Midterm REVIEW

Midterm 1 will cover everything we
have seen so far

The PROBLEMS will be from Sipser,
Part |

It will be Closed-Book,
Closed-Everything

1. Deterministic Finite Automata and Regular
Languages

2. Non-Deterministic Finite Automata

3. Pumping Lemma for Regular Languages;
Regular Expressions

4. Minimizing DFAs

5. PDAs, CFGs;

Pumping Lemma for CFLs

6. Equivalence of PDAs and CFGs

7. Chomsky Normal Form

CONTEXT-FREE GRAMMARS

start variable production
4A\ 0A1
(A B
B # A
variables =™ Q

rules
terminals

CONTEXT-FREE GRAMMARS

start variable production
4A\ 0A1
(A B
B # A
variables =™ Q

rules

terminals
A= 0A1= 00A11 = 00B11 = 00#TD
= (ylelds) A 00411 Derivation
%

CLEIOER)

CONTEXT-FREE GRAMMARS

: production
start variable_-S — A ___ rules

A — 0A1
A—B
B - #

variables _
terminals

A= 0A1= 00A11 = 00B11 = 00#TD

= (ylelds) Derivation

More generally, define u =* v (u derives v)
where U and V are strings of variables and terminals

CONTEXT-FREE GRAMMARS

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VUZ)*

S €V is the start variable

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VUZ)*

S €V is the start variable

L(G)={wec ¥*|S =*w} Strings Generated by G

A Language L is context-free if there is a CFG that
generates precisely the strings In L

CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal
form if every rule is of the form:

A — BC B and C aren’t start variables
A— a ais a terminal

S —>¢ S is the start variable

Any variable A that is not the start variable
can only generate strings of length > 0

Theorem: If G is in CNF, w € L(G) and |w| > 0,
then any derivation of w in G has length 2|w| - 1

Proof (by induction on |w|):

Base Case: If |w| =1, then any derivation of
w must have length1 (A — a)

Inductive Step: Assume true for any string
of length at most k 2 1, and let |w| = k+1

Since |w| > 1, derivation starts with A — BC
Sow=xywhereB="x,|x]>0and C ="y, |y|>0

By the inductive hypothesis, the length of
any derivation of w must be

T+ (2]x] -1) + (2]y] - 1) = 2(|x] + [y]) - 1

Theorem: Any context-free language
can be generated by a context-free
grammar in Chomsky normal form

Theorem: Any context-free language
can be generated by a context-free
grammar in Chomsky normal form

Proof Idea:

1. Add a new start variable
2. Eliminate all A->¢ rules (¢ rules). Repair grammar
3. Eliminate all A->B rules (unit productions). Repair

4. Convert A2 u u,...u, to A2uA,, A;2UA,, ...
If u, is a terminal, replace u; with U; and add U.—>u,

Convert the following into Chomsky normal form:

A—->BAB|B]|¢
B—00]¢

S,— A Sp—Ale

0

A—>BAB|B|£ »AHBABIBIBBIABIBA
B — 00

B—00]|¢ *

S, > BAB | 00| BB |AB |BA |t
A — BAB | 00 | BB | AB | BA

B — 00
\ 4

S, > BC|DD|BB|AB|BA |g, C — AB,
A >BC|DD|BB|AB|BA, B->DD, D0

2. Redovnewnikslart canidéde S, Sp— S
bnberadtifenalesSs), — S S — 0S1

For each occurrence of A on right S — T#HT
hand side of arule,addanewrule | S—T

with the occurrence deleted T ¢
If we have the rule B — A, add S — T#
B — €, unless we have S — #T
previously removed B — ¢ S #
S —>¢
3. Remove unitrulesA— B %O—LDGS1
Whenever B — w appears, add S, > €

the rule A — w unless this was
a unit rule previously removed

4. Convert all remaining rules into the Sy — €
proper form: S, — 051
S, — AA, Sy — AA; S — T#
S, — #T
A, —0 S _ 01 S, — #
A, — SA, S > AA, S, — 01
A3 — 1 S > 051
S - THT
S > T#
S > #T
S #
S — 01

Definition: A (non-deterministic) PDA is a
tuple P=(Q, 2, T, 0, q4 F), where:

Q is a finite set of states
2 is the input alphabet

I" is the stack alphabet
0:QAxZX xI,— 2xTg
do, € Q is the start state

F C Qis the set of accept states

29 js the set of subsets of Qand 2_ =2 U {g}

A Language L is generated by a CFG
<

L is recognized by a PDA

Suppose L is generated bya CFG G =(V, 2, R, S)
Construct P=(Q, Z, I, §, q, F) that recognizes L

_,O

£,€ — S$ l For each rule 'A - w’ € R:
AW
O For each terminal a € .:
a,a— €
£$—¢ |

\4

A Language L is generated by a CFG

<=

L is recognized by a PDA

Given PDAP=(Q, %, T, 5, q, F)

Constructa CFG G =(V, 2, R, S) such that
L(G) = L(P)

First, simplify P to have the following form:
(1) It has a single accept state, g,
(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or
pops a symbol, but not both at the same time

SIMPLIFY

£€— 9

|1,0—>£

\ 4

SIMPLIFY

£€— 9

ad O

Idea For Our Grammar G:
For every pair of states p and g in PDA P,

G will have a variable A, which generates all
strings x that can take:

P from p with an empty stack
to g with an empty stack

V={A,|p.0€Q}

S = Aqoqacc

X = ayb takes p with empty stack to q with empty stack

1. The symbol t popped at the end is exactly
the one pushed at the beginning

2. The symbol popped at the end is not
the one pushed at the beginning

A

stack

height

string

Apnq = ApArg

Formally:

Foreveryp,q,rrsceQ,tclNanda,bez,
If (r, t) € 3(p, a, €) and (q, €) € (s, b,)
Then add the rule A, — aA b

Foreveryp,q,rcQ,

add the rule A,, — A A,

For every p € Q,
add the rule App — €

THE PUMPING LEMMA

(for Regular Languages)

Let L be a regular language with |L| = @

Then there is an integer P such that
if welLand|w|2P
then can write w = xyz, where:

1. |ly| >0
2. |xy|=P
3. xy'zeLforanyiz0

THE PUMPING LEMMA
(for Context Free Grammars)

Let L be a context-free language with |L| = «

Then there is an integer P such that
if welLand |w|2P

then can write w = uvxyz, where:

A | 1. >0

T T vyl

=] E 2. |lvxy| =P

R R 3. uvixyize L,
u v y z foranyiz20

vV X y

Machines Syntactic Rules

DFAs
A

» Regular
Expressions

, Context-Free
Grammars

deterministic DFA
A * finite automaton # is a 5-tuple M = (Q, Z, 9, q,, F)

Q is the set of states (finite)

2 is the alphabet (finite)

d0:Qx X — Q is the transition function
d, € Q is the start state

F C Qis the set of accept states

Letw,, ..., w,EZand w=w,...w, E2Z"
Then M w if there arery, ry, ..., r, € Q, s.t.
1. ry=d,

2. o(r,Wy,q)=r,q, fori=0,..,n-1,and
3. r,eF

Let we 2* and suppose w can be written as
W,... W, Where w; € 2_ (& = empty string)

Then N w if there arer, r,, ..., r, €Q
such that

1. 1, € Q
2. Iy 0(r;, Wy,) fori=0, ..., n-1, and
3. r,eF

L(N) = the language recognized by N
= set of all strings machine N accepts

A language L is by an NFAN
if L =L(N).

Let we 2* and suppose w can be written as
wW,... W, wherew, € Z_(recall Z_=2 U {g})

Then P w if there are
re; Iy, .-, I, € Q and

Sgs S1s -==» S, € ['* (sequence of stacks) such that

1. ry = q, and s, = € (P starts in q, with empty stack)

2. Fori=0,..,n-1:
(ri.q, b)E 6(r,, W.,,, @), Where s,=at and s, , = bt for

somea,bel, andterl™
(P moves correctly according to state, stack and symbol read)

3.r, € F (Pisin an accept state at the end of its input)

THE REGULAR OPERATIONS

UniontAuB={w|w&cAorwecB}
Intersectiont ANB={w|weAandw&cB}
Negation: —-A={wecX*|wEZA}

Reverse: AR={w,..w, |w,..w, EA}
Concatenation: A-B={vw|vEAandwcB}

Star: A*={s,...s, | k20and eachs, €A}

REGULAR EXPRESSIONS

o is a regexp representing {c}
£ is a regexp representing {€}
& is a regexp representing &

If R, and R, are regular expressions
representing L, and L, then:
(R{R,) represents L, - L,

(R{UR,) represents L, U L,

(R{)* represents L,*

How can we test if two regular
expressions are the same?

Lengthn R, R,
O(n) states N, N,
! !

!

O(2") states M, M,

\4

M1 MIN MZ MIN

THEOREMS
and
CONSTRUCTIONS

CONVERTING NFAs TO DFAs
Input: NFAN = (Q, £, §, Q,, F)

Output: DFAM =(Q, %, ¥, q,, F')

Q' =20
0:QxZ—Q
8'(R,0) = U g(§(r,0))
reR
do = €(Qy)
FF={ReQ'|fcRforsomefcF}

For RC Q, the e-closure of R, €¢(R) = {q that can be reached
from some r & R by traveling along zero or more € arrows}

Given: NFA N = ({1,2,3}, {a,b}, 5, {1}, {1})

Construct: Equivalent DFA M
= (21123, {a,b}, &', {1,3}, -

— {3} —> %,
/ a b

d
e({1}) ={1,3}

EQUIVALENCE

L can be represented by a regexp
<

L is a regular language

v a
L is a regular language

L can be represented by a regexp

Induction on the length of R:

Base Cases (R has length 1):

Inductive Step:

Assume R has length :
and that every regexp of length
represents a regular language

Three possibilities for what R can be:

R=R;UR; (Closure under Union)

R=RR; (Closure under Concat.)
R=(R,)” (Closure under Star)

Therefore: L can be represented by a regexp
= L is regular

Transform (1(0 U 1))* to an NFA

L is a regular language =
J L can be represented by a regexp

Proof idea: Transform an NFA for L into a
regular expression by removing states and re-
labeling the arrows with regular expressions

Add unique and distinct start and accept states

&
a/v E\A ©
e £ e
— “

&
&
~~ el
&

While machine has more than 2 states:

Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for the missing state

090

01*0

0

_>

a a,b

AT A!
;.L.

a*b
>
(a*b)(aUb)*

R(d,95) = (a*b)(@aUb)*

THEOREM

For every regular language L, there exists
a UNIQUE (up to re-labeling of the states)
minimal DFA M such that L = L(M)

EXTENDING o
Given DFA M =(Q, %, 9, q,, F), extend 6
to 5:Q x £* — Q as follows:
5(a, €) = g
39, 0) = 8(q, o)
57(q, Wy e Weq) = 0(Stq, Wy Wy), Wyyq)

Note: 5(q,, w) EF < M accepts w

String w € 2* distinguishes states q, and q, iff
exactly ONE of lé\(q1, w), /S(qz, w) is a final state

FixM=(Q, ,0,q, F)andletp, q,reQ

Definition:
p ~ q iff p is indistinguishable from q
p * q iff p is distinguishable from ¢

Proposition: ~ is an equivalence relation
p ~ p (reflexive)
Pp~q = q~p (symmetric)
p~qgq and q~r = p ~r (transitive)

Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into
disjoint equivalence classes

[al={pPlpP~q}

(@

TABLE-FILLING ALGORITHM
Input: DFAM = (Q, %, 6, q,, F)

Output: (1) Dy ={(p.9) | p,aEQandp+q}
(2) Ey={[dllacQ}

IDEA:

« We know how to find those pairs of
states that € distinguishes...

 Use this and recursion to find those
pairs distinguishable with longer strings

« Pairs left over will be indistinguishable

TABLE-FILLING ALGORITHM
Input: DFAM = (Q, %, 6, q,, F)

Output: (1) Dy ={(p.9) | p,aEQandp+q}
(2) Ey={[dllacQ}

Base Case: p accepts
and g rejects =p v

Recursion: if thereisoc 2
and states p’, q' satisfying

6 (p, 0) =p’
+ T p*q
6(q,0)=q

Repeat until no more new D’s

Algorithm MINIMIZE
Input: DFA M
Output: DFA M,

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get
E,={[d] | gqis an accessible state of M }

Muyin = (Quins 25 Opine 9o mine Frain)

Quin = Emy domin =[90]; Fun={Ial|lqaEF}

omn([al,0) =[0(q,0)]
Claim: MMIN =M

