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CHOMSKY NORMAL FORM
A context-free grammar is in Chomsky normal 
form if every rule is of the form:

A → BC 
A → a 

S → ε 

B and C aren’t start variables

a is a terminal

S is the start variable

Any variable A that is not the start variable 
can only generate strings of length > 0 



CHOMSKY NORMAL FORM
A context-free grammar is in Chomsky normal 
form if every rule is of the form:

A → BC 
A → a 

S → ε 

B and C aren’t start variables

a is a terminal

S is the start variable

S → 0S1
S → TT
T → ε S → TU | TV

T → 0
U → SV

S0 → TU | TV | ε 

V → 1



Theorem: If G is in CNF, w ∈ L(G) and |w| > 0, 
then any derivation of w in G has length 2|w| - 1

Proof (by induction on |w|):

Base Case:     If |w| = 1, then any derivation of 
w must have length 1   (A → a) 

Inductive Step:   Assume true for any string 
of length at most k ≥ 1, and let |w| = k+1

Since |w| > 1, derivation starts with A → BC

So w = xy where B ⇒* x, |x| > 0 and C ⇒* y, |y| > 0

By the inductive hypothesis, the length of 
any derivation of w must be 

1 + (2|x| - 1) + (2|y| - 1) = 2(|x| + |y|) - 1



Theorem: Any context-free language 
can be generated by a context-free 
grammar in Chomsky normal form

“Can transform any CFG into 
Chomsky normal form”



Theorem: Any context-free language 
can be generated by a context-free 
grammar in Chomsky normal form

Proof Idea: 
1.  Add a new start variable 
2. Eliminate all  A!ε  rules (ε  rules). Repair grammar 
3. Eliminate all  A!B  rules (unit productions). Repair 

4. Convert  A!u1u2... uk  to  A !u1A1, A1!u2A2, ... 
If ui is a terminal, replace ui  with Ui and add  Ui!ui



1. Add a new start variable S0 
and add the rule S0 → S S → 0S1

S → T#T

T → ε

S0 → S2.  Remove all A → ε rules 
(where A is not S0)
For each occurrence of A on right 
hand side of a rule, add a new rule 
with the occurrence deleted

If we have the rule B → A, add 
B → ε, unless we have 
previously removed B → ε 

S → T

3.  Remove unit rules A → B 
Whenever B → w appears, add 
the rule A → w unless this was 
a unit rule previously removed 

S → T#
S → #T
S → #
S → ε
S → 01
S0 → ε
S0 → 0S1



S → 0S1
S → T#T
S → T#
S → #T
S → #
S → 01

S0 → ε
S0 → 0S1
S0 → T#T
S0 → T#
S0 → #T
S0 → #
S0 → 01

4. Convert all remaining rules into the 
proper form:

S0 → 0S1
S0 → A1A2

A1 → 0
A2 → SA3

A3 → 1

S0 → 01
S0 → A1A3

S → 01
S → A1A3



Convert the following into Chomsky normal form:
A → BAB | B | ε 
B → 00 | ε

A → BAB | B | ε 
B → 00 | ε

S0 → A
A → BAB | B | BB | AB | BA 
B → 00

S0 → A | ε

A → BAB | 00 | BB | AB | BA 
B → 00

S0 → BAB | 00 | BB | AB | BA  | ε

S0 → BC | DD | BB | AB | BA  | ε,     C → AB,  
A → BC | DD | BB | AB | BA ,    B → DD,    D → 0 



TURING MACHINE

FINITE 
STATE 

CONTROL

INFINITE TAPE

I N P U T

q0 

A

q1 



TURING MACHINE

FINITE 
STATE 

CONTROL

INFINITE TAPE

I N P U T

q0 q1 

A



‘On computable numbers, with an application to 
the {Entscheidungsproblem’ 

Proceedings of the London Mathematical Society,           2 vol. 
42, 1937, pp. 230-265. 

Theoretical Computer Science follows TURING,
1937



0 → 0, R

read write move

 → , R

qaccept

qreject

0 → 0, R

 → , R

0 → 0, R
 → , L



0 → 0, R

read write move

 → , R

qaccept

0 → 0, R

 → , R

0 → 0, R
 → , L



TMs VERSUS FINITE AUTOMATA
TM can both write to and read from the tape

The head can move left and right

The input doesn’t have to be read entirely,

Accept and Reject take immediate effect

and the computation can continue after all 
the input has been read



Definition: A Turing Machine is a 7-tuple  
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:  

Q is a finite set of states

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where  ∉ Σ 

δ : Q × Γ → Q × Γ × {L, R} 

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept



CONFIGURATIONS

11010q700110

q7

1 0 0 0 0 01 1 1 1

corresponds to:



A Turing Machine M accepts  input w if there is a 
sequence of configurations  C1, … , Ck  such that  

1. C1 is a start configuration of M on input w,  ie  

C1 is q0w 

2.  each Ci yields Ci+1, ie M can legally go from Ci 

to Ci+1 in a single step 

ua qi bv    yields    u qj acv   if  δ (qi, b) = (qj, c, L) 
ua qi bv    yields     uac qj v   if  δ (qi, b) = (qj, c, R)



A Turing Machine M accepts  input w if there is a 
sequence of configurations  C1, … , Ck  such that  

1. C1 is a start configuration of M on input w,  ie  C1 

is q0w 

2.  each Ci yields Ci+1, ie M can legally go from Ci to 

Ci+1 in a single step  

3.  Ck is an accepting configuration, ie the state of 

the configuration is qaccept



A TM recognizes a language iff it accepts all 
and only those strings in the language

A TM decides a language L iff it accepts all 
strings in L and rejects all strings not in L

A language L is called Turing-recognizable 
or recursively enumerable or semi-decidable  
iff some TM recognizes L

A language L is called decidable or recursive 
iff some TM decides L



A language is called Turing-recognizable or 
recursively enumerable (r.e.) or semi-
decidable if some TM recognizes it

A language is called decidable or recursive if 
some TM decides it

recursive 
languages

r.e.  
languages

Theorem: If A and ¬A are r.e. then A is recursive



Theorem: If A and ¬A are r.e. then A is recursive

Given: 
a TM that recognizes A and 
a TM that recognizes ¬A,  
we can build a new machine that decides A



{ 0   | n ≥ 0 }2n

1. Sweep from left to right, cross out every other 0 
2. If in stage 1, the tape had only one 0, accept 
3. If in stage 1, the tape had an odd number of 0’s, 
reject 

4. Move the head back to the first input symbol. 
5. Go to stage 1.

PSEUDOCODE:

Is decidable



0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R  → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0   | n ≥ 0 }2n

q0 q1

q2

q3

q4



0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R  → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0   | n ≥ 0 }2n

q0 q1

q2

q3

q4

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

q2 x0x



C = {aibjck | k = ij, and i, j, k ≥ 1}

1. If the input doesn’t match a*b*c*, reject. 
2. Move the head back to the leftmost symbol. 
3. Cross off an a, scan to the right until b.  

Sweep between b’s and c’s, crossing off one of  
each until all b’s are crossed off. 

4. Uncross all the b’s.  
If there’s another a left, then repeat stage 3. 
If all a’s are crossed out, 
 Check if all c’s are crossed off. 
 If yes, then accept, else reject.

PSEUDOCODE:



C = {aibjck | k = ij, and i, j, k ≥ 1}

aabbbcccccc
xabbbcccccc
xayyyzzzccc
xabbbzzzccc
xxyyyzzzzzz



MULTITAPE TURING MACHINES

δ : Q × Γk
 → Q × Γk × {L,R}k

FINITE 
STATE 

CONTROL



Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine

FINITE 
STATE 

CONTROL

0 01

FINITE 
STATE 

CONTROL 0 01 # # #. . .



Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine

FINITE 
STATE 

CONTROL

0 01

FINITE 
STATE 

CONTROL 0 01 # # #. . .



THE CHURCH-TURING THESIS

Intuitive Notion of Algorithms 
EQUALS 

Turing Machines



We can encode a TM as a string of 0s and 1s

0n10m10k10s10t10r10u1…

n states

m tape symbols  
(first k are input 

symbols)

start 
state

accept 
state

reject 
state

blank 
symbol

( (p, a), (q, b, L) ) = 0p10a10q10b10

( (p, a), (q, b, R) ) = 0p10a10q10b11



Similarly, we can encode DFAs, NFAs, CFGs, 
etc. into strings of 0s and 1s

ADFA = { (B, w) | B is a DFA that accepts string w }

ANFA = { (B, w) | B is an NFA that accepts string w }

ACFG = { (G, w) | G is a CFG that generates string 
w }

So we can define the following languages:

Theorem:  ADFA is decidable
Proof Idea: Simulate B on w

Theorem: ANFA is decidable

Theorem: ACFG is decidable
Proof Idea: Transform G into Chomsky Normal 
Form. Try all derivations of length up to 2|w|-1



WWW.FLAC.WS
Read Chapter 3 of the book for next time


