
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

THEOREM
For every regular language L, there exists
a UNIQUE (up to re-labeling of the states)
minimal DFA Mmim such that L = L(Mmim)

Minimal means wrt number of states

PROOF
1. Let M be a DFA for L (wlog, assume no

inaccessible states)
2. For pairs of states (p,q) define:
p distinguishable from q and
p indistinguisable from q (p~q).
3. Table-filling algorithm: first distinguish final
from non-final states and then work backwards
to distinguish more pairs.
4. What’s left over are exactly the
indistinguishable pairs, ie ~ related pairs.
Needs proof.

5. ~ is an equivalence relation so partitions the
states into equivalence classes, EM

6. Define Mmin

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q], σ) = [δ(q, σ)] show well defined

So: δMIN([q0], w) = [δ(q0, w)], w ∈ Σ*
Claim: δMIN([q], w) = [δ(q, w)], w ∈ Σ*

Follows: MMIN ≡ M

PROOF

^ ^
^ ^

But is Mmin unique minimum?

Yes, because if M’ ≡ M and minimum then
M’ has no inaccesible states and is irreducible and
….
Theorem. Mmin is isomorphic to any M’ with the
above properties
(need to give mapping and prove it has all the needed properties:
everywhere defined , well defined, 1-1, onto, preserves transitions,
and {final states} map onto {final states})

So Mmin is isomorphic to any minimum M’ ≡ M

PROOF

1 0

1

0

1

0,1

0

q0 q1

q3

q5

q4

0

1

q2

0,1q0

q0 q1

q1

q3

q3 q4

q4

D

DD

D

D D
q5

q5

D

D

D

1 0

1

0
0,1

0

q0 q1

q3

q5

q4

0

1

q0

q0 q1

q1

q3

q3 q4

q4

D

DD

D

D D
q5

q5

D

D

D

How can we prove that two
DFAs are equivalent?

One way: Minimize

Another way: Let C = (¬A ∩ B) ∪ (A ∩ ¬B)
Then, A = B ⇔ C = ∅

C is the “disjoint union”

CONTEXT-FREE GRAMMARS
AND PUSH-DOWN AUTOMATA

TUESDAY Jan 28

Σ = {0, 1}, L = { 0n1n | n ≥ 0 }

Σ = {a, b, c, …, z}, L = { w | w = wR }

Σ = { (,) }, L = { balanced strings of parens }

NONE OF THESE ARE REGULAR

(), ()(), (()()) are in L, (, ()), ())(() are not in L

PUSHDOWN AUTOMATA (PDA)

FINITE
STATE

CONTROL

STACK
(Last in,
first out)

INPUT

Newell, A., Shaw, J.C., & Simon, H.A. ”Report on a general problem-solving
program in Information Processing”, Proc. International Conference,
UNESCO Paris 1959

PUSHDOWN AUTOMATA (PDA)

FINITE
STATE

CONTROL

STACK
(Last in,
first out)

INPUT

A brief history of the stack, Sten Henriksson,
Computer Science Department, Lund University, Lund, Sweden.

Turing ‘47

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

input pop push

0011

STACK $

0011011

$0

11

$0

1

Non-deterministic

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

input pop push

001

STACK $ $0 $0

101001

PDA that recognizes L = { 0n1n | n ≥ 0 }

Definition: A (non-deterministic) PDA is a 6-tuple
P = (Q, Σ, Γ, δ, q0, F), where:

Q is a finite set of states

Γ is the stack alphabet

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

Σ is the input alphabet

δ : Q × Σε × Γε → 2 Q × Γε

2Q × Γε is the set of subsets of Q × Γε
 Σε = Σ ∪ {ε}, Γε= Γ∪ {ε}

push
pop

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (recall Σε = Σ ∪ {ε})

Then P accepts w if there are
 r0, r1, ..., rn ∈ Q and
 s0, s1, ..., sn ∈ Γ* (sequence of stacks) such that

1. r0 = q0 and s0 = ε (P starts in q0 with empty stack)

2. For i = 0, ..., n-1:
(ri+1 , b) ∈ δ(ri, wi+1, a), where si =at and si+1 = bt for

some a, b ∈ Γε and t ∈ Γ*
(P moves correctly according to state, stack and symbol read)

3. rn ∈ F (P is in an accept state at the end of its input)

ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

q0 q1

q2q3

Q = {q0, q1, q2, q3} Γ =Σ =

δ : Q × Σε × Γε → 2 Q × Γε

{0,1} {$,0,1}

δ(q1,1,0) = { (q2,ε) } δ(q2,1,1) = ∅

EVEN-LENGTH PALINDROMES

Σ = {a, b, c, …, z}

ε,ε → $

ε,ε → ε

σ,σ → εε,$ → ε

q0 q1

q2q3

σ,ε → σ

zeus sees suez
Madamimadam

(How to recognize odd-length palindromes?)

Build a PDA to recognize
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) }

ε,ε → $

q0

q1

a,ε → a

choose i=j

choose i=k
ε,ε

 →
 ε

ε,ε → ε

Build a PDA to recognize
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) }

ε,ε → $

b,a → ε

ε,$ → εq0

q1

q3

a,ε → a

q2

ε,ε
 →

 ε

c,ε → ε

choose i=j

choose i=k

ε,ε → ε

Build a PDA to recognize
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) }

ε,ε → $

b,a → ε

ε,$ → εq0

q5q1

q3

a,ε → a

q2

q4

ε,ε
 →

 ε

q6ε,ε → ε ε,ε → ε ε,$ → ε

b,ε → ε c,a → ε

c,ε → ε

choose i=j

choose i=k

CONTEXT-FREE GRAMMARS

“Colorless green ideas sleep furiously.”

Noam Chomsky (1957)

A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

A

variables
terminals

production
rulesstart variable

⇒ 0A1
⇒(yields)

⇒ 00A11 ⇒ 00B11 ⇒ 00#11

Non-deterministic

A ⇒* 00#11
(derives)

Derivation

We say: 00#11 is
generated by the

Grammar

A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

A ⇒ 0A1
⇒(yields)

⇒ 00A11 ⇒ 00B11 ⇒ 00#11

Deterministic CFGs??

A ⇒* 00#11
(derives)

Derivation

We say: 00#11 is
generated by the

Grammar

CONTEXT-FREE GRAMMARS

A → 0A1
A → B
B → #

A → 0A1 | B
B → #

<PHRASE> → <START WORD><END WORD>DUDE
<PHRASE> → <FILLER><PHRASE>

<FILLER> → LIKE
<FILLER> → UMM
<START WORD> → FO

<END WORD> → SHO
<START WORD> → FA

<END WORD> → SHAZZY
<END WORD> → SHEEZY

SNOOP’S GRAMMAR
(courtesy of Luis von Ahn)

<END WORD> → SHIZZLE

Generate:

Umm Like Umm Umm Fa Shizzle Dude

Fa Sho Dude

SNOOP’S GRAMMAR
(courtesy of Luis von Ahn)

CONTEXT-FREE GRAMMARS
A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

CONTEXT-FREE LANGUAGES
A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

L(G) = {w ∈ Σ* | S ⇒* w} Strings Generated by G

 A Language L is context-free if there is a CFG that
generates precisely the strings in L

A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

G = { {S}, {0,1}, R, S } R = { S → 0S1, S → ε }

L(G) =

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

G = { {S}, {0,1}, R, S } R = { S → 0S1, S → ε }

L(G) = { 0n1n | n ≥ 0 } Strings Generated by G

CONTEXT-FREE LANGUAGES

WRITE A CFG FOR EVEN-LENGTH
PALINDROMES

S → σSσ for all σ ∈ Σ
S → ε

WRITE A CFG FOR THE EMPTY SET

G = { {S}, Σ, ∅, S }

PARSE TREES

A ⇒ 0A1⇒ 00A11 ⇒ 00B11 ⇒ 00#11

A

B

0 1#

A

A

0 1

A → 0A1
A → B
B → #

<EXPR> → <EXPR> + <EXPR>
<EXPR> → <EXPR> x <EXPR>
<EXPR> → (<EXPR>)
<EXPR> → a
Build a parse tree for a + a x a

<EXPR>

a x+ a

<EXPR>
<EXPR>

a

<EXPR> <EXPR>

<EXPR>

a+ xa

<EXPR>
<EXPR>

a

<EXPR><EXPR>

Definition: a string is derived ambiguously
in a context-free grammar if it has more than
one parse tree

Definition: a grammar is ambiguous if it
generates some string ambiguously

See G4 for unambiguous standard
arithmetic precedence [adds parens (,)]

L = { aibjck | i, j, k ≥ 0 and (i = j or j = k) }
is inherently ambiguous (xtra credit)

Undecidable to tell if a language has
unambiguous parse trees (Post’s problem)

Σ = {0, 1}, L = { 0n1n | n ≥ 0 }

WHAT ABOUT?

But L is CONTEXT FREE

NOT REGULAR

Σ = {0, 1}, L1 = { 0n1n 0m| m,n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m,n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

A → 0A1
A → ε

WHAT ABOUT?

Σ = {0, 1}, L1 = { 0n1n 0m| m, n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m, n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

WHAT ABOUT?

S -> AB
A -> 0A1 | ε
B -> 0B | ε

S -> 0S0 | A
A -> 1A | ε

Σ = {0, 1}, L1 = { 0n1n 0m| m, n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m, n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

THE PUMPING LEMMA FOR CFGs
Let L be a context-free language

Then there is a P such that
if w ∈ L and |w| ≥ P

1. |vy| > 0
then can write w = uvxyz, where:

3. For every i ≥ 0, uvixyiz ∈ L
2. |vxy| ≤ P

WHAT ABOUT?

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

Choose w = 0P 1P 0P.

By the Pumping Lemma, we can write
w = uvxyz with |vy| > 0, |vxy| ≤ P such that pumping v
together with y will produce another word in L3
Since |vxy| ≤ P, vxy = 0a1b, or vxy = 1a 0b.

WHAT ABOUT?

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

Pumping in the first case will unbalance with the 0’s at
the end; in the second case, will unbalance with the 0’s
at the beginning. Contradiction.

Choose w = 0P 1P 0P.

By the Pumping Lemma, we can write
w = uvxyz with |vy| > 0, |vxy| ≤ P such that pumping v
together with y will produce another word in L3
Since |vxy| ≤ P, vxy = 0a1b, or vxy = 1a 0b.

THE PUMPING LEMMA FOR CFGs
Let L be a context-free language

Then there is a P such that
if w ∈ L and |w| ≥ P

1. |vy| > 0
then can write w = uvxyz, where:

3. For every i ≥ 0, uvixyiz ∈ L
2. |vxy| ≤ P

Idea of Proof: If w is long enough, then
any parse tree for w must have a path that
contains a variable more than once

T

R

R

u v x zy

T

u z

R

R

v y

R

R

v x y

If the height of a parse tree is h, the length of the
string generated by that tree is at most:

Formal Proof:

Let b be the maximum number of symbols
(length) on the right-hand side of any rule

bh

Let | V | be the number of variables in G
Define P = b|V|+1
Let w be a string of length at least P

Let T be a parse tree for w with a minimum
number of nodes.
b|V|+1 = P ≤ |w| ≤ bh

T must have height h at least |V|+1

Let T be a parse tree for w with a minimum number
of nodes. T must have height at least |V|+1

The longest path in T must have ≥ |V|+1 variables
Select R to be a variable that repeats among the

lowest |V|+1 variables (in the path)
T

R

R

u v x zy

T

u z

R

R

v y

R

R

v x y

1. |vy| > 0
2. |vxy| ≤ P

The longest path in T must have ≥ |V|+1 variables

Select R to be a variable in T that repeats, among
the lowest |V|+1 variables in the tree

T

R

R

u v x zy

T

u z

R

R

v y

R

R

v x y

1. |vy| > 0
2. |vxy| ≤ P

since T has minimun # nodes
since |vxy| ≤ b|V|+1 = P

