
Midterm REVIEW

Midterm 1 will cover everything we
have seen so far

It will be Closed-Book,
Closed-Everything

The PROBLEMS will be from Sipser,

Part I

• 1. Deterministic Finite Automata and Regular
Languages

• 2. Non-Deterministic Finite Automata
• 3. Pumping Lemma for Regular Languages;

Regular Expressions
• 4. Minimizing DFAs
• 5. PDAs, CFGs;  

Pumping Lemma for CFLs
• 6. Equivalence of PDAs and CFGs
• 7. Chomsky Normal Form
• 8. Turing Machines

A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

variables
terminals

production
rulesstart variable

A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

A

variables
terminals

production
rulesstart variable

⇒ 0A1
⇒(yields)

⇒ 00A11 ⇒ 00B11 ⇒ 00#11

A ⇒* 00#11
(derives)

Derivation

A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

A

variables
terminals

production
rulesstart variable

⇒ 0A1
⇒(yields)

⇒ 00A11 ⇒ 00B11 ⇒ 00#11

 More generally, define u ⇒* v (u derives v)
where u and v are strings of variables and terminals

Derivation

S → A

CONTEXT-FREE GRAMMARS
A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

CONTEXT-FREE LANGUAGES
A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

L(G) = {w ∈ Σ* | S ⇒* w} Strings Generated by G

 A Language L is context-free if there is a CFG that
generates precisely the strings in L

CHOMSKY NORMAL FORM
A context-free grammar is in Chomsky normal
form if every rule is of the form:

A → BC
A → a

S → ε

B and C aren’t start variables

a is a terminal

S is the start variable

Any variable A that is not the start variable
can only generate strings of length > 0

Theorem: If G is in CNF, w ∈ L(G) and |w| > 0,
then any derivation of w in G has length 2|w| - 1

Proof (by induction on |w|):

Base Case: If |w| = 1, then any derivation of
w must have length 1 (A → a)

Inductive Step: Assume true for any string
of length at most k ≥ 1, and let |w| = k+1

Since |w| > 1, derivation starts with A → BC

So w = xy where B ⇒* x, |x| > 0 and C ⇒* y, |y| > 0

By the inductive hypothesis, the length of
any derivation of w must be

1 + (2|x| - 1) + (2|y| - 1) = 2(|x| + |y|) - 1

Theorem: Any context-free language
can be generated by a context-free
grammar in Chomsky normal form

Theorem: Any context-free language
can be generated by a context-free
grammar in Chomsky normal form

Proof Idea:
1. Add a new start variable
2. Eliminate all A!ε rules (ε rules). Repair grammar
3. Eliminate all A!B rules (unit productions). Repair

4. Convert A!u1u2... uk to A !u1A1, A1!u2A2, ...
If ui is a terminal, replace ui with Ui and add Ui!ui

Convert the following into Chomsky normal form:
A → BAB | B | ε
B → 00 | ε

A → BAB | B | ε
B → 00 | ε

S0 → A
A → BAB | B | BB | AB | BA
B → 00

S0 → A | ε

A → BAB | 00 | BB | AB | BA
B → 00

S0 → BAB | 00 | BB | AB | BA | ε

S0 → BC | DD | BB | AB | BA | ε, C → AB,
A → BC | DD | BB | AB | BA , B → DD, D → 0

1. Add a new start variable S0
and add the rule S0 → S S → 0S1

S → T#T

T → ε

S0 → S2. Remove all A → ε rules
(where A is not S0)
For each occurrence of A on right
hand side of a rule, add a new rule
with the occurrence deleted

If we have the rule B → A, add
B → ε, unless we have
previously removed B → ε

S → T

3. Remove unit rules A → B
Whenever B → w appears, add
the rule A → w unless this was
a unit rule previously removed

S → T#
S → #T
S → #
S → ε
S → 01
S0 → ε
S0 → 0S1

S → 0S1
S → T#T
S → T#
S → #T
S → #
S → 01

S0 → ε
S0 → 0S1
S0 → T#T
S0 → T#
S0 → #T
S0 → #
S0 → 01

4. Convert all remaining rules into the
proper form:

S0 → 0S1
S0 → A1A2

A1 → 0
A2 → SA3

A3 → 1

S0 → 01
S0 → A1A3

S → 01
S → A1A3

Definition: A (non-deterministic) PDA is a
tuple P = (Q, Σ, Γ, δ, q0, F), where:

Q is a finite set of states

Γ is the stack alphabet

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

Σ is the input alphabet

δ : Q × Σε × Γε → 2 Q × Γε

2Q is the set of subsets of Q and Σε = Σ ∪ {ε}

A Language L is generated by a CFG
⇔

L is recognized by a PDA

Suppose L is generated by a CFG G = (V, Σ, R, S)
Construct P = (Q, Σ, Γ, δ, q, F) that recognizes L

ε,ε → S$

ε,$ → ε

For each rule 'A → w’ ∈ R:

For each terminal a ∈ Σ:
ε,A → w

a,a → ε

S → aTb
T → Ta | ε

ε,ε → $

ε,$ → ε

ε,ε → S ε,S
 →

 b

ε,ε → T

ε,T → a

ε,ε → a

ε,ε → T

ε,T → ε
a,a → ε
b,b → ε

A Language L is generated by a CFG

L is recognized by a PDA

Given PDA P = (Q, Σ, Γ, δ, q, F)

Construct a CFG G = (V, Σ, R, S) such that
L(G) = L(P)

First, simplify P to have the following form:

(1) It has a single accept state, qaccept

(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or
pops a symbol, but not both at the same time

⇐

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

SIMPLIFY

q0 q1

q2q3

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

SIMPLIFY

q0 q1

q2q3

ε,0 → ε

q4

q5

ε,ε → 0

ε,ε → 0

V = {Apq | p,q∈Q }

S = Aq0qacc

Idea For Our Grammar G:
For every pair of states p and q in PDA P,

G will have a variable Apq which generates all
strings x that can take:

 P from p with an empty stack
 to q with an empty stack

stack
height

input
string p q

Apq → aArsb

r s

1. The symbol t popped at the end is exactly
the one pushed at the beginning

ba push t pop t

x = ayb takes p with empty stack to q with empty stack

δ(p, a, ε) → (r, t)

δ(s, b, t) → (q, ε)

─ ─ ─ ─ x ─ ─ ─ ─

stack
height

input
string

p r q

Apq → AprArq

2. The symbol popped at the end is not
the one pushed at the beginning

V = {Apq | p, q∈Q }
S = Aq0qacc

Formally:

For every p, q, r, s ∈ Q, t ∈ Γ and a, b ∈ Σε
If (r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t)
Then add the rule Apq → aArsb

For every p, q, r ∈ Q,
add the rule Apq → AprArq

For every p ∈ Q,
add the rule App → ε

THE PUMPING LEMMA
(for Regular Languages)

Let L be a regular language with |L| = ∞

Then there is an integer P such that

1. |y| > 0
2. |xy| ≤ P
3. xyiz ∈ L for any i ≥ 0

if w ∈ L and |w| ≥ P
 then can write w = xyz, where:

x

y
z

THE PUMPING LEMMA
(for Context Free Grammars)

Let L be a context-free language with |L| = ∞
Then there is an integer P such that
if w ∈ L and |w| ≥ P

1. |vy| > 0
then can write w = uvxyz, where:

3. uvixyiz ∈ L, 
 for any i ≥ 0

2. |vxy| ≤ P
T
R
R

u v x zy

T

u z

R
R

v y

R
R

v x y

DFAs

NFAs Regular
Expressions

PDAs Context-Free
Grammars

Machines Syntactic Rules

Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)
deterministic DFA

Let w1, ... , wn ∈ Σ and w = w1... wn ∈ Σ*
Then M accepts w if there are r0, r1, ..., rn ∈ Q, s.t.
1. r0=q0
2. δ(ri, wi+1) = ri+1, for i = 0, ..., n-1, and
3. rn ∈ F

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (ε = empty string)

Then N accepts w if there are r0, r1, ..., rn ∈ Q
such that

1. r0 ∈ Q0
2. ri+1 ∈ δ(ri, wi+1) for i = 0, ..., n-1, and
3. rn ∈ F

A language L is recognized by an NFA N
if L = L(N).

L(N) = the language recognized by N
 = set of all strings machine N accepts

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (recall Σε = Σ ∪ {ε})

Then P accepts w if there are
 r0, r1, ..., rn ∈ Q and
 s0, s1, ..., sn ∈ Γ* (sequence of stacks) such that

1. r0 = q0 and s0 = ε (P starts in q0 with empty stack)

2. For i = 0, ..., n-1:
(ri+1 , b)∈ δ(ri, wi+1, a), where si =at and si+1 = bt for

some a, b ∈ Γε and t ∈ Γ*
(P moves correctly according to state, stack and symbol read)

3. rn ∈ F (P is in an accept state at the end of its input)

THE REGULAR OPERATIONS

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w ∈ Σ* | w ∉ A }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A }

REGULAR EXPRESSIONS
 σ is a regexp representing {σ}

ε is a regexp representing {ε}

∅ is a regexp representing ∅

If R1 and R2 are regular expressions
representing L1 and L2 then:

(R1R2) represents L1 ⋅ L2
(R1 ∪ R2) represents L1 ∪ L2
(R1)* represents L1*

How can we test if two regular
expressions are the same?

R1

N1

M1

M1 MIN

R2

N2

M2

M2 MIN

Length n

O(n) states

O(2n) states

?=

THEOREMS  
and  

CONSTRUCTIONS

Qʹ′ = 2Q

δʹ′ : Qʹ′ × Σ → Qʹ′
δʹ′(R,σ) = ∪ ε(δ(r,σ))

r∈R

q0ʹ′ = ε(Q0)

Fʹ′ = { R ∈ Qʹ′ | f ∈ R for some f ∈ F }

CONVERTING NFAs TO DFAs
Input: NFA N = (Q, Σ, δ, Q0, F)

Output: DFA M = (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

*

 For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached
from some r ∈ R by traveling along zero or more ε arrows}

*

a

a , b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: Equivalent DFA M

ε({1}) = {1,3}

N
M = (2{1,2,3}, {a,b}, δʹ′, {1,3}, …)

{1,3}

a

b

{2} a {2,3}

b

{3}

a

{1,2,3}

ab

b

a
∅

a,b

{1}, {1,2} ?

b

L can be represented by a regexp
⇔

L is a regular language

EQUIVALENCE

Base Cases (R has length 1):

R = σ
σ

R = ε

R = ∅

L can be represented by a regexp
⇒

L is a regular language

Induction on the length of R:

✓

Inductive Step:

Assume R has length k > 1,
and that every regexp of length < k

represents a regular language

Three possibilities for what R can be:

R = R1 ∪ R2

R = R1 R2

R = (R1)*

(Closure under Union)
(Closure under Concat.)

(Closure under Star)

Therefore: L can be represented by a regexp
⇒ L is regular

Transform (1(0 ∪ 1))* to an NFA

1ε 1,0

ε

L is a regular language ⇒
L can be represented by a regexp

Proof idea: Transform an NFA for L into a
regular expression by removing states and re-
labeling the arrows with regular expressions

✓

Add unique and distinct start and accept states

ε
ε

ε

ε

ε

NFA
ε
ε

ε

ε

ε

While machine has more than 2 states:

0

1

0

01*0

Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for the missing state

q1
b

a

ε q2

a,b

ε

a*b

(a*b)(a∪b)*

q0 q3

R(q0,q3) = (a*b)(a∪b)*

THEOREM
For every regular language L, there exists
a UNIQUE (up to re-labeling of the states)

minimal DFA M such that L = L(M)

EXTENDING δ
Given DFA M = (Q, Σ, δ, q0, F), extend δ

to δ : Q × Σ* → Q as follows:

δ(q, ε) =

δ(q, σ) =
δ(q, w1 …wk+1) = δ(δ(q, w1 …wk), wk+1)

^

^
^
^ ^

q

δ(q, σ)

Note: δ(q0, w) ∈ F ⇔ M accepts w

String w ∈ Σ* distinguishes states q1 and q2 iff

exactly ONE of δ(q1, w), δ(q2, w) is a final state^ ^

Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q

Definition:
p ~ q iff p is indistinguishable from q
p ~ q iff p is distinguishable from q /

Proposition: ~ is an equivalence relation
p ~ p (reflexive)
p ~ q ⇒ q ~ p (symmetric)
p ~ q and q ~ r ⇒ p ~ r (transitive)

q

[q] = { p | p ~ q }

so ~ partitions the set of states of M into
disjoint equivalence classes

Proposition: ~ is an equivalence relation

11
1

1

0

0

00

TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F)

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/

• We know how to find those pairs of
states that ε distinguishes…

• Use this and recursion to find those
pairs distinguishable with longer strings

• Pairs left over will be indistinguishable

IDEA:

Output:

TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F)
Output:

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/

q0
q1

qi

qn
q0 q1 qi qn

Recursion: if there is σ ∈ Σ
and states pʹ′, qʹ′ satisfying D D

D
δ (p, σ) =

pʹ′

δ (q, σ) = qʹ′
~/ ⇒ p ~ q/

Base Case: p accepts
 and q rejects ⇒ p ~ q/

Repeat until no more new D’s

Algorithm MINIMIZE

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get
EM = { [q] | q is an accessible state of M }

MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q],σ) = [δ(q,σ)]
Claim: MMIN ≡ M

