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THEOREM
For every regular language L, there exists 
a UNIQUE (up to re-labeling of the states) 
minimal DFA Mmim such that L = L(Mmim)

Minimal means wrt number of states



PROOF
1. Let M be a DFA for L (wlog, assume no 

inaccessible states) 
2. For pairs of states (p,q) define:  
p distinguishable from q and  
p indistinguisable from q (p~q).  
3. Table-filling algorithm: first distinguish final 
from non-final states and then work backwards 
to distinguish more pairs.  
4. What’s left over are exactly the 
indistinguishable pairs, ie ~ related pairs. 
Needs proof.



5. ~ is an equivalence relation so partitions the  
states into equivalence classes, EM 

6. Define Mmin

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F }

δMIN( [q], σ ) = [ δ( q, σ ) ] show well defined

So:   δMIN( [q0], w ) = [ δ( q0, w) ], w ∈ Σ*
Claim: δMIN( [q], w ) = [ δ( q, w) ], w ∈ Σ*

Follows:  MMIN ≡ M

PROOF

^ ^
^ ^



But is  Mmin  unique minimum? 

Yes, because if M’ ≡ M  and minimum then  
M’ has no inaccesible states  and is irreducible and 
…. 
Theorem. Mmin is isomorphic to any M’ with the 
above properties 
(need to give mapping and prove it has all the needed properties:  
everywhere defined , well defined, 1-1, onto, preserves transitions, 
and {final states} map onto {final states}) 

So Mmin is isomorphic to any minimum M’ ≡ M 

PROOF
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How can we prove that two 
DFAs are equivalent?

One way: Minimize 

Another way: Let C = (¬A ∩ B) ∪ (A ∩ ¬B) 
Then,  A = B ⇔ C = ∅  

C is the “disjoint union”



CONTEXT-FREE GRAMMARS  
AND PUSH-DOWN AUTOMATA

TUESDAY Jan 28



Σ = {0, 1}, L = { 0n1n | n ≥ 0 }

Σ = {a, b, c, …, z}, L = { w | w = wR }

Σ = { (, ) }, L = { balanced strings of parens }

NONE OF THESE ARE REGULAR

(), ()(), (()()) are in L, (, ()), ())(() are not in L



PUSHDOWN AUTOMATA (PDA)

FINITE 
STATE 

CONTROL

STACK 
(Last in,  
first out)

INPUT

Newell, A., Shaw, J.C., & Simon, H.A. ”Report on a general problem-solving 
program in Information Processing”, Proc. International Conference, 
UNESCO  Paris 1959



PUSHDOWN AUTOMATA (PDA)

FINITE 
STATE 

CONTROL

STACK 
(Last in,  
first out)

INPUT

A brief history of the stack, Sten Henriksson, 
Computer Science Department, Lund University, Lund, Sweden.

Turing ‘47



ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

input pop push

0011

STACK $

0011011

$0

11

$0

1 

Non-deterministic



ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

input pop push

001

STACK $ $0 $0

101001

PDA that recognizes L = { 0n1n | n ≥ 0 }



Definition: A (non-deterministic) PDA is a 6-tuple  
P = (Q, Σ, Γ, δ, q0, F), where:  

Q is a finite set of states

Γ is the stack alphabet

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

Σ is the input alphabet

δ : Q × Σε × Γε → 2 Q × Γε

2Q × Γε is the set of subsets of Q × Γε 
  Σε = Σ ∪ {ε}, Γε= Γ∪ {ε} 

push
pop



Let w∈ Σ* and  suppose w can be written as 
 w1... wn  where wi ∈ Σε (recall Σε = Σ ∪ {ε}) 

Then P accepts w if there are  
     r0, r1, ..., rn ∈ Q and  
     s0, s1, ..., sn ∈ Γ* (sequence of stacks) such that 

1. r0  = q0  and s0 = ε (P starts in q0 with empty stack) 

2. For i = 0, ..., n-1: 
(ri+1 , b) ∈ δ(ri, wi+1, a), where si =at  and si+1 = bt for  

some a, b ∈ Γε  and t ∈ Γ*  
(P moves correctly according to state, stack and symbol read) 

3. rn ∈ F (P is in an accept state at the end of its input)



ε,ε → $ 0,ε → 0

1,0 → ε

1,0 → ε
ε,$ → ε

q0 q1

q2q3

Q = {q0, q1, q2, q3} Γ =Σ =

δ : Q × Σε × Γε → 2 Q × Γε

{0,1} {$,0,1}

δ(q1,1,0) = { (q2,ε) } δ(q2,1,1) = ∅



EVEN-LENGTH PALINDROMES

Σ = {a, b, c, …, z}

ε,ε → $

ε,ε → ε

σ,σ → εε,$ → ε

q0 q1

q2q3

σ,ε → σ

zeus sees suez 
Madamimadam  

(How to recognize odd-length palindromes?)



Build a PDA to recognize  
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) }

ε,ε → $

q0

q1

a,ε → a

choose i=j

choose i=k
ε,ε

 →
 ε

ε,ε → ε



Build a PDA to recognize  
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) }

ε,ε → $

b,a → ε

ε,$ → εq0

q1

q3

a,ε → a

q2

ε,ε
 →

 ε

c,ε → ε

choose i=j

choose i=k

ε,ε → ε



Build a PDA to recognize  
L = { aibjck | i, j, k ≥ 0 and (i = j or i = k) }

ε,ε → $

b,a → ε

ε,$ → εq0

q5q1

q3

a,ε → a

q2

q4

ε,ε
 →

 ε

q6ε,ε → ε ε,ε → ε ε,$ → ε

b,ε → ε c,a → ε

c,ε → ε

choose i=j

choose i=k



CONTEXT-FREE GRAMMARS

“Colorless green ideas sleep furiously.” 

Noam Chomsky (1957)



A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

A

variables
terminals

production 
rulesstart variable

⇒  0A1 
⇒(yields)

⇒ 00A11 ⇒ 00B11 ⇒ 00#11

Non-deterministic

A  ⇒* 00#11 
(derives)       

Derivation

We say: 00#11 is 
generated by the 

Grammar



A → 0A1
A → B
B → #

CONTEXT-FREE GRAMMARS

A ⇒  0A1 
⇒(yields)

⇒ 00A11 ⇒ 00B11 ⇒ 00#11

Deterministic CFGs??

A  ⇒* 00#11 
(derives)       

Derivation

We say: 00#11 is 
generated by the 

Grammar



CONTEXT-FREE GRAMMARS

A → 0A1
A → B
B → #

A → 0A1 | B
B → #



<PHRASE> → <START WORD><END WORD>DUDE
<PHRASE> → <FILLER><PHRASE>

<FILLER> → LIKE
<FILLER> → UMM
<START WORD> → FO

<END WORD> → SHO
<START WORD> → FA

<END WORD> → SHAZZY
<END WORD> → SHEEZY

SNOOP’S GRAMMAR 
(courtesy of Luis von Ahn)

<END WORD> → SHIZZLE



Generate: 

Umm Like Umm Umm Fa Shizzle Dude 

Fa Sho Dude

SNOOP’S GRAMMAR 
(courtesy of Luis von Ahn)



CONTEXT-FREE GRAMMARS
A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:  

V is a finite set of variables

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)



CONTEXT-FREE LANGUAGES
A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:  

V is a finite set of variables

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

L(G) = {w ∈ Σ* | S  ⇒* w}  Strings Generated by G 

 A Language L is context-free if there is a CFG that 
generates precisely the strings in L



A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:  

V is a finite set of variables

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

G = { {S}, {0,1}, R, S } R = { S → 0S1, S → ε }

L(G) =

CONTEXT-FREE LANGUAGES



A context-free grammar (CFG) is a tuple  
G = (V, Σ, R, S), where:  

V is a finite set of variables

R is set of production rules of the form A → W, 
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

G = { {S}, {0,1}, R, S } R = { S → 0S1, S → ε }

L(G) = { 0n1n | n ≥ 0 }  Strings Generated by G

CONTEXT-FREE LANGUAGES



WRITE A CFG FOR EVEN-LENGTH 
PALINDROMES

S → σSσ for all σ ∈ Σ
S → ε 



WRITE A CFG FOR THE EMPTY SET

G = { {S}, Σ, ∅, S }



PARSE TREES

A ⇒ 0A1⇒ 00A11 ⇒ 00B11 ⇒ 00#11

A

B

0 1#

A

A

0 1

A → 0A1
A → B
B → #



<EXPR> → <EXPR> + <EXPR>
<EXPR> → <EXPR> x <EXPR>
<EXPR> → ( <EXPR> )
<EXPR> → a
Build a parse tree for a + a x a

<EXPR>

a x+ a

<EXPR>
<EXPR>

a

<EXPR> <EXPR>

<EXPR>

a+ xa

<EXPR>
<EXPR>

a

<EXPR><EXPR>



Definition: a string is derived ambiguously 
in a context-free grammar if it has more than 
one parse tree

Definition: a grammar is ambiguous if it 
generates some string ambiguously

See G4 for unambiguous standard 
arithmetic precedence [adds parens  (,) ]

L = { aibjck | i, j, k ≥ 0 and (i = j or j = k) }  
is inherently ambiguous (xtra  credit)

Undecidable to tell if a language has 
unambiguous parse trees (Post’s problem) 



Σ = {0, 1}, L = { 0n1n | n ≥ 0 }

WHAT ABOUT?

But L is CONTEXT FREE

NOT REGULAR

Σ = {0, 1}, L1 = { 0n1n 0m| m,n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m,n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

A → 0A1
A → ε



WHAT ABOUT?

Σ = {0, 1}, L1 = { 0n1n 0m| m, n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m, n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }



WHAT ABOUT?

S -> AB 
A -> 0A1 | ε 
B -> 0B | ε

S -> 0S0 | A  
A -> 1A | ε

Σ = {0, 1}, L1 = { 0n1n 0m| m, n ≥ 0 }

Σ = {0, 1}, L2 = { 0n1m 0n| m, n ≥ 0 }

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }



THE PUMPING LEMMA FOR CFGs
Let L be a context-free language

Then there is a P such that  
if  w ∈ L and |w| ≥ P

1.  |vy| > 0
then can write w = uvxyz, where:

3. For every i ≥ 0, uvixyiz ∈ L
2.  |vxy| ≤ P



WHAT ABOUT?

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

Choose w = 0P 1P 0P. 

By the  Pumping Lemma, we can write 
w = uvxyz with |vy| > 0, |vxy| ≤ P such that pumping v 
together with y will produce another word in  L3  
Since |vxy| ≤ P,  vxy = 0a1b, or vxy = 1a 0b.



WHAT ABOUT?

Σ = {0, 1}, L3 = { 0m1n 0n| m=n ≥ 0 }

Pumping in the first case will unbalance with the 0’s at 
the end; in the second case, will unbalance with the 0’s 
at the beginning. Contradiction.

Choose w = 0P 1P 0P. 

By the  Pumping Lemma, we can write 
w = uvxyz with |vy| > 0, |vxy| ≤ P such that pumping v 
together with y will produce another word in  L3  
Since |vxy| ≤ P,  vxy = 0a1b, or vxy = 1a 0b.



THE PUMPING LEMMA FOR CFGs
Let L be a context-free language

Then there is a P such that  
if  w ∈ L and |w| ≥ P

1.  |vy| > 0
then can write w = uvxyz, where:

3. For every i ≥ 0, uvixyiz ∈ L
2.  |vxy| ≤ P



Idea of Proof: If w is long enough, then  
any parse tree for w must have a path that 
contains a variable more than once

T

R

R

u v x zy

T

u z

R

R

v y

R

R

v x y



If the height of a parse tree is h, the length of the 
string generated by that tree is at most:

Formal Proof:

Let b be the maximum number of symbols 
(length) on the right-hand side of any rule

bh

Let | V | be the number of variables in G
Define P = b|V|+1 
Let w be a string of length at least P

Let T be a parse tree for w with a minimum 
number of nodes. 
b|V|+1 = P ≤ |w| ≤ bh   

T must have height h at least |V|+1



Let T be a parse tree for w with a minimum number 
of nodes. T must have height at least |V|+1

The longest path in T must have ≥ |V|+1 variables
Select R to be a variable that repeats among the 

lowest |V|+1 variables (in the path)
T

R

R

u v x zy

T

u z

R

R

v y

R

R

v x y

1.  |vy| > 0
2.  |vxy| ≤ P



The longest path in T must have ≥ |V|+1 variables

Select R to be a variable in T that repeats, among 
the lowest |V|+1 variables in the tree

T

R

R

u v x zy

T

u z

R

R

v y

R

R

v x y

1.  |vy| > 0
2.  |vxy| ≤ P

since T has minimun # nodes
since |vxy| ≤ b|V|+1 = P 


