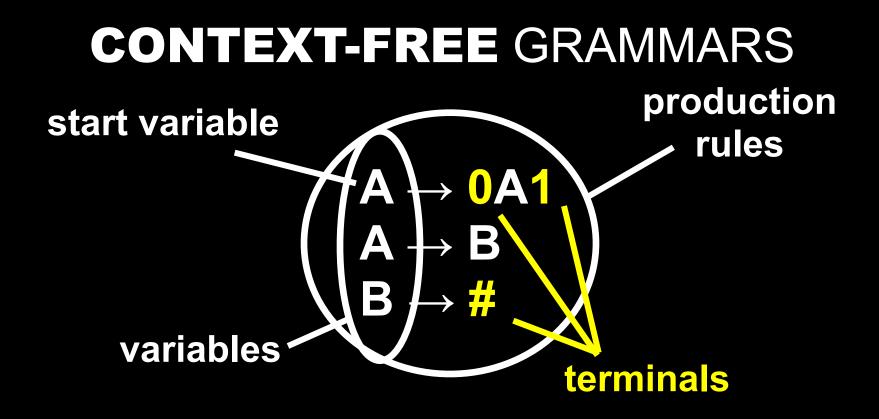
Midterm REVIEW

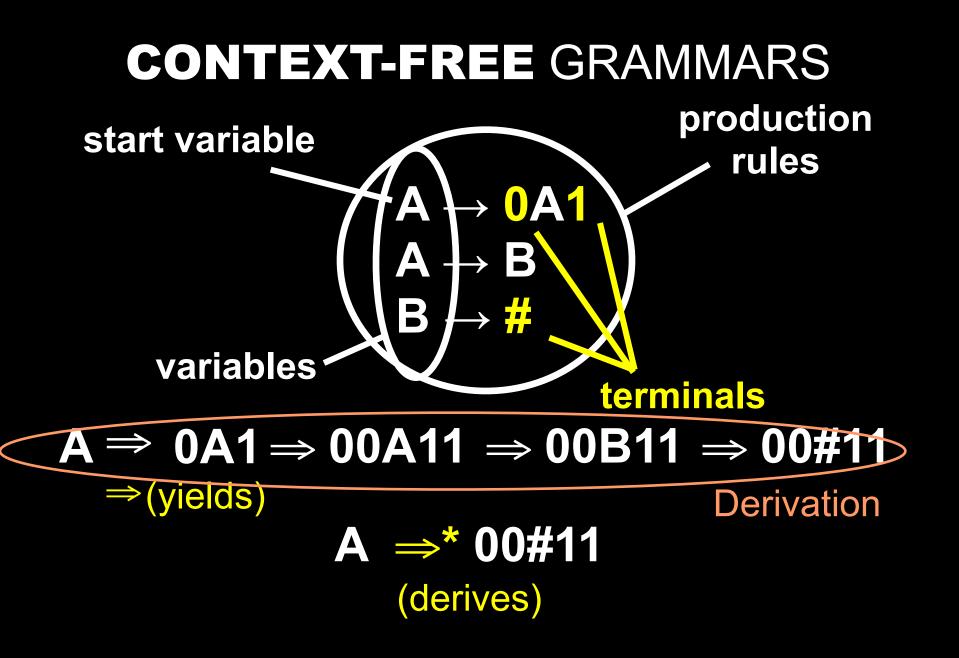
Midterm 1 will cover everything we have seen so far

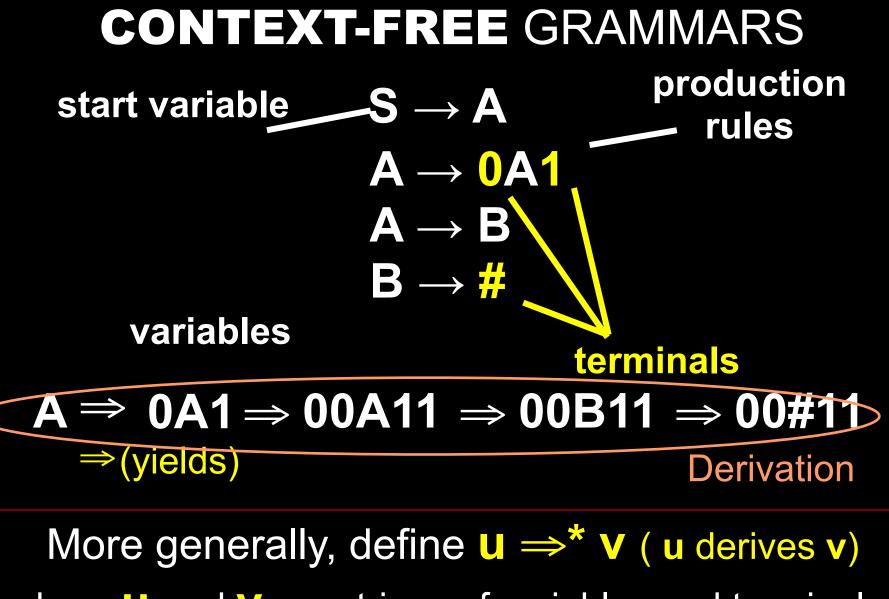
The PROBLEMS will be from Sipser, Part I

It will be Closed-Book, Closed-Everything

- Deterministic Finite Automata and Regular Languages
- 2. Non-Deterministic Finite Automata
- 3. Pumping Lemma for Regular Languages; Regular Expressions
- 4. Minimizing DFAs
- 5. PDAs, CFGs;
 Pumping Lemma for CFLs
- 6. Equivalence of PDAs and CFGs
- 7. Chomsky Normal Form
- 8. Turing Machines







where U and V are strings of variables and terminals

CONTEXT-FREE GRAMMARS

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

- V is a finite set of variables
- **Σ** is a finite set of terminals (disjoint from V)
- **R** is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$
- $\mathbf{S} \in \mathbf{V}$ is the start variable

CONTEXT-FREE LANGUAGES A context-free grammar (CFG) is a tuple

- **G** = (V, Σ, R, S), where:
 - V is a finite set of variables
 - **Σ** is a finite set of terminals (disjoint from V)
 - **R** is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$
 - $\mathbf{S} \in \mathbf{V}$ is the start variable

L(G) = {w $\in \Sigma^* | S \Rightarrow^* w$ } Strings Generated by G

A Language L is context-free if there is a CFG that generates precisely the strings in L

CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal form if every rule is of the form:

- $A \rightarrow BC$ B and C aren't start variables
- $A \rightarrow a$ a is a terminal
- $\mathbf{S} \rightarrow \mathbf{\epsilon}$ S is the start variable

Any variable A that is not the start variable can only generate strings of length > 0 Theorem: If G is in CNF, $w \in L(G)$ and |w| > 0, then any derivation of w in G has length 2|w| - 1

Proof (by induction on |w|):

Base Case: If |w| = 1, then any derivation of w must have length 1 (A \rightarrow a)

Inductive Step: Assume true for any string of length at most $k \ge 1$, and let |w| = k+1

Since |w| > 1, derivation starts with $A \rightarrow BC$

So w = xy where $B \Rightarrow^* x$, |x| > 0 and $C \Rightarrow^* y$, |y| > 0

By the inductive hypothesis, the length of any derivation of w must be

1 + (2|x| - 1) + (2|y| - 1) = 2(|x| + |y|) - 1

Theorem: Any context-free language can be generated by a context-free grammar in Chomsky normal form Theorem: Any context-free language can be generated by a context-free grammar in Chomsky normal form

Proof Idea:

- 1. Add a new start variable
- 2. Eliminate all $A \rightarrow \varepsilon$ rules (ε rules). Repair grammar 3. Eliminate all $A \rightarrow B$ rules (unit productions). Repair

4. Convert $A \rightarrow u_1 u_2 \dots u_k$ to $A \rightarrow u_1 A_1, A_1 \rightarrow u_2 A_2, \dots$ If u_i is a terminal, replace u_i with U_i and add $U_i \rightarrow u_i$ **Convert the following into Chomsky normal form:** $A \rightarrow BAB \mid B \mid \epsilon$ $B \rightarrow 00 \mid \epsilon$

 $S_0 \rightarrow A \mid \epsilon$ $S_0 \rightarrow A$ $A \rightarrow BAB \mid B \mid \epsilon \qquad A \rightarrow BAB \mid B \mid BB \mid AB \mid BA$ $B \rightarrow 00$ $B \rightarrow 00 \mid \epsilon$

 $S_0 \rightarrow BC \mid DD \mid BB \mid AB \mid BA \mid \epsilon, C \rightarrow AB,$

 $A \rightarrow BC \mid DD \mid BB \mid AB \mid BA$, $B \rightarrow DD$, $D \rightarrow 0$

 $S_0 \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA \mid \epsilon$

 $A \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA$

 $B \rightarrow 00$

2. Red no vie val is fart- vanialeste S_0 (with erec Atife rete $S_0 \rightarrow S$

> For each occurrence of A on right hand side of a rule, add a new rule with the occurrence deleted

If we have the rule $B \rightarrow A$, add $B \rightarrow \epsilon$, unless we have previously removed $B \rightarrow \epsilon$

3. Remove unit rules $A \rightarrow B$

Whenever $B \rightarrow w$ appears, add the rule $A \rightarrow w$ unless this was a unit rule previously removed

 $S_0 \rightarrow S$ $S \rightarrow 0S1$ S → T#T $S \rightarrow T$ $\mathbf{T} \rightarrow \mathbf{E}$ $S \rightarrow T\#$ $\underline{S} \rightarrow \#T$ $S \rightarrow #$ $S \rightarrow \epsilon$ $3 \rightarrow 00S1$ $S_{0} \rightarrow \epsilon$

4. Convert all remaining rules into the proper form:

 $S_0 \rightarrow 0S1$ $S_0 \rightarrow A_1A_2$ $A_1 \rightarrow 0$ $A_2 \rightarrow SA_3$ $A_3 \rightarrow 1$

 $egin{array}{l} \mathbf{S_0} &
ightarrow \mathbf{01} \ \mathbf{S_0} &
ightarrow \mathbf{A_1}\mathbf{A_3} \end{array}$

 $S \rightarrow 01$

$$S \rightarrow A_1 A_3$$

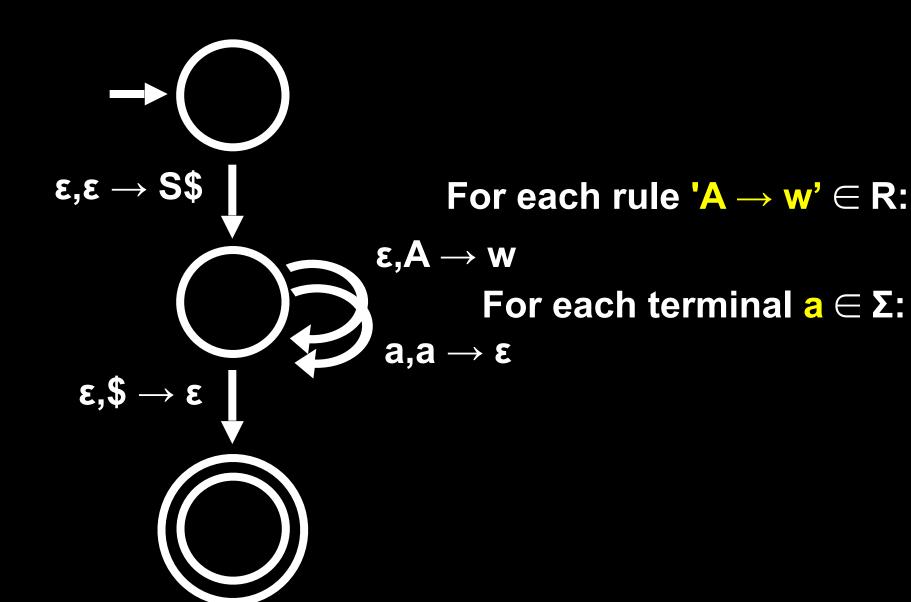
$$\begin{array}{c} S_{0} \rightarrow \epsilon \\ S_{0} \rightarrow 0S1 \\ S_{0} \rightarrow T\# \\ S_{0} \rightarrow T\# \\ S_{0} \rightarrow \# \\ S_{0} \rightarrow \# \\ S_{0} \rightarrow 01 \\ S \rightarrow 0S1 \\ S \rightarrow 0S1 \\ S \rightarrow T\# \\ S \rightarrow T\# \\ S \rightarrow \# \\ S \rightarrow \# \\ S \rightarrow \# \\ S \rightarrow 01 \end{array}$$

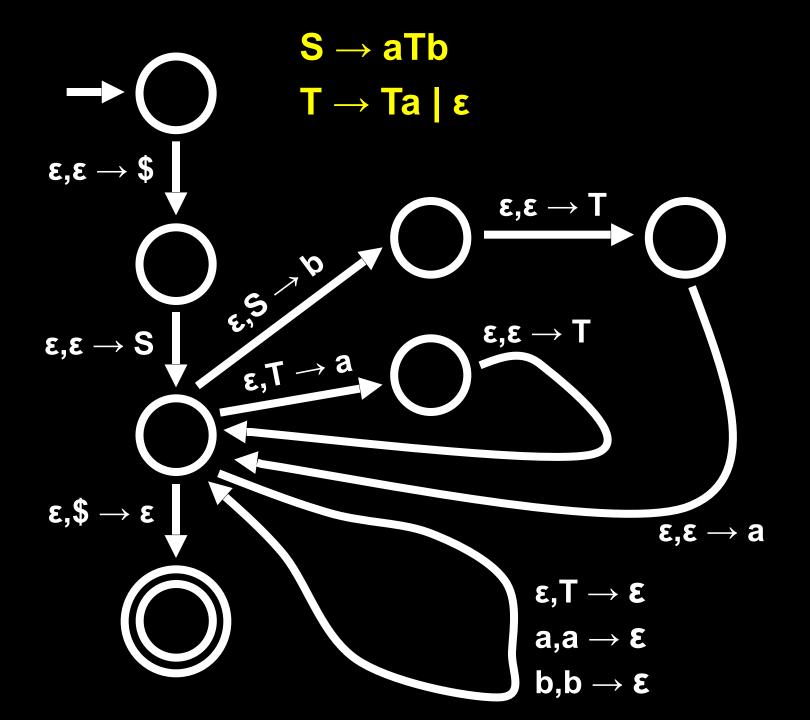
Definition: A (non-deterministic) PDA is a tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where:

- **Q** is a finite set of states
- **\Sigma** is the input alphabet
- **I** is the stack alphabet
- $\delta: \mathbf{Q} \times \mathbf{\Sigma}_{\epsilon} \times \mathbf{\Gamma}_{\epsilon} \to \mathbf{2}^{\mathbf{Q} \times \mathbf{\Gamma}_{\epsilon}}$
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states
- 2^{Q} is the set of subsets of Q and $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$

A Language L is generated by a CFG ⇔ L is recognized by a PDA

Suppose L is generated by a CFG G = (V, Σ , R, S) Construct P = (Q, Σ , Γ , δ , q, F) that recognizes L



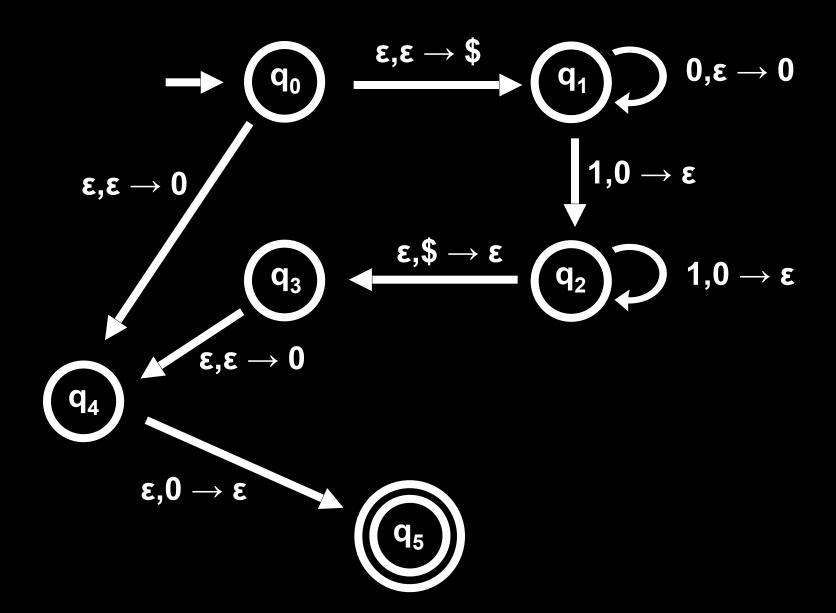


A Language L is generated by a CFG L is recognized by a PDA Given PDA P = (Q, Σ, Γ, δ , q, F) Construct a CFG G = (V, Σ , R, S) such that L(G) = L(P)First, simplify P to have the following form: (1) It has a single accept state, q_{accept} (2) It empties the stack before accepting

(3) Each transition either pushes a symbol or pops a symbol, but not both at the same time

SIMPLIFY

SIMPLIFY



Idea For Our Grammar G: For every pair of states **p** and **q** in PDA **P**,

G will have a variable A_{pq} which generates all strings x that can take:

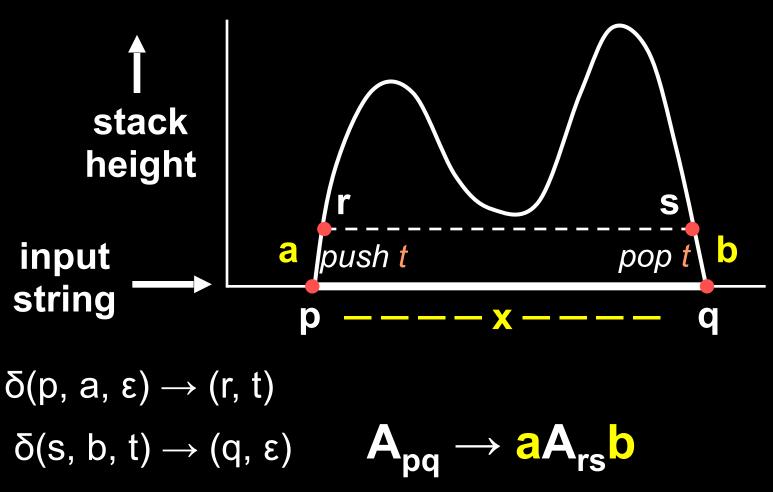
P from p with an empty stack to q with an empty stack

V = {A_{pq} | p,q∈Q }

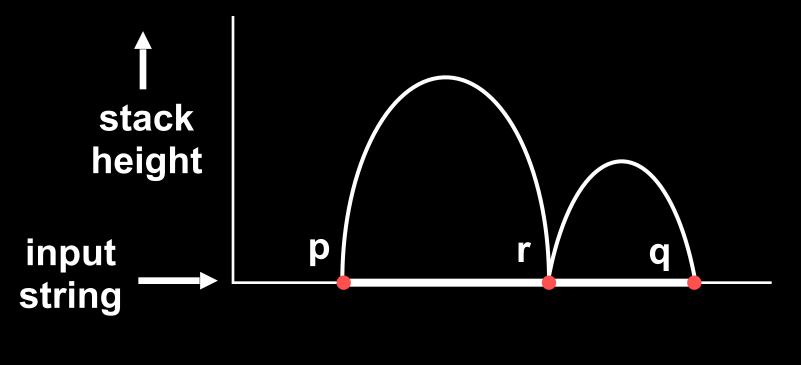
 $S = Aq_0q_{acc}$

x = **ayb** takes **p** with empty stack to **q** with empty stack

1. The symbol **t** popped at the end is exactly the one pushed at the beginning



2. The symbol popped at the end is not the one pushed at the beginning



$$A_{pq} \rightarrow A_{pr}A_{rq}$$

Formally:

 $V = \{A_{pq} \mid p, q \in Q\}$ $S = A_{q_0q_{acc}}$

For every p, q, r, s \in Q, t \in Γ and a, b \in Σ_{ϵ} If (r, t) $\in \delta$ (p, a, ϵ) and (q, ϵ) $\in \delta$ (s, b, t) Then add the rule $A_{pq} \rightarrow aA_{rs}b$

For every p, q, $r \in Q$, add the rule $A_{pq} \rightarrow A_{pr}A_{rq}$ For every $p \in Q$, add the rule $A_{pp} \rightarrow \epsilon$

THE PUMPING LEMMA (for Regular Languages) Let L be a regular language with $|L| = \infty$ Then there is an integer P such that if $w \in L$ and $|w| \ge P$ then can write w = xyz, where: 1. |y| > 0 2. |xy| ≤ P

3. $xy^i z \in L$ for any $i \ge 0$

THE PUMPING LEMMA (for Context Free Grammars) Let L be a context-free language with $|L| = \infty$ Then there is an integer P such that if $w \in L$ and $|w| \geq P$ then can write w = uvxyz, where: 1. |vy| > 0 2. |vxy| ≤ P R 3. $uv^ixy^iz \in L$, D for any $i \ge 0$ Ζ Х

Machines

DFAs

NFAs

Syntactic Rules

Regular Expressions

PDAs Context-Free Grammars

deterministic DFA A ^ finite automaton ^ is a 5-tuple M = (Q, Σ , δ , q_0 , F) **Q** is the set of states (finite) **\Sigma** is the alphabet (finite) $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ is the transition function $q_0 \in Q$ is the start state $F \subseteq Q$ is the set of accept states Let $w_1, \ldots, w_n \in \Sigma$ and $w = w_1 \ldots w_n \in \Sigma^*$ Then M accepts w if there are r_0 , r_1 , ..., $r_n \in Q$, s.t. 1. $r_0 = q_0$ 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and $\overline{3}$. $r_n \in F$

- Let $w \in \Sigma^*$ and suppose w can be written as $w_1 \dots w_n$ where $w_i \in \Sigma_{\epsilon}$ (ϵ = empty string)
- Then N accepts w if there are r₀, r₁, ..., r_n ∈ Q such that
- 1. $r_0 \in Q_0$ 2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for i = 0, ..., n-1, and 3. $r_n \in F$

L(N) = the language recognized by N = set of all strings machine N accepts

A language L is recognized by an NFA N if L = L(N). Let $w \in \Sigma^*$ and suppose w can be written as $w_1 \dots w_n$ where $w_i \in \Sigma_{\varepsilon}$ (recall $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$) Then P accepts w if there are $r_0, r_1, \dots, r_n \in Q$ and $s_0, s_1, \dots, s_n \in \Gamma^*$ (sequence of stacks) such that

1. $\mathbf{r_0} = \mathbf{q_0}$ and $\mathbf{s_0} = \boldsymbol{\epsilon}$ (P starts in $\mathbf{q_0}$ with empty stack)

2. For i = 0, ..., n-1: $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at and s_{i+1} = bt$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^*$

(P moves correctly according to state, stack and symbol read)

3. $\mathbf{r_n} \in \mathbf{F}$ (**P** is in an accept state at the end of its input)

THE REGULAR OPERATIONS Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$ Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$ Negation: $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$ Reverse: $A^R = \{ w_1 \dots w_k \mid w_k \dots w_1 \in A \}$ **Concatenation:** $\mathbf{A} \cdot \mathbf{B} = \{ vw \mid v \in \mathbf{A} \text{ and } w \in \mathbf{B} \}$ Star: $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$

REGULAR EXPRESSIONS

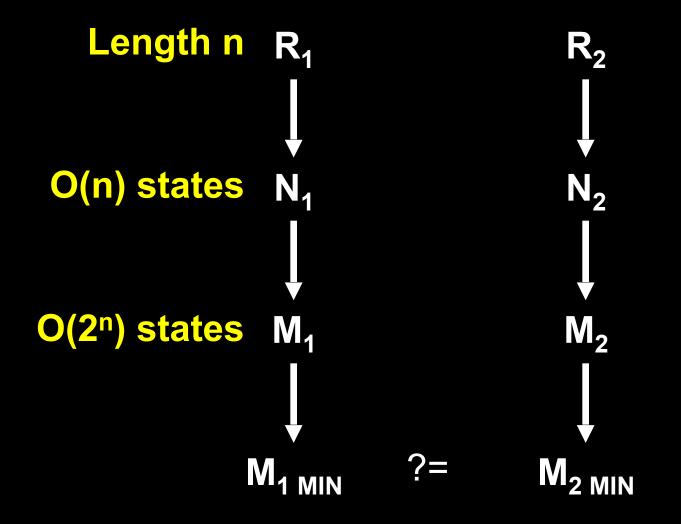
σ is a regexp representing {σ}

ε is a regexp representing {ε}

 \varnothing is a regexp representing \varnothing

If R_1 and R_2 are regular expressions representing L_1 and L_2 then: (R_1R_2) represents $L_1 \cdot L_2$ $(R_1 \cup R_2)$ represents $L_1 \cup L_2$ $(R_1)^*$ represents L_1^*

How can we test if two regular expressions are the same?



THEOREMS and CONSTRUCTIONS

CONVERTING NFAs TO DFAs Input: NFA N = (Q, Σ , δ , Q₀, F) Output: DFA M = (Q', Σ , δ' , q₀', F')

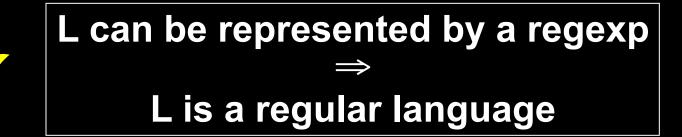
> $Q' = 2^{Q}$ $\delta' : Q' \times \Sigma \rightarrow Q'$ $\delta'(R,\sigma) = \bigcup \varepsilon (\delta(r,\sigma)) *$ $r \in R$ $q_{0}' = \varepsilon(Q_{0})$ $F' = \{ R \in Q' \mid f \in R \text{ for some } f \in F \}$

For $\mathbf{R} \subseteq \mathbf{Q}$, the $\boldsymbol{\epsilon}$ -closure of \mathbf{R} , $\boldsymbol{\epsilon}(\mathbf{R}) = \{\mathbf{q} \text{ that can be reached from some r } \in \mathbf{R} \text{ by traveling along zero or more } \boldsymbol{\epsilon} \text{ arrows} \}$

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1}) Construct: Equivalent DFA M $M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, \ldots)$ a \oslash b a b b a a,b b a,b 2 **{2**} a ${2,3}$ 3 **{1}, {1,2} ?** $\epsilon({1}) = {1,3}$

EQUIVALENCE

L can be represented by a regexp ⇔ L is a regular language



Induction on the length of R:

Base Cases (R has length 1):

R = σ	$\rightarrow O \xrightarrow{\sigma} \bigcirc$
R = ε	\rightarrow
R = Ø	

Inductive Step:

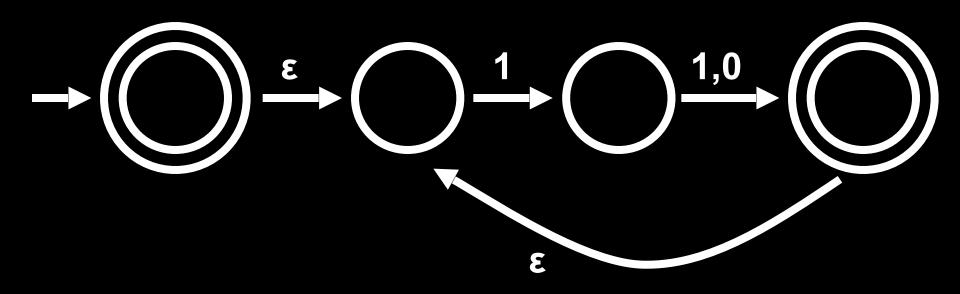
Assume R has length k > 1, and that every regexp of length < k represents a regular language

Three possibilities for what R can be:

 $R = R_1 \cup R_2$ (Closure under Union) $R = R_1 R_2$ (Closure under Concat.) $R = (R_1)^*$ (Closure under Star)

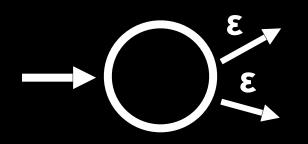
Therefore: L can be represented by a regexp \Rightarrow L is regular

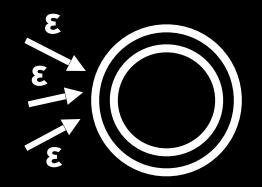
Transform (1(0 \cup 1))* to an NFA



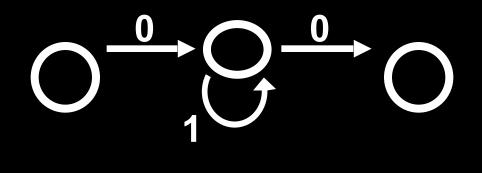
Proof idea: Transform an NFA for L into a regular expression by removing states and relabeling the arrows with regular expressions

Add unique and distinct start and accept states



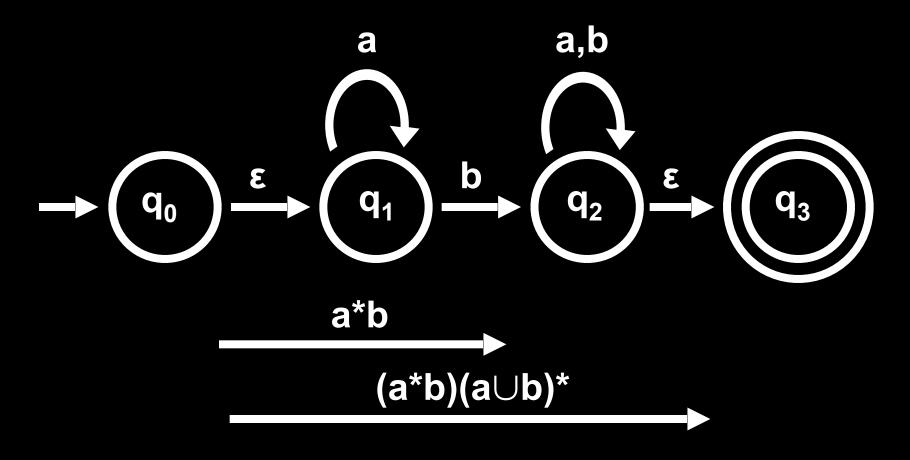


While machine has more than 2 states: Pick an internal state, rip it out and re-label the arrows with regexps, to account for the missing state



01*0

$\mathsf{R}(\mathsf{q}_0,\mathsf{q}_3)=(\mathsf{a}^*\mathsf{b})(\mathsf{a}\cup\mathsf{b})^*$



THEOREM

For every regular language L, there exists a UNIQUE (up to re-labeling of the states) minimal DFA M such that L = L(M)

EXTENDING δ

Given DFA M = (Q, Σ , δ , q_0 , F), extend δ to $\stackrel{\wedge}{\delta}$: Q × $\Sigma^* \rightarrow$ Q as follows:

$$\begin{split} \delta(\mathbf{q}, \varepsilon) &= \mathbf{q} \\ \delta(\mathbf{q}, \sigma) &= \delta(\mathbf{q}, \sigma) \\ \delta(\mathbf{q}, \mathbf{w}_1 \dots \mathbf{w}_{k+1}) &= \delta(\delta(\mathbf{q}, \mathbf{w}_1 \dots \mathbf{w}_k), \mathbf{w}_{k+1}) \\ & \text{Note: } \delta(\mathbf{q}_0, \mathbf{w}) \in \mathbf{F} \iff \mathbf{M} \text{ accepts } \mathbf{w} \end{split}$$

String $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly ONE of $\hat{\delta}(q_1, w)$, $\hat{\delta}(q_2, w)$ is a final state

Fix M = (Q, Σ , δ , q_0 , F) and let p, q, r \in Q **Definition:** p ~ q iff p is indistinguishable from q p + q iff p is distinguishable from q **Proposition:** ~ is an equivalence relation $p \sim p$ (reflexive) $p \sim q \Rightarrow q \sim p$ (symmetric) $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into disjoint equivalence classes

[q] = { p | p ~ q }

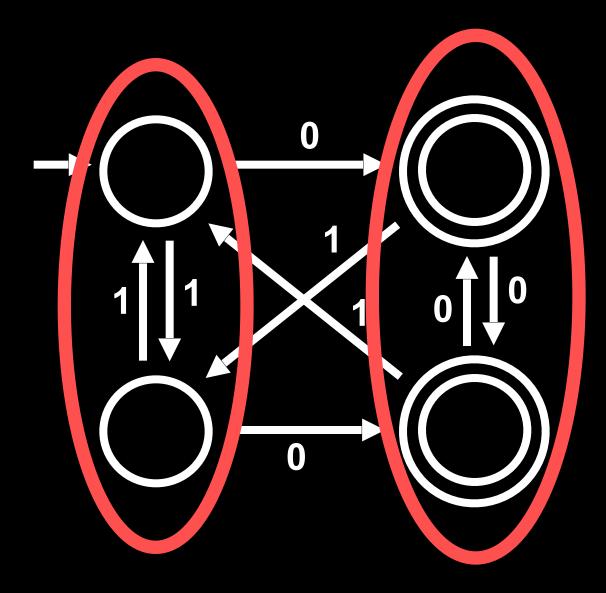


TABLE-FILLING ALGORITHMInput: DFA M = (Q, Σ , δ , q_0 , F)Output: (1) $D_M = \{ (p,q) \mid p,q \in Q \text{ and } p \neq q \}$ (2) $E_M = \{ [q] \mid q \in Q \}$

IDEA:



- We know how to find those pairs of states that ε distinguishes...
- Use this and recursion to find those pairs distinguishable with *longer* strings
- Pairs left over will be indistinguishable

TABLE-FILLING ALGORITHM Input: DFA M = (Q, Σ , δ , q_0 , F) Output: (1) D_M = { (p,q) | p,q \in Q and p \neq q } (2) E_M = { [q] | q \in Q }

q₀ **Base Case:** p accepts **q**₁ and q rejects \Rightarrow p γ q **Recursion:** if there is $\sigma \in \Sigma$ and states p', q' satisfying δ (p, σ) = p' $\star \Rightarrow p \star q$ q_n δ (q, σ) = q' q_n $q_0 q_1$

Repeat until no more new D's

Algorithm MINIMIZE Input: DFA M Output: DFA M_{MIN} (1) Remove all inaccessible states from M (2) Apply Table-Filling algorithm to get E_M = { [q] | q is an accessible state of M } $M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})$ $Q_{MIN} = E_M, q_{0 MIN} = [q_0], F_{MIN} = \{ [q] | q \in F \}$ $\delta_{MIN}([q],\sigma) = [\delta(q,\sigma)]$ Claim: M_{MIN} ≡ M