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FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY




THEOREM

For every regular language L, there exists
a UNIQUE (up to re-labeling of the states)
minimal DFAM_. such that L =L(M

mim)

Minimal means wrt number of states



PROOF

1. Let M be a DFA for L (wlog, assume no
Inaccessible states)

2. For pairs of states (p,q) define:

p distinguishable from g and

p indistinguisable from q (p~q).

3. Table-filling algorithm: first distinguish final

from non-final states and then work backwards

to distinguish more pairs.

4. What's left over are exactly the

indistinguishable pairs, ie ~ related pairs.

Needs proof.



PROOF

5. ~ Is an equivalence relation so partitions the
states into equivalence classes, Ey,

6. Define M_._
Define: My;;n = (Quuins 25 Onmine 9o mine Fviin)

Quin =Em domin =[90]; Fuw={ldl | aEF}

Omin( [a); 0 ) =[0(q, o) ] show well defined
Claim: Sy( [al, w) = [8(q, w) ], w € £*

So: /SMIN( [Qo], W) =1 O Qo W) ], weZ*



PROOF
Butis M_. unique minimum?

Yes, because if M= M and minimum then
M’ has no inaccesible states and is irreducible anc

Theorem. M_.is isomorphic to any M’ with the

above properties

(need to give mapping and prove it has all the needed properties:
everywhere defined , well defined, 1-1, onto, preserves transitions,
and {final states} map onto {final states})

So M_. is isomorphic to any minimum M’ = M









How can we prove that two
DFAs are equivalent?

One way: Minimize

Another way: LetC=(-ANB)U (AN -B)
Then, A=B<=C=¢

C is the “disjoint union”



CONTEXT-FREE GRAMMARS

AND PUSH-DOWN AUTOMATA
TUESDAY Jan 28



NONE OF THESE ARE REGULAR

2={0,1},L={0M"|n20}
2={a,b,c, ....,z},L={w]|w=wR}

2={(,)}, L={balanced strings of parens }

(), 00, (O() are in L, (, ()), ())(() are notin L



PUSHDOWN AUTOMATA (PDA)

FINITE
STATE

CONTROL

STACK
(Last in,
first out)

Newell, A., Shaw, J.C., & Simon, H.A. "Report on a general problem-solving
program in Information Processing”, Proc. International Conference,
UNESCO Paris 1959



PUSHDOWN AUTOMATA (PDA)

FINITE
STATE

CONTROL

STACK
(Last in, ¥]Turing ‘47
first out)

A brief history of the stack, Sten Henriksson,
Computer Science Department, Lund University, Lund, Sweden.



input pop push

| 7

£ — 9% ~~
— (11 ) 0e—0
)

|1,0—>£

v
O~

‘ STACK ‘

Non-deterministic



input pop push

| 7

£ — 9% P
—> » (001 0,e —0

|1,0—>£

\ 4
O~
‘STACK

PDA that recognizes L={0"M"|n=20}




Definition: A (non-deterministic) PDA is a 6-tuple
P=(Q, 2,T,9, q, F), where:

Q is a finite set of states

2 is the input alphabet pop

I" is the stack alph /push

0:QxZ xI, — 2axTg
do, € Q is the start state

F C Qis the set of accept states

29 xT¢ is the set of subsets of Q x I'c
2. =2 U{e}, =TU {&}



Let we 2* and suppose w can be written as
wW,... W, wherew, € Z_(recall Z_=2 U {g})

Then P accepts w if there are
re; Iy, .-, I, € Q and

Sgs S1s -==» S, € ['* (sequence of stacks) such that

1. ry = q, and s, = € (P starts in q, with empty stack)

2. Fori=0,..,n-1:
(riyq, b) Eé(r,, W, @), Where s,=at and s;,, = bt for

somea,bel, andterl™
(P moves correctly according to state, stack and symbol read)

3.r, € F (Pisin an accept state at the end of its input)



£ —$
_> _>D 0,e >0
l1,0—>£
—®

Q = {qO’ q1! q2! q3} 2= {0!1} I = {$!0!1}
0:QxZ xI,— 2axTg
0(d4,1,0) = {(ax€) }  8(qy1,1)= 9



EVEN-LENGTH PALINDROMES

2={a,b,c,..., 2z}

~@==@>

££—>£

4_£’$ i :) 0,0 — €

Zeus sees suez
Madamimadam
(How to recognize odd-length palindromes?)



Build a PDA to recognize
L={abick|i,j,k20and (i=jori=k)}




Build a PDA to recognize
L={abick|i,j,k20and (i=jori=k)}

a—>£
‘ £$ ¢ ‘




Build a PDA to recognize
L={abick|i,j,k20and (i=jori=k)}

b,a— ¢ C£—>£

~
““»

as_)$\ choose i=|
choose i=k
‘ ££—>££$—>£
Y, Y,
a,e — a N

b,e > ¢ c,a




CONTEXT-FREE GRAMMARS

“Colorless ideas sleep furiously.”

Noam Chomsky (1957)



CONTEXT-FREE GRAMMARS

start variable production
4A\ 0A1
( A B
B # A
variables =™ Q

rules

terminals
A= 0A1=00A11 = 00B11 = 00#11
— (yields) A * 00#11 Derivation
(:d>erives) We say: 00#11 is

generated by the
Non-deterministic Grammar



CONTEXT-FREE GRAMMARS

A — 0A1
A—B
B - #

A= 0A1= 00A11 = 00B11 = 00#TD
= (ylelds) Derivation
A =~ 00#11

CLEIOER)

We say: 00#11 is
generated by the

Deterministic CFGs?? Grammar



CONTEXT-FREE GRAMMARS

A — 0A1
A—B
B - #

A—0A1|B
B - #



SNOOP’S GRAMMAR

(courtesy of Luis von Ahn)
<PHRASE> — <FILLER><PHRASE>

<PHRASE> — <START WORD><END WORD>DUDE
<FILLER> — LIKE

<FILLER> —» UMM

<START WORD> — FO

<START WORD> — FA

<END WORD> — SHO

<END WORD> — SHAZZY

<END WORD> — SHEEZY
<END WORD> — SHIZZLE



SNOOP’S GRAMMAR

(courtesy of Luis von Ahn)

Generate:

Umm Like Umm Umm Fa Shizzle Dude

Fa Sho Dude



CONTEXT-FREE GRAMMARS

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VUZ)*

S €V is the start variable



CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VUZ)*

S €V is the start variable

L(G)={wec ¥*|S =*w} Strings Generated by G

A Language L is context-free if there is a CFG that
generates precisely the strings In L



CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VU2)*

S €V is the start variable
G={{S},{0,1},R, S} R={S—->081,S—¢}
L(G) =



CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VU2)*

S € V is the start variable
G={{S}{01}R,S} R={S—-0351,S—¢}
L(G)={0™""|n20} Strings Generated by G



WRITE A CFG FOR EVEN-LENGTH
PALINDROMES

S >oSocforalloex
S —>¢



WRITE A CFG FOR THE EMPTY SET
G={{S},2,9,S}



PARSE TREES

s // \\

00
A = 0A1= 00A11 = 00B11 = 00#11

1

*—0—>—>—



<EXPR> — <EXPR> + <EXPR>
<EXPR> — <EXPR> x <EXPR>
<EXPR> — ( <EXPR>)
<EXPR> — a

Build a parse tree fora+axa

<EXPR> <EXPR>

/

<EXPR>

d

+

<EXPR> <EXPR>

/ \ / \ <EXPR>

<EXPR> | <EXPR> <EXPR> | <EXPR>

d X d d + da X d




Definition: a string is derived ambiguously
in a context-free grammar if it has more than
one parse tree

Definition: a grammar is ambiguous if it
generates some string ambiguously

See G, for unambiguous standard
arithmetic precedence [adds parens (,)]

L={abick|i,jk20and (i=jorj=k)}
is Inherently ambiguous (xtra credit)

Undecidable to tell if a language has
unambiguous parse trees (Post’s problem)



NOT REGULAR
={0,1},L={0M"|n20}

But L is CONTEXT FREE

A — 0A1
A—¢g

WHAT ABOUT?
2={0,1},L,={0™M" 0™ m,n=20}
2={0,1},L,={0™M™ 0" mn=20}
2={0,1}, L;={0m™"0"| m=n=z20}



WHAT ABOUT?

2={0,1},L,={0M" 0™ m,n=20}

¥={0,1},L,={0M™ 0" m,n2>0}

¥ ={0,1}, L,={0™" 0" m=n20}



WHAT ABOUT?

2={0,1},L,={0M" 0™ m,n=20}

S ->AB
A->0A1|¢€
B->0B|¢

¥={0,1},L,={0M™ 0" m,n2>0}

S->0S0|A
A->1A| ¢

¥ ={0,1}, L,={0™" 0" m=n20}



THE PUMPING LEMMA FOR CFGs

Let L be a context-free language
Then there is a ¥ such that
if weland|w|2
then can write w = uvxyz, where:
1. |vy|>0
2. |vxy| =
3. For i20,uvixyze L



WHAT ABOUT?
¥ ={0,1},L,={0™1" 0" m=n20}

Choose w = 0P 1P OP.

By the , We can write
w = uvxyz with |vy| > 0, |vxy| £ P such that pumping v
together with y will produce another word in L,

Since |vxy| £ P, vxy = 0212, or vxy = 12Qb,



WHAT ABOUT?
¥ ={0,1},L,={0™1" 0" m=n20}

Choose w = 0P 1P OP.

By the , We can write
w = uvxyz with |vy| > 0, |vxy| £ P such that pumping v
together with y will produce another word in L,

Since |vxy| £ P, vxy = 0212, or vxy = 12Qb,

Pumping in the first case will unbalance with the O’s at
the end; in the second case, will unbalance with the O’s
at the beginning.



THE PUMPING LEMMA FOR CFGs

Let L be a context-free language
Then there is a ¥ such that
if weland|w|2
then can write w = uvxyz, where:
1. |vy|>0
2. |vxy| =
3. For i20,uvixyze L



Idea of Proof: If wis long enough, then
any parse tree for w must have a path that
contains a variable more than once

T T
R R
R R
R
\'; X y z u Vv y z



Formal Proof:
Let b be the maximum number of symbols
(length) on the right-hand side of any rule

If the height of a parse tree is h, the length of the
string generated by that tree is at most: ph

Let | V | be the number of variables in G
Define P = blVI*1
Let w be a string of length at least P

Let T be a parse tree for w with a minimum
number of nodes.
blVI*1=P < |w| £ bh
T must have height h at least |V|+1



The longest path in T must have 2 |V|+1 variables

Select R to be a variable that repeats among the
lowest |V|+1 variables (in the path)

1. jvy|>p' !
2. |[vxyf <R R
R R
Lot TOe/a parsy theeXor w wi R, \hwnmRer
u Oy nodgs. 1 mpsghave HETOWY V7
v X y



The longest path in T must have 2 |V|+1 variables

Select R to be a variable in T that repeats, amon¢
the lowest |V|+1 variables in the tree

1. |lvy| > 0 since T has minimun # nodes
2. |vxy| =P since |vxy| < blV* =P

T T
R R
R R
R
u v ) ¢ y Zz u Vv y z



