
TURING MAHINES
15-453

TURING MACHINE

FINITE
STATE

CONTROL

INFINITE TAPE

I N P U T

q0 q1

A

0 → 0, R

read write move

 → , R

qaccept

qreject

0 → 0, R

 → , R

0 → 0, R
 → , L

0 → 0, R

read write move

 → , R

qaccept

0 → 0, R

 → , R

0 → 0, R
 → , L

Definition: A Turing Machine is a 7-tuple
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:

Q is a finite set of states

Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where ∉ Σ

δ : Q × Γ → Q × Γ × {L, R}

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept

CONFIGURATIONS

11010q700110

q7

1 0 0 0 0 01 1 1 1

corresponds to:

A Turing Machine M accepts input w if there is a
sequence of configurations C1, … , Ck such that

1. C1 is a start configuration of M on input w, ie

C1 is q0w

2. each Ci yields Ci+1, ie M can legally go from Ci

to Ci+1 in a single step

ua qi bv yields u qj acv if δ (qi, b) = (qj, c, L)
ua qi bv yields uac qj v if δ (qi, b) = (qj, c, R)

A Turing Machine M accepts input w if there is a
sequence of configurations C1, … , Ck such that

1. C1 is a start configuration of M on input w, ie

C1 is q0w

2. each Ci yields Ci+1, ie M can legally go from Ci

to Ci+1 in a single step

3. Ck is an accepting configuration, ie the state

of the configuration is qaccept

A Turing Machine M rejects input w if there is a
sequence of configurations C1, … , Ck such that

1. C1 is a start configuration of M on input w, ie

C1 is q0w

2. each Ci yields Ci+1, ie M can legally go from Ci

to Ci+1 in a single step

3. Ck is a rejecting configuration, ie the state of

the configuration is qreject

A TM decides a language if it accepts all
strings in the language and rejects all strings
not in the language

A language is called decidable or recursive if
some TM decides it

{ 0 | n ≥ 0 }2n

1. Sweep from left to right, cross out every other 0
2. If in stage 1, the tape had only one 0, accept
3. If in stage 1, the tape had an odd number of 0’s, 
reject

4. Move the head back to the first input symbol.
5. Go to stage 1.

PSEUDOCODE:

is decidable.

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0 | n ≥ 0 }2n

q0 q1

q2

q3

q4

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0 | n ≥ 0 }2n

q0 q1

q2

q3

q4

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

q2 x0x

A TM decides a language if it accepts all
strings in the language and rejects all strings
not in the language

A language is called decidable or recursive if
some TM decides it

Theorem: L decidable <-> ¬L decidable
Proof: L has a machine M that accepts or rejects on
all inputs. Define M’ to be M with accept and reject
states swapped. M’ decides ¬L.

Theorem: A,B decidable —> A union B decidable

Proof: Let M be a TM for A. Let M’ be a TM for B.
Make a Union machine implementing the following
pseudo-code:
(Intuition: use the even squares to simulate M, and
the odd squares to simulate M’)

Double input size by writing each input symbol twice
starting with q_0 symbols. Use cross product
construction to allow the finite state control to
remember state of each TM. Move pebble around to
always be one square left of position of head in M or
M’, respectively. Odd phase: Bring head back to start
symbol of tape, scan odd squares to find tape head
location at pebble… accept if either M or M’ accept.

A TM recognizes a language if it accepts all
and only those strings in the language

A TM decides a language if it accepts all
strings in the language and rejects all strings
not in the language

A language is called Turing-recognizable or
recursively enumerable, (or r.e. or semi-
decidable) if some TM recognizes it

A language is called decidable or recursive if
some TM decides it

A TM recognizes a language if it accepts all
and only those strings in the language

A language is called Turing-recognizable or
recursively enumerable, (or r.e. or semi-
decidable) if some TM recognizes it

FALSE: L r.e. <-> ¬L r.e.
Proof: L has a machine M that accepts or rejects on
all inputs. Define M’ to be M with accept and reject
states swapped. M’ decides ¬L.

w ∈ L ?

accept reject

TM

yes no

w ∈ Σ*

L is decidable
(recursive)

w ∈ L ?

accept reject or no output

TM

yes no

w ∈ Σ*

L is semi-decidable
(recursively enumerable,

Turing-recognizable)

A language is called Turing-recognizable or
recursively enumerable (r.e.) or semi-
decidable if some TM recognizes it

A language is called decidable or recursive if
some TM decides it

recursive
languages

r.e.
languages

Theorem: If A and ¬A are r.e. then A is recursive

Theorem: If A and ¬A are r.e. then A is recursive

Suppose M accepts A. M’ accepts ¬A decidable
Use Odd squares/ Even squares simulation of M and
M’. If x is accepted by the even squares reject it/
accepted by the odd squares then accept x.

TURING MACHINE with WRITE ONLY
output tape.

FINITE
STATE

CONTROL

Outputs a sequence of strings separated
by hash marks. Allows for a well defined
infinite sequence of strings in the limit.
The machine is said to enumerate the
sequence of strings occurring on the

tape.

Lex-order has an enumerator
strings of length 1, the length 2, ….

Pairs of binary strings have a lex-order enumerator

for each n>0 list all pairs of strings a,b as #a#b#
where total length of a and b is n.

Let BINARY(w) = pair of binary strings be any fixed
way of encoding a pair of binary strings with a single
binary string

TURING MACHINE with WRITE ONLY
output tape.

FINITE
STATE

CONTROL

Outputs a sequence of strings separated
by hash marks. Allows for a well defined
infinite sequence of strings in the limit.

The machine is said to enumerate the set
of strings occurring on the tape.

From every TM M accepting A.
there is a TM M’ outputting A.

For n = 0 to forever do
{ {Do n parallel simulations of M for
n steps for the first n inputs}
M(0). M(1), M(2), M(3)..
} Odd/Even trick becomes “modulo
n” trick. If M(x) accepts then
output(x#)

From every TM M outputting A.
there is a TM M’ accepting A.

M”(X) run M, accept if X output on tape.

Let Z+ = {1,2,3,4…}. There exists a bijection
between Z+ and Z+ × Z+

(1,1) (1,2) (1,3) (1,4) (1,5) …

(2,1) (2,2) (2,3) (2,4) (2,5) …

(3,1) (3,2) (3,3) (3,4) (3,5) …

(4,1) (4,2) (4,3) (4,4) (4,5) …

(5,1) (5,2) (5,3) (5,4) (5,5) …

(or Q+)

w ∈ L ?

accept reject

TM

yes no

w ∈ Σ*

L is decidable
(recursive)

w ∈ L ?

accept reject or no output

TM

yes no

w ∈ Σ*

L is semi-decidable
(recursively enumerable,

Turing-recognizable)

MULTITAPE TURING MACHINES

δ : Q × Γk
 → Q × Γk × {L,R}k

FINITE
STATE

CONTROL

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE

CONTROL

0 01

FINITE
STATE

CONTROL 0 01 # # #. . .

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE

CONTROL

0 01

FINITE
STATE

CONTROL 0 01 # # #. . .

We can encode a TM as a string of 0s and 1s

0n10m10k10s10t10r10u1…

n states

m tape symbols
(first k are input

symbols)

start
state

accept
state

reject
state

blank
symbol

((p, a), (q, b, L)) = 0p10a10q10b10

((p, a), (q, b, R)) = 0p10a10q10b11

THE CHURCH-TURING THESIS

Intuitive Notion of Algorithms
EQUALS

Turing Machines

ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable
ATM is r.e. :
Define a TM U as follows:
On input (M, w), U runs M on w. If M ever accepts,
accept. If M ever rejects, reject.

NB. When we write “input (M, w)” we really mean
“input code for (code for M, w)”

Similarly, we can encode DFAs, NFAs, CFGs,
etc. into strings of 0s and 1s

ADFA = { (B, w) | B is a DFA that accepts string w }

ANFA = { (B, w) | B is an NFA that accepts string w }

ACFG = { (G, w) | G is a CFG that generates string w }

So we can define the following languages:

Theorem: ADFA is decidable
Proof Idea: Simulate B on w

Theorem: ANFA is decidable

Theorem: ACFG is decidable
Proof Idea: Transform G into Chomsky Normal
Form. Try all derivations of length up to 2|w|-1

UNDECIDABLE PROBLEMS
THURSDAY Feb 13

There are languages over {0,1}
that are not decidable

If we believe the Church-Turing Thesis,  
this is MAJOR: it means there are things that
computers inherently cannot do

We can prove this using a counting argument.
We will show there is no onto function from the
set of all Turing Machines to the set of all
languages over {0,1}. (Works for any Σ) Hence
there are languages that have no decider.

Then we will prove something stronger:  
There are semi-decidable (r.e.) languages that
are NOT decidable

Turing
Machines

Languages
over {0,1}

Let L be any set and 2L be the power set of L
Theorem: There is no onto map from L to 2L

Proof: Assume, for a contradiction, that
there is an onto map f : L → 2L

Let S = { x ∈ L | x ∉ f(x) }

If S = f(y) then y ∈ S if and only if y ∉ S

Can give a more constructive argument!

Theorem: There is no onto function from the
positive integers to the real numbers in (0, 1)

1
2
3
4
5
:

0.28347279…
0.88388384…
0.77635284…
0.11111111…
0.12345678…

:

Proof:

[n-th digit of r] =

2
8
6
1
5

1 if [n-th digit of f(n)] ≠ 1

 2 otherwise

f(n) ≠ r for all n (Here, r = 11121...)

Suppose f is any function mapping the
positive integers to the real numbers in (0, 1:

THE MORAL:
No matter what L is,

2L always has more elements than L

Not all languages over {0,1} are decidable, in fact:
not all languages over {0,1} are semi-decidable

{Turing Machines}

{Strings of 0s and 1s} {Sets of strings of
0s and 1s}

{Languages over {0,1}}

Set L Set of all subsets of L: 2L

{decidable languages over {0,1}}

{semi-decidable languages over {0,1}}

ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable
ATM is r.e. :
Define a TM U as follows:
On input (M, w), U runs M on w. If M ever accepts,
accept. If M ever rejects, reject.

NB. When we write “input (M, w)” we really mean
“input code for (code for M, w)”

ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable
ATM is r.e. :
Define a TM U as follows:
On input (M, w), U runs M on w. If M ever accepts,
accept. If M ever rejects, reject.

Therefore,
U accepts (M,w) ⇔ M accepts w ⇔ (M,w) ∈ ATM
Therefore, U recognizes ATM

U is a universal TM

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable: (proof by contradiction)

Assume machine H decides ATM

H((M,w)) =
Accept if M accepts w

Reject if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output the opposite of H

D(M) =
Reject if M accepts M

Accept if M does not accept M
D

D D

D D

M1

M2

M3

M4

:

M1 M2 M3 M4 …

accept accept

accept

accept

accept

accept

accept

reject

reject

reject

reject

reject

reject

reject

reject

reject

OUTPUT OF H

accept

accept

reject

reject

D

D

reject

accept

accept

accept

acceptreject

reject

accept ?

Theorem: ATM is r.e. but NOT decidable

Cor: ¬ATM is not even r.e.!

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable:

Let machine H semi-decides ATM (Such ∃ , why?)

H((M,w)) =
Accept if M accepts w
Reject or
No output if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output

D(M) =
Reject if H (M, M) Accepts
Accept if H (M , M) Rejects
No output if H (M, M) has No output

D
D, D

D, D
DD,

A constructive proof:

H((D,D)) = No output No Contradictions !

We have shown:
Given any machine H for semi-deciding ATM, 
we can effectively construct a TM D such that
(D,D) ∉ ATM but H fails to tell us that.

That is, H fails to be a decider on instance
(D,D).

In other words,
Given any “good” candidate for deciding the
Acceptance Problem, we can effectively
construct an instance where the candidate
fails.

HALTTM = { (M,w) | M is a TM that halts on string w }

Theorem: HALTTM is undecidable

THE classical HALTING PROBLEM

Proof: Assume, for a contradiction, that TM H
decides HALTTM

We use H to construct a TM D that decides ATM

On input (M,w), D runs H on (M,w):
If H rejects then reject
If H accepts, run M on w until it halts:

Accept if M accepts, ie halts in an accept
state
Otherwise reject

H

(M,w)

(M,w)

M

w

If M doesn’t
halt: REJECT

If M halts

Does M
halt on w?

D

ACCEPT if halts in accept state
REJECT otherwise

In many cases, one can show that a
language L is undecidable by showing

that if it is decidable, then so is ATM

We reduce deciding ATM to deciding
the language in question

ATM ≤ L

We just showed: ATM ≤ HaltTM

Is HaltTM ≤ ATM ?

