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Online Technical Appendix A  

Performance of the Weighted Exogenous Sampling with Bayesian Inference 
(WESBI) Method  

 

In this technical appendix, we examine the efficacy of the Weighted Exogenous Sampling with Bayesian 

Inference (WESBI) method for estimating a proportional hazard network growth model. We conduct a 

comprehensive simulation study covering a large variety of possible network structures characterized by 

different parameter values. For each network structure, we show that by sampling a small proportion of the 

total observations, we can recover the true network generating parameters with very high accuracy.  

 The basic simulation process for each of the sets of parameter values we use is the following: First, 

we simulate a network according to the parameter values in the set. Second, we consider different sampling 

proportions of this simulated network; for each sampling proportion, we sample the simulated network 25 

times and estimate the model using the WESBI method. For each of the different sampling proportions, we 

report the average posterior means and average posterior standard deviations of the parameter estimates 

across the 25 estimations.  

We consider a total of 56 different sets of parameter values. To investigate the performance of the 

WESBI method on different network structures, we conduct experiments in two distinct categories of 

networks: networks with long tails and networks without long tails, as determined by the in-degree 

distribution. Because the long tail is a characteristic found in most online social networks, we use the first 32 

experiments to show the performance of the WESBI method under various parameter combinations that lead 

to networks with long tails. For the following 24 experiments, we focus on the performance of the WESBI 

method for networks without long tails. The skewness of the in-degree distribution in our Epinions.com 

dataset lies within the range of skewness levels of the simulated networks we consider. This suggests that the 

WESBI method is appropriate to use for our research context. 

Network Generation Process 
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We simulate networks by using a variation of the classic Barabasi and Albert (1999) model. There are initially 

𝑚0 isolated nodes in the network at time 𝑡 = 0, and 𝑚 nodes are added into the network in each time period 

for 𝑇  time periods. Subsequently, we allow the network to evolve further by allowing the tie-formation 

process to continue for K additional time periods.  

The expressions below specify the proportional hazard process governing the formation of a directed 

link from node 𝑖 to node 𝑗:  

 𝜆𝑖𝑗 = 𝜆0exp�𝛽1,𝑖𝑧1,𝑗 + 𝛽2,𝑖𝑧2,𝑗�, 𝜆0 > 0,                                                              (1) 

   𝜷𝑖 = �
𝛽1,𝑖
𝛽2,𝑖

� = 𝜹 + 𝜺𝒊 = �𝛿1𝛿2
� + 𝜺𝒊, 𝜺𝒊~MVN(0,𝚺𝛽). 

In the above, 𝜆0 is the baseline hazard rate which describes the inherent propensity of individual 𝑖 forming a 

link with 𝑗 without considering other factors and is independent of time. 𝑧1,𝑗 and 𝑧2,𝑗 are two different time-

constant characteristics for individual 𝑗 . Individual specific coefficients 𝜷𝑖  capture how covariates have 

different impacts on individual tie-formation decisions across people. The quantity exp�𝛽1,𝑖𝑧1,𝑗 + 𝛽2,𝑖𝑧2,𝑗� 

increases or decreases the baseline hazard rate of tie formation between 𝑖 and 𝑗.  

 

Simulation Design for Long-Tailed Networks  

It has been observed that many complex networks, especially online social networks, have long-tailed degree 

distributions (Barabasi and Albert 1999; Mislove et al. 2007). As a result, it is especially important to study the 

performance of the WESBI model for networks with long tails.  

To generate the networks, we set 𝑚0 = 1,𝑚 = 1. To compare how our model adapts to networks 

of different sizes, we set 𝑇 ∈ {2000,5000}, resulting in networks of size 2001 or 5001, and set K=200. We 

set 𝜆0 to be a very small number so that the rate at which ties are formed is slow and the simulated network 



4 
 

are relatively sparse. Specifically, we set 𝜆0 ∈ {𝑒−50, 𝑒−55} (i.e., log 𝜆0 ∈ {−50,−55}). For the parameters, 

𝛽1,𝑖 and 𝛽2,𝑖, we set 𝛿1 ∈ {−2,−3},𝛿2 ∈ {2,3}. The variance-covariance matrix of the coefficients are set to 

be the same across all simulated networks:  𝚺𝜷 = � 1 0.5
0.5 1 � × 0.5.  

We employ two scenarios for the distributions of individual characteristics. In the first scenario, 

individual characteristics, 𝑧1,𝑗  and 𝑧2,𝑗  are drawn from two independent distributions: 

𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 𝑧2,𝑗~N(0,𝜎𝑧2). In the second scenario, they are drawn from two independent 

distributions: 𝑧1,𝑗~N(0,𝜎𝑧2), 𝑧2,𝑗~N(0,𝜎𝑧2). Note that, in the first scenario the distribution for one covariate 

is skewed and the distribution for the other is symmetric, while in the second scenario both distributions are 

symmetric. While the exponential and the normal distributions themselves are not long-tail distributions, the 

hazard model we employ here allows us to construct networks in which the distributions of node degree are 

long-tailed. Intuitively, this is because the hazard rate of extending links is proportional to the exponent of the 

covariate values. Thus, the impact on tie formation of covariates with large values will be greatly magnified, 

implying that there will be individuals who have a large number of incoming links and will therefore 

contribute to a long tail. To support this argument, in the following sections, we report the mean and the max 

of the degrees of the various networks we generate, and compare these statistics across networks with and 

without long-tailed distributions. The parameter 𝜎𝑧  governs the variance of each distribution, and its value is 

set so that the generated networks are sparse.  

 We can vary the values of 𝑇, 𝜆0,  𝛿1 , 𝛿2 , and the distributions of the two covariates to generate 

networks with different characteristics. In this first simulation, we have 25 = 32  different parameter 

combinations, i.e., we generate 32 different types of networks. As we can see from Table A2, the simulated 

networks cover a large variety of network structures. The size of the network is either 2001 or 5001, the 

maximum in-degree ranges from 441 to 1296, and the network density ranges from 0.007% to 0.078%. The 

low densities are representative of common online social networks such as the ones in our Epinions study. By 

setting the two factors 𝛿1and 𝛿2 to have opposite mean impact (𝛿1𝛿2 < 0), we can test the robustness of 
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WESBI on estimating parameters with different signs. Furthermore, we assume that different factors can 

have different average impact on the formation of ties (|𝛿1| ≠ |𝛿2|). Thus we can also investigate how well 

WESBI estimates model parameters when one factor dominates the other by varying the values of 𝛿1 and 𝛿2. 

While we fix the variance-covariance matrix of individual heterogeneous parameters, by changing the values 

of 𝛿1 and 𝛿2, we can also illustrate how the relative values in the variance-covariance matrix, compared with 

the mean values of the parameters, will influence the estimation results.  

The conditional-log-likelihood function for the data in our simulations simplifies to the following 

(the notation is described in the paper):  

log𝐿 = 𝑤1 � � �log�1 − exp�−𝜆0 exp�𝛽1,𝑖𝑧1,𝑗 + 𝛽2,𝑖𝑧2,𝑗���
(𝕀𝑖𝑗=1)

−𝜆0(𝑘𝑖𝑗 − 1) ∙ exp�𝛽1,𝑖𝑧1,𝑗 + 𝛽2,𝑖𝑧2,𝑗��� 

+𝑤0 � � �−𝜆0(𝑘𝑖𝑗 − 1) ∙ exp�𝛽1,𝑖𝑧1,𝑗 + 𝛽2,𝑖𝑧2,𝑗��
(𝕀𝑖𝑗=0)

�  

Here, 𝑤0 = 1−𝑄1
1−𝐻1

 and 𝑤1 = 𝑄1
𝐻1

, where 𝑄1 is the fraction of the ties formed in the whole population, and 𝐻1 is 

the fraction of the ties formed in the sampled dataset. For example, in a directed network with 2000 

individuals, there are in total 3,998,000 possible pairs that can form a tie. If 2,000 ties are formed, 𝑄1 =

2000
3998000

= 0.0005. All observations where ties are formed are included in the sampled dataset, thus if we 

sample 100,000 pairs out of the 3,998,000 possible pairs, 𝐻1 = 2000
100,000

= 0.02. This gives 𝑤0 = 1.0199, and 

𝑤1 = 0.025. By varying the fraction of dyads with ties formed in the sampled dataset we can explore how 

the effectiveness of the WESBI method depends on the number of sampled observations. We pick three 

possible values of the sampling proportion: 5%, 10%, 15%, which means that we sample, respectively, 5%, 

10% and 15% of the total number of dyad pairs that do not form ties.  Note that we always sample all the ties 

that are formed. For each sampling proportion of each network, we repeatedly sample the network 25 times, 

each time to obtain the target sampling proportion. We then estimate the model 25 times on the 25 samples 
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using the WESBI method. We report the average posterior means and the average posterior standard 

deviations of the parameter value estimates recovered from the 25 runs, and compare these results with the 

true parameter values that we used to generate the networks.  

In summary, we are estimating the model on 32 × 3 = 96 different datasets, each 25 times. These 

96 datasets show that the WESBI method recovers parameter values accurately and, therefore, works very 

well in a wide range of conditions.  
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Table A1: Parameter Values Used to Simulate Long-Tailed Networks 

 T log(𝝀𝟎)  𝜹𝟏 𝜹𝟐 Distribution of Characteristics 

Network 1 2000 −50 -2 2 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 2 2000 −50 -2 3 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 3 2000 −50 -3 2 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 4 2000 −50 -3 3 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 5 2000 −55 -2 2 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 6 2000 −55 -2 3 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 7 2000 −55 -3 2 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 8 2000 −55 -3 3 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 9 5000 −50 -2 2 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 10 5000 −50 -2 3 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 11 5000 −50 -3 2 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 12 5000 −50 -3 3 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 13 5000 −55 -2 2 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 14 5000 −55 -2 3 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 15 5000 −55 -3 2 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 16 5000 −55 -3 3 𝑧1,𝑗~Exponential(1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~N(0,𝜎𝑧2) 

Network 17 2000 −50 -2 2 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 18 2000 −50 -2 3 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 19 2000 −50 -3 2 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  
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Network 20 2000 −50 -3 3 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 21 2000 −55 -2 2 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)   

Network 22 2000 −55 -2 3 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 23 2000 −55 -3 2 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 24 2000 −55 -3 3 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 25 5000 −50 -2 2 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 26 5000 −50 -2 3 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 27 5000 −50 -3 2 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 28 5000 −50 -3 3 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 29 5000 −55 -2 2 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 30 5000 −55 -2 3 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 31 5000 −55 -3 2 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  

Network 32 5000 −55 -3 3 
𝑧1,𝑗~N(0,𝜎𝑧2), 
𝑧2,𝑗~N(0,𝜎𝑧2)  
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Table A2: Statistics for the Long-Tailed Networks Simulated 

 Number of 
ties formed in 
the simulated 

network 

Mean of 
In-Degree 

Max of In-
Degree 

Max/Mean 
Ratio of In-

Degree 

Network 
density 

Network 1 2670 1.335 604 452.434 0.067% 

Network 2 3079 1.540 682 443.001 0.077% 

Network 3 2436 1.218 550 451.560 0.061% 

Network 4 2472 1.236 619 500.809 0.062% 

Network 5 1805 0.903 575 637.119 0.045% 

Network 6 2611 1.306 535 409.805 0.065% 

Network 7 1603 0.802 527 657.517 0.040% 

Network 8 2840 1.420 729 513.380 0.071% 

Network 9 2029 0.406 531 1308.526 0.008% 

Network 10 2597 0.519 679 1307.278 0.010% 

Network 11 2073 0.415 632 1524.361 0.008% 

Network 12 2668 0.534 665 1246.252 0.011% 

Network 13 1801 0.360 592 1643.531 0.007% 

Network 14 3386 0.677 934 1379.209 0.014% 

Network 15 2579 0.516 595 1153.548 0.010% 

Network 16 2646 0.529 636 1201.814 0.011% 

Network 17 3126 1.563 594 380.038 0.078% 

Network 18 2693 1.347 441 327.516 0.067% 

Network 19 2392 1.196 709 592.809 0.060% 

Network 20 2767 1.384 960 693.892 0.069% 

Network 21 2728 1.364 608 445.748 0.068% 

Network 22 2448 1.224 659 538.399 0.061% 

Network 23 1783 0.892 464 520.471 0.045% 

Network 24 2393 1.197 563 470.539 0.060% 

Network 25 2768 0.554 836 1510.116 0.011% 

Network 26 3191 0.638 825 1292.698 0.013% 

Network 27 2215 0.443 888 2004.515 0.009% 

Network 28 2527 0.505 771 1525.524 0.010% 

Network 29 2126 0.425 619 1456.471 0.009% 



10 
 

Network 30 3895 0.779 1296 1663.671 0.016% 

Network 31 2621 0.524 881 1680.656 0.010% 

Network 32 3887 0.777 1118 1438.127 0.016% 

 

As we see from Table A2 above, while the mean in-degree for each of the 32 networks is less than 

two, the maximum in-degree for each network is two or three orders of magnitude larger. This is evident 

from the ratio between the max and the mean in-degree. For comparison, we simulate 500 scale-free 

networks with long-tailed in-degree distributions following the procedure in Barabasi and Albert (1999).1  The 

mean of in-degrees across the 500 networks is 1.00, and the node with maximum in-degree across the 500 

networks has an in-degree of 325. By comparing statistics of the scale-free networks with those of our 32 

simulated networks, it is clear that the long tail property is more salient in the 32 networks we simulated.  

The 32 tables that follow show the estimation results from our simulation study. Each table reports 

parameter estimates for one set of parameter values.  In each table, the first column reports the true 

parameter values used to generate the 25 sample networks. The second column reports the parameter 

estimates when 5% of the dyads that did not form a tie were sampled and used for parameter estimation; for 

each parameter, we report the average posterior mean and, in parentheses, the average standard deviation 

across the 25 instances. We put a check mark adjacent to these numbers if the true value of the parameter 

falls within the 95% credible interval that is constructed by using the average posterior mean and the average 

posterior standard deviation. Similarly, we report the parameter estimates when 10% and 15% of the dyads 

that did not form a tie were sampled for parameter estimation in the fourth and sixth columns, respectively. 

The results show that sampling 10% or 15% of the dyads that do not form a tie gives very accurate 

estimation results with the true parameter value always falling in the credible interval. Even when we sample 

only 5% of the total dyads that do not form a tie, the true network parameter value falls in the corresponding 

                                                           
1 We start with one node in the network at time t = 0. Then, for T=5000 time periods, at each time period, we add one 
node with one tie that links the new node to one node already present in the network. The probability that a new node 
will link to node 𝑖 depends on the degree of node 𝑖: Pr(link to node 𝑖) = Degree𝑖/∑ Degree𝑗𝑗 .  Note that the degree 
distribution of a scale-free network follows a power law, which implies that it has a long tail.  
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95% credible interval approximately 75% of the time. These results show that we can estimate the parameters 

with high accuracy by sampling a relatively small fraction of the total network and using the WESBI method 

for estimation.  
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Network 1:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0420 
(0.0248) 

 -50.0158 
(0.0226) 

 -50.0067 
(0.0208) 

 

𝛿1 -2 -2.0428 
(0.0191) 

 -2.0305 
(0.0171) 

 -2.0132 
(0.0169) 

 

𝛿2 2 2.0329 
(0.0181) 

 2.0244 
(0.0174) 

 2.0076 
(0.0169) 

 

Σ𝛽,11 0.5 0.5268 
(0.0214) 

 0.5153 
(0.0195) 

 0.5108 
(0.0185) 

 

Σ𝛽,12 0.25 0.2564 
(0.0164) 

 0.2532 
(0.0161) 

 0.2526 
(0.0159) 

 

Σ𝛽,22 0.5 0.5257 
(0.0192) 

 0.5138 
(0.0162) 

 0.5117 
(0.0157) 

 

 

 

 

Network 2 

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0391 
(0.0224) 

 -50.0239 
(0.0209) 

 -49.9983 
(0.0195) 

 

𝛿1 -2 -1.9836 
(0.0182) 

 -1.9850 
(0.0180) 

 -1.9885 
(0.0176) 

 

𝛿2 3 3.0183 
(0.0174) 

 2.9925 
(0.0171) 

 3.0038 
(0.0167) 

 

Σ𝛽,11 0.5 0.5357 
(0.0194) 

 0.5202 
(0.0189) 

 0.5147 
(0.0184) 

 

Σ𝛽,12 0.25 0.2534 
(0.0150) 

 0.2510 
(0.0138) 

 0.2508 
(0.0136) 

 

Σ𝛽,22 0.5 0.5058 
(0.0176) 

 0.5030 
(0.0173) 

 0.5016 
(0.0171) 
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Network 3:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9681 
(0.0226) 

 -49.9746 
(0.0217) 

 -49.9804 
(0.0203) 

 

𝛿1 -3 -3.0312 
(0.0184) 

 -3.0268 
(0.0183) 

 -3.0192 
(0.0180) 

 

𝛿2 2 1.9602 
(0.0186) 

 1.9738 
(0.0184) 

 1.9832 
(0.0179) 

 

Σ𝛽,11 0.5 0.5279 
(0.0187) 

 0.5145 
(0.0185) 

 0.5073 
(0.0183) 

 

Σ𝛽,12 0.25 0.2552 
(0.0163) 

 0.2549 
(0.0158) 

 0.2545 
(0.0149) 

 

Σ𝛽,22 0.5 0.5089 
(0.0178) 

 0.5069 
(0.0171) 

 0.5056 
(0.0164) 

 

 

 

Network 4:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0507 
(0.0194) 

 -50.0305 
(0.0190) 

 -50.0177 
(0.0182) 

 

𝛿1 -3 -3.0479 
(0.0185) 

 -3.0276 
(0.0177) 

 -3.0176 
(0.0173) 

 

𝛿2 3 2.9668 
(0.0183) 

 2.9727 
(0.0174) 

 2.9819 
(0.0170) 

 

Σ𝛽,11 0.5 0.5304 
(0.0196) 

 0.5231 
(0.0191) 

 0.5165 
(0.0187) 

 

Σ𝛽,12 0.25 0.2681 
(0.0172) 

 0.2658 
(0.0168) 

 0.2598 
(0.0159) 

 

Σ𝛽,22 0.5 0.4813 
(0.0176) 

 0.4876 
(0.0173) 

 0.4915 
(0.0167) 
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Network 5:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -54.8736 
(0.0233) 

 -54.8966 
(0.0219) 

 -54.9361 
(0.0192) 

 

𝛿1 -2 -2.0140 
(0.0194) 

 -2.0115 
(0.0184) 

 -2.0080 
(0.0179) 

 

𝛿2 2 2.0395 
(0.0182) 

 2.0288 
(0.0180) 

 2.0152 
(0.0172) 

 

Σ𝛽,11 0.5 0.5376 
(0.0187) 

 0.5216 
(0.0183) 

 0.5148 
(0.0182) 

 

Σ𝛽,12 0.25 0.2612 
(0.0171) 

 0.2601 
(0.0167) 

 0.2585 
(0.0156) 

 

Σ𝛽,22 0.5 0.5126 
(0.0184) 

 0.5095 
(0.0172) 

 0.5086 
(0.0164) 

 

 

 

Network 6:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -55.0291 
(0.0204) 

 -54.9833 
(0.0199) 

 -55.0084 
(0.0199) 

 

𝛿1 -2 -1.9850 
(0.0185) 

 -1.9877 
(0.0181) 

 -1.9928 
(0.0165) 

 

𝛿2 3 3.0261 
(0.0177) 

 3.0255 
(0.0176) 

 3.0173 
(0.0169) 

 

Σ𝛽,11 0.5 0. 4807 
(0.0192) 

 0. 4815 
(0.0180) 

 0. 4862 
(0.0174) 

 

Σ𝛽,12 0.25 0.2426 
(0.0151) 

 0.2442 
(0.0146) 

 0.2447 
(0.0140) 

 

Σ𝛽,22 0.5 0.5162 
(0.0176) 

 0.5115 
(0.0168) 

 0.5107 
(0.0165) 
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Network 7:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -55.0329 
(0.0216) 

 -55.0279 
(0.0203) 

 -55.0138 
(0.0183) 

 

𝛿1 -3 -2.9613 
(0.0184) 

 -2.9796 
(0.0177) 

 -2.9853 
(0.0173) 

 

𝛿2 2 1.9710 
(0.0184) 

 1.9763 
(0.0180) 

 1.9810 
(0.0176) 

 

Σ𝛽,11 0.5 0.4857 
(0.0183) 

 0.4872 
(0.0180) 

 0.4937 
(0.0173) 

 

Σ𝛽,12 0.25 0.2566 
(0.0169) 

 0.2460 
(0.0164) 

 0.2532 
(0.0156) 

 

Σ𝛽,22 0.5 0.5291 
(0.0176) 

 0.5230 
(0.0170) 

 0.5184 
(0.0168) 

 

 

 

Network 8:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -55.0385 
(0.0286) 

 -55.0295 
(0.0264) 

 -55.0207 
(0.0253) 

 

𝛿1 -3 -3.0310 
(0.0187) 

 -3.0193 
(0.0182) 

 -3.0102 
(0.0175) 

 

𝛿2 3 3.0312 
(0.0175) 

 3.0236 
(0.0172) 

 3.0120 
(0.0168) 

 

Σ𝛽,11 0.5 0.4877 
(0.0185) 

 0.4893 
(0.0174) 

 0.4918 
(0.0169) 

 

Σ𝛽,12 0.25 0.2578 
(0.0182) 

 0.2563 
(0.0174) 

 0.2558 
(0.0169) 

 

Σ𝛽,22 0.5 0.4863 
(0.0167) 

 0.5036 
(0.0163) 

 0.4973 
(0.0157) 
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Network 9:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9711 
(0.0184) 

 -49.9778 
(0.0174) 

 -49.9820 
(0.0168) 

 

𝛿1 -2 -2.0245 
(0.0117) 

 -2.0191 
(0.0112) 

 -2.0159 
(0.0109) 

 

𝛿2 2 2.0283 
(0.0122) 

 2.0183 
(0.0114) 

 2.0146 
(0.0112) 

 

Σ𝛽,11 0.5 0.5148 
(0.0116) 

 0.5103 
(0.0115) 

 0.5086 
(0.0109) 

 

Σ𝛽,12 0.25 0.2583 
(0.0103) 

 0.2567 
(0.0097) 

 0.2539 
(0.0097) 

 

Σ𝛽,22 0.5 0.5134 
(0.0115) 

 0.5084 
(0.0112) 

 0.5079 
(0.0109) 

 

 

 

Network 10:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0279 
(0.0178) 

 -50.0250 
(0.0173) 

 -50.0167 
(0.0169) 

 

𝛿1 -2 -2.0275 
(0.0116) 

 -2.0193 
(0.0115) 

 -2.0174 
(0.0114) 

 

𝛿2 3 3.0178 
(0.0115) 

 3.0157 
(0.0112) 

 3.0122 
(0.0111) 

 

Σ𝛽,11 0.5 0.5135 
(0.0129) 

 0.5078 
(0.0124) 

 0.5064 
(0.0119) 

 

Σ𝛽,12 0.25 0.2611 
(0.0086) 

 0.2594 
(0.0086) 

 0.2583 
(0.0082) 

 

Σ𝛽,22 0.5 0.5137 
(0.0114) 

 0.5124 
(0.0106) 

 0.5084 
(0.0106) 
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Network 11:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0395 
(0.0185) 

 -50.0216 
(0.0183) 

 -50.0141 
(0.0178) 

 

𝛿1 -3 -3.0218 
(0.0123) 

 -3.0135 
(0.0119) 

 -3.0063 
(0.0118) 

 

𝛿2 2 2.0256 
(0.0119) 

 2.0158 
(0.0115) 

 2.0126 
(0.0109) 

 

Σ𝛽,11 0.5 0.5122 
(0.0116) 

 0.5109 
(0.0114) 

 0.5089 
(0.0114) 

 

Σ𝛽,12 0.25 0.2561 
(0.0106) 

 0.2558 
(0.0104) 

 0.2556 
(0.0098) 

 

Σ𝛽,22 0.5 0.5160 
(0.0112) 

 0.5138 
(0.0110) 

 0.5112 
(0.0110) 

 

 

 

Network 12:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9653 
(0.0190) 

 -49.9775 
(0.0186) 

 -49.9831 
(0.0183) 

 

𝛿1 -3 -3.0260 
(0.0118) 

 -3.0150 
(0.0115) 

 -3.0126 
(0.0115) 

 

𝛿2 3 3.0140 
(0.0117) 

 3.0102 
(0.0115) 

 3.0088 
(0.0114) 

 

Σ𝛽,11 0.5 0.5069 
(0.0114) 

 0.5061 
(0.0113) 

 0.5057 
(0.0110) 

 

Σ𝛽,12 0.25 0.2549 
(0.0097) 

 0.2535 
(0.0097) 

 0.2496 
(0.0097) 

 

Σ𝛽,22 0.5 0.5197 
(0.0113) 

 0.5123 
(0.0112) 

 0.5086 
(0.0110) 
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Network 13:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -54.9694 
(0.0192) 

 -54.9821 
(0.0183) 

 -54.9878 
(0.0177) 

 

𝛿1 -2 -2.0291 
(0.0116) 

 -2.0184 
(0.0115) 

 -2.0123 
(0.0113) 

 

𝛿2 2 2.0215 
(0.0121) 

 2.0165 
(0.0116) 

 2.0108 
(0.0114) 

 

Σ𝛽,11 0.5 0.5194 
(0.0118) 

 0.5089 
(0.0117) 

 0.5062 
(0.0115) 

 

Σ𝛽,12 0.25 0.2529 
(0.0096) 

 0.2516 
(0.0095) 

 0.2497 
(0.0095) 

 

Σ𝛽,22 0.5 0.5121 
(0.0117) 

 0.5093 
(0.0116) 

 0.5064 
(0.0113) 

 

 

 

 

Network 14:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -55.0399 
(0.0186) 

 -55.0218 
(0.0181) 

 -55.0169 
(0.0176) 

 

𝛿1 -2 -1.9731 
(0.0120) 

 -1.9812 
(0.0116) 

 -1.9884 
(0.0113) 

 

𝛿2 3 3.0127 
(0.0114) 

 3.0073 
(0.0114) 

 3.0054 
(0.0112) 

 

Σ𝛽,11 0.5 0. 5165 
(0.0116) 

 0. 5114 
(0.0112) 

 0. 5065 
(0.0110) 

 

Σ𝛽,12 0.25 0.2417 
(0.0103) 

 0.2441 
(0.0100) 

 0.2449 
(0.0097) 

 

Σ𝛽,22 0.5 0.5089 
(0.0118) 

 0.5079 
(0.0114) 

 0.5065 
(0.0112) 
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Network 15:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -55.0314 
(0.0194) 

 -55.0176 
(0.0187) 

 -55.0086 
(0.0180) 

 

𝛿1 -3 -3.0145 
(0.0120) 

 -3.0116 
(0.0117) 

 -3.0088 
(0.0116) 

 

𝛿2 2 2.0176 
(0.0113) 

 2.0128 
(0.0113) 

 2.0076 
(0.0111) 

 

Σ𝛽,11 0.5 0.5092 
(0.0118) 

 0.5089 
(0.0116) 

 0.5033 
(0.0114) 

 

Σ𝛽,12 0.25 0.2590 
(0.0103) 

 0.2584 
(0.0100) 

 0.2563 
(0.0097) 

 

Σ𝛽,22 0.5 0.5128 
(0.0110) 

 0.5102 
(0.0107) 

 0.5072 
(0.0104) 

 

 

 

 

Network 16:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -54.9583 
(0.0193) 

 -54.9812 
(0.0184) 

 -54.9843 
(0.0181) 

 

𝛿1 -3 -3.0314 
(0.0119) 

 -3.0184 
(0.0117) 

 -3.0138 
(0.0115) 

 

𝛿2 3 2.9743 
(0.0116) 

 2.9824 
(0.0114) 

 2.9875 
(0.0114) 

 

Σ𝛽,11 0.5 0.5180 
(0.0114) 

 0.5124 
(0.0113) 

 0.5089 
(0.0110) 

 

Σ𝛽,12 0.25 0.2579 
(0.0097) 

 0.2573 
(0.0096) 

 0.2553 
(0.0093) 

 

Σ𝛽,22 0.5 0.5156 
(0.0117) 

 0.5083 
(0.0114) 

 0.5068 
(0.0113) 
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Network 17:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0468 
(0.0259) 

 -50.0285 
(0.0232) 

 -50.0208 
(0.0207) 

 

𝛿1 -2 -2.0362 
(0.0195) 

 -2.0278 
(0.0186) 

 -2.0132 
(0.0182) 

 

𝛿2 2 2.0321 
(0.0190) 

 2.0208 
(0.0185) 

 2.0132 
(0.0181) 

 

Σ𝛽,11 0.5 0.5348 
(0.0207) 

 0.5235 
(0.0191) 

 0.5176 
(0.0183) 

 

Σ𝛽,12 0.25 0.2423 
(0.0159) 

 0.2452 
(0.0156) 

 0.2466 
(0.0151) 

 

Σ𝛽,22 0.5 0.5195 
(0.0205) 

 0.5164 
(0.0196) 

 0.5103 
(0.0173) 

 

 

 

Network 18:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0573 
(0.0236) 

 -50.0287 
(0.0221) 

 -50.0185 
(0.0209) 

 

𝛿1 -2 -2.0277 
(0.0192) 

 -2.0098 
(0.0187) 

 -2.0034 
(0.0183) 

 

𝛿2 3 3.0397 
(0.0182) 

 3.0169 
(0.0179) 

 3.0144 
(0.0171) 

 

Σ𝛽,11 0.5 0.5295 
(0.0185) 

 0.5208 
(0.0181) 

 0.5124 
(0.0175) 

 

Σ𝛽,12 0.25 0.2622 
(0.0159) 

 0.2576 
(0.0147) 

 0.2541 
(0.0140) 

 

Σ𝛽,22 0.5 0.5167 
(0.0175) 

 0.5134 
(0.0172) 

 0.5065 
(0.0171) 
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Network 19:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0271 
(0.0218) 

 -50.0176 
(0.0204) 

 -50.0117 
(0.0196) 

 

𝛿1 -3 -3.0456 
(0.0192) 

 -3.0187 
(0.0187) 

 -3.0145 
(0.0183) 

 

𝛿2 2 2.0207 
(0.0198) 

 2.0164 
(0.0193) 

 2.0117 
(0.0185) 

 

Σ𝛽,11 0.5 0.4734 
(0.0186) 

 0.4895 
(0.0181) 

 0.4944 
(0.0174) 

 

Σ𝛽,12 0.25 0.2611 
(0.0156) 

 0.2570 
(0.0153) 

 0.2561 
(0.0150) 

 

Σ𝛽,22 0.5 0.4761 
(0.0182) 

 0.4820 
(0.0181) 

 0.4788 
(0.0173) 

 

 

 

Network 20:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0502 
(0.0213) 

 -50.0278 
(0.0197) 

 -49.9950 
(0.0191) 

 

𝛿1 -3 -3.0529 
(0.0172) 

 -3.0306 
(0.0168) 

 -3.0208 
(0.0164) 

 

𝛿2 3 3.0502 
(0.0182) 

 3.0314 
(0.0180) 

 3.0239 
(0.0167) 

 

Σ𝛽,11 0.5 0.4965 
(0.0177) 

 0.4972 
(0.0175) 

 0.4998 
(0.0165) 

 

Σ𝛽,12 0.25 0.2682 
(0.0171) 

 0.2637 
(0.0168) 

 0.2572 
(0.0157) 

 

Σ𝛽,22 0.5 0.5174 
(0.0188) 

 0.5155 
(0.0184) 

 0.5084 
(0.0181) 
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Network 21:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -54.4894 
(0.0227) 

 -54.8065 
(0.0221) 

 -54.8543 
(0.0202) 

 

𝛿1 -2 -2.0308 
(0.0191) 

 -2.0207 
(0.0187) 

 -2.0143 
(0.0182) 

 

𝛿2 2 2.0298 
(0.0187) 

 2.0230 
(0.0179) 

 2.0186 
(0.0172) 

 

Σ𝛽,11 0.5 0.5138 
(0.0191) 

 0.5117 
(0.0187) 

 0.5063 
(0.0181) 

 

Σ𝛽,12 0.25 0.2543 
(0.0168) 

 0.2524 
(0.0162) 

 0.2485 
(0.0159) 

 

Σ𝛽,22 0.5 0.5163 
(0.0185) 

 0.5112 
(0.0176) 

 0.5076 
(0.0169) 

 

 

 

 

Network 22:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -55.0581 
(0.0214) 

 -55.0407 
(0.0212) 

 -55.0157 
(0.0198) 

 

𝛿1 -2 -2.0308 
(0.0175) 

 -2.0249 
(0.0173) 

 -3.0206 
(0.0167) 

 

𝛿2 3 3.0390 
(0.0175) 

 3.0303 
(0.0172) 

 3.0262 
(0.0165) 

 

Σ𝛽,11 0.5 0.5170 
(0.0179) 

 0.5136 
(0.0172) 

 0.5117 
(0.0167) 

 

Σ𝛽,12 0.25 0.2708 
(0.0142) 

 0.2693 
(0.0132) 

 0.2668 
(0.0130) 

 

Σ𝛽,22 0.5 0.5216 
(0.0181) 

 0.5203 
(0.0174) 

 0.5173 
(0.0167) 
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Network 23:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -54.9529 
(0.0225) 

 -54.9727 
(0.0208) 

 -54.9858 
(0.0196) 

 

𝛿1 -3 -3.0094 
(0.0184) 

 -3.0049 
(0.0173) 

 -2.9994 
(0.0169) 

 

𝛿2 2 2.0178 
(0.0177) 

 2.0088 
(0.0176) 

 2.0032 
(0.0172) 

 

Σ𝛽,11 0.5 0.5189 
(0.0187) 

 0.5148 
(0.0182) 

 0.5128 
(0.0177) 

 

Σ𝛽,12 0.25 0.2418 
(0.0141) 

 0.2429 
(0.0139) 

 0.2441 
(0.0136) 

 

Σ𝛽,22 0.5 0.5072 
(0.0183) 

 0.5022 
(0.0178) 

 0.5011 
(0.0171) 

 

  

 

Network 24:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -55.0519 
(0.0243) 

 -55.0291 
(0.0215) 

 -55.0159 
(0.0202) 

 

𝛿1 -3 -3.0372 
(0.0193) 

 -3.0244 
(0.0182) 

 -3.0145 
(0.0177) 

 

𝛿2 3 3.0138 
(0.0182) 

 3.0105 
(0.0175) 

 3.0074 
(0.0171) 

 

Σ𝛽,11 0.5 0.5125 
(0.0183) 

 0.5098 
(0.0179) 

 0.5053 
(0.0174) 

 

Σ𝛽,12 0.25 0.2407 
(0.0178) 

 0.2446 
(0.0176) 

 0.2472 
(0.0171) 

 

Σ𝛽,22 0.5 0.5426 
(0.0175) 

 0.5214 
(0.0171) 

 0.5133 
(0.0168) 
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Network 25:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9575 
(0.0192) 

 -49.9754 
(0.0186) 

 -49.9840 
(0.0174) 

 

𝛿1 -2 -2.0281 
(0.0120) 

 -2.0204 
(0.0117) 

 -2.0187 
(0.0114) 

 

𝛿2 2 2.0299 
(0.0119) 

 2.0187 
(0.0115) 

 2.0140 
(0.0111) 

 

Σ𝛽,11 0.5 0.5186 
(0.0121) 

 0.5154 
(0.0117) 

 0.5145 
(0.0117) 

 

Σ𝛽,12 0.25 0.2619 
(0.0105) 

 0.2586 
(0.0101) 

 0.2572 
(0.0097) 

 

Σ𝛽,22 0.5 0.5255 
(0.0114) 

 0.5184 
(0.0111) 

 0.5127 
(0.0109) 

 

 

 

Network 26:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9550 
(0.0191) 

 -49.9703 
(0.0163) 

 -49.9982 
(0.0144) 

 

𝛿1 -2 -2.0157 
(0.0115) 

 -2.0133 
(0.0113) 

 -2.0114 
(0.0103) 

 

𝛿2 3 3.0288 
(0.0118) 

 3.0201 
(0.0112) 

 3.0169 
(0.0111) 

 

Σ𝛽,11 0.5 0.5159 
(0.0121) 

 0.5142 
(0.0115) 

 0.5126 
(0.0113) 

 

Σ𝛽,12 0.25 0.2464 
(0.0099) 

 0.2477 
(0.0091) 

 0.2482 
(0.0090) 

 

Σ𝛽,22 0.5 0.5025 
(0.0119) 

 0.4975 
(0.0116) 

 0.4987 
(0.0109) 
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Network 27:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9730 
(0.0236) 

 -49.9828 
(0.0207) 

 -49.9893 
(0.0183) 

 

𝛿1 -3 -3.0251 
(0.0119) 

 -3.0207 
(0.0111) 

 -3.0196 
(0.0109) 

 

𝛿2 2 2.0078 
(0.0115) 

 2.0077 
(0.0111) 

 2.0002 
(0.0106) 

 

Σ𝛽,11 0.5 0.4908 
(0.0119) 

 0.4942 
(0.0117) 

 0.4969 
(0.0111) 

 

Σ𝛽,12 0.25 0.2425 
(0.0099) 

 0.2433 
(0.0094) 

 0.2442 
(0.0088) 

 

Σ𝛽,22 0.5 0.4939 
(0.0116) 

 0.4974 
(0.0113) 

 0.4985 
(0.0107) 

 

 

 

Network 28:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0160 
(0.0194) 

 -50.0126 
(0.0190) 

 -50.0087 
(0.0184) 

 

𝛿1 -3 -3.0235 
(0.0117) 

 -3.0194 
(0.0112) 

 -3.0126 
(0.0107) 

 

𝛿2 3 3.0271 
(0.0115) 

 3.0197 
(0.0111) 

 3.0137 
(0.0108) 

 

Σ𝛽,11 0.5 0.5284 
(0.0124) 

 0.5142 
(0.0120) 

 0.5095 
(0.0115) 

 

Σ𝛽,12 0.25 0.2592 
(0.0104) 

 0.2558 
(0.0101) 

 0.2476 
(0.0093) 

 

Σ𝛽,22 0.5 0.5201 
(0.0115) 

 0.5193 
(0.0111) 

 0.5135 
(0.0109) 
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Network 29:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -54.9721 
(0.0200) 

 -54.9794 
(0.0192) 

 -54.9853 
(0.0185) 

 

𝛿1 -2 -2.0294 
(0.0121) 

 -2.0204 
(0.0117) 

 -2.0158 
(0.0112) 

 

𝛿2 2 2.0322 
(0.0116) 

 2.0184 
(0.0113) 

 2.0116 
(0.0111) 

 

Σ𝛽,11 0.5 0.5183 
(0.0120) 

 0.5120 
(0.0115) 

 0.5062 
(0.0109) 

 

Σ𝛽,12 0.25 0.2423 
(0.0093) 

 0.2458 
(0.0092) 

 0.2477 
(0.0092) 

 

Σ𝛽,22 0.5 0.5159 
(0.0119) 

 0.5137 
(0.0117) 

 0.5087 
(0.0112) 

 

 

 

Network 30:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -55.0402 
(0.0193) 

 -55.0311 
(0.0191) 

 -55.0248 
(0.0186) 

 

𝛿1 -2 -1.9718 
(0.0118) 

 -1.9862 
(0.0113) 

 -1.9913 
(0.0110) 

 

𝛿2 3 2.9769 
(0.0114) 

 2.9820 
(0.0111) 

 2.9897 
(0.0110) 

 

Σ𝛽,11 0.5 0. 5072 
(0.0120) 

 0. 5026 
(0.0113) 

 0. 4992 
(0.0107) 

 

Σ𝛽,12 0.25 0.2588 
(0.0103) 

 0.2523 
(0.0101) 

 0.2497 
(0.0097) 

 

Σ𝛽,22 0.5 0.5102 
(0.0114) 

 0.5093 
(0.0112) 

 0.5064 
(0.0111) 
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Network 31:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -55.0165 
(0.0202) 

 -55.0133 
(0.0190) 

 -55.0083 
(0.0180) 

 

𝛿1 -3 -3.0221 
(0.0121) 

 -3.0168 
(0.0115) 

 -3.0107 
(0.0113) 

 

𝛿2 2 2.0269 
(0.0123) 

 2.0205 
(0.0116) 

 2.0154 
(0.0108) 

 

Σ𝛽,11 0.5 0.5161 
(0.0123) 

 0.5116 
(0.0115) 

 0.5074 
(0.0114) 

 

Σ𝛽,12 0.25 0.2428 
(0.0104) 

 0.2469 
(0.0101) 

 0.2478 
(0.0095) 

 

Σ𝛽,22 0.5 0.5080 
(0.0106) 

 0.5051 
(0.0102) 

 0.5021 
(0.0098) 

 

 

 

Network 32:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -55 -55.0441 
(0.0202) 

 -55.0259 
(0.0196) 

 -55.0187 
(0.0182) 

 

𝛿1 -3 -2.9730 
(0.0124) 

 -2.9879 
(0.0118) 

 -2.9930 
(0.0110) 

 

𝛿2 3 2.9739 
(0.0119) 

 2.9819 
(0.0112) 

 2.9883 
(0.0111) 

 

Σ𝛽,11 0.5 0.5107 
(0.0110) 

 0.5077 
(0.0107) 

 0.5020 
(0.0102) 

 

Σ𝛽,12 0.25 0.2425 
(0.0093) 

 0.2458 
(0.0092) 

 0.2484 
(0.0092) 

 

Σ𝛽,22 0.5 0.5182 
(0.0115) 

 0.5082 
(0.0113) 

 0.5037 
(0.0111) 
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Simulation Design for Non-Long-Tailed Networks  

All generated networks in the preceding simulation exercise have a long-tailed degree distribution. While this 

characteristic is present in most online social networks, it is nonetheless important to demonstrate the 

performance of WESBI on networks that are of “short” tail. We conduct this exercise now. Following the 

same simulation scheme described above for networks with long tails, we vary the values of 𝑇,  𝛿1, 𝛿2, and 

the distributions of the two covariates to generate networks with different characteristics. Notably, we choose 

distributions for the individual characteristics, 𝑧1,𝑗 and 𝑧2,𝑗 , such that the generated networks do not have 

long-tailed degree distributions.  

Specifically, we consider three scenarios. In the first scenario, 𝑧1,𝑗  and 𝑧2,𝑗  are drawn from the 

following independent distributions: 𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 , 𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 . In the second 

scenario, 𝑧1,𝑗  and 𝑧2,𝑗  are drawn from the following independent distributions: 𝑧1,𝑗~Uniform(−1,1) ∗

𝜎𝑧 +𝜇𝑧1, 𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 + 𝜇𝑧2, where 𝜇𝑧1 < 0 and 𝜇𝑧2 > 0. In the third scenario, 𝑧1,𝑗 and 𝑧2,𝑗 

are drawn from the following independent distributions: 𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧1 , 

𝑧2,𝑗~Log-normal(0,1) ∗ 𝜎𝑧2 . Note that in the first scenario the value of individual characteristics are 

bounded from above and the distribution is uniform, and thus we will not observe individuals with an 

exceptionally large number of incoming links. Correspondingly, networks generated according to the first 

scenario will not be long-tailed. In the second scenario, we assign a small value to 𝜎𝑧  and set  𝜇𝑧1 < 0 and 

𝜇𝑧2 > 0, which simulates networks which are significantly less heterogeneous and less skewed, i.e., with 

shorter tails, compared with those in the first scenario. In the third scenario, we consider “hybrid” cases in 

which the distribution of one individual characteristic is uniform and bounded from above, while the 

distribution of the other individual characteristic is skewed and not bounded from above (by virtue of being 

log-normally distributed). In a later part of this section, we use some statistics to show this “short tail” 

property in networks generated in these three scenarios.  
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In the simulation in this section, we have 23 × 3 = 24 different parameter combinations, thus we 

generate 24 different types of networks. As we can see from Table A4, the simulated networks cover a large 

variety of network structures. The size of the network can be either 2001 or 5001, the maximum in-degree 

ranges from 9 to 347, and the network density ranges from 0.007% to 0.090%. Table A4 shows some 

statistics of the networks that are generated in these scenarios. As we can see, the maximum in-degrees of the 

24 networks generated in these scenarios are significantly smaller than the maximum in-degrees of the 32 

long-tail networks in Table A2. This suggests that the networks studied in this section have relatively “short” 

tails.  

For further comparison, we plot the in-degree distributions of representative short- and long-tailed 

networks in Figure A1.  We use data from Network 45 as an example of a short-tail network, and Network 25 

as an example of a long-tail network. The x-axis shows the in-degree (exact in-degree when this value is ≤3, 

and a range for larger in-degree, with the range progressively increasing), and the y-axis shows the frequency 

on a log scale. As we can see from Figure A1, the tail of the in-degree distribution for the short-tail network 

disappears even for small in-degree (the maximum in-degree is 9 in this case), while the tail of the in-degree 

distribution for the long-tail network extends to much larger numbers (the maximum in-degree is 836 in this 

case). By combining generated networks from all scenarios with both long tail and short tail, our simulation 

study covers a wide range of network structures in terms of their thickness of the tails of the in-degree 

distributions.  
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Table A3: Parameter Values Used to Simulate Non-Long-Tailed Networks 

 T log(𝝀𝟎)  𝜹𝟏 𝜹𝟐 Distribution of Characteristics 

Network 33 2000 −50 -2 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧  

Network 34 2000 −50 -2 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧  

Network 35 2000 −50 -3 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧  

Network 36 2000 −50 -3 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧  

Network 37 5000 −50 -2 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧  

Network 38 5000 −50 -2 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧  

Network 39 5000 −50 -3 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧  

Network 40 5000 −50 -3 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 , 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧  

Network 41 2000 −50 -2 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 +𝜇𝑧1, 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 + 𝜇𝑧2 

Network 42 2000 −50 -2 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 +𝜇𝑧1, 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 + 𝜇𝑧2 

Network 43 2000 −50 -3 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 +𝜇𝑧1, 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 + 𝜇𝑧2 

Network 44 2000 −50 -3 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 +𝜇𝑧1, 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 + 𝜇𝑧2 

Network 45 5000 −50 -2 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 +𝜇𝑧1, 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 + 𝜇𝑧2 

Network 46 5000 −50 -2 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 +𝜇𝑧1, 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 + 𝜇𝑧2 

Network 47 5000 −50 -3 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 +𝜇𝑧1, 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 + 𝜇𝑧2 

Network 48 5000 −50 -3 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 +𝜇𝑧1, 
𝑧2,𝑗~Uniform(−1,1) ∗ 𝜎𝑧 + 𝜇𝑧2 

Network 49 2000 −50 -2 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧1 , 
𝑧2,𝑗~Log-normal(0,1) ∗ 𝜎𝑧2  

Network 50 2000 −50 -2 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧1 , 
𝑧2,𝑗~Log-normal(0,1) ∗ 𝜎𝑧2  
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Network 51 2000 −50 -3 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧1 , 
𝑧2,𝑗~Log-normal(0,1) ∗ 𝜎𝑧2  

Network 52 2000 −50 -3 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧1 , 
𝑧2,𝑗~Log-normal(0,1) ∗ 𝜎𝑧2  

Network 53 5000 −50 -2 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧1 , 
𝑧2,𝑗~Log-normal(0,1) ∗ 𝜎𝑧2  

Network 54 5000 −50 -2 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧1 , 
𝑧2,𝑗~Log-normal(0,1) ∗ 𝜎𝑧2  

Network 55 5000 −50 -3 2 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧1 , 
𝑧2,𝑗~Log-normal(0,1) ∗ 𝜎𝑧2  

Network 56 5000 −50 -3 3 
𝑧1,𝑗~Uniform(−1,1) ∗ 𝜎𝑧1 , 
𝑧2,𝑗~Log-normal(0,1) ∗ 𝜎𝑧2  
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Table A4: Statistics for the Non-Long-Tailed Networks Simulated 

 Number of 
ties formed 

in the 
simulated 
network 

Mean of In-
Degree 

Max of In-
Degree 

Max/Mean 
Ratio of In-

Degree 

Network 
density 

Network 33 2087 1.0430 63 60.404 0.052% 

Network 34 1774 0.8866 54 60.910 0.044% 

Network 35 3259 1.6287 102 62.627 0.081% 

Network 36 2839 1.4188 86 60.615 0.071% 

Network 37 2254 0.4507 37 82.093 0.009% 

Network 38 2021 0.4041 39 96.506 0.008% 

Network 39 2490 0.4979 32 64.270 0.010% 

Network 40 2530 0.5059 35 69.184 0.010% 

Network 41 2176 1.087 13 11.955 0.054% 

Network 42 2523 1.261 11 8.724 0.063% 

Network 43 2861 1.430 15 10.491 0.071% 

Network 44 3604 1.801 16 8.883 0.090% 

Network 45 2786 0.557 9 16.155 0.011% 

Network 46 3173 0.634 15 23.642 0.013% 

Network 47 2991 0.598 18 30.096 0.012% 

Network 48 2604 0.521 11 21.126 0.010% 

Network 49 2932 1.465 128 87.356 0.073% 

Network 50 2269 1.134 70 61.732 0.057% 

Network 51 2036 1.017 58 57.030 0.051% 

Network 52 3241 1.620 163 100.637 0.081% 

Network 53 2491 0.498 245 491.869 0.010% 

Network 54 2604 0.521 175 336.089 0.010% 

Network 55 2862 0.572 221 386.171 0.011% 

Network 56 3040 0.608 242 398.106 0.012% 
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Figure A1: In-Degree Distributions for Representative Short- and Long-Tail Networks  
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For each target value of the sampling proportion (5%, 10%, 15% of the total dyads that do not form 

a tie) of the 24 networks, we repeatedly sample the network 25 times, and estimate the model on the 25 

samples using the WESBI method. We report the average posterior means and the average posterior standard 

deviations of the parameter values recovered from the 25 runs, and check whether the true network 

generating parameters fall within the 95% credible intervals that are constructed using these values.  

The 24 tables that follow show the estimation results, presented as before, from our simulation study. 

A check mark indicates that the true value of the parameter falls within the 95% credible interval that is 

constructed by using the average posterior mean and the average posterior standard deviation using estimates 

from the 25 runs. As before, the results show that sampling 10% or 15% of the dyads that do not form a tie 

gives very accurate estimation results with the true parameter value always falling in the credible interval. This 

shows that we can estimate the parameters with high accuracy by sampling a relatively small fraction of the 

total network and using the WESBI method for estimation.  
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Network 33:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0463 
(0.0251) 

 -50.0293 
(0.0221) 

 -50.0163 
(0.0196) 

 

𝛿1 -2 -1.9669 
(0.0173) 

 -1.9765 
(0.0161) 

 -1.9811 
(0.0154) 

 

𝛿2 2 1.9517 
(0.0176) 

 1.9718 
(0.0171) 

 1.9853 
(0.0160) 

 

Σ𝛽,11 0.5 0.5194 
(0.0213) 

 0.5132 
(0.0201) 

 0.5081 
(0.0185) 

 

Σ𝛽,12 0.25 0.2581 
(0.0161) 

 0.2568 
(0.0157) 

 0.2540 
(0.0146) 

 

Σ𝛽,22 0.5 0.5126 
(0.0194) 

 0.5111 
(0.0185) 

 0.5093 
(0.0180) 

 

 

 

Network 34:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9849 
(0.0216) 

 -49.9903 
(0.0204) 

 -49.9941 
(0.0196) 

 

𝛿1 -2 -2.0133 
(0.0183) 

 -2.0102 
(0.0177) 

 -2.0075 
(0.0164) 

 

𝛿2 3 3.0477 
(0.0193) 

 3.0179 
(0.0181) 

 3.0081 
(0.0172) 

 

Σ𝛽,11 0.5 0.5179 
(0.0187) 

 0.5139 
(0.0174) 

 0.5091 
(0.0165) 

 

Σ𝛽,12 0.25 0.2457 
(0.0156) 

 0.2471 
(0.0143) 

 0.2489 
(0.0140) 

 

Σ𝛽,22 0.5 0.5237 
(0.0176) 

 0.5153 
(0.0163) 

 0.5101 
(0.0160) 
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Network 35:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9739 
(0.0226) 

 -49.9801 
(0.0215) 

 -49.9864 
(0.0185) 

 

𝛿1 -3 -3.0089 
(0.0165) 

 -3.0050 
(0.0182) 

 -3.0020 
(0.0169) 

 

𝛿2 2 2.0134 
(0.0181) 

 2.0100 
(0.0178) 

 2.0071 
(0.0171) 

 

Σ𝛽,11 0.5 0.4863 
(0.0179) 

 0.4870 
(0.0178) 

 0.4880 
(0.0172) 

 

Σ𝛽,12 0.25 0.2321 
(0.0143) 

 0.2394 
(0.0143) 

 0.2429 
(0.0140) 

 

Σ𝛽,22 0.5 0.4871 
(0.0178) 

 0.4884 
(0.0177) 

 0.4931 
(0.0171) 

 

 

 

Network 36:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9564 
(0.0213) 

 -49.9799 
(0.0202) 

 -49.9905 
(0.0199) 

 

𝛿1 -3 -3.0465 
(0.0179) 

 -3.0269 
(0.0170) 

 -3.0067 
(0.0169) 

 

𝛿2 3 3.0311 
(0.0175) 

 3.0174 
(0.0165) 

 3.0077 
(0.0162) 

 

Σ𝛽,11 0.5 0.5276 
(0.0186) 

 0.5199 
(0.0179) 

 0.5066 
(0.0175) 

 

Σ𝛽,12 0.25 0.2559 
(0.0147) 

 0.2547 
(0.0142) 

 0.2532 
(0.0140) 

 

Σ𝛽,22 0.5 0.5183 
(0.0184) 

 0.5153 
(0.0173) 

 0.5081 
(0.0168) 
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Network 37:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0578 
(0.0191) 

 -50.0279 
(0.0191) 

 -50.0105 
(0.0185) 

 

𝛿1 -2 -2.0369 
(0.0121) 

 -2.0196 
(0.0120) 

 -2.0144 
(0.0117) 

 

𝛿2 2 2.0374 
(0.0117) 

 2.0157 
(0.0117) 

 2.0038 
(0.0112) 

 

Σ𝛽,11 0.5 0.5087 
(0.0120) 

 0.5052 
(0.0118) 

 0.4970 
(0.0112) 

 

Σ𝛽,12 0.25 0.2589 
(0.0107) 

 0.2564 
(0.0103) 

 0.2544 
(0.0098) 

 

Σ𝛽,22 0.5 0.5137 
(0.0119) 

 0.5082 
(0.0114) 

 0.5026 
(0.0114) 

 

 

Network 38:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9635 
(0.0214) 

 -49.9729 
(0.0194) 

 -49.9870 
(0.0168) 

 

𝛿1 -2 -2.0302 
(0.0119) 

 -2.0165 
(0.0115) 

 -2.0076 
(0.0110) 

 

𝛿2 3 3.0291 
(0.0121) 

 3.0167 
(0.0116) 

 3.0114 
(0.0116) 

 

Σ𝛽,11 0.5 0.4873 
(0.0123) 

 0.4914 
(0.0120) 

 0.4966 
(0.0118) 

 

Σ𝛽,12 0.25 0.2593 
(0.0093) 

 0.2565 
(0.0093) 

 0.2497 
(0.0091) 

 

Σ𝛽,22 0.5 0.4895 
(0.0117) 

 0.4925 
(0.0112) 

 0.5008 
(0.0112) 
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Network 39:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9556 
(0.0218) 

 -49.9761 
(0.0210) 

 -50.0127 
(0.0185) 

 

𝛿1 -3 -2.9719 
(0.0124) 

 -2.9844 
(0.0122) 

 -2.9860 
(0.0116) 

 

𝛿2 2 2.0101 
(0.0121) 

 2.0076 
(0.0115) 

 1.9973 
(0.0113) 

 

Σ𝛽,11 0.5 0.5062 
(0.0120) 

 0.5056 
(0.0115) 

 0.5048 
(0.0112) 

 

Σ𝛽,12 0.25 0.2539 
(0.0100) 

 0.2537 
(0.0096) 

 0.2536 
(0.0091) 

 

Σ𝛽,22 0.5 0.5089 
(0.0130) 

 0.5083 
(0.0120) 

 0.5081 
(0.0116) 

 

 

 

Network 40:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0387 
(0.0214) 

 -50.0164 
(0.0189) 

 -50.0065 
(0.0176) 

 

𝛿1 -3 -3.0068 
(0.0119) 

 -3.0039 
(0.0116) 

 -2.9984 
(0.0115) 

 

𝛿2 3 3.0181 
(0.0127) 

 3.0133 
(0.0121) 

 3.0052 
(0.0112) 

 

Σ𝛽,11 0.5 0.5077 
(0.0117) 

 0.5029 
(0.0113) 

 0.4995 
(0.0114) 

 

Σ𝛽,12 0.25 0.2455 
(0.0096) 

 0.2467 
(0.093) 

 0.2474 
(0.0093) 

 

Σ𝛽,22 0.5 0.5210 
(0.0117) 

 0.5171 
(0.0112) 

 0.5096 
(0.0108) 
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Network 41:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0202 
(0.0240) 

 -50.0077 
(0.0212) 

 -49.9949 
(0.0188) 

 

𝛿1 -2 -2.0553 
(0.0185) 

 -2.0158 
(0.0169) 

 -2.0072 
(0.0152) 

 

𝛿2 2 2.0312 
(0.0175) 

 2.0196 
(0.0171) 

 2.0122 
(0.0170) 

 

Σ𝛽,11 0.5 0.5178 
(0.0202) 

 0.5098 
(0.0197) 

 0.5015 
(0.0159) 

 

Σ𝛽,12 0.25 0.2416 
(0.0158) 

 0.2422 
(0.0158) 

 0.2461 
(0.0152) 

 

Σ𝛽,22 0.5 0.5093 
(0.0192) 

 0.5039 
(0.0191) 

 0.5010 
(0.0181) 

 

 

 

Network 42:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9548 
(0.0213) 

 -49.9692 
(0.0209) 

 -49.9956 
(0.0204) 

 

𝛿1 -2 -2.0331 
(0.0185) 

 -2.0277 
(0.0163) 

 -2.0040 
(0.0151) 

 

𝛿2 3 3.0519 
(0.0200) 

 3.0310 
(0.0192) 

 3.0146 
(0.0183) 

 

Σ𝛽,11 0.5 0.4829 
(0.0182) 

 0.4882 
(0.0180) 

 0.4928 
(0.0174) 

 

Σ𝛽,12 0.25 0.2534 
(0.0161) 

 0.2513 
(0.0157) 

 0.2489 
(0.0151) 

 

Σ𝛽,22 0.5 0.4929 
(0.0172) 

 0.4942 
(0.0159) 

 0.4962 
(0.0152) 
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Network 43:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0537 
(0.0237) 

 -50.0314 
(0.0222) 

 -50.0140 
(0.0199) 

 

𝛿1 -3 -3.0149 
(0.0182) 

 -3.0098 
(0.0182) 

 -3.0049 
(0.0173) 

 

𝛿2 2 2.0470 
(0.0173) 

 2.0031 
(0.0171) 

 2.0020 
(0.0162) 

 

Σ𝛽,11 0.5 0.5136 
(0.0182) 

 0.5084 
(0.0181) 

 0.5017 
(0.0176) 

 

Σ𝛽,12 0.25 0.2539 
(0.0138) 

 0.2537 
(0.0134) 

 0.2521 
(0.0131) 

 

Σ𝛽,22 0.5 0.5024 
(0.0176) 

 0.5012 
(0.0175) 

 0.4997 
(0.0168) 

 

 

 

Network 44:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9439 
(0.0225) 

 -49.9622 
(0.0218) 

 -49.9877 
(0.0193) 

 

𝛿1 -3 -2.9634 
(0.0184) 

 -2.9764 
(0.0179) 

 -2.9930 
(0.0162) 

 

𝛿2 3 3.0214 
(0.0180) 

 3.0112 
(0.0168) 

 3.0040 
(0.0167) 

 

Σ𝛽,11 0.5 0.5176 
(0.0175) 

 0.5072 
(0.0171) 

 0.5048 
(0.0170) 

 

Σ𝛽,12 0.25 0.2580 
(0.0144) 

 0.2514 
(0.0137) 

 0.2497 
(0.0135) 

 

Σ𝛽,22 0.5 0.5075 
(0.0182) 

 0.5044 
(0.0179) 

 0.5031 
(0.0178) 
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Network 45:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0437 
(0.0188) 

 -50.0226 
(0.0181) 

 -50.0077 
(0.0173) 

 

𝛿1 -2 -2.0242 
(0.0118) 

 -2.0149 
(0.0113) 

 -2.0072 
(0.0106) 

 

𝛿2 2 1.9714 
(0.0120) 

 1.9824 
(0.0114) 

 1.9940 
(0.0114) 

 

Σ𝛽,11 0.5 0.5156 
(0.0120) 

 0.5072 
(0.0117) 

 0.5030 
(0.0114) 

 

Σ𝛽,12 0.25 0.2610 
(0.0102) 

 0.2603 
(0.0102) 

 0.2578 
(0.0098) 

 

Σ𝛽,22 0.5 0.5047 
(0.0121) 

 0.5029 
(0.0114) 

 0.5022 
(0.0114) 

 

 

Network 46:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9703 
(0.0210) 

 -49.9841 
(0.0192) 

 -49.9931 
(0.0190) 

 

𝛿1 -2 -1.9740 
(0.0117) 

 -1.9833 
(0.0110) 

 -1.9863 
(0.0110) 

 

𝛿2 3 3.0214 
(0.0115) 

 3.0068 
(0.0109) 

 3.0037 
(0.0107) 

 

Σ𝛽,11 0.5 0.4911 
(0.0118) 

 0.4932 
(0.0115) 

 0.5006 
(0.0115) 

 

Σ𝛽,12 0.25 0.2685 
(0.0101) 

 0.2623 
(0.0096) 

 0.2535 
(0.0095) 

 

Σ𝛽,22 0.5 0.4874 
(0.0119) 

 0.4886 
(0.0117) 

 0.4940 
(0.0114) 
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Network 47:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0393 
(0.0185) 

 -50.0309 
(0.0176) 

 -50.0271 
(0.0156) 

 

𝛿1 -3 -2.9951 
(0.0112) 

 -2.9954 
(0.0110) 

 -2.9975 
(0.0108) 

 

𝛿2 2 2.0156 
(0.0112) 

 2.0144 
(0.0110) 

 2.0144 
(0.0109) 

 

Σ𝛽,11 0.5 0.4800 
(0.0121) 

 0.4801 
(0.0114) 

 0.4823 
(0.0114) 

 

Σ𝛽,12 0.25 0.2293 
(0.0098) 

 0.2383 
(0.0094) 

 0.2411 
(0.0087) 

 

Σ𝛽,22 0.5 0.4889 
(0.0120) 

 0.4891 
(0.0115) 

 0.4893 
(0.0112) 

 

 

 

Network 48:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.8488 
(0.0207) 

 -49.8961 
(0.0193) 

 -49.9916 
(0.0178) 

 

𝛿1 -3 -3.0358 
(0.0118) 

 -3.0183 
(0.0114) 

 -3.0057 
(0.0111) 

 

𝛿2 3 3.0049 
(0.0122) 

 3.0037 
(0.0118) 

 3.0030 
(0.0114) 

 

Σ𝛽,11 0.5 0.4894 
(0.0114) 

 0.4988 
(0.0111) 

 0.5005 
(0.0110) 

 

Σ𝛽,12 0.25 0.2603 
(0.0100) 

 0.2573 
(0.097) 

 0.2549 
(0.0094) 

 

Σ𝛽,22 0.5 0.4883 
(0.0113) 

 0.4908 
(0.0110) 

 0.4924 
(0.0109) 
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Network 49:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0377 
(0.0233) 

 -50.0258 
(0.0222) 

 -50.0088 
(0.0207) 

 

𝛿1 -2 -2.0436 
(0.0184) 

 -2.0139 
(0.0173) 

 -2.0054 
(0.0163) 

 

𝛿2 2 2.0205 
(0.0181) 

 2.0148 
(0.0170) 

 2.0041 
(0.0167) 

 

Σ𝛽,11 0.5 0.5207 
(0.0197) 

 0.5163 
(0.0188) 

 0.5034 
(0.0172) 

 

Σ𝛽,12 0.25 0.2630 
(0.0173) 

 0.2588 
(0.0164) 

 0.2510 
(0.0159) 

 

Σ𝛽,22 0.5 0.5129 
(0.0188) 

 0.5053 
(0.0175) 

 0.5037 
(0.0171) 

 

 

 

Network 50:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0422 
(0.0241) 

 -50.0319 
(0.0212) 

 -50.0186 
(0.0203) 

 

𝛿1 -2 -1.9640 
(0.0193) 

 -1.9811 
(0.0186) 

 -1.9866 
(0.0171) 

 

𝛿2 3 3.0311 
(0.0186) 

 3.0097 
(0.0171) 

 3.0056 
(0.0167) 

 

Σ𝛽,11 0.5 0.5108 
(0.0163) 

 0.5055 
(0.161) 

 0.5042 
(0.158) 

 

Σ𝛽,12 0.25 0.2396 
(0.0157) 

 0.2416 
(0.0152) 

 0.2424 
(0.0140) 

 

Σ𝛽,22 0.5 0.5088 
(0.0176) 

 0.5040 
(0.0164) 

 0.5024 
(0.0149) 
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Network 51:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0119 
(0.0214) 

 -50.0096 
(0.0209) 

 -50.0057 
(0.0200) 

 

𝛿1 -3 -3.0269 
(0.0185) 

 -3.0124 
(0.0172) 

 -3.0116 
(0.0168) 

 

𝛿2 2 2.0304 
(0.0182) 

 2.0085 
(0.0169) 

 2.0038 
(0.0162) 

 

Σ𝛽,11 0.5 0.4933 
(0.0190) 

 0.4947 
(0.0184) 

 0.4988 
(0.0181) 

 

Σ𝛽,12 0.25 0.2335 
(0.0136) 

 0.2349 
(0.0134) 

 0.2379 
(0.0129) 

 

Σ𝛽,22 0.5 0.5213 
(0.0183) 

 0.5135 
(0.0172) 

 0.5096 
(0.0171) 

 

 

 

Network 52:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9509 
(0.0219) 

 -49.9781 
(0.0209) 

 -49.9825 
(0.0197) 

 

𝛿1 -3 -3.0582 
(0.0186) 

 -3.0272 
(0.0184) 

 -3.0150 
(0.0175) 

 

𝛿2 3 2.9538 
(0.0182) 

 2.9771 
(0.0175) 

 2.9935 
(0.0171) 

 

Σ𝛽,11 0.5 0.5229 
(0.0182) 

 0.5127 
(0.0172) 

 0.5083 
(0.0169) 

 

Σ𝛽,12 0.25 0.2311 
(0.0153) 

 0.2426 
(0.0132) 

 0.2452 
(0.0120) 

 

Σ𝛽,22 0.5 0.5079 
(0.0183) 

 0.5071 
(0.0181) 

 0.5022 
(0.0178) 
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Network 53:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0293 
(0.0194) 

 -50.0112 
(0.0185) 

 -50.0030 
(0.0175) 

 

𝛿1 -2 -1.9786 
(0.0117) 

 -1.9879 
(0.0113) 

 -1.9923 
(0.0109) 

 

𝛿2 2 2.0351 
(0.0113) 

 2.0183 
(0.0112) 

 2.0086 
(0.0107) 

 

Σ𝛽,11 0.5 0.4823 
(0.0118) 

 0.4905 
(0.0118) 

 0.4926 
(0.0116) 

 

Σ𝛽,12 0.25 0.2607 
(0.0097) 

 0.2566 
(0.0095) 

 0.2521 
(0.0093) 

 

Σ𝛽,22 0.5 0.4861 
(0.0115) 

 0.4946 
(0.0112) 

 0.4962 
(0.0111) 

 

 

 

Network 54:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -49.9657 
(0.0206) 

 -49.9872 
(0.0197) 

 -49.9940 
(0.0191) 

 

𝛿1 -2 -2.0325 
(0.0116) 

 -2.0184 
(0.0115) 

 -2.0065 
(0.0111) 

 

𝛿2 3 2.9833 
(0.0111) 

 2.9844 
(0.0108) 

 2.9953 
(0.0106) 

 

Σ𝛽,11 0.5 0.5112 
(0.0115) 

 0.5076 
(0.0109) 

 0.5025 
(0.0106) 

 

Σ𝛽,12 0.25 0.2318 
(0.0098) 

 0.2428 
(0.0093) 

 0.2454 
(0.0092) 

 

Σ𝛽,22 0.5 0.5046 
(0.0116) 

 0.5028 
(0.0114) 

 0.5013 
(0.0114) 
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Network 55:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0417 
(0.0201) 

 -50.0283 
(0.0178) 

 -50.0171 
(0.0163) 

 

𝛿1 -3 -2.9899 
(0.0115) 

 -3.0047 
(0.0111) 

 -2.9978 
(0.0107) 

 

𝛿2 2 1.9742 
(0.0113) 

 1.9943 
(0.0109) 

 2.0016 
(0.0108) 

 

Σ𝛽,11 0.5 0.5167 
(0.0118) 

 0.5069 
(0.0117) 

 0.5011 
(0.0114) 

 

Σ𝛽,12 0.25 0.2404 
(0.0101) 

 0.2434 
(0.0094) 

 0.2441 
(0.0091) 

 

Σ𝛽,22 0.5 0.4905 
(0.0117) 

 0.4926 
(0.0113) 

 0.4949 
(0.0108) 

 

 

 

Network 56:  

 
 

True value 5% of non-formed 
dyads sampled 

10% of non-formed 
dyads sampled 

15% of non-formed 
dyads sampled 

𝑙𝑜𝑔𝜆0 -50 -50.0397 
(0.0206) 

 -50.0254 
(0.0196) 

 -50.0047 
(0.0181) 

 

𝛿1 -3 -3.0083 
(0.0114) 

 -2.9973 
(0.0112) 

 -2.9997 
(0.0109) 

 

𝛿2 3 2.9628 
(0.0119) 

 2.9813 
(0.0114) 

 2.9910 
(0.0109) 

 

Σ𝛽,11 0.5 0.5065 
(0.0116) 

 0.4971 
(0.0114) 

 0.4992 
(0.0112) 

 

Σ𝛽,12 0.25 0.2425 
(0.0103) 

 0.2482 
(0.098) 

 0.2514 
(0.0093) 

 

Σ𝛽,22 0.5 0.5124 
(0.0112) 

 0.5049 
(0.0107) 

 0.5019 
(0.0104) 
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Overall Conclusions  

We can make the following conclusions from the simulations:  

• By sampling all the dyads that form ties and 10% (or 15%) of the dyads that do not form ties, we 

can accurately estimate parameter values using the WESBI method.  

• The average posterior standard deviation in parameter estimates grows smaller as we sample 

more data.  

• For both long- and short-tailed networks, parameter estimation using the WESBI method is 

equally good, and we observe the same patterns as we sample more data.  

 

Estimation Time Advantage of the WESBI method 

To assess the estimation time advantage of the WESBI method, we compare the average time taken by one 

iteration of the Bayesian inference procedure when the full dataset is used and when smaller sampled datasets 

are used. In the algorithm, the difference between the time taken by one iteration of the Bayesian inference 

procedure is very small regardless of whether the iteration belongs to burn-in phase or after the chains have 

converged. (The time taken is always within ±9.3% of the average time taken by one iteration.) Thus we take 

the average across the first 1,000 iterations in the estimation procedure. In Table A5, we report the average 

time taken in seconds for completing the calculations of one iteration in the MCMC procedure of estimation 

from the full dataset and three different sampled datasets (sampling proportions are 5%, 10%, 15%, 

respectively) for each of the 56 networks we generated above. As we stated, the variance in time taken across 

iterations is small within each sampled dataset, so the reported numbers are suitable for comparison. The 

numbers in parentheses in the last three columns denote the percentage time taken as compared to using the 

full dataset.   
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Table A5: Iteration Times for WESBI for Different Sampling Proportions  

  

Time per 
iteration with 
full dataset 

Time per iteration 
when 5% of non-

tie dyads are 
sampled 

Time per iteration 
when 10% of 

non-tie dyads are 
sampled 

Time per iteration 
when 15% of non-

tie dyads are 
sampled 

Network 1 5.33 0.65 (12.3%) 0.88 (16.4%) 1.08 (20.2%) 
Network 2 5.38 0.65 (12.1%) 0.88 (16.4%) 1.07 (20.0%) 
Network 3 5.32 0.66 (12.4%) 0.88 (16.4%) 1.07 (20.1%) 
Network 4 5.22 0.65 (12.4%) 0.86 (16.6%) 1.05 (20.0%) 
Network 5 5.19 0.64 (12.3%) 0.84 (16.2%) 1.03 (19.8%) 
Network 6 5.37 0.66 (12.3%) 0.88 (16.4%) 1.08 (20.1%) 
Network 7 5.14 0.64 (12.4%) 0.84 (16.3%) 1.01 (19.7%) 
Network 8 5.36 0.66 (12.3%) 0.88 (16.4%) 1.08 (20.1%) 
Network 9 30.03 4.01 (13.4%) 5.28 (17.6%) 6.33 (21.1%) 
Network 10 29.71 4.06 (13.7%) 5.10 (17.1%) 6.02 (20.3%) 
Network 11 29.79 3.91 (13.1%) 5.16 (17.3%) 6.21 (20.8%) 
Network 12 29.67 3.93 (13.3%) 5.03 (16.9%) 6.04 (20.4%) 
Network 13 29.91 3.89 (13.0%) 5.25 (17.6%) 6.26 (20.9%) 
Network 14 29.58 3.93 (13.3%) 4.94 (16.7%) 5.86 (19.8%) 
Network 15 30.02 3.78 (12.6%) 5.30 (17.6%) 6.41 (21.3%) 
Network 16 29.90 3.98 (13.3%) 5.19 (17.4%) 6.17 (20.6%) 
Network 17 5.31 0.65 (12.3%) 0.88 (16.6%) 1.07 (20.2%) 
Network 18 5.26 0.64 (12.2%) 0.87 (16.5%) 1.05 (19.9%) 
Network 19 5.26 0.65 (12.3%) 0.86 (16.4%) 1.06 (20.2%) 
Network 20 5.30 0.65 (12.3%) 0.87 (16.4%) 1.06 (19.9%) 
Network 21 5.34 0.65 (12.2%) 0.87 (16.4%) 1.06 (19.9%) 
Network 22 5.25 0.65 (12.4%) 0.87 (16.5%) 1.05 (20.1%) 
Network 23 5.20 0.64 (12.3%) 0.85 (16.4%) 1.03 (19.8%) 
Network 24 5.26 0.64 (12.2%) 0.85 (16.2%) 1.04 (19.9%) 
Network 25 29.84 4.05 (13.6%) 5.14 (17.2%) 6.15 (20.6%) 
Network 26 29.92 3.94 (13.2%) 5.18 (17.3%) 6.25 (20.9%) 
Network 27 30.09 3.93 (13.1%) 5.33 (17.7%) 6.46 (21.5%) 
Network 28 29.69 3.93 (13.3%) 5.02 (16.9%) 5.95 (20.1%) 
Network 29 29.84 3.95 (13.2%) 5.15 (17.2%) 6.16 (20.6%) 
Network 30 29.62 3.89 (13.1%) 5.05 (17.0%) 5.96 (20.1%) 
Network 31 30.23 3.81 (12.6%) 5.45 (18.0%) 6.56 (21.7%) 
Network 32 29.87 3.91 (13.1%) 5.14 (17.2%) 6.13 (20.5%) 
Network 33 5.27 0.65 (12.3%) 0.86 (16.3%) 1.04 (19.8%) 
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Network 34 5.16 0.63 (12.3%) 0.84 (16.3%) 1.01 (19.6%) 
Network 35 5.41 0.67 (12.3%) 0.90 (16.6%) 1.10 (20.3%) 
Network 36 5.34 0.66 (12.3%) 0.89 (16.6%) 1.08 (20.2%) 
Network 37 29.90 3.88 (13.0%) 5.21 (17.4%) 6.23 (20.8%) 
Network 38 29.65 4.05 (13.7%) 5.03 (17.0%) 5.94 (20.0%) 
Network 39 29.56 3.92 (13.3%) 4.99 (16.9%) 5.92 (20.0%) 
Network 40 29.79 4.06 (13.6%) 5.12 (17.2%) 6.10 (20.5%) 
Network 41 5.21 0.64 (12.3%) 0.85 (16.3%) 1.04 (20.0%) 
Network 42 5.34 0.66 (12.3%) 0.88 (16.4%) 1.08 (20.2%) 
Network 43 5.36 0.66 (12.2%) 0.89 (16.5%) 1.07 (20.0%) 
Network 44 5.47 0.66 (12.2%) 0.90 (16.5%) 1.11 (20.3%) 
Network 45 30.20 3.87 (12.8%) 5.35 (17.7%) 6.51 (21.6%) 
Network 46 29.82 3.84 (12.9%) 5.15 (17.3%) 6.23 (20.9%) 
Network 47 29.99 3.91 (13.0%) 5.26 (17.5%) 6.36 (21.2%) 
Network 48 29.97 3.91 (13.0%) 5.25 (17.5%) 6.27 (20.9%) 
Network 49 5.42 0.66 (12.3%) 0.89 (16.4%) 1.08 (20.0%) 
Network 50 5.24 0.65 (12.4%) 0.87 (16.5%) 1.04 (19.8%) 
Network 51 5.13 0.63 (12.3%) 0.84 (16.3%) 1.02 (19.9%) 
Network 52 5.34 0.66 (12.3%) 0.88 (16.5%) 1.09 (20.5%) 
Network 53 30.12 4.01 (13.3%) 5.37 (17.8%) 6.45 (21.4%) 
Network 54 29.73 3.97 (13.3%) 5.09 (17.1%) 6.04 (20.3%) 
Network 55 29.78 3.94 (13.2%) 5.11 (17.2%) 6.11 (20.5%) 
Network 56 29.91 3.94 (13.2%) 5.25 (17.6%) 6.29 (21.0%) 
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Online Technical Appendix B  

Random Coefficients Model 

Model Estimation 

We extend our basic model to include individual-level heterogeneity. First, to capture unobserved 

heterogeneity in the baseline hazard rates across reviewers, we allow the parameter 𝛼1 of the baseline hazard 

function to vary across senders using a log-normal distribution in the following way: 𝜆0,𝑖(𝑡) = 𝛼0𝛼1𝑖𝑡𝛼1𝑖−1 

and log (𝛼1,𝑖)~N(𝛼1���,𝜎𝛼2), where i is the index over senders. (Note that the heterogeneity in 𝛼0 is absorbed 

by 𝑎𝑖 , the sender-specific random effect.) Second, heterogeneity may exist because the same covariates may 

have different impacts on different reviewers’ propensities to form trust relationships. To control for this, we 

allow for heterogeneity in the coefficients as follows: �
𝜷𝑖𝑖

𝜷𝑖
𝑗

 𝜷𝑖
𝑖𝑗
� = 𝜷𝑖 = 𝜹 + 𝜺𝒊, 𝜺𝒊~𝑀𝑉𝑁(0,𝚺𝛽). The notation 

used here is similar to that used in the homogenous model in Section 3 of the paper. Let Cij be the number of 

time periods for which dyad ij has been observed, and Tij be the length of time from the starting point to the 

time period when i extends a tie to j. We define 𝕀ij = 1 if Tij ≤ Cij (i.e., if a tie formed within the observation 

time) and 0 otherwise, and kij = floor�min�Tij, Cij�� . The log-conditional-likelihood function for this 

formulation is given by:  

log𝐿 = � � �𝕀𝑖𝑗 log �1 − exp �− exp �𝛼𝑖�𝑘𝑖𝑗� + 𝒛𝑖𝑗,𝑘𝑖𝑗𝜷𝒊 + 𝒂𝒊 + 𝒃𝒋 + 𝒅𝒊𝒋���
𝑁

𝑗=1,𝑗≠𝑖

𝑁

𝑖=1

 

                                   −∑ exp [𝛼𝑖(𝑡) + 𝒛𝑖𝑗𝑡𝜷𝒊 + 𝑎𝑖 + 𝑏𝑗 + 𝑑𝑖𝑗]�𝑘𝑖𝑗−1
𝑡=0 ,                               

where 𝛼𝑖(𝑡) = ln �∫ 𝜆0,𝑖(𝑢)𝑑𝑢𝑡+1
𝑡 �. The results for the model with heterogeneity are provided in the table 

below. We find that the impact of preferential attachment and recency are qualitatively the same as in the 

model with homogenous individuals.  
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Parameter Estimates for the “Movies” Category with Heterogeneous Coefficients 

Variables Posterior Mean Posterior Std Deviation 
across Individuals 

Receiver Characteristics    

     Receiver’s PrevAggReview 0.0774 0.5961*** 

     Receiver’s CurReview 0.4193*** 0.2916*** 

     Receiver’s AggOpnLeadership 0.1789*** 0.2587*** 

     Receiver’s CurOpnLeadership 0.3045*** 0.4966*** 

     Comprehensiveness 0.2351*** 0.2437*** 

     Objectivity 0.1157 0.2658*** 

     Readability 0.1480 0.3049*** 

     (Comprehensiveness)2 -0.2223*** 0.5855*** 

     (Objectivity)2 -0.0873*** 0.1825*** 

     (Readability)2 -0.3301*** 0.4390*** 
     Top Reviewer Label 0.1968*** 0.3546*** 

Sender Characteristics    

     Sender’s AggReview 0.1477*** 0.4048*** 

     Sender’s AggOutgoingLink 0.0888*** 0.2001*** 

Dyad Characteristics    

     Dissimilarity in Comprehnsiveness -0.1445*** 0.2035*** 

     Dissimilarity in Objectivity -0.1003** 0.1900*** 

     Dissimilarity in Readability -0.0739 0.6119*** 

     Reciprocity 0.1941*** 0.2138*** 
     Number of Commonly Trusted Reviewers 0.1672*** 0.4610*** 

Hazard Rate Parameters   

     Log(𝛼0) -14.7143***  

     𝛼1��� -6.0919***  

     𝜎𝛼2 0.4977***  

     𝜎𝑑2 0.2078***  

     𝜎𝑎2 0.6080***  

     𝜎𝑏2 0.5282***  

     𝝈𝒂𝒃 0.1379***  
***, ** and * denote that the 99% credible interval, the 95% credible interval, and the 90% credible interval, respectively, 
does not include zero.  
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Estimation Procedure 

For the procedure described below, letters with superscript 𝑢  represent the values of the corresponding 

updated parameters.  

Step 1: 𝜷𝑖𝑢|𝜹, Σ𝜷,𝑎𝑖 , 𝑏𝑖,𝛼0,𝛼1,𝑖,𝑑𝑖𝑗 , data 

 𝑓(𝜷𝑖𝑢|𝜹, Σ𝜷,𝑎𝑖 , 𝑏𝑖,𝛼0,𝛼1,𝑖,𝑑𝑖𝑗 , data) 

                ∝ N ��𝜷𝑖𝑢�𝜹,𝑎𝑖, 𝑏𝑖,𝛼0,𝛼1,𝑖,𝑑𝑖𝑗�, Σ𝜷�𝐿(𝒀) 

     ∝ �Σ𝜷�
−12 exp �− 1

2
(𝜷𝑖𝑢 − 𝜹)′Σ𝜷

−1(𝜷𝑖𝑢 − 𝜹)� 𝐿(𝒀) 

where 𝐿(𝒀) is the likelihood function. Since this distribution does not have a closed form, we use the 

Metropolis-Hastings algorithm to draw from the conditional distribution of 𝜷𝒊. 𝜷𝒊 is the draw of coefficients 

from the previous iteration, and we draw 𝜷𝑖𝑢 by 𝜷𝑖𝑢 = 𝜷𝒊 + ∆𝜷, where ∆𝜷 is a draw from N(0, Δ2Λ), and Δ 

and Λ are chosen adaptively to reduce the autocorrelation among the MCMC draws following Atchade 

(2006). The probability of accepting this 𝜷𝑖𝑢, the updated value for 𝜷𝒊 is: 

Pr(acceptance) = min {
[exp (−1

2 �(𝜷𝑖𝑢 − 𝜹)′Σ𝜷
−1(𝜷𝑖𝑢 − 𝜹)�]𝐿(𝒀|𝜷𝑖𝑢)

[exp (−1
2��𝜷𝑖 − 𝜹�

′
Σ𝜷
−1�𝜷𝑖 − 𝜹��]𝐿(𝒀|𝜷𝑖 )

, 1} 

Step 2:  𝜹𝑢|Σ𝜷,𝜷𝑖𝑢 

𝜹𝑢 is generated from the distribution MVN(𝝁𝜹,𝑽𝜹), where 𝝁𝜹 = 𝑽𝜹�𝚺𝛽−1 ∑ 𝜷𝑖𝑢 + 𝑉0−1𝑈0𝑁
𝑖=1 �,  𝑽𝜹 =

(𝑵𝚺𝛽−1 + 𝑉0−1)−𝟏. We define diffuse priors by setting 𝑉0 = 100𝐼 and 𝑈0 = 0.  

Step 3: Σ𝜷
𝑢|𝜷𝑖𝑢,𝜹𝑢 

(Σ𝜷
𝑢|𝜷𝑖𝑢,𝜹𝑢)~IW𝑛(𝛽)(𝑓0 + 𝑁,𝑮0−1 + �(𝜷𝑖𝑢 − 𝜹𝑢)(𝜷𝑖𝑢 − 𝜹𝑢)′

𝑁

𝑖=1

)
 

where we set 𝑓0 = 𝑛(𝛽) + 5 and 𝑮𝟎 = 𝐼𝑛(𝛽) to be diffuse hyperpriors. 𝑓0 is the degrees of freedom, 𝑮𝟎is the 

scale matrix of the inverse-Wishart distribution, and 𝑛(𝛽) is the number of 𝛿 parameters, the ones before 

observed covariates that we are interested in.   
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Step 4: 𝛼1,𝑖
𝑢 |𝜷𝑖𝑢,𝑎𝑖, 𝑏𝑖,𝛼0,𝛼1���,𝜎𝛼2,𝑑𝑖𝑗 , data 

We can define the distribution of 𝛼1,𝑖
𝑢  as: 

 𝑓�𝛼1,𝑖
𝑢 �𝜷𝑖𝑢,𝑎𝑖 , 𝑏𝑖,𝛼0,𝛼1���,𝜎𝛼2,𝑑𝑖𝑗 , data� 

      ∝ N((𝛼1,𝑖
𝑢 |𝜷𝑖𝑢,𝑎𝑖, 𝑏𝑖,𝛼0,𝛼1���,𝑑𝑖𝑗),𝜎𝛼2)𝐿(𝒀) 

                 ∝ 𝜎𝛼 exp �− 1
2
�𝛼1,𝑖

𝑢 − 𝛼1����
2𝜎𝛼−2� 𝐿(𝒀) 

We use the Metropolis-Hastings algorithm to draw from the conditional distribution of 𝑎𝑖 , 𝑎𝑖 is the draw of 

coefficients from the previous iteration, and we draw 𝛼1,𝑖
𝑢  according to 𝛼1,𝑖

𝑢 = 𝛼1,𝑖 + Δ𝛼, where Δ𝛼 is a draw 

from N(0,Δ2Λ), and Δ and Λ are chosen adaptively to reduce autocorrelation among MCMC draws following 

Atchade (2006),. The acceptance probability is:

 

Pr(acceptance) = min {
�exp �−1

2 �𝛼1,𝑖
𝑢 − 𝛼1����

2𝜎𝛼−2�� 𝐿�𝒀�𝛼1,𝑖
𝑢 �

�exp �−1
2 �𝛼1,𝑖 − 𝛼1����

2
𝜎𝛼−2�� 𝐿�𝒀�𝛼1,𝑖�

, 1} 

Step 5: 𝛼1���𝑢|𝛼1,𝑖
𝑢 ,𝜎𝛼2, data 

𝛼1���𝑢 is generated from a distribution N(𝜇𝛼 , 𝜈𝛼), where 𝜇𝛼 = 𝜈𝛼�𝜎𝛼−2 ∑ 𝛼1,𝑖
𝑢𝑁

𝑖=1 + 𝜈𝛼0
−1𝑈0�, 𝜈𝛼 =

(𝑁𝜎𝛼−2 + 𝜈𝛼0
−1)−1. We define diffuse priors by setting 𝜈𝛼0 = 100 and 𝑈0 = 0. 

Step 6: (𝜎𝛼2)𝑢|𝛼1���𝑢,𝛼1,𝑖
𝑢  

�(𝜎𝛼2)𝑢�𝛼1���𝑢,𝛼1,𝑖
𝑢 �~InverseGamma(𝑓0 + 𝑁,𝑔0−1 + �(𝛼1,𝑖

𝑢 − 𝛼1���𝑢)2
𝑁

𝑖=1

) 

where we set 𝑓0 = 6 and 𝑔0 = 1 to be diffuse hyperprior. 𝑓0 is the degrees of freedom, 𝑔0 is the scale matrix 

of the inverse Gamma distribution. 

Step 7: 𝛼0𝑢|𝜷𝑖𝑢,𝑎𝑖, 𝑏𝑖,𝛼1,𝑖
𝑢 ,𝑑𝑖𝑗 , data 

𝑓(𝛼0𝑢|𝜷𝑖𝑢,𝑎𝑖 , 𝑏𝑖,𝛼1,𝑖
𝑢 ,𝑑𝑖𝑗 , data) ∝ 𝜎𝛼0

−1exp [−
1
2

(𝛼0𝑢 − 𝛼0���)2𝜎𝛼0
−2]𝐿(𝒀) 

where 𝛼0��� and 𝜎𝛼02   are diffuse priors. Because there is no closed form for this, we use the Metropolis-

Hastings algorithm to draw from this conditional distribution of 𝛼0𝑢 . The probability of accepting 𝛼0𝑢 is:  
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Pr(acceptance) = min {
�exp �−1

2 (𝛼0𝑢 − 𝛼0���)2𝜎𝛼0
−2�� 𝐿(𝒀|𝛼0𝑢)

�exp �−1
2 �𝛼0 − 𝛼0����

2
𝜎𝛼0
−2�� 𝐿�𝒀�𝛼0 �

, 1} 

We define diffuse priors by setting 𝛼0��� = 0 and 𝜎𝛼0
2 =30. 

Step 8: Generate 𝑎𝑖
𝑢, 𝑏𝑖𝑢: 

 𝑓(𝑎𝑖𝑢, 𝑏𝑖𝑢|𝜷𝑖𝑢,Σ𝑎𝑏 ,𝛼0𝑢,𝛼1,𝑖
𝑢 ,𝑑𝑖𝑗, data) 

                ∝ N ��𝑎𝑖𝑢, 𝑏𝑖𝑢|𝜷𝑖𝑢,𝛼0𝑢,𝛼1,𝑖
𝑢 ,𝑑𝑖𝑗�, Σ𝑎𝑏�𝐿(𝒀) 

     ∝ |Σ𝑎𝑏|−
1
2 exp �− 1

2
(𝑎𝑖𝑢, 𝑏𝑖𝑢)Σ𝑎𝑏−1(𝑎𝑖𝑢,𝑏𝑖𝑢)′� 𝐿(𝒀) 

Because this distribution does not have a closed form, we use the Metropolis-Hastings algorithm to draw 

from the conditional distribution of 𝑎𝑖, 𝑏𝑖 : 𝑎𝑖 , 𝑏𝑖 is the draw of the random effect from the previous iteration, 

and we draw 𝑎𝑖𝑢,𝑏𝑖𝑢 by �
𝑎𝑖𝑢

𝑏𝑖𝑢
� = �

𝑎𝑖
𝑏𝑖� + Δ �𝑎𝑏�, where Δ �𝑎𝑏� is a draw from  N(0,Δ2Λ), and Δ and Λ are chosen 

adaptively to reduce autocorrelation among MCMC draws following Atchade (2006). The probability of 

accepting this�
𝑎𝑖𝑢

𝑏𝑖𝑢
�, the updated value for �

𝑎𝑖
𝑏𝑖� is: 

Pr(acceptance) = min {
�exp �−1

2 (𝑎𝑖𝑢,𝑏𝑖𝑢)Σ𝑎𝑏−1(𝑎𝑖𝑢, 𝑏𝑖𝑢)′�� 𝐿(𝒀|𝑎𝑖𝑢, 𝑏𝑖𝑢)

�exp �−1
2 �𝑎𝑖 ,𝑏𝑖 �Σ𝑎𝑏−1�𝑎𝑖 ,𝑏𝑖 �

′
�� 𝐿(𝒀|𝑎𝑖 , 𝑏𝑖 )

, 1} 

Step 9: Σabu |𝑎𝑖𝑢,𝑏𝑖𝑢 

(Σabu |𝑎𝑖𝑢, 𝑏𝑖𝑢)~𝐼𝑊2(7 + 𝑁,𝐺0−1 + �(𝑎𝑖𝑢, 𝑏𝑖𝑢)(𝑎𝑖𝑢,𝑏𝑖𝑢)′
𝑁

𝑖=1

)
 

Step 10: 𝑑𝑖𝑗𝑢 ,𝑑𝑗𝑖𝑢|𝛼0𝑢,𝜷𝑖𝑢,𝑎𝑖, 𝑏𝑖,𝛼1,𝑖
𝑢 ,𝜎𝑑2, data 

      𝑓(𝑑𝑖𝑗𝑢 ,𝑑𝑗𝑖𝑢|𝛼0𝑢,𝜷𝑖𝑢,𝑎𝑖, 𝑏𝑖,𝛼1,𝑖
𝑢 ,𝜎𝑑2, data) 

  ∝ N ��𝑑𝑖𝑗𝑢 ,𝑑𝑗𝑖𝑢�𝛼0𝑢,𝜷𝑖𝑢,𝑎𝑖, 𝑏𝑖,𝛼1,𝑖
𝑢 �,𝜎𝑑2� 𝐿(𝒀) 

  ∝ 𝜎𝑑−1 exp �− 1
2
�𝑑𝑖𝑗𝑢 + 𝑑𝑗𝑖𝑢�

2𝜎𝑑−2� 𝐿(𝒀) 



55 
 

We use the Metropolis-Hastings algorithm to draw from this conditional distribution of 𝑑𝑖𝑗𝑢  and 𝑑𝑗𝑖𝑢 : 𝑑𝑖𝑗 and 

𝑑𝑗𝑖 are the draw of the unobservable similarity effects from the previous iteration, and we draw 𝑑𝑖𝑗𝑢 , 𝑑𝑗𝑖𝑢 by 

�
𝑑𝑖𝑗𝑢

𝑑𝑗𝑖𝑢
� = �

𝑑𝑖𝑗
𝑑𝑗𝑖
� + Δ𝒅 , where Δ𝒅  is a draw from N(0,Δ2Λ), and Δ  and Λ  are chosen adaptively to reduce 

autocorrelation among MCMC draws  following Atchade (2006). The probability of accepting �
𝑑𝑖𝑗𝑢

𝑑𝑗𝑖𝑢
� is: 

Pr(acceptance) = min {
�exp �−1

2 �𝑑𝑖𝑗
𝑢 + 𝑑𝑗𝑖𝑢�𝜎𝑑−2�� 𝐿(𝒀|𝑑𝑖𝑗𝑢 ,𝑑𝑗𝑖𝑢)

�exp �−1
2 �𝑑𝑖𝑗 + 𝑑𝑗𝑖 �𝜎𝑑−2�� 𝐿(𝒀|𝑑𝑖𝑗 ,𝑑𝑗𝑖 )

, 1} 

Step 11: Generating 𝜎𝑑𝑢 

       (𝜎𝑑𝑢| 𝑑𝑖𝑗𝑢 ,𝑑𝑗𝑖𝑢)~IW1(1 + 𝑁(𝑁 − 1), 1 + ∑ ∑ (𝑑𝑖𝑗𝑢 + 𝑑𝑗𝑖𝑢)2𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1 )  

Step 12: If convergence is not yet reached, go to Step 1.  
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	Simulation Design for Non-Long-Tailed Networks
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	For further comparison, we plot the in-degree distributions of representative short- and long-tailed networks in Figure A1.  We use data from Network 45 as an example of a short-tail network, and Network 25 as an example of a long-tail network. The x-...
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	We can make the following conclusions from the simulations:
	 By sampling all the dyads that form ties and 10% (or 15%) of the dyads that do not form ties, we can accurately estimate parameter values using the WESBI method.
	 The average posterior standard deviation in parameter estimates grows smaller as we sample more data.
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