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Definition: A Turing Machine is a 7-tuple  
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:  

Q is a finite set of states

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where  ∉ Σ 

δ : Q × Γ → Q × Γ × {L, R} 

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept



CONFIGURATIONS

11010q700110

q7

1 0 0 0 0 01 1 1 1

corresponds to:



A Turing Machine M accepts  input w if there is a 
sequence of configurations  C1, … , Ck  such that  

1. C1 is a start configuration of M on input w,  ie  

C1 is q0w 

2.  each Ci yields Ci+1, ie M can legally go from Ci 

to Ci+1 in a single step 

ua qi bv    yields    u qj acv   if  δ (qi, b) = (qj, c, L) 
ua qi bv    yields     uac qj v   if  δ (qi, b) = (qj, c, R)



A Turing Machine M accepts  input w if there is a 
sequence of configurations  C1, … , Ck  such that  

1. C1 is a start configuration of M on input w,  ie  

C1 is q0w 

2.  each Ci yields Ci+1, ie M can legally go from Ci 

to Ci+1 in a single step  

3.  Ck is an accepting configuration, ie the state 

of the configuration is qaccept



A Turing Machine M rejects  input w if there is a 
sequence of configurations  C1, … , Ck  such that  

1. C1 is a start configuration of M on input w,  ie  

C1 is q0w 

2.  each Ci yields Ci+1, ie M can legally go from Ci 

to Ci+1 in a single step  

3.  Ck is  a  rejecting configuration, ie the state of 

the configuration is qreject



A TM decides a language if it accepts all 
strings in the language and rejects all strings 
not in the language

A language is called decidable or recursive if 
some TM decides it



{ 0   | n ≥ 0 }2n

1. Sweep from left to right, cross out every other 0 
2. If in stage 1, the tape had only one 0, accept 
3. If in stage 1, the tape had an odd number of 0’s, 
reject 

4. Move the head back to the first input symbol. 
5. Go to stage 1.

PSEUDOCODE:

is decidable.



0 → , R
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q2x0x
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A TM decides a language if it accepts all 
strings in the language and rejects all strings 
not in the language

A language is called decidable or recursive if 
some TM decides it

Theorem: L decidable <-> ¬L decidable 
Proof: L has a machine M that accepts or rejects on 
all inputs. Define M’ to be M with accept and reject 
states swapped. M’ decides ¬L. 



Theorem: A,B  decidable —> A union B decidable 

Proof: Let M be a TM for A. Let M’ be a TM for B. 
Make a Union machine implementing the following 
pseudo-code:  
(Intuition: use the even squares to simulate M, and 
the odd squares to simulate M’ ) 

Double input size by writing each input symbol twice 
starting with q_0 symbols. Use cross product 
construction to allow the finite state control to 
remember state of each TM. Move pebble around to 
always be one square left of position of head in M or 
M’, respectively. Odd phase: Bring head back to start 
symbol of tape, scan odd squares to find tape head 
location at pebble… accept if either M or M’ accept. 



A TM recognizes a language if it accepts all 
and only those strings in the language

A TM decides a language if it accepts all 
strings in the language and rejects all strings 
not in the language

A language is called Turing-recognizable or 
recursively enumerable, (or r.e. or semi-
decidable) if some TM recognizes it

A language is called decidable or recursive if 
some TM decides it



A TM recognizes a language if it accepts all 
and only those strings in the language

A language is called Turing-recognizable or 
recursively enumerable, (or r.e. or semi-
decidable) if some TM recognizes it

FALSE: L r.e. <-> ¬L r.e. 
Proof: L has a machine M that accepts or rejects on 
all inputs. Define M’ to be M with accept and reject 
states swapped. M’ decides ¬L. 
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accept reject
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w ∈ Σ* 

L is decidable  
(recursive)

w ∈ L ?

accept reject or no output

TM 

yes no

w ∈ Σ* 

L is semi-decidable  
(recursively enumerable, 

Turing-recognizable)



A language is called Turing-recognizable or 
recursively enumerable (r.e.) or semi-
decidable if some TM recognizes it

A language is called decidable or recursive if 
some TM decides it

recursive 
languages

r.e.  
languages

Theorem: If A and ¬A are r.e. then A is recursive



Theorem: If A and ¬A are r.e. then A is recursive

Suppose M accepts A. M’ accepts ¬A decidable 
Use Odd squares/ Even squares simulation of M and 
M’. If x is accepted by the even squares reject it/ 
accepted by the odd squares then accept x. 



TURING MACHINE with WRITE ONLY 
output tape.

FINITE 
STATE 

CONTROL

Outputs a sequence of strings separated 
by hash marks. Allows for a well defined 
infinite sequence of strings in the limit. 
The machine is said to enumerate the 
sequence of strings occurring on the 

tape. 



Lex-order has an enumerator 
strings of length 1, the length 2, ….

Pairs of binary strings have a lex-order enumerator 

for each n>0 list all pairs of strings a,b as #a#b#  
where total length of a and b is n. 

Let BINARY(w) = pair of binary strings be any fixed 
way of encoding a pair of binary strings with a single 
binary string  



TURING MACHINE with WRITE ONLY 
output tape.

FINITE 
STATE 

CONTROL

Outputs a sequence of strings separated 
by hash marks. Allows for a well defined 
infinite sequence of strings in the limit. 

The machine is said to enumerate the set 
of strings occurring on the tape. 



From every TM M accepting A. 
there is a TM M’ outputting A. 

For n = 0 to forever do 
{        {Do n parallel simulations of M for 
n steps for the first n inputs} 
M(0). M(1), M(2), M(3)..  
}  Odd/Even trick becomes “modulo      
n” trick. If M(x) accepts then 
output(x#)



From every TM M outputting A. 
there is a TM M’ accepting A. 

M”(X) run M, accept if X output on tape.



Let Z+ = {1,2,3,4…}. There exists a bijection 
between Z+ and Z+ × Z+

(1,1)   (1,2)   (1,3)   (1,4)   (1,5) …

(2,1)   (2,2)   (2,3)   (2,4)   (2,5) …

(3,1)   (3,2)   (3,3)   (3,4)   (3,5) …

(4,1)   (4,2)   (4,3)   (4,4)   (4,5) …

(5,1)   (5,2)   (5,3)   (5,4)   (5,5) …

(or Q+) 



w ∈ L ?

accept reject

TM 

yes no

w ∈ Σ* 

L is decidable  
(recursive)

w ∈ L ?

accept reject or no output

TM 

yes no

w ∈ Σ* 

L is semi-decidable  
(recursively enumerable, 

Turing-recognizable)



MULTITAPE TURING MACHINES

δ : Q × Γk
 → Q × Γk × {L,R}k

FINITE 
STATE 

CONTROL



Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine

FINITE 
STATE 

CONTROL

0 01

FINITE 
STATE 

CONTROL 0 01 # # #. . .



Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine

FINITE 
STATE 

CONTROL

0 01

FINITE 
STATE 

CONTROL 0 01 # # #. . .



We can encode a TM as a string of 0s and 1s

0n10m10k10s10t10r10u1…

n states

m tape symbols  
(first k are input 

symbols)

start 
state

accept 
state

reject 
state

blank 
symbol

( (p, a), (q, b, L) ) = 0p10a10q10b10

( (p, a), (q, b, R) ) = 0p10a10q10b11



THE CHURCH-TURING THESIS

Intuitive Notion of Algorithms 
EQUALS 

Turing Machines



ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable
ATM is r.e. :
Define a TM U as follows:  
On input (M, w), U runs M on w. If M ever accepts, 
accept. If M ever rejects, reject.

NB. When we write “input (M, w)” we really mean 
“input   code for (code for M, w)”



Similarly, we can encode DFAs, NFAs, CFGs, 
etc. into strings of 0s and 1s

ADFA = { (B, w) | B is a DFA that accepts string w }

ANFA = { (B, w) | B is an NFA that accepts string w }

ACFG = { (G, w) | G is a CFG that generates string w }

So we can define the following languages:

Theorem:  ADFA is decidable
Proof Idea: Simulate B on w

Theorem: ANFA is decidable

Theorem: ACFG is decidable
Proof Idea: Transform G into Chomsky Normal 
Form. Try all derivations of length up to 2|w|-1



UNDECIDABLE PROBLEMS
THURSDAY Feb 13 



There are languages over {0,1} 
that are not decidable

If we believe the Church-Turing Thesis,  
this is MAJOR: it means there are things that 
computers inherently cannot do

We can prove this using a counting argument. 
We will show there is no onto function from the 
set of all Turing Machines to the set of all 
languages over {0,1}. (Works for any Σ) Hence 
there are languages that have no decider.

Then we will prove something stronger:  
There are semi-decidable (r.e.) languages that 
are NOT decidable



Turing 
Machines

Languages 
over {0,1}



Let L be any set and 2L be the power set of L
Theorem: There is no onto map from L to 2L

Proof:   Assume, for a contradiction, that 
there is an onto map f : L → 2L

Let S = { x ∈ L | x ∉ f(x) } 

If S = f(y) then y ∈ S if and only if y ∉ S

Can give a more constructive argument!



Theorem: There is no onto function from the 
positive integers to the real numbers in (0, 1)

1 
2 
3 
4 
5 
:

0.28347279…
0.88388384…
0.77635284…
0.11111111…
0.12345678…

:

Proof:

[ n-th digit of r ] =

2
8
6
1
5

1  if [ n-th digit of f(n) ] ≠ 1 

 2 otherwise

f(n) ≠ r for all n   ( Here, r = 11121... ) 

Suppose f is any function mapping the 
positive integers to the real numbers in (0, 1:



THE MORAL: 
No matter what L is,  

2L always has more elements than L



Not all languages over {0,1} are decidable, in fact: 
not all languages over {0,1} are semi-decidable

{Turing Machines}

{Strings of 0s and 1s} {Sets of strings of 
0s and 1s}

{Languages over {0,1}}

Set L Set of all subsets of L: 2L

{decidable languages over {0,1}}

{semi-decidable languages over {0,1}}



ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable
ATM is r.e. :
Define a TM U as follows:  
On input (M, w), U runs M on w. If M ever accepts, 
accept. If M ever rejects, reject.

NB. When we write “input (M, w)” we really mean 
“input   code for (code for M, w)”



ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable
ATM is r.e. :
Define a TM U as follows:  
On input (M, w), U runs M on w. If M ever accepts, 
accept. If M ever rejects, reject.

Therefore,  
U accepts (M,w) ⇔ M accepts w ⇔ (M,w) ∈ ATM 
Therefore, U recognizes ATM

U is a universal TM



ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable: (proof by contradiction)

Assume machine H decides ATM

H( (M,w) ) =
Accept if M accepts w 

Reject  if M does not accept w

Construct a new TM D as follows: on input M, 
run H on (M,M) and output the opposite of H

D( M ) =
Reject if M accepts M 

Accept   if M does not accept M
D

D D

D D



M1

M2

M3

M4

:

M1 M2 M3 M4 …

accept accept

accept

accept

accept

accept

accept

reject

reject

reject

reject

reject

reject

reject

reject

reject

OUTPUT OF H

accept

accept

reject

reject

D

D

reject

accept

accept

accept

acceptreject

reject

accept ?



Theorem: ATM is r.e. but NOT decidable

Cor: ¬ATM is not even r.e.!



ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable:

Let machine H semi-decides ATM   (Such ∃ , why?)

H( (M,w) ) =
Accept if M accepts w 
Reject or 
No output if M does not accept w

Construct a new TM D as follows: on input M, 
run H on (M,M) and output 

D( M ) =
Reject if H ( M, M ) Accepts 
Accept      if H ( M , M ) Rejects 
No output if H ( M, M ) has No output

D
D, D

D, D
DD,

A constructive proof:

H( (D,D) ) = No output No Contradictions !



We have shown: 
Given any machine H for semi-deciding  ATM, 
we can effectively construct a TM D such that 
(D,D) ∉ ATM  but H fails to tell us that. 

That is, H fails to be a decider on  instance 
(D,D). 

In other words, 
Given any “good” candidate for deciding the 
Acceptance Problem, we can effectively 
construct an instance where the candidate 
fails.



HALTTM = { (M,w) | M is a TM that halts on string w }

Theorem: HALTTM is undecidable

THE classical HALTING PROBLEM

Proof:    Assume, for a contradiction, that TM H 
decides HALTTM

We use H to construct a TM D that decides ATM

On input (M,w), D runs H on (M,w):
If H rejects then reject
If H accepts, run M on w until it halts:

Accept if M accepts, ie halts in an accept 
state   
Otherwise reject



H

(M,w)

(M,w)

M

w

If M doesn’t 
halt: REJECT

If M halts

Does M 
halt on w?

D

ACCEPT if halts in accept state 
REJECT otherwise



In many cases, one can show that a 
language L is undecidable by showing 

that if it is decidable, then so is ATM

We reduce deciding ATM to deciding 
the language in question

ATM   ≤   L

We just showed: ATM   ≤   HaltTM 

Is HaltTM  ≤ ATM  ?


