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Appendices

Proof of Proposition 4:

The verifiability of a miner’s action is a key requirement for tacit collusion. Colluding miners

should be able to verify each other’s partial block filling actions. New blocks on the Bitcoin network –

full or partial – are public. Colluding miners can perform their actions using a unique public address

to add their blocks. An alternate method is for colluding miners to pool their computational power.

For example, Antpool is a group of miners who have decided to pool their resources together for

mining. Each miner participating in a pool contributes a verifiable amount of computational power

and submits blocks under the pool ID. The pool then distributes the rewards from winning blocks

based on the work performed. Regardless of whether the miners gather together in a pool or perform

their actions using a unique public address, they can still deviate. However, such a deviation is easily

detectable (Cong and He 2019, Malinova and Park 2017). If the colluding miners use the same public

address, transactions included in any block that they win will reveal if they are deviating. However,

it is possible for the miner to use a different public address when cheating. In a pool, this would not

be possible because the pool can verify the computational power contributed by the miner to the

pool and also the transactions included by the miner in a block. Outside of a pool, a drop in the win

rate of a large miner (identified by the public address) may indicate that he is cheating using another

address to submit fully filled blocks. Further, a colluding miner does not need to verify every other

miner’s actions. Overall, if αl fraction of the total computational power is assumed to be involved

in collusion, a participating miner simply needs to check that on average αl fraction of blocks are

partially filled to ensure that no one is deviating.

Every miner prepares a block of transactions and then starts to look for the solution to the Bitcoin

mining puzzle. Miners need to decide their filling action – full or partial – before starting to find the

mining puzzle solution. A colluding miner considers a trade-off (equation 44) between (a) immediate

revenues from a partial fill n∗
P facing a bid vector f(v) i.e., RnoDev, followed by expected collusion

profits RP for T periods or (b) deviation to maximize revenues from current block RnoDev, followed

by expected no collusion profits R0 for T periods. Recall that δ represents the time discounting

factor for Bitcoin users, which can potentially be different from that for miners (δm). A colluding

miner of size αj will not deviate from collusion if

RnoDev +αjRP ∗
δm(1− δTm)

1− δm
≥RDev +αjR0 ∗

δm(1− δTm)

1− δm
, (44)

This simplifies to,

αj ≥
1− δm

δm(1− δTm)
× RDev −RnoDev

RP −R0

. (45)
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If the miner observes equilibrium fee bid f∗(v) then RnoDev corresponds to RP , and RDev corresponds

to RF . Further, miner must be able to sustain the collusive partial fill level n∗
P in response to any

off equilibrium enticing bid vector f(v) 6= f∗(v) as well. We can upper bound the right hand side

(RDev−RnoDev) by considering the most enticing fee bid vector f(v) similar to single strategic miner

setting in the last section,

αj ≥ α̂, where α̂=
1− δm

δm(1− δTm)
× αhρN

2V
× v2

h− v2
l

RP −R0

. (46)

This represents different trade-off faced by heterogeneous miners. A small miner (αj < α̂) mines

blocks infrequently, say, once a month or year. They are less threatened by punishment far off in the

future. This can also be seen as a small miner’s desire to make the most out of winning a mining

puzzle once in a long while. A large miner sticks to the collusion strategy, as they expect frequent

or near-term fee revenues. The lower bound on the smallest colluding miner (α̂) can be reduced by

a longer punishment strategy (T →∞). This can be useful if small miner participation is necessary

to attain a colluding group with total power αl.

Figure 21 The x-axis represents miners ranked by access to hardware. The y-axis represents the computing power

of the respective miner. An example of a monotonically decreasing concave function h(m) = λe−λm

with a long tail. Three categories of miners, from left to right, - (1) Colluding by partial block filling,

(2) Free Riding by full block filling, and (3) Inactive miners. m∗ and s∗ represent the boundary between

these groups in a collusion equilibrium.

The constraints above (αj ≥ α̂, Σαj ≥ αl) assures a colluding miner’s commitment to the collusion.

We could use this to check if an exogenously given distribution of mining powers (αj) conforms to

collusion requirements. However, miner entry is endogenously determined by available revenues and

hardware distribution. Next we identify corresponding constraints on mining hardware distribution

for collusion. This is useful because a Blockchain designer does not directly control mining powers

(αj), but they control hardware distribution via choice of mining puzzle (e.g., SHA 256 Hash, Scrypt).

It would allows us to discuss potential Blockchain designs for averting collusion. Figure 21 illustrates
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Table 4 Single-period expected payoffs corresponding to three actions (Partial, Full, and No Mining) off and on

collusion equilibrium paths.

On Equilibrium (αl) Off Equilibrium (αl = 0)

Partial R(αj, P,∗) fhnP f0nP

Full R(αj,F,∗) fhnP + fl(nF −nP ) f0nF

No Mining R(αj,0,∗) 0 0

our model of miner heterogeneity with respect to access to computing hardware. A large miner has

access to hardware capable of faster hash calculations at the same cost. Given the favorable trade-off

for the large miners, we focus on collusion among a group (Σαj = αl) of the largest miners. We must

ensure that no miner (colluding, free riding, or outside) deviates from their action in equilibrium.

Figure 22 depicts the sequence of choices for a miner. First, they decide whether to purchase

the hardware. Second, they decide whether to follow the collusion strategy. The second choice is

repeated over infinite block creation periods. These choices are made by all miners simultaneously.

We want to identify conditions under which the top m∗ miners collude and the next (s∗ −m∗)

miners participate as free riders. In a subgame equilibrium, these participating miners should be

willing to purchase the hardware and stick to the collusion strategy. All miners beyond s∗ should be

better off not purchasing the hardware. Individual miners have rational expectations of equilibrium

strategies followed by all other miners. The focal miner first decides whether to buy the hardware.

Under collusion equilibrium, a rational miner expects the top s∗ miners to buy hardware. Next,

they decide whether to follow the equilibrium collusion strategy or the no-collusion strategy. On the

collusion path, a rational miner expects the top m∗ miners to add partial blocks. On the no-collusion

(off-equilibrium) path, a rational miner expects all active miners to add full blocks. On both the

collusion equilibrium and the no-collusion off-equilibrium path, the focal miner exercises a choice

of partial filling, full filling or no mining. The block creation sub-game on-equilibrium (right) and

off-equilibrium (left) paths are repeated infinitely with a discount factor δm.

Single-block-fee payoffs are denoted by R(∗,∗,∗) with three arguments. The first argument rep-

resents the mining power of the focal miner. The second argument represents the focal miner block

fill action, i.e., partial (P) or full (F). The third argument represents the colluding group power, i.e.,

collusion (αl) or no collusion (0). Table 4 provides the single-period expected payoffs corresponding

to all actions. Single-period payoffs are strictly better under the full block filling action for all miners.

If the focal miner has power αj ≥ αm but decides to add a full block under collusion, they expect

to be punished. All miners would move to the no-collusion sub-game if a single miner deviates from

the collusion.
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Figure 22 Miner j with access to computing power (αj) decides whether to buy hardware. Next, the miner

decides whether to follow the collusion strategy. The colluding group of miners chooses Partial fill. The

free-riding group chooses Full. Deviation by a colluding group member leads to a no-collusion setting

whereby everyone always fully fills their block. The block creation sub-games on equilibrium (right) and

off equilibrium (left) are repeated infinitely with a discount factor δm.

Table 5 lists all constraints that ensure that no miner has a profitable deviation in an SPE. For

a large focal miner (αj > αm), constraint 1a ensures that they prefer to add partial blocks rather

than a full block in the repeating block creation sub-game. This is fulfilled if the marginal miner

satisfies αm ≥ α̂. Constraint 1b represents their preference to buy the hardware at the start of the

game. This is satisfied for the marginal miner making at least zero profits.

αm =
cm(1− δ)

RP
≥ α̂; where RP = fhnP (47)

A miner with (αm ≥ αj ≥ αs) proportion of the total power free rides. The lower limit αs denotes

the smallest miner that joins the mining network. Constraint 2a represents the preference to free

ride over joining the colluding group. Joining the colluding group would increase the power of the

colluding group to αl +αj and therefore the partial block revenues. If the marginal miner (αj = αm)

is large enough, they may increase the partial block revenues RP (αl + αj) to be higher than the

full block revenue RF (αl). In this section, we are interested in settings whereby even the largest

miner is too small to perform partial block filling without a threat of punishment 18. Large miners

unilaterally perform partial block filling as shown in Section 3.2.

18 An equilibrium at αl is only valid when individual miners are relatively small: αm ≤R−1
P (RF (αl))−αl)
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Table 5 List of all constraints that ensure that no miner has a profitable deviation in an SPE. Three pairs of

constraints (1a,1b), (2a,2b) and (3a,3b) correspond to three types of miners - (1) colluding miners, (2) free-riding

miners and (3) inactive miners, respectively.

Focal Miner Constraint

αj >αm

1a R(αj, P,αl) +αj
δm

1−δmR(αj, P,αl)≥R(αj,F,αl) +αj
δm

1−δmR(αj,F,0)

1b 1
1−δmR(αj, P,αl)− cj ≥ 0

αm ≥ αj ≥ αs

2a R(αj,F,αl) +αj
δm

1−δmR(αj,F,αl)≥R(αj, P,αl +αj) +αj
δm

1−δmR(αj, P,αl +αj)

2b 1
1−δmR(αj,F,αl)− cj ≥ 0

αj ≤ αs
3a αj

1
1−δmR(αj,F,0)− cj ≤ 0

3b 1
1−δmR(αj, P,αl +αj)− cj ≤ 0

Constraint 2b represents free-riding miners’ preference to buy the hardware at the start of the

game. This is satisfied for the smallest miner making positive profits.

αs ≥
cs(1− δ)
RF

; where RF = fhnP + fl(nF −nP ) (48)

For a focal miner who stays out (αj ≤ αs), constraint 3a represents their preference to not join

as a free rider. Joining in as a free rider reduces the power of the colluding group below αl and

makes collusion unprofitable. Since the smallest miner makes zero profits when free riding, they are

guaranteed to make negative profits when collusion breaks. Finally, constraint 3b represents their

preference to join the colluding group. Similar to the free rider, this increases the power of the

colluding group to αl + αj and therefore the partial block revenues. These partial block revenues

R(αl +αj, P,αj) must be smaller than zero. This is automatically satisfied since αs <αm.

We now proceed to obtain the equilibrium expressions for the smallest colluding miner, denoted

by m∗, and the smallest free-riding miner, denoted by s∗. For the smallest colluding miner, we need

constraint 1b to become an equality. Specifically, we need

1

1− δ
R(αm, P,αl)− cm = 0.

We know that R(αm, P,αl) = αm×RP . Thus, from the above equation, we have

αm×RP = cm(1− δ)

or equivalently

αm =
cm(1− δ)

RP
. (49)
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From the definition of αl, we know that

αl =
H(m∗)

H(s∗)
.

Thus, we have

H(s∗) =
H(m∗)

αl
. (50)

From the definition of αj, we also know that

αm =
h(m∗)

H(s∗)
.

Substituting the expression of H(s∗) from (50), we obtain

αm =
h(m∗)αl
H(m∗)

= Λ(m∗)c(m∗)αl,

where Λ(m)≡ h(m)

H(m)c(m)
. Using (49), we have

Λ(m∗)c(m∗)αl =
c(m∗)(1− δ)

RP
,

or

m∗ = Λ−1

(
1− δ
αlRP

)
. (51)

The monotonically decreasing function Λ≡ h(m)

H(m)c(m)
ensures unique solutions. The marginal collud-

ing miner earns zero profit and must be large enough such that future punishment is a credible

threat (αm∗ ≥ α̂).

c(m∗)(1− δm)

RP
≥ α̂ (52)

Free-riding miners present in equilibrium enter until colluding miners have exactly αl proportion of

the total computing power. Using (50), we have

s∗ =H−1

(
H(m∗)

αl

)
, (53)

where m∗ is given in (51). In addition, the smallest free-riding miner must be large enough to make

positive profits.

αs∗ =
h(s∗)

H(s∗)
≥ c(s∗)(1− δm)

RF
(54)

�

The subgame perfect equilibrium above focuses on a colluding group with exactly αl power. All

miners adding partially filled blocks (Σαj = 1) is yet another SPE. In such a case, users either stay
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off the chain or offer a high fee (fh); no one offers a low fee (fl). As a result, a deviation to add a

full block (RF ) with low-fee-paying transactions is not an option. We have not observed such full

collusion on the Bitcoin network. We do not provide a specific justification for one equilibrium over

other; however, we focus on the αl collusion as a more interesting and practical setting. In addition

to these extreme cases, collusive equilibria with αl ≤ Σαj ≤ αh may also be possible. If a single

miner with power αj′ deviates from such collusion, the remaining group is left with power Σαj−αj′ .
Punishing the deviating miners requires this group to not engage in collusion permanently. This is

not necessarily a rational strategy for the remaining Σαj −αj′ group at this stage. They are better

off colluding on partial block filling if Σαj−αj′ >αl. This rational strategy to collude with a smaller

group does not constitute a threat to the deviating miner. The deviating miner is thus better off by

continuing to free ride. In this paper, we do not validate or reject the existence of miner strategies

that sustain such equilibria.

A. Off Chain Payment

In practice, off-chain alternative for Bitcoin is a combination of Credit Cards, PayPal and Wire

Transfer (SWIFT). Following is a very rough estimate of proportional fees charged and time to

complete for these off-chain modes on an international payment. While Credit Cards offer almost

instant payment faster than Bitcoin, Wire transfers are much slower than Bitcoin. Our writing did

not provide this detail on off-chain alternatives.

Mode Fees Time

SWIFT (Wire)
1-3% (fx markup) + $50 (payer bank) + $20 (correspondent bank)

+ $20 (receiver bank) +
3 Days

PayPal 3% (to send) + 4.4% (to receive) 3+ Days

Credit Card 1-5% (to send) + 3% (to receive) Instant

The utility of making an international payment v using mode m could be modeled as Um(v), where

ρm is the proportional fees and δ(tm) is the discount factor over the payment completion time. The

off-chain modes offer different combination of fees and time to completion (ρm, tm). We assume a

single proportional cost ρ= ρm + δ(tm) as a combination of fees and time delay. This is reasonable

because typically low proportional rate options have large delay and vice versa.

Um(v) = v− ρmv− δ(tm)v

Um(v) = v− ρv where ρ= ρm + δ(tm)

Modeling the on-chain time discount factor is critical because time to completion is endogenously

determined by user action (e.g., fee offer) and competition. Modeling the off-chain discount factor
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is not necessary because it is fixed in advance irrespective of user action. It is accounted for via

(ρ). The choice of off-chain features (ρm, tm) provided by Banks or Credit Cards in response to user

choices are outside the scope of our research.

B. User Collusion

Let us consider a scenario where miners act passively by adding full blocks (nF ). If users compete

every period, top nF users each pay fees f0 = αhρ(1 − γ)V . Let us consider users collusion such

that the top nF users pay a lower fees fc < f0 while the remaining users stay off-chain instead of

competing with the top nF users on fee. The marginal user v = v0 has the highest value payment

among users who stay off chain. This user has greatest incentive to deviate by offering a fees fc + ε

to complete their payment on chain. This user can be prevented from deviating to fc + ε fee bid by

a punishment threat i.e. no collusion in future. This threatens the marginal user because they will

likely draw a payment need v ∈ [v0, Vmax] in subsequent periods. A break down in collusion means

that they will not be able to benefit from the low collusion fees fc (< f0). The marginal user pays

fc + ε by deviating and expects to pay no collusion fees E0
v [f(v)] in future periods. Otherwise, they

stay off chain and pay ρv0 in the current period and expects to pay lower collusion fees (Ec
v[f(v)]) in

future. The collusion is sustained if the future punishment would lead to larger lifetime fee payments

compared to no deviation.

fc +
δ

1− δ
∗E0

v [f(v)]≥ ρv0 +
δ

1− δ
∗Ec

v[f(v)] (55)

where,

Ec
v∼U [0,V ][f(v)] = (1− v0

Vmax
) ∗ fc +

∫ v0

0

ρ
v

V
dv (56)

and

E0
v∼U [0,V ][f(v)] = (1− v0

V
) ∗ f0︸ ︷︷ ︸

On Chain Fee

+

∫ v0

0

ρ
v

V
dv︸ ︷︷ ︸

Off Chain Fee

(57)

This simplifies to,

δ >
1

1 + nF
N

; or nF >N × (
1− δ
δ

) (58)

Interestingly this condition on the discount factor δ is independent of the equilibrium choice of

fc (< f0). In fact fc = 0 is pareto optimal collusion fees for all users. This condition captures the

intuition that the user collusion is averted if - (i) the block capacity is extremely small compared to

the demand. This means that the marginal user v0 strongly prefers to get on-chain now, instead of

waiting for the low likelihood event of being one of top nF <<N users in the near future. (ii) users



54 Why Bitcoin will Fail to Scale?

transact infrequently (small δ) i.e. the demand N every period is made up of payment needs for a

small fraction of overall users. (iii) user payment value v is sampled once instead of being randomly

sampled from [0, Vmax] every period. Small value users are always small and large value are always

large. If none of these three settings hold then user collusion at zero fees is trivial.

Theoretically, colluding miners can respond to this user collusion by only including payments that

bid fh = αhρV/2. Remember that fh was the fee offered when all miner collude to add revenue

maximizing blocks at half the demand nP =N/2. Since both users and miners are forward looking,

both are willing to forego payments via Blockchain and revenue from Blocks respectively for a few

periods. The relative values of discount factors (δ, δm) and collusion savings would determine which

side comes out on top in threatening the other into deviating from collusion. We skip delving deeper

into this formulation because of limited evidence of forward looking user fee biding or strategies -

counter strategies between users and miner. Future research could delve into some related questions

- (i) Would forward looking (even colluding) users account for security risks and pay fees higher than

the outcome of competitive auction? (ii) Would large users that comprise say 20% of all payment

demand (e.g. major Bitcoin-USD exchanges) have strategies to unilaterally alter fees, delay and

security to their advantage?

C. User Waiting

Our primary model assumes that users are impatient. They bid on chain and wait a maximum of one

block period for their payment to be included. If not, they complete the payment off chain. In this

section we ground this assumption to rational user behavior. Note that we originally modeled user

payment values as continuously distributed in [0, V ]. This was done to simplify the exposition of our

research question. Here we take a more realistic set up wherein, N users that arrive every period have

payment that take on one of V possible discrete values 1,2, ..., V . There are exactly N/V users at

every payment value v ∈ 1,2, ..., V . The discrete levels can be arbitrarily closely spaced. Similarly, fee

bids are offered in discrete increments with ε (e.g. 1 cent or 1 satoshi) being the smallest increment.

We will show a stable equilibrium where no user makes an on chain bid that results in a wait longer

than single block period. Users either bid rationally expecting to be included on the immediate block

or they go off chain.

At the outset let us assume that nw users are present in the waiting queue, while N new users

arrive in any given period. Every period miners add a block on chain, including top nF (<N +nw)

payments by fee offers. We want to find an equilibrium bid function f∗(v) and the expected wait

time w∗(v) for a user with payment value v. Let v0 be a payment value such that,

N
V − v0

V
≤ nF ≤N

V − v0 + 1

V
(59)
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Figure 23 Every block period N user payments arrive distributed uniformly over values 1,2, ..., V . Users with

payment value v0 are alluded to as marginal users. Some of these users but not all can find space on

the immediate block the rest may have to either go off chain or remain in waiting queue. Higher value

users (v ≥ v0 + 1) always find space on the immediate block, lower value users (v ≤ v0 − 1) never find

space on any future block.

Figure 24 shows corresponding three segment of users - high value, low value and marginal users.

Let f̄(v,w) be the maximum fees a user is willing to bid for a payment of value v and a wait

time w. At this maximum fees the user is indifferent between on chain and off chain proportional

fees. f̄(v,w) is naturally increasing in v, we investigate equilibrium fee bid function f∗(v) that is

monotonically increasing in v since a user with larger payment value has a higher willingness to bid

owing to costlier off chain option ρv and greater per period delay cost δv. All high value users

v ≥ v0 + 1 are in top nF new payment value arrivals, they offer an equilibrium fee higher than all

users with payment values v ≤ v0. They do not need to wait i.e. w∗(v) = 1 ∀ v ≥ v0 + 1. Note that

none of the bids in the waiting queue belong to payment value v≥ v0 + 1, thus do not compete with

these high value users anyways.

All low payment value users v ≤ v0 − 1 are outside the top nF new payment value arrivals.

They are competing against more than nF higher value users in this period. In equilibrium, where

fee offers are monotonically increasing, these users do not expect to find space on the immediate

block. Even if they bid and wait in queue, they will be competing against more than nF higher value

payments in all future periods. Their attempt to wait in queue will be futile in perpetuity. All these

low value users are better off going off chain.
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Finally, all marginal users with payment value v = v0 have a probabilistic shot at getting into

top nF bids. Let na (=N/V ) be number of users with payment value v0 that arrive every period.

Let nw be number of users with payment value v0 that have been waiting in queue for at least one

period. nd (= nF −N(V − v0)/V ) is the remaining capacity on any given block after the miner has

included all payment bids with v ≥ v0 + 1. Only nd out of (na + nw) can get onto the immediate

block. New arriving users can either go off chain or place a bid on chain for these limited spots. We

search for a mixed strategy equilibrium where these users randomize i.e. a fraction of these users

na,on place an on chain bid, while the remaining go off chain na,off (na−na,on). If equilibrium n∗
a,on

or n∗
a,off turn out to be zero, it collapses to a pure strategy.

In steady state, the total number of users vying for an on chain spot (na,on + nw) must equal

the users that are included plus the users that are left waiting (nd + nw) i.e. na,on = nd. Thus in

equilibrium nd out of na users with payment value v0 make an on chain fee offer f∗(v0) while the

rest na−nd go off chain. Figure 24 shows a single block period arrival and payment completions of

these marginal users v= v0. The expected waiting time for these users is given by,

w∗(v0) = 1× nd
nw +nd

+ 2× nw
nw +nd

nd
nw +nd

+ 3× (
nw

nw +nd
)2 nd
nw +nd

+ ... (60)

Figure 24 Every period starts with nw waiting on chain bids and na new payment arrivals. Some the new arrivals

(na−nd) go off chain, while the rest (nd) make an on chain bid. Miners pick nd random payments from

the total nd +nw on chain bids. This leaves nw payments waiting for the next block period.

From the setup above, we investigate equilibrium in following strategy space with unknowns

(f∗
h , f

∗
m, f

∗
l ) resulting in steady state waiting queue length (n∗

w) and waiting time (w∗),

f∗(v) = f∗
h ,w

∗(v) = 1 where v≥ v0 + 1 (61)

f∗(v) =

{
f∗
m with probability nd

na
,

f∗
l with probability na−nd

na

,w∗(v) =w∗ where v= v0 (62)

f∗(v) = f∗
l ,w

∗(v) =∞ where v≤ v0− 1 (63)
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This equilibrium is stable if,

• High value users v≥ v0 + 1 bid greater than all other users and are better off than the off chain

option.

f̄(v0 + 1,1)> f∗
h > f

∗
m > f

∗
l (64)

• Low value users v ≤ v0− 1 are better off with the off chain option rather than competing with

marginal or high value users.

f̄(v0− 1,1)< f∗
m < f

∗
h (65)

• Marginal user could deviate to a higher bid (f∗
m+ε). By doing so, they overcome all other waiting

or new arrival marginal users who all bid f∗
m. Thus guaranteeing inclusion on the immediate

block without additional wait (w = 1). This deviation is not profitable if the increased bid is

greater than maximum willingness to bid for an immediate inclusion f̄(v0,1).

f∗
m + ε > f̄(v0,1) (66)

Further, marginal user v= v0 must bid less than or equal to their maximum willingness to bid

(f̄(v0,w
∗)) at a wait of w∗.

We also know that f̄(v0,w
∗) ≤ f̄(v0,w = 1) since user always willing to bid more for minimal

waiting w= 1. All the constraints above can be written as,

f̄(v0 + 1,1)> f∗
h > f

∗
m + ε > f̄(v0,1)≥ f̄(v0,w

∗)> f∗
m > f̄(v0− 1,1) (67)

This condition is satisfied for an arbitrarily small ε for following equilibrium strategy,

f∗
h = f̄(v0,1) + ε ; f∗

m = f̄(v0,1) ; f∗
l = f̄(v0,1)− ε (68)

In this equilibrium, marginal users randomize between on chain and off chain payments with prob-

ability nd/na and 1− nd/na respectively. But when bidding on chain they do not expect any wait

time (w∗ = 1) or any waiting queue (nw = 0).

Underlying the formulation above is the simple intuition that the marginal user is competing

against all other marginal users in the current block period as well as marginal users that arrive in

future period. If they bid anything less than full willingness to pay f̄ than they will be superseded by

the competition in this period as well as all subsequent periods in perpetuity. Note that this happens

in particular because number of arriving users N and block capacity nF are not stochastic. Waiting

queues will emerge if these are considered to be stochastic. This is in-fact the case with Huberman

et al. 2019 and Easley et al. 2019, who incorporate stochasticity but assume that users bid without

knowledge of the exact bids in the waiting queue, instead relying on expectations of average waiting

bids.
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D. User Security Utility

In this section we discuss alternative payment value distribution and security cost distribution. We

show in Section 4.1 the largest payment secured Vsecure when the demand is made up on N(d,V )

payments uniformly distributed in [0, V ]. Now we contrast with a setting where demand is made

up of N(d,V ) payments exponentially distributed in [0, V ]. The left half in Figure 25 shows two

different payment distributions. The right half in Figure 25 shows the largest payment secured when

demand is made up of N(d,V ) payments distributed uniformly or exponentially in [0, V ]. In case of

uniform distribution, the largest payment secured increases linearly with payment upper bound V

until Vmax. Participation of large value payments both raises and needs greatest level of security.

This is not the case with exponential distribution of payment demand. Increase in revenue with

larger payments grows slowly because there are fewer large payments. This revenue growth may not

be sufficient to provide security to increasingly higher payments. A middle segment of user with

high enough fee savings and low enough security risk may have greatest willingness to participate on

the Blockchain. Contemporaneous work by Chiu and Koeppl 2017, consider settings where a large

number of small payment demand are compared against small number of large payment demand.

Not surprisingly, such a setting resembles exponential distribution and leans in favor of the former

i.e. small payments.

Figure 25 The left figure shows two payment value distributions uniform (U [0, Vmax]) and exponential (λe−λv).

The right figure plots highest payment secured when the demand is made of payments in [0, V ] following

the two distributions. In the region where highest payment secured is less that required security, at least

some of the large payments in [0, V ] are insecure.

Beside the payment value distribution, we also make an assumption on the functional form of

the security cost. In Section 3.1 we assume only transactions with value v ≤ Vsecure are safe from a
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double-spend attack when miner revenue is R. We go on to endogenize this upper bound Vsecure in

Section 4.1. Throughout the analysis we assume a binary security cost i.e. payments above Vsecure

are certain to be double spent and payments below Vsecure are certain to be safe. This happens if

users have knowledge of specific adversary with power θ. In practice, users may only have beliefs of

adversary power i.e. a distribution over possible adversary power P (θ). The probability of a payment

v double spent will be, ∫ 1

0

1

[
v >R

(1− θ)2

1− (1− θ)2

]
×P (θ)dθ, (69)

where 1[·] is an indicator variable that takes value 1 when the condition inside it is true, and value

0 otherwise. Thus the security cost takes a continuous form instead of binary,

S(v) =

∫ 1

0

v×1
[
v >R

(1− θ)2

1− (1− θ)2

]
×P (θ)dθ (70)

We defined f̄ as the maximum on chain fees a user is willing to offer in order to avoid off chain

proportional rate i.e.f where Uoff−chain =Uon−chain−included.

f̄ = αhρv−S(v)/δ (71)

Under a binary security cost f̄ is monotonically increasing for v ∈ [0, V ] i.e. users with large value

payment stand to gain most by avoiding the off chain channel. This results is an outcome where

Blockchain is used by largest value payments that crowd out smaller payments. f̄ is monotonically

increasing for a security cost distributions if,

∂S(v)

∂v
≤ δαhρ ; ∀ v ∈ [0, V ] (72)

This is trivially satisfied for a binary distribution, but may not be true for all security cost distribu-

tions. If not satisfied, a middle tier of values will have the greatest willingness to pay for payment

via Blockchain, instead of the highest tier of values.

Figure 26 shows three possible security cost distributions - binary distribution (S1(v)) similar to

one considered in the main text, and two continuous distributions (S2(v), S3(v)). All these security

cost distributions take a monotonically increasing form since larger payments offer greater double

spend incentive for any adversary θ. Distributions S1(v) and S2(v) satisfy (72) because the largest

value v = V still has the highest willingness to pay after accounting for the security cost. This can

be interpreted from the figure as the gap between the (fee savings - delay cost) and the security

cost. Distributions S3(v) does not satisfy (72), in fact a different payment value in the middle has

the largest gap or the largest willingness to offer Blockchain fee ((fee saving - delay cost) - security
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Figure 26 The willingness to pay on chain incorporates fee savings and delay. This is compared against security

cost S(v) with three different formulations. S1(v) is the binary formulation used in the main text. S2(v)

and S3(v) are two alternative formulations.

cost). Such a security cost distribution would change our analysis such that a middle tier of values

will get preferential treatment for payment via Blockchain.

Alternative models for payment value distribution or security cost distribution do not change the

primary insight. Users are heterogeneous (off chain fee, delay, security risk) in willingness to pay.

A group of strategic miner can benefit from creating artificial capacity constraints to keep out low

willingness to pay users. A re-design to weaken the miner, reduces the security and thus all users

willingness to pay. The double edged sword of collusion and security threat keeps the Blockchain

accessible to only a fraction of the overall payment demand.

E. Users Costs and Block Reward

The total cost borne by Bitcoin users can be categorized into the following three components.

On Chain Transaction Fee =
∫ V
v∗0
f∗

0
N
V
dv= nFf

∗
0

Off Chain Proportional Fee =
∫ v∗0

0
(ρv)N

V
dv

Delay Cost =
∫ V
v∗0

(1− δ)vN
V
dv

Figure 27 shows block size nF varied between 0-100% of demand N as a protocol design choice.

This changes equilibrium outcomes v∗0 and f∗
0 . The left figure shows three components of total user

costs – Transaction Fee, Off Chain Proportional Fee and Delay dis-utility. The right figure shows

all three components combined into total costs with Blockchain, compared against total cost in a
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Figure 27 The left figure shows three components of total user costs against block size nF . The right figure

shows the total cost (sum of three components), compared against payment costs in a world without

Blockchain option.

world without Blockchain option. The combined cost always dominates a setting without Blockchain

i.e. more payment channel options are strictly better for users. Figure 28 shows block duration d

on x-axis varies between 0.5 to 1.5 times the current duration d= 10 minutes. We assume that an

increase in duration d, linearly decreases demand N in every Block period and linearly decreases

the discount factor δ. A cursory analysis indicates that user surplus is greatest at very high block

size nF or very low block duration d, but we caveat this with collusion and security issues to be

discussed in later section.

Note that we model users choices of channel determined by fees, delay and security. We made two

implicit assumptions in doing so - (i) Users do not have a need for exchanging native Blockchain

crypto currency for fiat currency. In our model, all users draw periodic payment needs from the same

distribution. We assume that all users carry sufficient stock of crypto currency to send and receive

payments without needing to exchange from fiat currency. Since all users are homogeneous in their

long term payment needs, all of them hold the same average stock of crypto currency. (ii) Users

do not face any inflation in crypto currency prices relative to fiat currency on their coin stock. In

practice, coinbase Block rewards B distributes additional currency supply to miners. Given constant

demand for payments, an increasing supply of coins leads to inflation. Effectively all users pay a

combined B in rewards to miners every period. This would be a fourth cost component beside fees,

delay and security.This reward is proportional to gross activity or total value of payments on the
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Figure 28 The left figure shows three components of total user costs against block duration d. The right figure

shows three components combined, compared against payment costs in a world without Blockchain

option.

platform,

B = k

∫ V

v∗0

v
N

V
dv=

kN

2V
(V 2− v∗2

0) (73)

The proportionality constant k captures markets inherent currency velocity i.e. number of payments

where the same coin is used and inflation level or block reward level set on the protocol.

In our model, since all users are homogeneous in their long term payment needs, all of them

hold the same average stock of crypto currency and thus face the same block reward inflation cost.

Individual user is paying B/N in inflation cost to miners every period in addition to transaction fees.

Users pays this per period average cost of holding inflationary crypto currency even if they happen

to use the fiat channel for payment in a given period. Our primary model found that a setting

with additional payment channel option is strictly better for users compared to a no Blockchain

world. This is not necessarily the case anymore where we account for Block Reward Inflation cost in

addition to fees, delay and security costs. Figure 29 is similar to an earlier Figure 27, albeit with this

additional fourth cost component. A rational user will keep stock of coins for regular payments via

Blockchain channel if these combined four cost components are strictly better for users compared to

a no Blockchain world.

This leads to an additional constraint,

Coston chain fees +Costoff chain fees +Costdelay +Costblock reward inflation > Costoff chain only (74)
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Figure 29 The left figure shows four components of total user costs against block size nF . The right figure shows

four components combined, compared against payment costs in a world without Blockchain option.

∫ V

v∗0

f∗
0 dv+

∫ v∗0

0

ρv

V
dv+

∫ V

v∗0

(1− δ)v
V

dv+

∫ V

v∗0

kv

V
dv >

∫ V

0

ρv

V
dv (75)

Non zero Block Rewards (k > 0,B > 0) may have total costs greater than a no Blockchain world.

This happens at very low Block capacity nF because, users are required to keep a stock of periodically

inflating native coins for infrequent payment needs. Figure 30 shows user costs and miner revenues

as block reward inflation levels are varied on the protocol between k = 0%,1%,2%. Miner revenues

increase with higher Block Reward. A group of colluding miner now prefer a block size higher than

before (nP >N/2) where they earn larger revenues thus raising security. The overall impact for users

is mixed - negative impact of additional cost component but positive impact of greater collusion

capacity and greater security.

While it is not the focus of our work, future researcher can venture further in direction to find

optimal design balance between Block rewards and capacity. In fact its possible that very high Block

Rewards and near zero transaction fee (nF or nP < N,f = 0) are overall more optimal in certain

market parameter ranges (e.g. N,V,ρ). In-fact such a design is proposed by Chiu and Koeppl 2017.

Transaction fee in our model are determined by competitive auction i.e. entry of a large value user

increases bids by all other users. Chiu and Koeppl 2017 set transaction as an exogenous proportional

rate i.e. entry of a large value user only adds a small fee paid by that individual user. Under this

assumption they show that high Block Rewards and near zero transaction fee (nF or nP <N,f = 0)

dominate. Naturally, such a design will need a different mechanism to prioritize payments without

auctions. Since Block capacities are limited and miner endogenously prioritize payments via the
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Figure 30 The left figure shows four components combined against total user costs in a no Blockchain world. As

Block rewards increase (k= 0%,1%,2%), the overall cost for users are higher at the same block capacity

nF . The right figure shows total miner revenues (auction fees and block rewards). As Block rewards

increase (k = 0%,1%,2%), colluding miner will prefer an increasing partial fill level. With increasing

Block rewards users face greater costs but less severe collusion prospects.

auction mechanism in most existing p2p Blockchain designs, we would argue that our work caters

more to current market conditions and popular design paradigms.

F. Double-Spend Attack with Stake in Bitcoin

In this section, we extend our model of double-spend attack and consider a setting in which miners

have incentives to protect Bitcoin from double-spend attack. These incentives can originate from the

fact that miners can have investments in Bitcoin (e.g., in the form of owning some Bitcoins).

Let B represent the market price of Bitcoin (per unit). Assume that after a double-spend attack the

market price of Bitcoin drops by a factor µ, µ∈ [0,1]. Thus, in an event of a double-spend attack, the

market price of Bitcoin will be (1−µ)B, after the attack. Before we derive the implication of a drop

in Bitcoin market price, let us discuss at least one possible driver for this drop in price. We briefly

introduce market price of Bitcoin in Appendix section E, when discussing non zero Block Rewards.

We based market price of Bitcoin on gross activity or total value of payments on the platform. The

total value of payments on the platform depends on range of payment values (say [0, V ]) that are

executed on the platform. Since large payment values are under greatest threat from a double spend

attack, the maximum viable payment value (say V ) depends on the level of security. A successful

double spend attack would lower confidence on security. This lowers the maximum payment users
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are willing to accept on Bitcoin and resulting in lower gross activity on the platform19. This would

be one example of how a double spend attack drops Bitcoin market price by a factor µ.

Because a double spend attack lowers market value of a miner’s Bitcoin investment, they have

incentives in keeping the system secure. Let σ represent the total number of Bitcoins in the system.

We assume that a miner with hashing power θ has σθ Bitcoins. Since each Bitcoin has a market value

of B, the total Bitcoin capital of the miner with power θ is σθB. If a double-spend attack happens, a

miner with power θ will lose σθBµ of Bitcoin capital. Similar to our analysis in Section 4.1, we model

that a miner of power θ rationally decides whether to carryout a double-spend attack or continue to

earn a legitimate mining-revenue from Bitcoin. Define µ̄= 1−µ. The total profit of the miner from

a double-spend attack can be written as

πdouble spend = [1− (1− θ)2](v+R)− c−σθBµ+ δm(θRµ̄− c) + δ2
m(θRµ̄− c) + . . . (76)

As derived in Section 4.1, [1− (1−θ)2] is the probability of successfully carrying out a double-spend

attack by a miner of hashing power θ, v is the value of transaction being attacked and R is the

mining reward earned by a miner for successful mining. Thus, v+R is the total reward earned in

a double-spend attack. The cost of mining is represented by c, and the term σθBµ represents the

loss of Bitcoin capital due to the double-spend attack. Also, note that after the double-spend attack

the revenue from each successful mining is Rµ̄, because the value of Bitcoin decreases by a factor

of µ after the double-spend attack.20 Similarly, the profit of the miner from honest mining can be

written as

πhonest = (R− c) + δm(θR− c) + δ2
m(θR− c) + . . . (77)

To dissuade an adversary from performing a double-spend attack, we need πhonest ≥ πdouble spend.

From the above expressions of πhonest and πdouble spend, this condition simplifies to

v≤ Vsecure,

where

Vsecure =
R

1− θ̄2

[
θ̄2 +

θµδm
1− δm

]
+σθBµ. (78)

19 In theory, if all users have correct expectation of level of security (Vsecure) to begin with, then equilibrium level of
maximum payment acceptable on Bitcoin is already in line with level of security (V ≤ Vsecure). An attempt to accept
a payment of value v > Vsecure would invite a double spend attack. Accepting a payment of value v > Vsecure and the
double spend attack are both on an off-equilibrium path. In practice however, users may over estimate the level of
security. In which case a double spend attack is not off equilibrium any more and it indeed reveals information about
the level of security. The revealed lower level of security lowers the maximum payment users are willing to accept on
Bitcoin, thus making µ> 0.

20 In practice, the mining revenue and the Bitcoin capital might be impacted by different values of µ. For simplicity,
we assume they are impacted by the same value of µ.
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We know that all the transactions are in [0, Vmax], and there are a total of Nmax transactions in this

range. Thus, if we want all the transactions to be secure from a double-spend attack, then we need

Vmax ≤ Vsecure.

Substituting the value of Vsecure from (78) and using the value of R from (8), we have

Vmax ≤
(Nmax−nF )

η(θ)θ̄2Nmax

nFD1 +σθBµ, (79)

where η(θ) is defined in (38) and D1 = Vmax

[
θ̄2 + θµδm

1−δm

]
. Define D2 = η(θ)θ̄2Nmax(Vmax − σθBµ).

The above inequality can be written as follow.

n2
FD1−nFD1Nmax +D2 ≤ 0. (80)

This is satisfied for

nF ∈ [Nmax− (nF )max, (nF )max] ; (nF )max =
Nmax

2
+
Nmax

2

√
1− 4D2

N 2
maxD1

. (81)

The above condition suggests that to secure the Bitcoin transactions from a double-spend attack,

we need to choose Bitcoin’s capacity nF in the range [Nmax − (nF )max, (nF )max]. In other words,

there is an economic limit on the capacity of Bitcoin, and this capacity cannot be outside [Nmax−

(nF )max, (nF )max].

Also, note that (nF )max will not be a real number if

1− 4D2

N 2
maxD1

≤ 0.

In that case, there will not exist any real value of Bitcoin capacity that will be safe from a double-

spend attack. In other words, it is impossible to secure Bitcoin from a double-spend attack.

Figure 31 pictorially depicts the parametric region where the Bitcoin’s capacity is impossible to

secure from a double-spend attack (the shaded region in both sub-figures). In both the sub-figures,

we note that as µ increases, Bitcoin stays secure for a higher value of θ. This is because µ represents

the loss in Bitcoin’s value due to a double-spend attack. Thus, a high value of µ dis-incentivizes

miners to carrying out a double-spend attack. Apart from this, comparing both sub-figures we also

note that a higher value of Nmax leads to a smaller region of parameters where it is impossible to

secure Bitcoin from a double-spend attack. This is because a higher value of maximum possible

demand (Nmax) leads to higher honest revenue. Thus, it incentivizes miners to continue earning

honest revenue. Both the sub-figures qualitatively remain the same for low and high values of σ and
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Figure 31 As µ increases, Bitcoin stays secure for a higher value of θ. A higher value of Nmax leads to a smaller

region of parameters where it is impossible to secure Bitcoin from a double-spend attack.

B. This is because high values of σ and B means a higher loss due to double-spend attack. Thus, it

dis-incentivizes miners from conducting a double-spend attack21.

Impact of Collusion on Double-Spend Attack: Figure 32 depicts the impact of collusion on

the possibility of a double-spend attack. Comparing both sub-figures, we can see that the parametric

region where double-spend attack can happen increases when collusion is suppressed. This is because

suppression of collusion decreases honest revenue for miners. Thus, it decreases the incentive of

miners to earn honest mining revenue. In both the sub-figures, we also see that the minimum mining

power needed to carryout such a double-spend attack decreases after collusion is suppressed.

Miners Other Than Adversary Miner: In the analysis thus far, we analyzed a miner’s trade-off

about carrying out a double-spend attack or earning an honest revenue. We now discuss the reaction

of other miners if a particular miner chooses to carry out a double-spend attack.

On the Bitcoin network, “the majority decision is represented by the longest chain, which has

the greatest proof-of-work effort invested in it.” (Nakamoto 2008). As a result, following the Bitcoin

protocol, any miner when faced with two chains of unequal length will accept the longest chain.

Since, a successful double-spend attack decreases the value of Bitcoin, it is incentive compatible for

miners to ward off a double-spend attack. If other miners can always ward off a double spend attack

21 A higher Bitcoin holding and a large fraction of loss in Bitcoin value lower payoff from a double spend attack. Note,
that the attacking miner can easily convert their Bitcoin to fiat currency before launching the attack. This would
protect the attacker from any loss of value in their Bitcoin stake.
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Figure 32 As µ increases, Bitcoin stays secure for a higher value of θ. A higher value of Nmax leads to a smaller

region of parameters where it is impossible to secure Bitcoin from a double-spend attack.

then the adversary will never attack and collusion revenue would not add any value. But, we argue

that other miners are not able to ward off all double spend attacks.

If the miners were to see the two chains (honest and attacking) simultaneously they can check and

reject the attacking chain which leads to a double-spend attack. Therefore our double spend attack

model labels an attack as successful if the attacking chain is longer than the honest chain by at least

1 Block. Let us consider that the double-spend attack is identified when the attacking chain is longer.

Further, assume that the remaining miners, who are in majority, can agree to remove the chain of

blocks starting from the block that had the double-spend attack transaction. For example, if the

current block is t and double-spend attack transaction was included in the main chain in block t−d,

then the miners can agree to remove blocks from t− d− 1 on wards. That is, any transaction that

was included in blocks t− d to t will be invalidated. And the chain will be forked at block t− d− 1.

It would seem that miners can always go back and invalidate the double spend transaction. But,

even such a retrospective forking may not discourage the attacking miner. Because, the attacking

miner can get his Bitcoins converted to other coins or fiat currency in the time taken to identify the

double-spend attack and carry out this retrospective fork. Retrospective correction of Blockchain

transaction history can not overcome off chain events such as Bitcoin to fiat conversion.

While, for simplicity, we model that the agent waits for only one period to see if his transaction

was verified by Bitcoin, in reality the agent typically waits approximately for 6 followup blocks

from the block where his transaction was entered to ensure that his transaction would not be

invalidated by another longer chain (Joseph Bonneau 2015). When Bitcoin becomes more susceptible
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to double-spend attacks upon banning large miners, then the agents would have to wait even longer

for confirmation of their transactions. For example, Binance, a cryptocurrency exchange, following

a double-spend attack on Bitcoin Gold, increased its withdrawal requirement to 20 blocks from 12

blocks (Jack Martin Bonneau 2020). This wait for confirmation makes transaction processing even

slower on Bitcoin.

In summary, there are various ways to encourage miner commitment and disincentivize double

spend attacks - (a) Longer confirmation wait times, (b) Block Rewards, (c) (implicitly or explicitly)

enforcing stake in Bitcoin, etc. In a similar vein, collusion is an endogenous mechanism that disincen-

tivize double spend attacks. Neither collusion nor the interventions above can eliminate the threat

of double spend attack entirely. There will always be a sufficiently large double spend payment that

tempts miners to abandon the commitment. Nevertheless, collusion as well as the interventions do

move the needle towards greater security. Collusion does not make these interventions redundant,

and nor do the interventions make collusion redundant.

G. Readings on Bitcoin

Bitcoin’s ecosystem is composed of four major components: (1) users, (2) miners, (3) the platform

protocol, and (4) the cryptocurrency. We suggest Huberman et al. (2019) for a deeper understand-

ing of user waiting queues and transaction fee decisions. Cong et al. (2018) provides an in-depth

discussion of the arms race by miners for computing hardware and their organization into min-

ing pools. The protocol itself is most accurately described by Satoshi Nakamoto – the creator of

Bitcoin (Nakamoto 2008). Finally, Cong et al. (2018) can be used as a resource for a primer on

cryptocurrencies and their adoption.
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