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A.1 Optimal Search

When n = 2, the search process can be simplified as follows. Since consumers incur no

cost to inspect the product ranked in the first position, they will only need to make a

decision on whether to search the product ranked in the second position, i.e., di(1). When

consumer i is making this decision, the current optimal value is u∗i(2) = max{ui(0), ui(1)}.

Given u∗i(2), we can calculate the expected marginal gain for consumer i from searching

the product at position 2 as follows:

B(u∗i(2)) =

∫ ∞

u∗
i(2)

(ui(2) − u∗i(2))f(ui(2)|ψi)dui(2), (A1)

where f(ui(2)|ψi) is the posterior probability density function of ui(2) after observing the

ranking ψi) and realized utility for the top-ranked product ui(1).

Let zi(2) be the value (“reservation value”) such that the consumer is indifferent between

obtaining utility zi(2) immediately (which saves additional search costs, ρ) or evaluating

seller 2’s product which gives her an option to choose between zi(2) and ui(2):

ρ = B(zi(2)) =

∫
zi(2)

(ui(2) − zi(2))f(ui(2)|ψi)dui(2) (A2)

When the best value in the consideration set is lower than the reservation value, consumer

i will continue to search for product at position 2; otherwise she will stop searching.
∗All authors are at Carnegie Mellon University.
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The probability that consumer i searches only the product ranked in the position

1 but not the product in position 2 is P[u∗i(2) ≥ zi(2)]; the probability that consumer i

searches both products is P[u∗i(2) < zi(2)]. The conditional probability that consumer i will

purchase the product at position h given that the consumer evaluates only the product

in position 1 is

ηi(h) = P[ui(h) = max{ui(0), ui(1)}|di(1) = 0] where h ∈ {0, 1} (A3)

The same conditional probability given that the consumer evaluates both product is

ηi(h) = P[ui(h) = max{ui(0), ui(1), ui(2)}|di(1) = 1] where h ∈ {0, 1, 2} (A4)

Note that di(1) simplifies to a binary decision in this two-product case, as consumers only

have one remaining product to search after inspecting the first, eliminating the need to

decide which product to search.

A.2 Demand and Consumer Surplus

A.2.1 Unpersonalized Ranking

The demand for the product at position 1 under unpersonalized ranking is given as:

D(1) =

∫ ∞

zi(2)

Fui(0)
(t)(1− Fui(2)

(t))fui(1)
(t)dt+

∫ ∞

max{ui(0),ui(2)}
fui(1)

(t)dt (A5)

where ui(r) denotes the utility at position r and ui(0) represents the utility from outside

option for consumer i. Fui(k)
denotes the CDF of the random variable ui(k), and fui(k)

denotes the PDF of the random variable ui(k).1 The first part on the right-hand side

represents the demand of first-ranked product when the utility of the product in the

second position is higher than the first one for consumer i but consumer i decides not

search the product in the second position and purchase the first one. Mathematically, it

requires ui(0) < ui(1) < ui(2) and u∗i(2) > zi(2). Since u∗i(2) = max{ui(0), ui(1)} and ui(0) <

ui(1), u∗i(2) > zi(2) is equivalent to ui(1) > zi(2). The second part on the right-hand side

1The notations are slightly adjusted from those used in the body of the paper for simplicity.
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represents the demand when the utility of the product on the first position is the highest

hence consumer i will purchase the first one regardless of their searching decision.

The demand for the product ranking in the second position only comes from the case

when consumer i decides to inspect the product in the second position and the second

ranked product yields the higher utility for consumer i than the first-ranked product and

outside option. It can be expressed as

D(2) =

∫ zi(2)

−∞
(1− Fui(2)

(t))fu∗
i(2)

(t)dt (A6)

The condition above requires that u∗i(2) < zi(2) so that consumer i will search for the

second ranked product, and at the same time, the value of ui(2) is greater than both ui(0)

and ui(1), which is equivalent to ui(2) > u∗i(2).

The consumer surplus under unpersonalized ranking (indicated by the superscript U)

is given as

E
U(CS) =

∫ ∞

zi(2)

tfu∗
i(2)

(t)dt

+

∫ zi(2)

−∞
fu∗

i(2)
(t)[

∫ ∞

t

sfui(2)
(s)ds− ρ]dt

+

∫ zi(2)

−∞
fu∗

i(2)
(t)[

∫ t

−∞
tfui(2)

(s)ds− ρ]dt (A7)

The first part of the right-hand side of the equation corresponds to the case where con-

sumer i does not inspect the product in the second position and chooses the option that

yields a higher utility between the outside option and the product in the first position

without incurring any further search cost. The second part corresponds to the case where

consumer i inspects the product in the second position and finds that it generates the

highest utility. The third part corresponds to the case where consumer i inspects the sec-

ond product and finds that it does not provide any higher utility than the first product

or the outside option. As a result, the consumer chooses the better of the first product

or the outside option.
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A.2.2 Personalized Ranking

Under perfect personalized ranking where the accuracy of ranking is 100%, consumers

realize that the platform perfectly knows their match values and the utilities associated

with each product, making it optimal for them to search only the top-ranked product.

This is because among all products, they derive the highest utility from the top-ranked

product. The demand for product at the top position under perfect personalized ranking

is 1 − Fui(1)
(max{ui(0), ui(2)}); there is no demand for product at the second position.

Therefore, the demand for product j can be expressed as

DP
j =

1

1 + exp(
µ ln(exp(

a0
µ
)+exp(

a−j−ϕp−j
µ

))−aj+ϕpj

µ
)

(A8)

where −j indicates the competitor of product j.

Since consumers incur no search cost under perfect personalized ranking, the consumer

surplus is the expected value of the maximum utility among all products, which can be

defined as

E
P (CS) = γ + log(1 +

∑
j

eaj−ϕpj) (A9)

Under imperfect personalized ranking where the accuracy of the ranking is below 100%,

after observing the product rank and the realized match values for the products that

have been searched, consumers will update their belief about the match values for the

un-searched products, and choose the next product to search based on the updated belief.

To see this, consider a duopoly case. Let us use J =< 0, j, k > to denote a ranking where

product j ranks first and product k ranks second, and K =< 0, k, j > to denote a ranking

where product k ranks first and product j ranks second. The accuracy of the ranking, λ,

defined as

λ = P (J |uij > uik) = P (K|uij < uik)

1− λ = P (K|uij > uik) = P (J |uij < uik)

(A10)
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Let ψIP denote the event that the observed ranking. The posterior belief about the

product that has not yet been searched (second-ranked) becomes

f(ϵi(2)|ψIP , ϵi(1))

=
λf(ϵi(2)|ϵi(2) < ∆i(1))Fϵi(2)(∆i(1)) + (1− λ)f(ϵi(2)|ϵi(2) > ∆i(1))(1− Fϵi(2)(∆i(1)))

λFϵi(2)(∆i(1)) + (1− λ)(1− Fϵi(2)(∆i(1)))

(A11)

where ∆i(1) = a(1)−ϕp(1)+ϵi(1)−a(2)+ϕp(2), f(ϵi(2)|·) denotes the conditional probability

density function of ϵi(2), and Fϵi(2) denotes the cumulative distribution function of ϵi(2).

Thus, under imperfect personalized ranking, we use this posterior belief about the non-

top-ranked product to re-calculate the search gain. This posterior search gain can be

expressed as

B(u∗i(2)) =

∫ ∞

∆∗
i(1)

(1− λ)f(ϵi(2)|ϵi(2) > ∆i(1))(1− Fϵi(2)(∆i(1)))

λFϵi(2)(∆i(1)) + (1− λ)(1− Fϵi(2)(∆i(1)))
(ϵi(2) −∆∗

i(1))dϵi(2) (A12)

When there are two firms, consumers decide whether to continue searching the second-

ranked product after inspecting the top-ranked one, based on this posterior search gain.

To compute the expected demand and consumer surplus under imperfect personalized

ranking, we first separately consider the expected demand and consumer surplus when

the ranking is correct and when it is incorrect. We start with the case when the ranking

is correct. The demand for product j under correct ranking (denoted as superscript C)

is the same as DP
j . That is

DC
j = DP

j

. Define the event A(J) = {ui0 > uij > uik|J} and AC(J) = {uij > max{ui0, uik}|J}.

Similarly, define the event A(K) = {ui0 > uik > uij|K} and A
C(K) = {uik >
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max{ui0, uij}|K}. The expected consumer surplus under ranking J can be written as

E
C(CS) =

∫
ui01(J)1(A(J))fui

(t)dt− ρ
∫
1(J)1(A(J))1(ui0 < zJi(2))fui

(t)dt

+

∫
ui(1)1(J)1(A

C(J))fui
(t)dt− ρ

∫
1(J)1(AC(J))1(ui(1) < zJi(2))fui

(t)dt

+

∫
ui01(K)1(A(K))fui

(t)dt− ρ
∫
1(K)1(A(K))1(ui0 < zKi(2))fui

(t)dt

+

∫
ui(1)1(K)1(AC(K))fui

(t)dt− ρ
∫
1(K)1(AC(K))1(ui(1) < zKi(2))fui

(t)dt

(A13)

Here, zJi(2) and zKi(2) are the reservation value defined previously using Equations A2

and A12 under ranking J and K respectively. The first item of the first line on the right-

hand side denotes the expected utility under ranking J and utility combinations A(J),

and the second item denotes the search cost under ranking J and utility combinations

A(J). Note that only when ui0 < zJi(2), consumers will inspect the second ranked product

in this case. Similarly, the first and second items in the second (third, fourth) line on the

right-hand side denote respectively the expected utility and search cost under ranking J

and utility combinations AC(J) (ranking K and utility combinations A(K), ranking K

and utility combinations AC(K)).

Let us now move on to the case where the ranking is incorrect. The demand for

product j under incorrect ranking (denoted as superscript I) can be given as

DI
j =

∫ zi(2)

−∞
(1− Fuij

(t))fmax{ui0,uik}(t)dt+

∫ ∞

zi(2)

Fui0
(t)(1− Fuik

(t))fuij
(t)dt (A14)

where uik denotes the utility for individual i from the competitor of product j, which

is different from ui(k). The first part on the right-hand side indicates the demand when

product j’s utility is higher than product k but product j is incorrectly ranked in the

second position. In this case, consumer i will purchase product j when searching for

the second position (i.e., max{ui0, uik} < zi(2)) and finding j gives the highest utility

(i.e., uij > max{ui0, uik}). In contrast, the second part of the right side of the equation

indicates the demand when the product j’s utility is lower than product k (i.e., uik > uij)
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but product j is incorrectly ranked on the top position. In this case, consumer i will choose

product j if she decides not to search the second position (i.e., max{ui0, uij} > zi(2)) and

finds product j provides a higher utility than the outside option (i.e., ui0 < uij).

If the ranking is incorrect, the expected consumer surplus under personalized ranking

for ranking K is

E
I
K(CS) =

∫
ui01(K)1(A(J))fui

(t)dt− ρ
∫
1(K)1(A(J))1(ui0 < zKi(2))fui

(t)dt

+

∫
(uij − ρ)1(K)1(AC(J))1(max{ui0, uik} < zKi(2))fui

(t)dt

+

∫
max{ui0, uik}1(K)1(AC(J))1(max{ui0, uik} > zKi(2))fui

(t)dt (A15)

The first line on the right-hand side shows the expected consumer surplus when ui0 >

uij > uik (i.e., the true state is A(J)) but due to error in ranking, the observed ranking is

K =< 0, k, j >. In this case, the maximum utility is ui0 regardless of searching, and the

search cost is incurred only in the presence of searching (i.e., ui0 < zKi(2)). The second line

on the right-hand side shows the expected consumer surplus when uij > max{ui0, uik}

(i.e., the true state is AC(J)). In this case, the maximum utility will be uij if consumer i

searches the second product (i.e., max{ui0, uik} < zKi(2))); otherwise, as shown in the third

line, consumer i’s utility will be max{ui0,uik} without further searching. EI
J(CS) can be

similarly defined. Therefore the expected consumer welfare from incorrect personalized

ranking is

E
I(CS) = EI

J(CS) +E
I
K(CS) (A16)

So far, we have considered two extreme cases — (1) rankings are always correct and

(2) rankings are always incorrect. Consider a scenario of imperfect ranking, where the

prediction accuracy of the personalized ranking is λ. The expected demand of product j

is the weighted average of correct ranking and incorrect ranking, where the weight is the
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ranking algorithm accuracy λ:

DIP
j = (1− λ)DI

j + λDC
j (A17)

Similarly, the expected consumer welfare under imperfect personalized ranking is

E
IP (CS) = (1− λ)EI(CS) + λEC(CS) (A18)

A.3 Platform’s Information and Ranking Systems

We assume that platforms possess significantly accurate information about consumers, as

they have access to vast amount of consumer data, such as browsing behavior, purchase

history, and interactions. With this data, platforms can more accurately infer consumer

preferences, price elasticity, and seller (firm) quality (i.e., vertical differentiation). In our

paper, we assume a stable market condition where those parameter values do not change

over time, and the platform has collected enough data to estimate these parameters.

Since our focus is to examine the prices that competing online learning pricing algorithms

converge to, we treat the platform’s estimates and the ranking rules based on them as

stable and exogenously given, without modeling how the platform updates its estimates

through online learning. This assumption is realistic, as platforms like Amazon typically

have far more information about consumers than individual sellers (excluding Amazon

itself).

Furthermore, the platform’s ranking algorithm—whether personalized or unpersonal-

ized—is exogenously determined. The value of λ, which captures accuracy of personalized

ranking, is assumed to be common knowledge and fixed. Importantly, we do not model

the platform’s actions as strategic, nor do we solve for an optimal choice of λ. This as-

sumption allows us to focus on the competition between firms under different ranking

regimes rather than on the platform’s decision-making process. The platform does not

engage in profit-sharing with the firms, nor does it take a percentage of revenue in our

setup. The exogenous nature of λ is motivated by two key factors: (1) simplification for

tractability, which helps focus on the impact of personalized versus unpersonalized rank-
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ings on firm pricing strategies, and (2) real-world relevance, as many platforms implement

ranking algorithms based on fixed, pre-determined criteria (at least within a sufficiently

long period of time), which do not dynamically adjust to firm-specific pricing strategies.

A.4 Implementation

A.4.1 Action space

We discretize the action space to meet the requirements of Q-learning, and compute

the lowest numerical Nash-Bertrand equilibrium prices pNj and highest monopoly prices

pMj for each firm j that maximizes the joint profits for one shot game, for each param-

eter combination. For pure-strategy Nash-Bertrand equilibrium, we use the unique set

of prices. Without pure-strategy Nash-Bertrand equilibrium, we use the lowest price in

the mixed-strategy Nash-Bertrand equilibrium. To construct the action space for firm

j, we utilize the values of pNj and pMj . The action space for each firm j is defined as

[pNj − ξ(pMj − pNj ), pNj + ξ(pMj − pNj )] with equal step size 0.25. Here, ξ is a parameter such

that the feasible action space ranges from below competitive prices to above monopoly

prices.

A.4.2 State Space

In the context of reinforcement learning, the state space refers to the information that an

algorithm can use to determine its actions. In our study, we constrain the state space to

only include information from the preceding period. Specifically, the state is represented

as a set comprising of the seller prices in the previous period:

st = {pt−1
j }Nj=1 (A19)

This specific state construction confers several benefits. Due to this construction, an

agent’s pricing strategy becomes dependent on the prior prices of its competitors. With

access to this information, the agent can learn from the pricing tactics of its adversaries

and adjust its own behavior accordingly when those strategies change over time. Addition-

ally, by linking current prices to past prices, agents can detect deviations from cooperative
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behavior and employ punishment strategies to promote long-term cooperation in repeated

price competition scenarios.

A.4.3 Exploration

In the context of reinforcement learning, agents are faced with a challenging exploration-

exploitation trade-off, whereby they must decide whether to exploit a learned policy

to maximize immediate rewards or to explore new actions to acquire information and

potentially discover more profitable actions in the future. To address this dilemma, various

approaches have been proposed in the literature. In this study, we adopt the time-declining

ϵ−greedy approach to balance the exploration-exploitation trade-off. Specifically, we set

the exploration rate, ϵt, to be a function of time that decreases over time, formulated as:

ϵt = e−βt (A20)

where β > 0 is a parameter. At the outset, the agent selects actions at random, but as time

progresses, it favors actions that yield higher returns more frequently. A larger value of β

results in a faster decay of the exploration rate. This approach strikes a balance between

exploiting known information and exploring new possibilities, allowing for a gradual shift

towards exploiting learned policies as the agent gains experience.

A.4.4 Initialization

The initialization of Q-values plays a crucial role in the Q-learning algorithm, as it can

significantly impact the quality of the learned policy and the learning process. A common

approach to Q-value initialization is to incorporate domain-specific knowledge, which can

speed up learning and improve the quality of the learned policy. In our specific setup,

the agents use the time-declining ϵ−greedy approach to choose actions, and as such, the

agent’s initial prices tend to be exploratory or random. Therefore, it is appropriate to

initialize the Q-values based on the expected discounted rewards that would occur if

the competing agents set prices randomly. To this end, we set the initial Q-values, Q0,
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accordingly:

Qj
0(s, pj) =

∑
p−j∈P−j

Rj(pj, p−j)

(1− δ)|P−j|
(A21)

A.4.5 Updating Rule

The updating rule describes how Qj(st, a) is updated at each iteration. The value matrix

Qj is updated as follows

Qj(st, p)← (1− α)Qj(st, p) + α(Rj
t + δmax

p′
Qj(st+1, p

′)) (A22)

where α is the learning rate that captures how much new information overrides the

existing information in the Q-values.

A.4.6 Convergence

The convergence of multi-agent independent Q-learning algorithms cannot be guaranteed.

Therefore, following Calvano et al. (2020), we utilize a convergence verification rule to

determine when stable behavior is achieved. Specifically, we consider the algorithm to

have achieved convergence if the optimal action given any state does not change for

100000 consecutive periods. Let ptj(s) = argmax
p

Qj
t(s, p) denote the optimal action for

agent j at time t and state s. Then, we require that ptj(s) = pt+1
j (s) holds for all t =

T−100000, . . . , T−1, where T is the total number of periods. Once convergence is verified,

the learning process is stopped and the pricing algorithms have reached their rest points.

In our experiment, we allow the algorithm to run for as many rounds as necessary for

convergence, with the number of steps dependent on factors such as the type of ranking

systems, number of products, exploration rate, and learning rate.

A.5 Optimality of Multi-agent Reinforcement Learning algorithms

In a stationary environment, the Reinforcement learning algorithms can reach optimal

prices Watkins (1989). However, when the environment is non-stationary, such as the

case that we have where multiple sellers are using RL algorithms, the RL algorithms are

not guaranteed to reach optimal prices. Recall that the price competition in our setting
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is a repeated game. We know from Folk theorem that any prices between Bertrand Nash

prices and the monopoly prices (perfect collusion) can be sustained in a repeated game

equilibrium. We find that the RL algorithms in our case are able to converge to prices that

are higher than the Bertrand Nash Prices but lower than the Monopoly prices. Therefore

we focus on characterizing the resting point equilibrium as in Calvano et al. (2020), Brown

and MacKay (2023), and Johnson et al. (2023) instead of examining the learning path

to reach the resting point as in Hansen et al. (2021). The main objective of the paper

is to study how personalization in product ranking affects the converged prices and the

resulting consumer welfare when algorithms are delegated to make pricing decisions.

A.6 Details of Multi-Agent UCB-tuned Algorithm

Algorithm A.1 Multi-Agent UCB-tuned
Initialize T,K
t← 1
for j = 1 to n do

nt
jk ← 0

end for
while t < T do

for j = 1 to n do

ptjk =

{
Randomly choose each action once if t ≤ K

argmaxk UCB-tunedt
jk if t > K

nt
jk ← nt

jk + 1
end for
Execute actions p = (pt1k1 , . . . , p

t
nkn

) and observe reward Rt
jk

for j = 1 to n do
V t
jk = (Rt

jk)
2 −Rt

jk

2
+
√

2 log t
nt
jk

UCB-tunedt
jk = Rt

j +
√

log t
nt
jk
min(1

4
, Vkt)

end for
t← t+ 1

end while

A.7 Risk-averse Consumers

We further consider the possibility that consumers are risk-averse. To account for con-

sumers’ risk preferences, following Erdem and Keane (1996), we modify the utility func-
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tion in Equation (1) to

uij = ãij − ϕpj − rã2ij,∀j = 0, 1, . . . , n. where ãij = aj + µϵij (A23)

where r is the risk coefficient. Consumers are risk averse when r > 0. The utility is still

linear in price but concave in aj and ϵij for r > 0. This utility formulation captures the

possibility that consumers prefer to choose products with less uncertainty.

The corresponding expected utility for product j before search is

E[uij] = E[ãij]− ϕpj − rE[ã2ij] = aj + µγ − r(aj + µγ)2 − ϕpj − r
π2

6
(A24)

We compare the results under perfect personalized ranking and unpersonalized ranking.

Table A.1 presents the results for risk-averse consumers, showing that equilibrium prices

derived from Q-learning algorithms are lower under both unpersonalized and personal-

ized ranking systems compared to equilibrium prices under the risk-neutral consumer

assumption. This outcome can be explained by the reduced search gains (or value of con-

tinuing to search) associated with lower-ranked products for risk-averse consumers, who

are therefore less inclined to explore beyond the top-ranked options. Firms, expecting

this, have stronger incentives to lower prices to secure better rankings, as price is their

primary lever for influencing rank position. Consequently, profits also decline when con-

sumers are risk averse under both ranking systems. Consumer surplus is smaller due to

concave utility with respect to product quality and their risk aversion. Nonetheless, most

importantly, our main result remains robust: even when consumers are risk averse, un-

personalized ranking leads to lower prices and profits, while generating higher consumer

surplus compared to personalized ranking.
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Table A.1: Results when consumers are risk averse

Unpersonalized Personalized % Change KS MW
Q-learning price 2.57 (0.23) 3.1 (0.12) +20% 0.94*** 9798.0***

Profit 0.43 (0.07) 0.71 (0.02) +62% 1.0*** 10000.0***
Consumer surplus 2.0 (0.2) 1.83 (0.09) -8% 0.65*** 2385.0***

Note: The parameter set is: a0 = 0.0, a1 = 4.0, a2 = 4.5, ρ = 1.5, ϕ = 1.0, µ = 1.0,mc1 = 1.0,mc2 =
1.5, n = 2, λ = 1.0, γ = −1.0, α = 0.1, β = 2e − 06. All variables are averaged over the last 1000 steps.
KS indicates the statistics for the Kolmogorov-Smirnov test. MW indicates the statistics for the Mann-
Whitney U rank test.
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