incident to � k edges of E0, then note that E0 with its(2k � 1)-coloring is good with respect to H (i.e., properties (i) and (ii) hold forH too). To see this, observe that k � dE0(vA) � dE(vA) = k, so dE0(vA) = k,hence, the k edges of E0 incident to vA get distinct colors by property (ii). Then,for the original node set V , the k edges of E0 covering A get k di�erent colors.Now focus on the case when dE0(vA) < k. Clearly, each edge in E � E0 isincident to vA, since each edge in E not incident to vA covers some tight set that



is in both H and H0. We claim that the remaining edges of E�E0 incident to vAcan be colored and added to E0 in such a way that E with its (2k � 1)-coloringis good with respect to H.It is easy to assign colors to the edge (or edges) of E � E0 such that the kedges of E incident to vA get di�erent colors. The di�culty is that property (ii)has to be preserved, that is, we must not \create" nodes of degree � k that areincident to two edges of the same color. It turns out that this extra condition iseasily handled as follows. Let e 2 E�E0 be an edge incident to vA, and let w 2 Vbe the other end node of e. If w has degree � k for the current subset of E, thene is incident to � (2k�2) other edges; since (2k�1) colors are available, we canassign e a color di�erent from the colors of all the edges incident to e. Otherwise(w has degree > k for the current subset of E), the other edges incident to wimpose no coloring constraint on e, and we assign e a color di�erent from thecolors of the other edges incident to vA; this is easy since dE(vA) = k. utTheorem 1. Let V be a node set, and let H be a laminar family on V . Let E bea k-cover of H, and let each edge e 2 E have a nonnegative weight w(e). Thenthere is a 1-cover ofH, call it E0, such that E0 � E and w(E0) � k w(E)=(2k�1).Moreover, there is an e�cient algorithm that given E �nds E0; the running timeis O(min(kjV j2; k2jV j)).Proof. We construct a good (2k�1)-coloring of the k-cover E by applying Propo-sition 1 to a minimal k-cover ~E � E and then \extending" the good (2k � 1)-coloring of ~E to E. That is, we partition E into (2k� 1) subsets such that eachset X in H is covered by edges from at least k of these subsets. We take E0 tobe the union of the cheapest k of the (2k � 1) subsets. Clearly, the weight of E0is at most k=(2k� 1) of the weight of E, and (by property (i) of Proposition 1)E0 is a 1-cover of H.Consider the time complexity of the construction in Proposition 1. Let n =jV j; then note that jHj � 2n and jEj � 2kn. The construction is easy to imple-ment in time O(jHj � jEj) = O(kn2). Also, for k < n, the time complexity canbe improved to O(k2 � jHj) = O(k2n). To see this, note that for each set A 2 Hwe assign colors to at most k of the edges covering A after we contract A to vA,and for each such edge e we examine at most (2k � 2) edges incident to e. ut3 Obtaining a 1-Packing from a 2-PackingThis section has our main result on 2-packings, namely, there exists a 1-packingwhose size (or weight) is at least 1=3 times the size (or weight) of a given 2-packing. First, we show that there is no loss of generality in assuming that the2-packing forms an Eulerian multigraph. Then we give a 3-coloring for the edgesof the 2-packing such that for each set S in the laminar family at most u(S)edges covering S have the same color. We take the desired 1-packing to be thebiggest color class.



Lemma 2. Let V be a set of nodes, let H be a laminar family on V , and letu : H!Z assign an integral capacity to each set in H. Let E be a 2-packing ofH; u, i.e., for all sets Ai 2 H, dE(Ai) � 2u(Ai). If E is a maximal 2-packing,then the multigraph G = (V;E) is Eulerian.Proof. If G is not Eulerian, then it has an even number (� 2) of nodes of odddegree. Let A 2 fV g[H be an inclusionwise minimal set that contains � 2 nodesof odd degree. For every proper subset S of A that is in H and that containsan odd-degree node, note that dE(S) is odd, hence, this quantity is strictly lessthan the capacity 2u(S). Consequently, we can add an edge (or another copy ofthe edge) vw where v; w are odd-degree nodes in A to get E [ fvwg and thisstays a 2-packing of H, u. This contradicts our choice of E, since E is a maximal2-packing. Consequently, G has no nodes of odd degree, i.e., G is Eulerian. utProposition 2. Given an Eulerian multigraph G = (V;E), an arbitrary pairingP of the edges such that for every edge-pair the two edges have a common endnode, and a laminar family of node sets H, there is a 3-coloring of E such that(i) for each cut �E (Ai), Ai 2 H, at most half of the edges have the same color,and(ii) for each edge-pair e; f in P, the edges e and f have di�erent colors.Proof. Let P be a set of triples [v; e; f ], where e and f are paired edges incidentto the node v. Note that an edge e = vw may occur in two triples [v; e; f ] and[w; e; g]. W.l.o.g. assume that P gives, for each node v, a pairing of all the edgesincident to v. Then P partitions E into one or more (edge disjoint) subgraphsQ1; Q2; : : :, where each subgraph Qj is a connected Eulerian multigraph. To seethis, focus on the Eulerian tour given by �xing the successor of any edge e = vwto be the other edge in the triple [w; e; f ] 2 P, assuming e is oriented from v tow; each such Eulerian tour gives a subgraph Qj.If H = ;, then we color each subgraph Qj with 3 colors such that no twoedges in the same edge-pair in P get the same color. This is easy: We traversethe Eulerian tour of Qj given by P, and alternately assign the colors red andblue to the edges in Qj, and if necessary, we assign the color green to the lastedge of Qj .Otherwise, we proceed by induction on the number of sets in H. We takean inclusionwise minimal set A 2 H, shrink it to a single node vA, and updateG = (V;E), H and P to G0 = (V 0; E0), H0 and P 0. Here, H0 = H � fAg, i.e.,the singleton set fvAg is not kept in H0. Also, we add new edge pairs to P0 toensure that all edges incident to vA are paired. For a node v 62 A, all its triples[v; e; f ] 2 P are retained in P0. Consider the pairing of all the edges incident tovA in G0. For each triple [v; e; f ] in P such that v 2 A and each of e; f has oneend node in V � A (so e; f are both incident to vA in G0), we replace the tripleby [vA; e; f ]. We arbitrarily pair up the remaining edges incident to vA in G0.By the induction hypothesis, there exists a good 3-coloring for G0, H0, P 0.It remains to 3-color the edges with both ends in A. For this, we shrink thenodes in V � A to a single node vB , and update G = (V;E);P;H, to G00 =



(V 00; E00);P 00;H00; note that H00 is the empty family and so may be ignored. Wealso keep the 3-coloring of �E0(vA) = �E00 (vB). Our �nal goal is to extend this3-coloring to a good 3-coloring of E00 respecting P 00. We must check that thiscan always be done. Consider the di�erently-colored edge pairs incident to vB .Consider any connected Eulerian subgraph Qj containing one of these edge pairse1; e2; the corresponding triple in P00 is [vB; e1; e2]. Let ~Qj be a minimal walk of(the Eulerian tour of) Qj starting with e2 and ending with an edge f incident tovB (possibly, f = e1). The number of internal edges in ~Qj is � 0 or 1 (mod 2),and the two terminal edges either have the same color or not. If the number ofinternal edges in ~Qj is nonzero, then it is easy to assign one, two, or three colorsto these edges such that every pair of consecutive edges gets two di�erent colors.The remaining case is when ~Qj has no internal edges, say, ~Qj = vB ; e2; w; f; vB,where w is a node in A. Then edges e2; f are paired via the common end-node w,i.e., the triple [w; e2; f ] is present in both P00 and P. Then, by our constructionof P 0 from P, the triple [vA; e2; f ] is in P 0, and so edges e2 and f (which arepaired in P0 and present in �E0 (vA) = �E00 (vB)) must get di�erent colors. Hence,a good 3-coloring of G0;H0;P 0 can always be extended to give a good 3-coloringof ~Qj, and the construction may be repeated to give a good 3-coloring of Qj.Finally, note that E00 is partitioned by P00 into several connected Euleriansubgraphs Q1; Q2; : : :, where some of these subgraphs contain edges of �E00(vB)and others do not. Clearly, the good 3-coloring of G0;H0;P0 can always be ex-tended to give a good 3-coloring of each of Q1; Q2; : : :, and thus we obtain agood 3-coloring of G;H;P. utTheorem 2. Let V be a node set, let H be a laminar family on V , and letu : H!Z assign an integer capacity to each set in H. Let E be a 2-packing ofH, and let each edge e 2 E have a nonnegative weight w(e). Then there is a 1-packing of H, call it E0, such that E0 � E and w(E0) � w(E)=3. Moreover, thereis an e�cient algorithm that given E �nds E0; the running time is O(jV j � jEj).Proof. If the multigraph (V;E) is not Eulerian, then we use the construction inLemma2 to add a set of edges to make the resulting multigraph Eulerian withoutviolating the 2-packing constraints. We assign a weight of zero to each of the newedges. Let us continue to use E to denote the edge set of the resulting multigraph.We construct a good 3-coloring of the 2-packing E by applying Proposition 2.Let F be the most expensive of the three \color classes;" so, the weight of F ,w(F ), is � w(E)=3. Note that F is a 1-packing of H; u by property (i) in theproposition since for every set Ai 2 H, we have dF (Ai) � dE(Ai)=2 � 2u(Ai).Finally, we discard any new edges in F (i.e., the edges added by the constructionin Lemma 2) to get the desired 1-packing.Consider the time complexity of the whole construction. It is easy to seethat the construction in Proposition 2 for the minimal set A 2 H takes lineartime. This construction may have to be repeated jHj = O(jV j) times. Hence, theoverall running time is O(jV j � jEj). ut



4 Applications to Connectivity Augmentation andRelated TopicsThis section applies our covering result (Theorem 1) to the design of approxima-tion algorithms for some NP-hard problems in connectivity augmentation andrelated topics. The main application is to problem CBRA, which is stated below.Problem CBRA is equivalent to some other problems in this area, and so weimmediately get some more applications.Recall problem CBRA: given a connected graph T = (V; F ), and a set of\supply" edges E with nonnegative weights w : E!<+, the goal is to �nd aminimum-weight subset E0 of E such that T + E0 = (V; F [ E0) is 2-edge-connected. One application of Theorem 1 is to give a 4=3-approximation algo-rithm for the special case of CBRA when the LP relaxation has an optimalsolution that is half-integral.Theorem 3. Given a half-integral solution to the LP relaxation of CBRA ofweight z, there is an O(jV j)-time algorithm to �nd an integral solution (i.e., afeasible solution of CBRA) whose weight is � 43z.Proof. Problem CBRA may be restated as the problem of �nding a minimum-weight 1-cover of a laminar familyH, where the 1-cover must be chosen from theset of supply edges E and each supply edge has a nonnegative weight. To specifyH, �x any node r 2 V to be the root of T , and focus on the cut edges of T , callthem f1; f2; : : :. For each of these cut edges f1; f2; : : :, let Ai be the (node set ofthe) component of T � fi that does not contain r. We take H = fA1; A2; : : :g.Let x : E!f0; 12 ; 1g be a half-integral solution to the LP relaxation of CBRA,and let z =Pewexe. Then x corresponds to a 2-cover C of H, where C has zero,one or two copies of a supply edge e i� xe = 0; 1; or 2. By Theorem 1, C containsa 1-cover C0 whose weight is � 4z=3, and moreover, C 0 can be computed in timeO(jV j). utWe have sharper results for the following (NP-complete) special case of prob-lem CBRA.Tree Plus Cycle Problem (TPC):INSTANCE: A tree T = (W;F ) whose set of leaf nodes is V � W , a \supply"cycle Q = (V;E) on the leaves of T (i.e., dE(v) = 2; 8v 2 V ), and a positiveinteger N .QUESTION: Is there a set of edges E0 � E with jE0j � N such that T + E0 =(W;F [E0) is 2-edge-connected?Corollary 1. There exists a 43-approximation algorithm for TPC. Moreover,there exists a feasible solution E0 � E(Q) of size � 2jV (Q)j=3.Proof. Consider the LP relaxation of problem TPC; it is easy to verify that anoptimal solution is given by xe = 1=2 for all supply edges e 2 E(Q). Now, theresult follows directly from Theorem 3. ut



Now consider the following problem: given a (2k � 1)-edge-connected graphT = (V; F ) and a set of \supply" edges E with nonnegative weights w : E!<+,the goal is to �nd a minimumweight subset E0 of E such that G0 = (V; F +E0)is (2k)-edge-connected. Since the edge connectivity of T is odd, this problem isequivalent to problem CBRA because all the (2k � 1)-cuts (minimum cuts) ofT can be represented by means of a laminar family. (This follows easily from thefact that the node sets of two minimum cuts do not cross in this case.)5 NP-completeness ResultsFirst, we show that problem TPC (tree plus cycle) is NP-complete. It is conve-nient to reformulate TPC in terms of a laminar family rather than a tree.Laminar Family Plus Cycle Problem (LPC):INSTANCE: A laminar familyH on a node set V , a cycle Q = (V;E) on V , anda positive integer N . (Assume ;; V =2 H.)QUESTION: Is there a 1-cover E0 of H such that E0 � E and jE0j � N?We give a polynomial-time reduction from the 3-dimensional matching prob-lem to problem LPC. Our reduction is based on the proof of [FJ 81, Theorem2].Theorem 4. Problem LPC is NP-complete.Proof. It is easy to see that LPC is in NP. Given an instance of 3DM (thatis, three disjoint sets W;X; Y , of cardinality q each, and a set M of 3-edges(triples) (wixjyk) 2 W � X � Y ), construct a connected graph T as follows.First build a star with a \root" r and 3q leaves fw1; : : : ; wq; x1; : : : ; xq; y1; : : : ; yqgcorresponding to the elements of W [X [ Y . Then for each 3-edge (wixjyk) ofM add two nodes aijk and �aijk to T and add the edges wiaijk, wi�aijk. Nowreplace each of the 2q nodes corresponding to elements of X and Y by completegraphs (or arbitrary 2-edge-connected graphs) denoted by X1; : : : ; Xq ; Y1; : : : ; Yqas follows. Each complete subgraph of this type has dM (xj)8q (dM (yk)8q) nodesand is partitioned into dM (xj) (dM(yk)) parts (so-called \lanes") of size 8q each.(Here, dM (xj) and dM (yk) denote the number of 3-edges of M containing xj,respectively, yk.) The graph constructed is connected and has 2p + 2q \leaves"(that is, leaf 2-edge-connected components), where p := jM j.The next step is to de�ne the cycle Q. The nodes of Q are the nodes of theleaves of T . Hence, jV (Q)j = p(16q + 2). First, we de�ne p disjoint paths of Qsuch that each has 16q + 2 nodes (so each of these paths has length 16q + 1).Every 3-edge (wixjyk) of M de�nes such a path as follows: take the 8q nodes(and edges connecting the consecutive ones) l1l2 : : : l8q of a lane of X1 in anarbitrary order, then take the edges l8qaijk, aijk�aijk, �aijkm8q for some node m8qof some lane of Yk, in this order, and then take the other nodes of this lanem8q�1; : : : ;m1 in an arbitrary order. The lanes are chosen in such a way thatthese paths are pairwise disjoint. This can be done, since the lanes are pairwisedisjoint and each Xj (or Yk) has dM(xj) (or dM (yk)) lanes.



Now �x a cyclic ordering e1; : : : ; ep of the 3-edges of M and complete thecycle Q by adding the missing p edges in such a way that the end of the pathcorresponding to es = (wixjyk) (that is, a node m1 of a lane in Yk) is connectedto the �rst node of the path corresponding to es+1 = wi0xj0yk0 (that is, to anode l1 of a lane of Xj0) for 1 � s � p. Note that each of these edges connectsa complete subgraph Xj to a complete subgraph Yk and all the edges of Qeither connect di�erent leaves of T or connect di�erent nodes of some leaf of T .Furthermore, V (Q) equals the union of the nodes of the leaves of T .The last part of the reduction consists of de�ning a laminar family H onV (Q). We de�ne H by de�ning two disjoint subfamilies H1 and H2. Let H1 :=fS \ V (Q) : dT (S) = 1; r =2 S; S � V (T )g contain intersections of V (Q)and those minimum cuts of T which do not contain the root. It is easy to seethat this family is laminar. H2 consists of 2p disjoint collections, each of themde�ned on the nodes of a lane of a complete subgraph of the form Xj or Yk of Tas follows. Let us �x such a subgraph, say X1. (The de�nition is similar for allthe 2q subgraphs X1; : : : ; Xq; Y1; : : : ; Yq.) Focus on a lane l1; : : : ; l8q of X1, wherethe numbering follows the ordering of these nodes in Q. (Hence l8q is connectedto some leaf aijk and l1 is connected to some Yk.) This lane adds the followingsets to H2: the singletons l1; : : : ; l8q, the sets of nodes of the intervals of Q withend-node pairs (l8q�1; l8q�s) (2 � s � 4q) and (l4q�r ; l2) (1 � r � 4q � 3). Eachlane of every complete subgraph Xj, Yk (1 � j; k � q) adds a similar collectionto H2. Clearly, every collection of this type is laminar, and the collections arede�ned on pairwise disjoint sets of nodes, where each of these sets is includedin a minimal element of H1. Therefore H is a laminar family on V (Q), whereH := H1 [H2. Note that each node of Q belongs to H as a singleton set.Observe the following important property, that follows from the structure ofthese collections and the fact that every node of Q belongs to H. Let E0 � E(Q)be a 1-cover of H. Then(�) if the edge l8ql8q�1 (or similarly l1l2, m8qm8q�1, m1m2) for somelane in an Xj or Yk is not in E0 then jE0j � jV (Q)j=2 + 2q � 1.It is easy to see that our reduction is polynomial.We claim that there exists asolution to the given instance of 3DM (that is, a set of q pairwise disjoint 3-edgesof M ) if and only if H has a 1-cover of size at most p+ 8pq+ q = jV (Q)j=2+ q.First observe that a set E0 is a 1-cover if and only if T+E0 is 2-edge-connectedand E0 covers each member of H2. Moreover, as it was veri�ed in [FJ 81], thereis a 3-dimensional matching if and only if there is set E� of p + q edges inQ� for which T � + E� is 2-edge-connected, where T � and Q� arise from T andQ, respectively, by contracting the complete subgraphs (that is, the sets of theform Xj , Yk, which are 2-edge-connected) to singletons and deleting the edgesconnecting these complete subgraphs from the cycle.Suppose that there exists a 3-dimensional matching M 0 � M . Then thereexists a set E� of size p + q which makes T � 2-edge-connected and it is easy tosee that there exists a set E00 of independent edges in Q which covers H2. HencejE00j = 16qp=2 = 8pq. Now E0 := E� [E00 covers H and jE0j = 8pq + p + q, asrequired.



The proof of the other direction (which relies on (�)) is omitted. utCorollary 2. The following problem is NP-hard: given a 2-cover C of a laminarfamily H, �nd a minimum-size 1-cover that is contained in C.Theorem 5. The following problem is NP-hard: given a 2-packing P of a ca-pacitated laminar family H; u, �nd a maximum-size 1-packing that is containedin P .6 ConclusionsWe suspect that our bounds on the ratios for 1-covers versus 2-covers and for1-packings versus 2-packings hold in general.1-Cover Conjecture: Consider the integer program for a minimumweight 1-cover of a laminar family and its LP relaxation (see Section 1).We conjecture that the ratio of the optimal values is at most 4=3.1-Packing Conjecture: Consider the integer program for a maximumweight 1-packing of a capacitated laminar family and its LP relaxation(see Section 1). We conjecture that the ratio of the optimal values is atleast 2=3.Another interesting question is to �nd su�cient conditions on the laminarfamilyH (or, on the tree T (H) representing H) such that the LP relaxation has1k -integral extreme point solutions. As noted in Section 1, the LP relaxation hasintegral extreme point solutions i� T (H) is a path.References[CCPS 98] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver,Combinatorial Optimization, John Wiley & Sons, New York, 1998.[ET 76] K. Eswaran and R.E. Tarjan, \Augmentation problems," SIAM J. Computing5 (1976), 653{665.[F 94] A. Frank, \Connectivity augmentation problems in network design," in Mathe-matical Programming: State of the Art 1994, (Eds. J. R. Birge and K. G. Murty),The University of Michigan, Ann Arbor, MI, 1994, 34{63.[FJ 81] G.N.Frederickson and J.Ja'Ja', \Approximation algorithms for several graphaugmentation problems," SIAM J. Comput. 10 (1981), 270{283.[GVY 97] N. Garg, M. Yannakakis, and V. Vazirani, \Primal-dual approximation al-gorithms for integral ow and multicut in trees," Algorithmica 18 (1997), 3{20.[Hoc 96] D. S. Hochbaum, \Approximating covering and packing problems: set cover,vertex cover, independent set, and related problems," in Approximation algo-rithms for NP-hard problems, Ed. D. S. Hochbaum, PWS co., Boston, 1996.[J 98] K. Jain, \A factor 2 approximation algorithm for the generalized Steiner networkproblem," Proc. 39th IEEE FOCS, Palo Alto, CA, November 1998.[Kh 96] S. Khuller, \Approximation algorithms for �nding highly connectedsubgraphs," in Approximation algorithms for NP-hard problems, Ed.D. S. Hochbaum, PWS publishing co., Boston, 1996.[KV 94] S. Khuller and U. Vishkin, \Biconnectivity approximations and graph carv-ings," Journal of the ACM 41 (1994), 214{235.


