PUSHDOWN AUTOMATA (PDA)

FINITE
STATE
CONTROL

STACK
(Last in,
first out)

input pop push

~ | /
_>© SRt O:) 0, 0

|1,0—>£

v
@4ﬂ O:) 1,0 > ¢

PDA that recognizes L={0"M"|n=20}

Definition: A (non-deterministic) PDA is a 6-tuple
P=(Q, 2,T,9, q, F), where:

Q is a finite set of states

2 is the input alphabet pop

I" is the stack alph /push

0:QxZ xI, — 2axTg
do, € Q is the start state

F C Qis the set of accept states

29 xT¢ is the set of subsets of Q x I'c
2. =2 U{e}, =TU {&}

Let we 2* and suppose w can be written as
wW,... W, wherew, € Z_(recall Z_=2 U {g})

Then P accepts w if there are
re; Iy, .-, I, € Q and

Sgs S1s -==» S, € ['* (sequence of stacks) such that

1. ry = q, and s, = € (P starts in q, with empty stack)

2. Fori=0,..,n-1:
(riyq, b) Eé(r,, W, @), Where s,=at and s;,, = bt for

somea,bel, andterl™
(P moves correctly according to state, stack and symbol read)

3.r, € F (Pisin an accept state at the end of its input)

CONTEXT-FREE GRAMMARS

production
rules

A — 0A1
A—B
B - #

CONTEXT-FREE GRAMMARS

start variable production
4A\ 0A1
(A B
B # A
variables =™ Q

rules
terminals

CONTEXT-FREE GRAMMARS

start variable production
4A\ 0A1
(A B
B # A
variables =™ Q

rules

terminals
A= 0A1= 00A11 = 00B11 = 00#TD
= (ylelds) A 00411 Derivation
%

CLEIOER)

CONTEXT-FREE GRAMMARS

start variable production
4A\ 0A1
(A B
B # A
variables =™ Q

rules

terminals
A= 0A1=00A11 = 00B11 = 00#11
— (yields) A * 00#11 Derivation
(:d>erives) We say: 00#11 is

generated by the
Non-deterministic Grammar

SNOOP’S GRAMMAR

(courtesy of Luis von Ahn)
<PHRASE> — <FILLER><PHRASE>

<PHRASE> — <START WORD><END WORD>DUDE
<FILLER> — LIKE

<FILLER> —» UMM

<START WORD> — FO

<START WORD> — FA

<END WORD> — SHO

<END WORD> — SHAZZY

<END WORD> — SHEEZY
<END WORD> — SHIZZLE

SNOOP’S GRAMMAR

(courtesy of Luis von Ahn)

Generate:

Umm Like Umm Umm Fa Shizzle Dude

Fa Sho Dude

CONTEXT-FREE GRAMMARS

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VUZ)*

S €V is the start variable

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VUZ)*

S €V is the start variable

L(G)={wec ¥*|S =*w} Strings Generated by G

A Language L is context-free if there is a CFG that
generates precisely the strings In L

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VU2)*

S €V is the start variable
G={{S},{0,1},R, S} R={S—->081,S—¢}
L(G) =

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VU2)*

S € V is the start variable
G={{S}{01}R,S} R={S—-0351,S—¢}
L(G)={0™""|n20} Strings Generated by G

WRITE A CFG FOR EVEN-LENGTH
PALINDROMES

S >oSocforalloex
S —>¢

WRITE A CFG FOR THE EMPTY SET
G={{S},2,9,S}

PARSE TREES

s // \\

00
A = 0A1= 00A11 = 00B11 = 00#11

1

*—0—>—>—

<EXPR> — <EXPR> + <EXPR>
<EXPR> — <EXPR> x <EXPR>
<EXPR> — (<EXPR>)
<EXPR> — a

Build a parse tree fora+axa

<EXPR> <EXPR>

/

<EXPR>

d

+

<EXPR> <EXPR>

/ \ / \ <EXPR>

<EXPR> | <EXPR> <EXPR> | <EXPR>

d X d d + da X d

Definition: a string is derived ambiguously
in a context-free grammar if it has more than
one parse tree

Definition: a grammar is ambiguous if it
generates some string ambiguously

See G, for unambiguous standard
arithmetic precedence

L={abick|i,jk20and (i=jorj=k)}
is Inherently ambiguous (xtra credit)

Undecidable to tell if a language has
unambiguous parse trees (Post’s problem)

NOT REGULAR
={0,1},L={0M"|n20}

But L is CONTEXT FREE

A — 0A1
A—¢g

WHAT ABOUT?

2={0,1},L,={0™M" 0™ m,n=20}
2={0,1},L,={0™M™ 0" mn=20}
2={0,1},L;={0m™"0"| m=n=20}

WHAT ABOUT?

2={0,1},L,={0M" 0™ m,n=20}

¥={0,1},L,={0M™ 0" m,n2>0}

¥ ={0,1}, L,={0™" 0" m=n20}

WHAT ABOUT?

2={0,1},L,={0M" 0™ m,n=20}

S ->AB
A->0A1|¢€
B->0B|¢

¥={0,1},L,={0M™ 0" m,n2>0}

S->0S0|A
A->1A| ¢

¥ ={0,1}, L,={0™" 0" m=n20}

THE PUMPING LEMMA FOR CFGs

Let L be a context-free language
Then there is a ¥ such that
if weland|w|2
then can write w = uvxyz, where:
1. |vy|>0
2. |vxy| =
3. For i20,uvixyze L

WHAT ABOUT?
¥ ={0,1},L,={0™1" 0" m=n20}

Choose w = 0P 1P OP.

By the , We can write
w = uvxyz with |vy| > 0, |vxy| £ P such that pumping v
together with y will produce another word in L,

Since |vxy| £ P, vxy = 0212, or vxy = 12Qb,

WHAT ABOUT?
¥ ={0,1},L,={0™1" 0" m=n20}

Choose w = 0P 1P OP.

By the , We can write
w = uvxyz with |vy| > 0, |vxy| £ P such that pumping v
together with y will produce another word in L,

Since |vxy| £ P, vxy = 0212, or vxy = 12Qb,

Pumping in the first case will unbalance with the O’s at
the end; in the second case, will unbalance with the O’s
at the beginning.

THE PUMPING LEMMA FOR CFGs

Let L be a context-free language
Then there is a ¥ such that
if weland|w|2
then can write w = uvxyz, where:
1. |vy|>0
2. |vxy| =
3. For i20,uvixyze L

Idea of Proof: If wis long enough, then
any parse tree for w must have a path that
contains a variable more than once

T T
R R
R R
R
\'; X y z u Vv y z

Formal Proof:
Let b be the maximum number of symbols
(length) on the right-hand side of any rule

If the height of a parse tree is h, the length of the
string generated by that tree is at most: ph

Let | V | be the number of variables in G
Define P = blVI*1
Let w be a string of length at least P

Let T be a parse tree for w with a minimum
number of nodes.
blVI*1=P < |w| £ bh
T must have height h at least |V|+1

The longest path in T must have 2 |V|+1 variables

Select R to be a variable that repeats among the
lowest |V|+1 variables (in the path)

1. jvy|>p' !
2. |[vxyf <R R
R R
Lot TOe/a parsy theeXor w wi R, \hwnmRer
u Oy nodgs. 1 mpsghave HETOWY V7
v X y

The longest path in T must have 2 |V|+1 variables

Select R to be a variable in T that repeats, amon¢
the lowest |V|+1 variables in the tree

1. |lvy| > 0 since T has minimun # nodes
2. |vxy| =P since |vxy| < blV* =P

T T
R R
R R
R
u v) ¢ y Zz u Vv y z

PDAs ARE EQUIVALENT TO CFGs

THURSDAY Jan 30

EQUIVALENCE OF CFGs and PDAs

A Language L is generated by a CFG
<
L is recognized by a PDA

A Language L is generated by a CFG
<
L is recognized by a PDA

Suppose L is generated by a CFG G =(V, 2, R, S)
Consyet iyuage Eid géﬁ'é fed by regyzes L

Lis recognlzed by a PDA

Suppess nerated byaCFGG=(V, R, S)
Construct\==(Q, 2, I, §, q, F) that recognizes L

£,€ —>S$ l For each rule 'A - w’ € R:
A > W
O For each terminal a € .:
a,a— ¢
£$—¢ |

\4

STEE- o
LEINERY

S ="aab
LEINERY

Suppose L is generated by a CFG G =(V, 2, R, S)
Describe P = (Q, , I, §, q, F) that recognizes L
(via pseudocode):

(1) Push $ and then S on the stack
(2) Repeat the following steps forever:

(a) Suppose x is now on top of stack

(b) If x is a variable A, a rule for A and push
yield into the stack and Go to (a).

(c) If x is a terminal, read next symbol from input
and compare it to x. If they’re different, reject.
If same, pop x and Go to (a).

(d) If x is $: then accept iff no more input

A Language is generated by a CFG

=

It is recognized by a PDA

A Language L is generated by a CFG
<= L is recognized by a PDA

Given PDAP=(Q, %, T, 5, q, F)

Constructa CFG G =(V, 2, R, S) such that
L(G) = L(P)

First, simplify P to have the following form:
(1) It has a unique accept state, q__.
(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or
pops a symbol, but not both at the same time

SIMPLIFY

£€— 9
@D

SIMPLIFY

£€— 9

ad O

Our task is to construct Grammar G to generate
exactly the words that PDA P accepts.

Idea For Our Grammar G:
For every pair of states p and g in PDA P,

G will have a variable A,, whose production
rules will generate all strings x that can take:

P from p with an empty stack
to g with an empty stack

V={A,|p.qacQ}
S = Aqoqacc

£€— 9

-

|10—>£

What. do \ive_v)vgnt Aq,q, to generate? <
What geQwe want Aq,q, to generate? {0"1" | n > 0}

What stringg do we We \N: to generate? @
What strings do we w2 Id. to generate?

A, to generate all strings that take p with an
empty stack to g with empty stack

£€—0

£$—>£

WANT: A, generates all strings that take p
with an empty stack to q with empty stack

Let X be such a string
* P’s first move on x must be a push (why?)

 P’s last move on x must be a pop
Two possibilities:

1. The symbol popped at the end is the one
pushed at the beginning

2. The symbol popped at the end is not the

one pushed at the beginning
(so P must empty stack somewhere in the middle,
and then start pushing symbols on it again)

X = ayb takes p with empty stack to q with empty stack

1. The symbol t popped at the end is exactly
the one pushed at the beginning

2. The symbol popped at the end is not
the one pushed at the beginning

A

stack
height

input
string

Apg = ApArg

Formally:
V={A,,lp,daeQ}
S = Aqoqacc

Foreveryp,q,rrsceQ,tclNanda,bez,
If (r, t) € 3(p, a, €) and (q, €) € (s, b,)
Then add the rule A, — aA b

Foreveryp,q,rcQ,

add the rule A,, — A A,

For every p € Q,
add the rule App — €

A—>£

O €€~ $ % gL,
m—p
@ ,q?, — EACHCIZ
O (do Td Q7> €, to q5)
0Aq,q,1
‘ - " o?ﬂcr’cfz
Aq,q, — 0Aq,q,1

(94 to q;; q4to q,)

What string £

£0—>¢

What strings does

What strings does Aq,q. generate?

Show, for all x, A__ generates x
Pq

<=

x can bring P from p with an empty stack
to q with an empty stack

Show, forallx, A generates x
Pq
=

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from A)):

Bdseldas8icthe derivation has 1 step: A, = ¢
Assume true for derivations of length < k and
prove true for derivations of length k+1:

A,,="x in k+1 steps

First step in derivation: Ay, — A A, or A, —aA b

Show, forallx, A generates x
Pq
=

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from A)):

Inductive Step:
Assume true for derivations of length < k and
prove true for derivations of length k+1:

A,,="x in k+1 steps

First step in derivation: A, — A, A,

Then, x=yzwithA ="y, A ="2
By IH, y can take p with empty stack to r with empty
stack; similarly for z from r to q. So, ...

Show, forallx, A generates x
Pq
=

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from A)):

Inductive Step:
Assume true for derivations of length < k and
prove true for derivations of length k+1:

A,,="x in k+1 steps
First step in derivation: or A, — aAb

Then x = ayb with A _ =".
By IH, y can take r with empty stack to s with empty
stack

Show, forallx, A generates x
Pq
=

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from A)):

Inductive Step:
Assume true for derivations of length < k and
prove true for derivations of length k+1:

A,,="x in k+1 steps

First step in derivation: or A, — aAb
By def of rules of G, (r,t) € 6(p,a,€) and (q, €) € i(s,b,t)

state push state alphabet pop

Show, forallx, A generates x
Pq
=

x can bring P from p with an empty stack
to q with an empty stack

Proof (by induction on the number of steps in
the derivation of x from A)):

Inductive Step:
Assume true for derivations of length < k and
prove true for derivations of length k+1:

A,,="x in k+1 steps
First step in derivation: or A, — aAb

So if P starts in p then after reading a, it can go to r and push t.
By IH, y can bring P from r to s, with t at the top of the stack.
Then from s reading b, it can pop t and end in state q.

Show, forallx, A generates x
Pq
<=

x can bring P from p with an empty stack to g
with an empty stack

Proof (by induction on the number of steps in
the computation of P from p to q with empty
stacks on input x):

Base Case: The computation has 0 steps

So it starts and ends in the same state.
The only string that can do that in 0 steps is &.

Since App — € is arule of G, App =*g

Inductive Step:

Assume true for computations of length =< k,
we’ll prove true for computations of length k+1

Suppose that P has a computation where x
brings p to g with empty stacks in k+1 steps

Two cases: (idea!)

1. The stack is empty only at the beginning
and the end of this computation

2. The stack is empty somewhere in the
middle of the computation

Inductive Step:

Assume true for computations of length =< k,
we’ll prove true for computations of length k+1

Suppose that P has a computation where x
brings p to g with empty stacks in k+1 steps

Two cases: (idea!)
1. The stack is empty only at the beginning
and the end of this computation
To Show: Can write x as ayb where A ="y
and A,, —aAbisaruleinG. So A ="x
2. The stack is empty somewhere in the
middle of the computation
To Show: Can write x as yz where A ="y, A, =" 2

. . .
andA,, — A A, isarulein G.So A, ="x

Inductive Step:

1. The stack is empty only at the beginning
and the end of this computation

To Show: Can write x as ayb where A ="y
and A, —aAbisaruleinG. So A, ,="x

The symbol t pushed at the beginning must be the same

symbol popped at the end.)

Let a be input symbol read at beginning, b read at end.

« S0 X = ayb, for somey.

Let r be the state after the first step, let s be the state

before the last step.

* y can bring P from r with an empty stack to s with an
empty stack. () So by IH, A ="Y.

« Also, A,, — aA b must be a rule in G. ()

Inductive Step:

2. The stack is empty somewhere In the
middle of the computation
To Show: Can write x as yz where A ="y, A, ="z

. . .
andA,, — A A, isarulein G.So A, ="x

Let r be a state in which the stack becomes empty
In the middle.

Let y be the input read to that point, z be input
read after. So, x =yz where |y|, |z| > 0.

By IH, both A, ="y, A, =" 2

By construction of G, A,, —» A, A, isaruleinG

A Language iIs generated by a CFG

<=

It is recognized by a PDA

Corollary: Every regular
language is context-free

