Chomsky Normal Form and TURING MACHINES

TUESDAY Feb 4

CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal form if every rule is of the form:

- $A \rightarrow BC$ B and C aren't start variables
- $A \rightarrow a$ a is a terminal
- $\mathbf{S} \rightarrow \mathbf{\epsilon}$ S is the start variable

Any variable A that is not the start variable can only generate strings of length > 0

CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal form if every rule is of the form:

 $A \rightarrow BC$ B and C aren't start variables

- $A \rightarrow a$ a is a terminal
- $S \rightarrow \epsilon$ S is the start variable

Theorem: If G is in CNF, $w \in L(G)$ and |w| > 0, then any derivation of w in G has length 2|w| - 1

Proof (by induction on |w|):

Base Case: If |w| = 1, then any derivation of w must have length 1 (A \rightarrow a)

Inductive Step: Assume true for any string of length at most $k \ge 1$, and let |w| = k+1

Since |w| > 1, derivation starts with $A \rightarrow BC$

So w = xy where $B \Rightarrow^* x$, |x| > 0 and $C \Rightarrow^* y$, |y| > 0

By the inductive hypothesis, the length of any derivation of w must be

1 + (2|x| - 1) + (2|y| - 1) = 2(|x| + |y|) - 1

Theorem: Any context-free language can be generated by a context-free grammar in Chomsky normal form

> "Can transform any CFG into Chomsky normal form"

Theorem: Any context-free language can be generated by a context-free grammar in Chomsky normal form

Proof Idea:

- 1. Add a new start variable
- 2. Eliminate all $A \rightarrow \varepsilon$ rules (ε rules). Repair grammar 3. Eliminate all $A \rightarrow B$ rules (unit productions). Repair

4. Convert $A \rightarrow u_1 u_2 \dots u_k$ to $A \rightarrow u_1 A_1, A_1 \rightarrow u_2 A_2, \dots$ If u_i is a terminal, replace u_i with U_i and add $U_i \rightarrow u_i$ 2. Red no vie val is fart- vanialeste S_0 (with erec Atife rete $S_0 \rightarrow S$

> For each occurrence of A on right hand side of a rule, add a new rule with the occurrence deleted

If we have the rule $B \rightarrow A$, add $B \rightarrow \epsilon$, unless we have previously removed $B \rightarrow \epsilon$

3. Remove unit rules $A \rightarrow B$

Whenever $B \rightarrow w$ appears, add the rule $A \rightarrow w$ unless this was a unit rule previously removed

 $S_0 \rightarrow S$ $S \rightarrow 0S1$ $S \rightarrow T \# T$ $S \rightarrow T$ $\mathbf{T} \rightarrow \mathbf{E}$ $S \rightarrow T\#$ $\underline{S} \rightarrow \#T$ $S \rightarrow #$ $S \rightarrow \epsilon$ $3 \rightarrow 00S1$ $S_{0} \rightarrow \epsilon$

4. Convert all remaining rules into the proper form:

 $S_0 \rightarrow 0S1$ $S_0 \rightarrow A_1A_2$ $A_1 \rightarrow 0$ $A_2 \rightarrow SA_3$ $A_3 \rightarrow 1$

 $egin{array}{l} \mathbf{S_0} &
ightarrow \mathbf{01} \ \mathbf{S_0} &
ightarrow \mathbf{A_1}\mathbf{A_3} \end{array}$

 $S \rightarrow 01$

$$S \rightarrow A_1 A_3$$

$$\begin{array}{c} S_{0} \rightarrow \epsilon \\ S_{0} \rightarrow 0S1 \\ S_{0} \rightarrow T\# \\ S_{0} \rightarrow T\# \\ S_{0} \rightarrow \# \\ S_{0} \rightarrow \# \\ S_{0} \rightarrow 01 \\ S \rightarrow 0S1 \\ S \rightarrow 0S1 \\ S \rightarrow T\# \\ S \rightarrow T\# \\ S \rightarrow \# \\ S \rightarrow \# \\ S \rightarrow \# \\ S \rightarrow 01 \end{array}$$

Convert the following into Chomsky normal form: $A \rightarrow BAB \mid B \mid \epsilon$ $B \rightarrow 00 \mid \epsilon$

 $S_0 \rightarrow A \mid \epsilon$ $S_0 \rightarrow A$ $A \rightarrow BAB \mid B \mid \epsilon \qquad A \rightarrow BAB \mid B \mid BB \mid AB \mid BA$ $B \rightarrow 00$ $B \rightarrow 00 \mid \epsilon$

 $S_0 \rightarrow BC \mid DD \mid BB \mid AB \mid BA \mid \epsilon, C \rightarrow AB,$

 $A \rightarrow BC \mid DD \mid BB \mid AB \mid BA$, $B \rightarrow DD$, $D \rightarrow 0$

 $S_0 \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA \mid \epsilon$

 $A \rightarrow BAB \mid 00 \mid BB \mid AB \mid BA$

 $B \rightarrow 00$

TURING MACHINE

INFINITE TAPE

TURING MACHINE

INFINITE TAPE

Theoretical Computer Science follows TURING,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.-Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real numbers whose expressions as a decimal are calculable by finite means. Although the subject of this paper is ostensibly the computable *numbers*, it is almost equally easy to define and investigate computable functions of an integral variable or a real or computable variable, computable predicates, and so forth. The fundamental problems involved are, however, the same in each case, and I have chosen the computable numbers for explicit treatment as involving the least cumbrous technique. I hope shortly to give an account of the relations of the computable numbers, functions, and so forth to one another. This will include a development of the theory of functions of a real variable expressed in terms of computable numbers. According to my definition, a number is computable if its decimal can be written down by a machine.

'On computable numbers, with an application to the {Entscheidungsproblem' Proceedings of the London Mathematical Society, 2 vol. 42, 1937, pp. 230-265.

TMs VERSUS FINITE AUTOMATA

TM can both *write* to and read from the tape

The head can move *left and right*

The input doesn't have to be read entirely,

and the computation can continue after all the input has been read

Accept and Reject take immediate effect

Definition: A Turing Machine is a 7-tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:

Q is a finite set of states

- **Σ** is the input alphabet, where $\Box \notin \Sigma$
- Γ is the tape alphabet, where $\hfill \subseteq \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta: \mathbf{Q} \times \mathbf{\Gamma} \to \mathbf{Q} \times \mathbf{\Gamma} \times \{\mathbf{L}, \, \mathbf{R}\}$
- $q_0 \in Q$ is the start state
- $\mathbf{q}_{accept} \in \mathbf{Q}$ is the accept state

 $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$

configurations 11010q700110

corresponds to:

A Turing Machine M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that

1. C_1 is a *start* configuration of M on input w, ie

 C_1 is $q_0 w$

 each C_i yields C_{i+1}, ie M can legally go from C_i to C_{i+1} in a single step

ua q_i bvyieldsu q_j acvif $\delta(q_i, b) = (q_j, c, L)$ ua qi bvyieldsuac q_j vif $\delta(q_i, b) = (q_j, c, R)$

- A Turing Machine M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that
- 1. C_1 is a *start* configuration of M on input w, ie C_1 is $q_0 w$
- 2. each C_i yields C_{i+1} , ie M can legally go from C_i to C_{i+1} in a single step
- 3. C_k is an *accepting* configuration, ie the state of the configuration is q_{accept}

A TM recognizes a language iff it accepts all and only those strings in the language

A language L is called Turing-recognizable or recursively enumerable or semi-decidable iff some TM recognizes L

A TM decides a language L iff it accepts all strings in L and rejects all strings not in L

A language L is called decidable or recursive iff some TM decides L

A language is called Turing-recognizable or recursively enumerable (r.e.) or semidecidable if some TM recognizes it

A language is called decidable or recursive if some TM decides it

r.e. recursive languages

Theorem: If A and ¬A are r.e. then A is recursive

Theorem: If A and ¬A are r.e. then A is recursive

Given: a TM that recognizes A and a TM that recognizes ¬A, we can build a new machine that *decides* A

$\{0^{2^n} | n \ge 0\}$ Is decidable

PSEUDOCODE:

- 1. Sweep from left to right, cross out every other **0**
- 2. If in stage 1, the tape had only one **0**, *accept*
- 3. If in stage 1, the tape had an odd number of **0**'s, *reject*
- 4. Move the head back to the first input symbol.
- 5. Go to stage 1.

$C = \{a^{i}b^{j}c^{k} \mid k = ij, and i, j, k \ge 1\}$

PSEUDOCODE:

- 1. If the input doesn't match **a*b*c***, *reject*.
- 2. Move the head back to the leftmost symbol.
- Cross off an a, scan to the right until b.
 Sweep between b's and c's, crossing off one of each until all b's are crossed off.
- 4. Uncross all the b's.

If there's another **a** left, then repeat stage 3.

If all a's are crossed out,

Check if all c's are crossed off.

If yes, then accept, else reject.

 $C = \{a^{i}b^{j}c^{k} \mid k = ij, and i, j, k \ge 1\}$ aabbbcccccc xabbbcccccc **Xayyyzzzccc** xabbbzzzccc XXYYYZZZZZZ

MULTITAPE TURING MACHINES

$\delta : \mathbf{Q} \times \mathbf{\Gamma^{k}} \rightarrow \mathbf{Q} \times \mathbf{\Gamma^{k}} \times \{\mathbf{L},\mathbf{R}\}^{k}$

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

THE CHURCH-TURING THESIS

Intuitive Notion of Algorithms EQUALS Turing Machines

We can encode a TM as a string of 0s and 1s start reject n states state state 0ⁿ10^m10^k10^s10^t10^r10^u1... m tape symbols blank accept (first k are input symbol state symbols) $((p, a), (q, b, L)) = 0^{p}10^{a}10^{q}10^{b}10^{c}$

((p, a), (q, b, R)) = 0^p10^a10^q10^b11

Similarly, we can encode DFAs, NFAs, CFGs, etc. into strings of 0s and 1s So we can define the following languages:

A_{DFA} = { (B, w) | B is a DFA that accepts string w }

Theorem: A_{DFA} is decidable Proof Idea: Simulate B on w

A_{NFA} = { (B, w) | B is an NFA that accepts string w } Theorem: A_{NFA} is decidable

A_{CFG} = { (G, w) | G is a CFG that generates string Wheorem: A_{CFG} is decidable Proof Idea: Transform G into Chomsky Normal Form. Try all derivations of length up to 2|w|-1

Read Chapter 3 of the book for next time