
Midterm REVIEW



Midterm 1 will cover everything we 
have seen so far

It will be Closed-Book, 
Closed-Everything

The PROBLEMS will be from Sipser, 

Part I



• 1. Deterministic Finite Automata and Regular 
Languages  

• 2. Non-Deterministic Finite Automata 
• 3. Pumping Lemma for Regular Languages;  

Regular Expressions 
• 4. Minimizing DFAs  
• 5. PDAs, CFGs;  

Pumping Lemma for CFLs 
• 6. Equivalence of PDAs and CFGs  
• 7. Chomsky Normal Form 
• 8. Turing Machines
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A → B
B → #

CONTEXT-FREE GRAMMARS

A

variables
terminals

production 
rulesstart variable

⇒  0A1 
⇒(yields)

⇒ 00A11 ⇒ 00B11 ⇒ 00#11

 More generally, define u ⇒* v ( u derives v) 
where u and v are strings of variables and terminals

Derivation

S → A



CONTEXT-FREE GRAMMARS
A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:  

V is a finite set of variables

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)



CONTEXT-FREE LANGUAGES
A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:  

V is a finite set of variables

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

L(G) = {w ∈ Σ* | S  ⇒* w}  Strings Generated by G 

 A Language L is context-free if there is a CFG that 
generates precisely the strings in L



CHOMSKY NORMAL FORM
A context-free grammar is in Chomsky normal 
form if every rule is of the form:

A → BC 
A → a 

S → ε 

B and C aren’t start variables

a is a terminal

S is the start variable

Any variable A that is not the start variable 
can only generate strings of length > 0 



Theorem: If G is in CNF, w ∈ L(G) and |w| > 0, 
then any derivation of w in G has length 2|w| - 1

Proof (by induction on |w|):

Base Case:     If |w| = 1, then any derivation of 
w must have length 1   (A → a) 

Inductive Step:   Assume true for any string 
of length at most k ≥ 1, and let |w| = k+1

Since |w| > 1, derivation starts with A → BC

So w = xy where B ⇒* x, |x| > 0 and C ⇒* y, |y| > 0

By the inductive hypothesis, the length of 
any derivation of w must be 

1 + (2|x| - 1) + (2|y| - 1) = 2(|x| + |y|) - 1



Theorem: Any context-free language 
can be generated by a context-free 
grammar in Chomsky normal form



Theorem: Any context-free language 
can be generated by a context-free 
grammar in Chomsky normal form

Proof Idea: 
1.  Add a new start variable 
2. Eliminate all  A!ε  rules (ε  rules). Repair grammar 
3. Eliminate all  A!B  rules (unit productions). Repair 

4. Convert  A!u1u2... uk  to  A !u1A1, A1!u2A2, ... 
If ui is a terminal, replace ui  with Ui and add  Ui!ui



Convert the following into Chomsky normal form:
A → BAB | B | ε 
B → 00 | ε

A → BAB | B | ε 
B → 00 | ε

S0 → A
A → BAB | B | BB | AB | BA 
B → 00

S0 → A | ε

A → BAB | 00 | BB | AB | BA 
B → 00

S0 → BAB | 00 | BB | AB | BA  | ε

S0 → BC | DD | BB | AB | BA  | ε,     C → AB,  
A → BC | DD | BB | AB | BA ,    B → DD,    D → 0 



1. Add a new start variable S0 
and add the rule S0 → S S → 0S1

S → T#T

T → ε

S0 → S2.  Remove all A → ε rules 
(where A is not S0)
For each occurrence of A on right 
hand side of a rule, add a new rule 
with the occurrence deleted

If we have the rule B → A, add 
B → ε, unless we have 
previously removed B → ε 

S → T

3.  Remove unit rules A → B 
Whenever B → w appears, add 
the rule A → w unless this was 
a unit rule previously removed 

S → T#
S → #T
S → #
S → ε
S → 01
S0 → ε
S0 → 0S1



S → 0S1
S → T#T
S → T#
S → #T
S → #
S → 01

S0 → ε
S0 → 0S1
S0 → T#T
S0 → T#
S0 → #T
S0 → #
S0 → 01

4. Convert all remaining rules into the 
proper form:

S0 → 0S1
S0 → A1A2

A1 → 0
A2 → SA3

A3 → 1

S0 → 01
S0 → A1A3

S → 01
S → A1A3



Definition: A (non-deterministic) PDA is a 
tuple     P = (Q, Σ, Γ, δ, q0, F), where:  

Q is a finite set of states

Γ is the stack alphabet

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

Σ is the input alphabet

δ : Q × Σε × Γε → 2 Q × Γε

2Q is the set of subsets of Q and Σε = Σ ∪ {ε}



A Language L is generated by a CFG  
⇔ 

L is recognized by a PDA



Suppose L is generated by a CFG G = (V, Σ, R, S) 
Construct P = (Q, Σ, Γ, δ, q, F) that recognizes L

ε,ε → S$

ε,$ → ε

For each rule 'A → w’ ∈ R:

For each terminal a ∈ Σ:
ε,A → w

a,a → ε



S → aTb
T → Ta | ε

ε,ε → $

ε,$ → ε

ε,ε → S ε,S
 →

 b

ε,ε → T

ε,T → a

ε,ε → a

ε,ε → T

ε,T → ε
a,a → ε
b,b → ε



A Language L is generated by a CFG  

L is recognized by a PDA

Given PDA P = (Q, Σ, Γ, δ, q, F)

Construct a CFG G = (V, Σ, R, S) such that  
L(G) = L(P) 

First, simplify P to have the following form:

(1) It has a single accept state, qaccept

(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or 
pops a symbol, but not both at the same time

⇐



ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

SIMPLIFY

q0 q1

q2q3



ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

SIMPLIFY

q0 q1

q2q3

ε,0 → ε

q4

q5

ε,ε → 0

ε,ε → 0



V = {Apq | p,q∈Q }

S = Aq0qacc

Idea For Our Grammar G:  
For every pair of states p and q in PDA P, 
  
G will have a variable Apq which generates all 
strings x that can take: 

 P from p with an empty stack  
         to q with an empty stack



stack 
height

input 
string p q

Apq → aArsb

r s

1. The symbol t popped at the end is exactly 
the one pushed at the beginning

ba push t pop t

x = ayb   takes p with empty stack to q with empty stack

δ(p, a, ε) → (r, t)

δ(s, b, t) → (q, ε)

─ ─ ─ ─ x ─ ─ ─ ─



stack 
height

input 
string

p r q

Apq → AprArq

2. The symbol popped at the end is not 
the one pushed at the beginning



V = {Apq | p, q∈Q }
S = Aq0qacc

Formally:

For every p, q, r, s ∈ Q, t ∈ Γ and a, b ∈ Σε
If (r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t) 
Then add the rule Apq → aArsb

For every p, q, r ∈ Q,
add the rule Apq → AprArq 

For every p ∈ Q,
add the rule App → ε 



THE PUMPING LEMMA 
(for Regular Languages)

Let L be a regular language with |L| = ∞

Then there is an integer P such that 

1.  |y| > 0 
2.  |xy| ≤ P 
3.  xyiz ∈ L for any i ≥ 0

if  w ∈ L and |w| ≥ P 
 then can write w = xyz, where:

x

y
z



THE PUMPING LEMMA 
(for Context Free Grammars)

Let L be a context-free language with |L| = ∞
Then there is an integer P such that  
if  w ∈ L and |w| ≥ P

1.  |vy| > 0
then can write w = uvxyz, where:

3.  uvixyiz ∈ L, 
 for any i ≥ 0

2.  |vxy| ≤ P
T
R
R

u v x zy

T

u z

R
R

v y

R
R

v x y



DFAs

NFAs Regular 
Expressions

PDAs Context-Free 
Grammars

Machines Syntactic Rules



Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σ → Q  is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F) 
deterministic  DFA

Let w1, ... , wn ∈ Σ and  w = w1... wn ∈ Σ*  
Then M accepts w if there are r0, r1, ..., rn ∈ Q, s.t. 
1. r0=q0  
2.  δ(ri, wi+1 ) = ri+1,   for i = 0, ..., n-1, and  
3. rn ∈ F



Let w∈ Σ* and  suppose w can be written as 
 w1... wn  where wi ∈ Σε  (ε = empty string) 

Then N accepts w if there are r0, r1, ..., rn ∈ Q 
such that 

1. r0 ∈ Q0  
2. ri+1 ∈ δ(ri, wi+1 ) for i = 0, ..., n-1, and  
3. rn ∈ F

A language L is recognized by an NFA N 
if L = L(N).

L(N)  = the language recognized by N 
 = set of all strings machine N accepts



Let w∈ Σ* and  suppose w can be written as 
 w1... wn  where wi ∈ Σε (recall Σε = Σ ∪ {ε}) 

Then P accepts w if there are  
     r0, r1, ..., rn ∈ Q and  
     s0, s1, ..., sn ∈ Γ* (sequence of stacks) such that 

1. r0  = q0  and s0 = ε (P starts in q0 with empty stack) 

2. For i = 0, ..., n-1: 
(ri+1 , b)∈ δ(ri, wi+1, a), where si =at  and si+1 = bt for  

some a, b ∈ Γε  and t ∈ Γ*  
(P moves correctly according to state, stack and symbol read) 

3. rn ∈ F (P is in an accept state at the end of its input)



THE REGULAR OPERATIONS

Union: A ∪ B = { w | w ∈ A or w ∈ B } 

Intersection: A ∩ B = { w | w ∈ A and w ∈ B } 

Negation: ¬A = { w ∈ Σ* | w ∉ A } 

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A }



REGULAR EXPRESSIONS
 σ  is a regexp representing {σ}

ε  is a regexp representing {ε}

∅  is a regexp representing ∅

If R1 and R2 are regular expressions 
representing L1 and L2 then:

(R1R2) represents L1 ⋅ L2 
(R1 ∪ R2) represents L1 ∪ L2 
(R1)* represents L1*



How can we test if two regular 
expressions are the same?

R1

N1

M1

M1 MIN

R2

N2

M2

M2 MIN

Length n

O(n) states

O(2n) states

?=



THEOREMS  
and  

CONSTRUCTIONS



Qʹ′ = 2Q

δʹ′ : Qʹ′ × Σ → Qʹ′
δʹ′(R,σ) =  ∪ ε( δ(r,σ) )

r∈R

q0ʹ′ = ε(Q0)

Fʹ′ = { R ∈ Qʹ′ | f ∈ R for some f ∈ F }

CONVERTING NFAs TO DFAs
Input: NFA N = (Q, Σ, δ, Q0, F) 

Output: DFA M = (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′) 

*

  For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached 
from some r ∈ R by traveling along zero or more ε arrows} 

*



a

a , b

a

2  3

1

b
ε

Given: NFA  N = ( {1,2,3}, {a,b}, δ , {1}, {1} ) 

Construct: Equivalent DFA M

ε({1}) = {1,3}

N
M = (2{1,2,3}, {a,b}, δʹ′, {1,3}, …)

{1,3}

a

b

{2} a {2,3}

b

{3}

a

{1,2,3}

ab

b

a
∅

a,b

{1}, {1,2} ?

b



L can be represented by a regexp 
⇔ 

L is a regular language

EQUIVALENCE



Base Cases (R has length 1):

R = σ
σ

R = ε

R = ∅

L can be represented by a regexp 
⇒ 

L is a regular language

Induction on the length of R:

✓



Inductive Step:

Assume R has length k > 1,  
and that every regexp of length < k  

represents a regular language 

Three possibilities for what R can be:

R = R1 ∪ R2

R = R1 R2

R = (R1)*

(Closure under Union)
(Closure under Concat.)

(Closure under Star)

Therefore:  L can be represented by a regexp 
⇒ L is regular



Transform (1(0 ∪ 1))* to an NFA

1ε 1,0

ε



L is a regular language ⇒ 
L can be represented by a regexp

Proof idea: Transform an NFA for L into a 
regular expression by removing states and re-
labeling the arrows with regular expressions 

✓

Add unique and distinct start and accept states

ε
ε

ε

ε

ε



NFA
ε
ε

ε

ε

ε

While machine has more than 2 states:

0

1

0

01*0

Pick an internal state, rip it out and  
re-label the arrows with regexps,  
to account for the missing state



q1
b

a

ε q2

a,b

ε

a*b

(a*b)(a∪b)*

q0 q3

R(q0,q3) = (a*b)(a∪b)* 



THEOREM
For every regular language L, there exists 
a UNIQUE (up to re-labeling of the states) 

minimal DFA M such that L = L(M)



EXTENDING δ
Given DFA  M = (Q, Σ, δ, q0, F),  extend δ 

to δ : Q × Σ* → Q as follows: 

δ(q, ε) = 

δ(q, σ) =
δ(q, w1 …wk+1 ) = δ( δ(q, w1 …wk ), wk+1 ) 

^

^
^
^ ^

q

δ(q, σ)

Note: δ(q0, w) ∈ F  ⇔  M accepts w

String w ∈ Σ* distinguishes states q1 and q2  iff 

exactly ONE of δ(q1, w), δ(q2, w) is a final state^ ^



Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q 

Definition:
p ~ q iff p is indistinguishable from q 
p ~ q iff p is distinguishable from q /

Proposition: ~ is an equivalence relation
p ~ p (reflexive)
p ~ q  ⇒  q ~ p (symmetric)
p ~ q  and  q ~ r  ⇒  p ~ r (transitive)



q

[q] = { p | p ~ q }

so ~ partitions the set of states of M into 
disjoint equivalence classes

Proposition: ~ is an equivalence relation



11
1

1

0

0

00



TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F) 

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/

•  We know how to find those pairs of 
states that ε distinguishes… 

•  Use this and recursion to find those 
pairs distinguishable with longer strings 

•  Pairs left over will be indistinguishable

IDEA:

Output:



TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F) 
Output:

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/

q0
q1

qi

qn
q0 q1 qi qn

Recursion: if there is σ ∈ Σ 
and states pʹ′, qʹ′ satisfying D D

D
δ (p, σ) = 

 
pʹ′

δ (q, σ) = qʹ′
~/ ⇒ p ~ q/

Base Case: p accepts 
   and q rejects ⇒ p ~ q/

Repeat until no more new D’s



Algorithm MINIMIZE

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get  
EM = { [q] | q is an accessible state of M }

MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F }

δMIN( [q],σ ) = [ δ( q,σ ) ]
Claim: MMIN ≡ M


