
PUSHDOWN AUTOMATA (PDA)

FINITE 
STATE 

CONTROL

STACK 
(Last in,  
first out)

INPUT



ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

input pop push

PDA that recognizes L = { 0n1n | n ≥ 0 }



Definition: A (non-deterministic) PDA is a 6-tuple  
P = (Q, Σ, Γ, δ, q0, F), where:  

Q is a finite set of states

Γ is the stack alphabet

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

Σ is the input alphabet

δ : Q × Σε × Γε → 2 Q × Γε

2Q × Γε is the set of subsets of Q × Γε 
  Σε = Σ ∪ {ε}, Γε= Γ∪ {ε} 

push
pop



Let w∈ Σ* and  suppose w can be written as 
 w1... wn  where wi ∈ Σε (recall Σε = Σ ∪ {ε}) 

Then P accepts w if there are  
     r0, r1, ..., rn ∈ Q and  
     s0, s1, ..., sn ∈ Γ* (sequence of stacks) such that 

1. r0  = q0  and s0 = ε (P starts in q0 with empty stack) 

2. For i = 0, ..., n-1: 
(ri+1 , b) ∈ δ(ri, wi+1, a), where si =at  and si+1 = bt for  

some a, b ∈ Γε  and t ∈ Γ*  
(P moves correctly according to state, stack and symbol read) 

3. rn ∈ F (P is in an accept state at the end of its input)



A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS
production 

rules



A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

variables
terminals

production 
rulesstart variable



A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

A

variables
terminals

production 
rulesstart variable

⇒  0A1 
⇒(yields)

⇒ 00A11 ⇒ 00B11 ⇒ 00#11

A  ⇒* 00#11 
(derives)       

Derivation



A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

A

variables
terminals

production 
rulesstart variable

⇒  0A1 
⇒(yields)

⇒ 00A11 ⇒ 00B11 ⇒ 00#11

A  ⇒* 00#11 
(derives)       

Derivation

We say: 00#11 is 
generated by the 

GrammarNon-deterministic



<PHRASE> → <START WORD><END WORD>DUDE
<PHRASE> → <FILLER><PHRASE>

<FILLER> → LIKE
<FILLER> → UMM
<START WORD> → FO

<END WORD> → SHO
<START WORD> → FA

<END WORD> → SHAZZY
<END WORD> → SHEEZY

SNOOP’S GRAMMAR 
(courtesy of Luis von Ahn)

<END WORD> → SHIZZLE



Generate: 

Umm Like Umm Umm Fa Shizzle Dude 

Fa Sho Dude

SNOOP’S GRAMMAR 
(courtesy of Luis von Ahn)



CONTEXT-FREE GRAMMARS
A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:  

V is a finite set of variables

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)



CONTEXT-FREE LANGUAGES
A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:  

V is a finite set of variables

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

L(G) = {w ∈ Σ* | S  ⇒* w}  Strings Generated by G 

 A Language L is context-free if there is a CFG that 
generates precisely the strings in L



A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:  

V is a finite set of variables

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

G = { {S}, {0,1}, R, S } R = { S → 0S1, S → ε }

L(G) =

CONTEXT-FREE LANGUAGES



A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:  

V is a finite set of variables

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

G = { {S}, {0,1}, R, S } R = { S → 0S1, S → ε }

L(G) = { 0n1n | n ≥ 0 }  Strings Generated by G

CONTEXT-FREE LANGUAGES



WRITE A CFG FOR EVEN-LENGTH 
PALINDROMES

S → σSσ for all σ ∈ Σ
S → ε 



WRITE A CFG FOR THE EMPTY SET

G = { {S}, Σ, ∅, S }



PARSE TREES

A ⇒ 0A1⇒ 00A11 ⇒ 00B11 ⇒ 00#11

A

B

0 1#

A

A

0 1

A → 0A1
A → B
B → #



<EXPR> → <EXPR> + <EXPR>
<EXPR> → <EXPR> x <EXPR>
<EXPR> → ( <EXPR> )
<EXPR> → a
Build a parse tree for a + a x a

<EXPR>

a x+ a

<EXPR>
<EXPR>

a

<EXPR> <EXPR>

<EXPR>

a+ xa

<EXPR>
<EXPR>

a

<EXPR><EXPR>



Definition: a string is derived ambiguously 
in a context-free grammar if it has more than 
one parse tree

Definition: a grammar is ambiguous if it 
generates some string ambiguously

See G4 for unambiguous standard 
arithmetic precedence  

L = { aibjck | i, j, k ≥ 0 and (i = j or j = k) }  
is inherently ambiguous (xtra  credit)

Undecidable to tell if a language has 
unambiguous parse trees (Post’s problem) 



Σ = {0, 1}, L = { 0n1n | n ≥ 0 }

WHAT ABOUT?

But L is CONTEXT FREE

NOT REGULAR

Σ = {0, 1}, L1 = { 0n1n 0m| m,n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m,n ≥ 0 }
Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

A → 0A1
A → ε



WHAT ABOUT?

Σ = {0, 1}, L1 = { 0n1n 0m| m, n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m, n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }



WHAT ABOUT?

S -> AB 
A -> 0A1 | ε 
B -> 0B | ε

S -> 0S0 | A  
A -> 1A | ε

Σ = {0, 1}, L1 = { 0n1n 0m| m, n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m, n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }



THE PUMPING LEMMA FOR CFGs
Let L be a context-free language

Then there is a P such that  
if  w ∈ L and |w| ≥ P

1.  |vy| > 0
then can write w = uvxyz, where:

3. For every i ≥ 0, uvixyiz ∈ L
2.  |vxy| ≤ P



WHAT ABOUT?

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

Choose w = 0P 1P 0P. 

By the  Pumping Lemma, we can write 
w = uvxyz with |vy| > 0, |vxy| ≤ P such that pumping v 
together with y will produce another word in  L3  
Since |vxy| ≤ P,  vxy = 0a1b, or vxy = 1a 0b.



WHAT ABOUT?

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

Pumping in the first case will unbalance with the 0’s at 
the end; in the second case, will unbalance with the 0’s 
at the beginning. Contradiction.

Choose w = 0P 1P 0P. 

By the  Pumping Lemma, we can write 
w = uvxyz with |vy| > 0, |vxy| ≤ P such that pumping v 
together with y will produce another word in  L3  
Since |vxy| ≤ P,  vxy = 0a1b, or vxy = 1a 0b.



THE PUMPING LEMMA FOR CFGs
Let L be a context-free language

Then there is a P such that  
if  w ∈ L and |w| ≥ P

1.  |vy| > 0
then can write w = uvxyz, where:

3. For every i ≥ 0, uvixyiz ∈ L
2.  |vxy| ≤ P



Idea of Proof: If w is long enough, then  
any parse tree for w must have a path that 
contains a variable more than once

T

R

R

u v x zy

T

u z

R

R

v y

R

R

v x y



If the height of a parse tree is h, the length of the 
string generated by that tree is at most:

Formal Proof:

Let b be the maximum number of symbols 
(length) on the right-hand side of any rule

bh

Let | V | be the number of variables in G
Define P = b|V|+1 
Let w be a string of length at least P

Let T be a parse tree for w with a minimum 
number of nodes. 
b|V|+1 = P ≤ |w| ≤ bh   

T must have height h at least |V|+1



Let T be a parse tree for w with a minimum number 
of nodes. T must have height at least |V|+1

The longest path in T must have ≥ |V|+1 variables
Select R to be a variable that repeats among the 

lowest |V|+1 variables (in the path)
T

R

R

u v x zy

T

u z

R

R

v y

R

R

v x y

1.  |vy| > 0
2.  |vxy| ≤ P



The longest path in T must have ≥ |V|+1 variables

Select R to be a variable in T that repeats, among 
the lowest |V|+1 variables in the tree

T

R

R

u v x zy

T

u z

R

R

v y

R

R

v x y

1.  |vy| > 0
2.  |vxy| ≤ P

since T has minimun # nodes
since |vxy| ≤ b|V|+1 = P 



PDAs ARE EQUIVALENT TO CFGs

THURSDAY Jan 30



A Language L is generated by a CFG  
⇔ 

L is recognized by a PDA

EQUIVALENCE OF CFGs and PDAs



A Language L is generated by a CFG  
⇔ 

L is recognized by a PDA



A Language L is generated by a CFG  
⇒   

L is recognized by a PDA

Suppose L is generated by a CFG G = (V, Σ, R, S) 
Construct P = (Q, Σ, Γ, δ, q, F) that recognizes L



Suppose L is generated by a CFG G = (V, Σ, R, S) 
Construct P = (Q, Σ, Γ, δ, q, F) that recognizes L
ε,ε →S$

ε,$ → ε

For each rule 'A → w’ ∈ R:

For each terminal a ∈ Σ:
ε,A → w

a,a → ε



S → aTb
T → Ta | ε

ε,ε → $

ε,$ → ε

ε,ε → S ε,S
 →

 b

ε,ε → T

ε,T → a

ε,ε → a

ε,ε → T

ε,T → ε
a,a → ε
b,b → ε



S → aTb
T → Ta | ε

ε,ε → $

ε,$ → ε

ε,ε → S ε,S
 →

 b

ε,ε → T

ε,T → a

ε,ε → a

ε,ε → T

ε,T → ε
a,a → ε
b,b → ε

S  ⇒* ab 
(derives)



S → aTb
T → Ta | ε

ε,ε → $

ε,$ → ε

ε,ε → S ε,S
 →

 b

ε,ε → T

ε,T → a

ε,ε → a

ε,ε → T

ε,T → ε
a,a → ε
b,b → ε

S  ⇒*aab 
(derives)



Suppose L is generated by a CFG G = (V, Σ, R, S) 
Describe P = (Q, Σ, Γ, δ, q, F) that recognizes L  
(via pseudocode):

(1) Push $ and then S on the stack
(2) Repeat the following steps forever:

(b) If x is a variable A, guess a rule for A and push 
yield into the stack and Go to (a).
(c) If x is a terminal, read next symbol from input 
and compare it to x. If they’re different, reject.  
If same, pop x and Go to (a).
(d) If x is $: then accept iff no more input

(a) Suppose x is now on top of stack



A Language is generated by a CFG  
⇔ 

It is recognized by a PDA
⇒



A Language L is generated by a CFG  
<=  L is recognized by a PDA

Given PDA P = (Q, Σ, Γ, δ, q, F)

Construct a CFG G = (V, Σ, R, S) such that  
L(G) = L(P) 

First, simplify P to have the following form:

(1) It has a unique accept state, qacc

(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or 
pops a symbol, but not both at the same time



ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

SIMPLIFY

q0 q1

q2q3

ε,ε → ε

ε,ε → ε

ε,0 → ε

ε,ε → 0

ε,ε → 0

q4

q5



ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

SIMPLIFY

q0 q1

q2q3

ε,0 → ε

q4

q5

ε,ε → 0

ε,ε → 0



V = {Apq | p,q∈Q }

S = Aq0qacc

Our task is to construct Grammar G to generate 
exactly the words that PDA P accepts. 

Idea For Our Grammar G:  
For every pair of states p and q in PDA P, 
  
G will have a variable Apq whose production 
rules will generate all strings x that can take: 

 P from p with an empty stack  
         to q with an empty stack



ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

q0 q1

q2q3

ε,0 → ε

ε,ε → 0

ε,ε → 0

q4

q5

What strings do we want  Aq0q1  to generate?
What strings do we want  Aq1q2  to generate?
What strings do we want Aq1q3  to generate?

∅

{0n1n | n > 0}
∅

WANT:  Apq to generate all strings that take p with an 
empty stack to q with empty stack

What strings do we want Aq0q5  to generate?



WANT:  Apq generates all strings that take p 
with an empty stack to q with empty stack

Let x be such a string
• P’s first move on x must be a push  (why?)

•  P’s last move on x must be a pop

Two possibilities:
1. The symbol popped at the end is the one 

pushed at the beginning

2. The symbol popped at the end is not the 
one pushed at the beginning 

(so P must empty stack somewhere in the middle, 
and then start pushing symbols on it again)     



stack 
height

input 
string p q

Apq → aArsb

r s

1. The symbol t popped at the end is exactly 
the one pushed at the beginning

push t pop t

x = ayb   takes p with empty stack to q with empty stack

δ(p, a, ε) → (r, t)

δ(s, b, t) → (q, ε)

─ ─ ─ ─ x ─ ─ ─ ─ - -
ba



stack 
height

input 
string p r q

Apq → AprArq

2. The symbol popped at the end is not 
the one pushed at the beginning



V = {Apq | p, q ∈ Q }
S = Aq0qacc

Formally:

For every p, q, r, s ∈ Q, t ∈ Γ and a, b ∈ Σε
If (r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t) 
Then add the rule Apq → aArsb

For every p, q, r ∈ Q,
add the rule Apq → AprArq 

For every p ∈ Q,
add the rule App → ε 



ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

q0 q1

q2q3

ε,0 → ε

ε,ε → 0

ε,ε → 0

q4

q5

What strings does Aq1q2  generate?

Aq0q3 → εAq1q2ε 
 (q0 to q1;  q2 to q3) 

Aqq → ε 
Apq → AprArq 

Aq1q2 → 0Aq1q21 
(q1 to q1;  q2 to q2) 

Aq1q2 → 0Aq1q11 
(q1 to q1;  q1 to q2) 

{0n1n | n > 0}

What strings does Aq0q3  generate?
What strings does Aq0q5  generate?



Apq generates x  
⇔  

x can bring P from p with an empty stack  
to q with an empty stack

Show, for all x,



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack

Proof (by induction on the number of steps in 
the derivation of x from Apq):

Base Case: The derivation has 1 step: App ⇒ εInductive Step:
Assume true for derivations of length ≤ k and 
prove true for derivations of length k+1:

or  Apq → aArsbApq → AprArq First step in derivation:
Apq ⇒* x   in   k+1 steps

Show, for all x,



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack

Proof (by induction on the number of steps in 
the derivation of x from Apq):

Assume true for derivations of length ≤ k and 
prove true for derivations of length k+1:

Apq → AprArq First step in derivation:
Apq ⇒* x   in   k+1 steps

Inductive Step:

Then, x = yz with Apr ⇒* y , Arq ⇒* z   
By IH, y can take p with empty stack to r with empty 
stack; similarly for z from  r to q. So, …

Show, for all x,



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack

Proof (by induction on the number of steps in 
the derivation of x from Apq):

Assume true for derivations of length ≤ k and 
prove true for derivations of length k+1:

First step in derivation:
Apq ⇒* x   in   k+1 steps

Inductive Step:

Then x = ayb with Ars ⇒* y.  
By IH, y can take r with empty stack to s with empty 
stack

Show, for all x,

or  Apq → aArsb



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack

Proof (by induction on the number of steps in 
the derivation of x from Apq):

Assume true for derivations of length ≤ k and 
prove true for derivations of length k+1:

First step in derivation:
Apq ⇒* x   in   k+1 steps

Inductive Step:

(r,t) ∈ δ(p,a,ε) and (q, ε) ∈ δ(s,b,t) 

state push state alphabet pop

By def of rules of G,

Show, for all x,

or  Apq → aArsb



Apq generates x  
⇒  

x can bring P from p with an empty stack  
to q with an empty stack

Proof (by induction on the number of steps in 
the derivation of x from Apq):

Assume true for derivations of length ≤ k and 
prove true for derivations of length k+1:

First step in derivation:
Apq ⇒* x   in   k+1 steps

Inductive Step:

So if P starts in p then after reading a, it can go to r and push t. 
By IH, y can bring P from r to s, with t at the top of the stack. 
Then from s reading b, it can pop t and end in state q.

Show, for all x,

or  Apq → aArsb



Apq generates x  
⇔ 

x can bring P from p with an empty stack to q 
with an empty stack

⇐

Proof (by induction on the number of steps in 
the computation of P from p to q with empty 
stacks on input x):

Base Case: The computation has 0 steps

So it starts and ends in the same state.  
The only string that can do that  in 0 steps is ε. 

Since App → ε  is a rule of G, App ⇒* ε 

Show, for all x,



Inductive Step:
Assume true for computations of length ≤ k, 
we’ll prove true for computations of length k+1
Suppose that P has a computation where x 
brings p to q with empty stacks in k+1 steps

1. The stack is empty only at the beginning 
and the end of this computation

2. The stack is empty somewhere in the 
middle of the computation

Two cases:  (idea!)



Inductive Step:
Assume true for computations of length ≤ k, 
we’ll prove true for computations of length k+1
Suppose that P has a computation where x 
brings p to q with empty stacks in k+1 steps

1. The stack is empty only at the beginning 
and the end of this computation

2. The stack is empty somewhere in the 
middle of the computation

To Show: Can write x as ayb  where Ars ⇒* y 
 and  Apq → aArsb is a rule in G.  So Apq⇒*x

To Show: Can write x as yz where Apr ⇒* y, Arq ⇒* z   
and Apq → AprArq  is a rule in G. So Apq⇒*x 

Two cases:  (idea!)



Inductive Step:
1. The stack is empty only at the beginning 
and the end of this computation

The symbol t pushed at the beginning must be the same 
symbol popped at the end. why?) 
Let a be input symbol read at beginning, b read at end. 
• So x = ayb,  for some y. 
Let r be the state after the first step, let s be the state 
before the last step.  
• y can bring P from r with an empty stack to s with an 

empty stack. (why?)  So by IH, Ars ⇒* y. 
• Also, Apq → aArsb must be a rule in G. (why?) 

To Show: Can write x as ayb  where Ars ⇒* y 
 and  Apq → aArsb is a rule in G. So Apq⇒*x



Inductive Step:
2. The stack is empty somewhere in the 
middle of the computation

To Show: Can write x as yz where Apr ⇒* y, Arq ⇒* z   
and Apq → AprArq  is a rule in G. So Apq⇒*x

Let r be a state in which the stack becomes empty 
in the middle. 
Let y be the input read to that point, z be input 
read after.  So, x = yz where |y|, |z| > 0. 
By IH, both Apr ⇒* y, Arq ⇒* z  

By construction of G, Apq → AprArq  is a rule in G



A Language is generated by a CFG  
⇔ 

It is recognized by a PDA



Corollary: Every regular 
language is context-free


