15 - 453FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

THEOREM

For every regular language L, there exists a UNIQUE (up to re-labeling of the states) minimal DFA M_{mim} such that L = L(M_{mim})

Minimal means wrt number of states

PROOF

- 1. Let M be a DFA for L (wlog, assume no inaccessible states)
- 2. For pairs of states (p,q) define:
- p distinguishable from q and
- p indistinguisable from q (p~q).
- 3. Table-filling algorithm: first distinguish final from non-final states and then work backwards to distinguish more pairs.
- 4. What's left over are exactly the indistinguishable pairs, ie ~ related pairs.
 Needs proof.

PROOF

- 5. ~ is an equivalence relation so partitions the states into equivalence classes, E_M
- 6. Define M_{min}

Define: $M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})$ $Q_{MIN} = E_M, q_{0 MIN} = [q_0], F_{MIN} = \{ [q] \mid q \in F \}$ $\delta_{MIN}([q], \sigma) = [\delta(q, \sigma)]$ show well defined Claim: $\delta_{MIN}([q], w) = [\delta(q, w)], w \in \Sigma^*$ So: $\delta_{MIN}([q_0], w) = [\delta(q_0, w)], w \in \Sigma^*$

Follows: M_{MIN} ≡ M

PROOF

But is M_{min} unique minimum?

Yes, because if M' = M and minimum then <u>M' has no inaccesible states and is irreducible and</u>

Theorem. M_{min} is isomorphic to any M' with the **above properties** (need to give mapping and prove it has all the needed properties: everywhere defined, well defined, 1-1, onto, preserves transitions,

and {final states} map onto {final states})

So M_{min} is isomorphic to any minimum M' = M

How can we prove that two DFAs are equivalent?

One way: Minimize

Another way: Let $C = (\neg A \cap B) \cup (A \cap \neg B)$ Then, $A = B \iff C = \emptyset$

C is the "disjoint union"

CONTEXT-FREE GRAMMARS AND PUSH-DOWN AUTOMATA TUESDAY Jan 28

NONE OF THESE ARE REGULAR

 $\Sigma = \{0, 1\}, L = \{0^n 1^n \mid n \ge 0\}$

 $\Sigma = \{a, b, c, ..., z\}, L = \{w | w = w^R\}$

Σ = { (,) }, L = { balanced strings of parens }

(), ()(), (()()) are in L, (, ()), ())(() are not in L

PUSHDOWN AUTOMATA (PDA)

Newell, A., Shaw, J.C., & Simon, H.A. "Report on a general problem-solving program in Information Processing", Proc. International Conference, UNESCO Paris 1959

PUSHDOWN AUTOMATA (PDA)

A brief history of the stack, Sten Henriksson, Computer Science Department, Lund University, Lund, Sweden.

Non-deterministic

PDA that recognizes $L = \{ 0^n 1^n | n \ge 0 \}$

Definition: A (*non-deterministic*) PDA is a 6-tuple P = (Q, Σ, Γ, δ, q₀, F), where:

push

- **Q** is a finite set of states
- Σ is the input alphabet pop
- **I** is the stack alphabet
- $\delta: \mathbf{Q} \times \boldsymbol{\Sigma}_{\varepsilon} \times \boldsymbol{\Gamma}_{\varepsilon} \to \mathbf{2} \ \mathbf{Q} \times \boldsymbol{\Gamma}_{\varepsilon}$
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

 $\begin{array}{l} 2^{Q} \times \Gamma_{\epsilon} \text{ is the set of subsets of } Q \times \Gamma_{\epsilon} \\ \Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}, \ \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\} \end{array}$

Let $w \in \Sigma^*$ and suppose w can be written as $w_1 \dots w_n$ where $w_i \in \Sigma_{\epsilon}$ (recall $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$) Then P accepts w if there are $r_0, r_1, \dots, r_n \in Q$ and $s_0, s_1, \dots, s_n \in \Gamma^*$ (sequence of stacks) such that

1. $\mathbf{r_0} = \mathbf{q_0} \text{ and } \mathbf{s_0} = \boldsymbol{\epsilon} (\mathbf{P} \text{ starts in } \mathbf{q_0} \text{ with empty stack})$

2. For i = 0, ..., n-1: $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at and s_{i+1} = bt$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^*$

(P moves correctly according to state, stack and symbol read)

3. $\mathbf{r_n} \in \mathbf{F}$ (**P** is in an accept state at the end of its input)

 $\overline{\mathbf{Q}} = \{\mathbf{q}_0, \overline{\mathbf{q}}_1, \overline{\mathbf{q}}_2, \overline{\mathbf{q}}_3\} \qquad \overline{\mathbf{\Sigma}} = \{0, 1\} \qquad \overline{\mathbf{\Gamma}} = \{\$, 0, 1\}$ $\delta : \mathbf{Q} \times \mathbf{\Sigma}_{\varepsilon} \times \mathbf{\Gamma}_{\varepsilon} \to 2^{|\mathbf{Q}| \times |\mathbf{\Gamma}_{\varepsilon}|}$

 $\delta(q_1, 1, 0) = \{ (q_2, ε) \}$ $\delta(q_2, 1, 1) = \emptyset$

EVEN-LENGTH PALINDROMES

Σ = {a, b, c, ..., z}

Madamimadam

(How to recognize odd-length palindromes?)

Build a PDA to recognize $L = \{ a^{i}b^{j}c^{k} | i, j, k \ge 0 \text{ and } (i = j \text{ or } i = k) \}$

Build a PDA to recognize $L = \{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and } (i = j \text{ or } i = k) \}$

$c,\epsilon ightarrow \epsilon$ b,a $\rightarrow \epsilon$ ε,\$ → q₀ q_2 E, choose i=j EFE ε,ε → \$ choose i=k q_5 $\epsilon, \Rightarrow \epsilon$ **q**₁ q_4 q₆ $\epsilon,\epsilon ightarrow\epsilon$ $\epsilon,\epsilon \rightarrow \epsilon$ $a, \epsilon \rightarrow a$ $b, \epsilon \rightarrow \epsilon$ $c,a \rightarrow \epsilon$

Build a PDA to recognize $L = \{ a^{i}b^{j}c^{k} | i, j, k \ge 0 \text{ and } (i = j \text{ or } i = k) \}$

"Colorless green ideas sleep furiously."

Noam Chomsky (1957)

 $A \rightarrow 0A1$ $A \rightarrow B$ $B \rightarrow \#$

 $\begin{array}{c} A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11 \\ \Rightarrow (yields) & Derivation \\ A \Rightarrow^* 00\#11 \\ (derives) & We say: 00\#11 is \\ generated by the \\ Deterministic CFGs?? & Grammar \end{array}$

 $A \rightarrow 0A1$ $A \rightarrow B$ $B \rightarrow \#$ $A \rightarrow 0A1 \mid B$ $B \rightarrow \#$

- SNOOP'S GRAMMAR (courtesy of Luis von Ahn) <PHRASE> → <FILLER><PHRASE> <PHRASE> → <START WORD><END WORD>DUDE
- $\langle \mathsf{FILLER} \rangle \rightarrow \mathsf{LIKE}$
- $\langle \mathsf{FILLER} \rangle \rightarrow \mathsf{UMM}$
- $\langle \text{START WORD} \rangle \rightarrow \text{FO}$
- $\langle START WORD \rangle \rightarrow FA$
- **<END WORD>** \rightarrow **SHO**
- **<END WORD>** \rightarrow **SHAZZY**
- $\langle \mathsf{END} | \mathsf{WORD} \rangle \rightarrow \mathsf{SHEEZY}$
- **<END WORD>** \rightarrow **SHIZZLE**

SNOOP'S GRAMMAR (courtesy of Luis von Ahn)

Generate:

Umm Like Umm Umm Fa Shizzle Dude

Fa Sho Dude

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

- V is a finite set of variables
- **Σ** is a finite set of terminals (disjoint from V)
- **R** is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$
- $\mathbf{S} \in \mathbf{V}$ is the start variable

CONTEXT-FREE LANGUAGES A context-free grammar (CFG) is a tuple

- **G** = (V, Σ, R, S), where:
 - V is a finite set of variables
 - **Σ** is a finite set of terminals (disjoint from V)
 - **R** is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$
 - $\mathbf{S} \in \mathbf{V}$ is the start variable

L(G) = {w $\in \Sigma^* | S \Rightarrow^* w$ } Strings Generated by G

A Language L is context-free if there is a CFG that generates precisely the strings in L

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

- V is a finite set of variables
- **Σ** is a finite set of terminals (disjoint from V)

R is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$

 $\mathbf{S} \in \mathbf{V}$ is the start variable

 $\textbf{G} = \{ \{S\}, \{0,1\}, R, S \} \qquad R = \{ S \rightarrow 0S1, S \rightarrow \epsilon \}$

L(G) =

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

- V is a finite set of variables
- **Σ** is a finite set of terminals (disjoint from V)

R is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$

 $\textbf{S} \in \textbf{V}$ is the start variable

 $\textbf{G} = \{ \{S\}, \{0,1\}, R, S \} \qquad R = \{ S \rightarrow 0S1, S \rightarrow \epsilon \}$

 $L(G) = \{ 0^n 1^n \mid n \ge 0 \}$ Strings Generated by G

WRITE A CFG FOR EVEN-LENGTH PALINDROMES $S \rightarrow \sigma S \sigma$ for all $\sigma \in \Sigma$ $S \rightarrow \epsilon$

WRITE A CFG FOR THE EMPTY SET $G = \{ \{S\}, \Sigma, \emptyset, S \}$

PARSE TREES

$\textbf{A} \Rightarrow \textbf{0A1} \Rightarrow \textbf{00A11} \Rightarrow \textbf{00B11} \Rightarrow \textbf{00\#11}$

 $< EXPR > \rightarrow < EXPR > + < EXPR >$ $< EXPR > \rightarrow < EXPR > x < EXPR >$ $< EXPR > \rightarrow (< EXPR >)$ $< EXPR > \rightarrow a$

Build a parse tree for a + a x a

Definition: a string is derived **ambiguously** in a context-free grammar if it has more than one parse tree

Definition: a grammar is **ambiguous** if it generates some string ambiguously

See G₄ for unambiguous standard arithmetic precedence [adds parens (,)]

L = { aⁱb^jc^k | i, j, k ≥ 0 and (i = j or j = k) } is *inherently ambiguous* (xtra credit)

Undecidable to tell if a language has unambiguous parse trees (Post's problem)

NOT REGULAR $\Sigma = \{0, 1\}, L = \{0^n 1^n \mid n \ge 0\}$ But L is **CONTEXT FREE** $A \rightarrow 0A1$ $A \rightarrow \epsilon$ WHAT ABOUT? $\Sigma = \{0, 1\}, L_1 = \{0^n 1^n 0^m | m, n \ge 0\}$ $\Sigma = \{0, 1\}, L_2 = \{0^n 1^m 0^n | m, n \ge 0\}$ $\Sigma = \{0, 1\}, L_3 = \{0^m 1^n 0^n | m=n \ge 0\}$

 $\Sigma = \{0, 1\}, L_3 = \{0^m 1^n 0^n | m=n \ge 0\}$

 $\Sigma = \{0, 1\}, L_2 = \{0^n 1^m 0^n | m, n \ge 0\}$

 $\Sigma = \{0, 1\}, L_1 = \{0^n 1^n 0^m | m, n \ge 0\}$

WHAT ABOUT?

WHAT ABOUT?

 $\Sigma = \{0, 1\}, L_1 = \{ \begin{array}{c} 0^n 1^n \ 0^m \\ M, n \ge 0 \} \\ S -> AB \\ A -> 0A1 \\ \epsilon \\ B -> 0B \\ \epsilon \end{array}$

Σ = {0, 1}, L_2 = { 0ⁿ1^m 0ⁿ| m, n ≥ 0 } S -> 0S0 | A A -> 1A | ε

 $\Sigma = \{0, 1\}, L_3 = \{0^m 1^n 0^n | m=n \ge 0\}$

THE PUMPING LEMMA FOR CFGs Let L be a context-free language Then there is a **P** such that if $w \in L$ and $|w| \ge P$ then can write w = uvxyz, where: 1. **vy** > 0 2. **|vxy**| ≤ **P** 3. For every $i \ge 0$, $uv^i x y^i z \in L$

WHAT ABOUT?

 $\Sigma = \{0, 1\}, L_3 = \{0^m 1^n 0^n | m=n \ge 0\}$

Choose $w = 0^P 1^P 0^P$.

By the Pumping Lemma, we can write w = uvxyz with |vy| > 0, $|vxy| \le P$ such that pumping v together with y will produce another word in L₃ Since $|vxy| \le P$, $vxy = 0^{a}1^{b}$, or $vxy = 1^{a}0^{b}$.

WHAT ABOUT?

 $\Sigma = \{0, 1\}, L_3 = \{0^m 1^n 0^n | m=n \ge 0\}$

Choose $w = 0^P 1^P 0^P$.

By the Pumping Lemma, we can write w = uvxyz with |vy| > 0, $|vxy| \le P$ such that pumping v together with y will produce another word in L₃ Since $|vxy| \le P$, $vxy = 0^{a}1^{b}$, or $vxy = 1^{a}0^{b}$.

Pumping in the first case will unbalance with the 0's at the end; in the second case, will unbalance with the 0's at the beginning. Contradiction.

THE PUMPING LEMMA FOR CFGs Let L be a context-free language Then there is a **P** such that if $w \in L$ and $|w| \ge P$ then can write w = uvxyz, where: 1. **vy** > 0 2. **|vxy|** ≤ **P** 3. For every $i \ge 0$, $uv^i x y^i z \in L$

Idea of Proof: If w is long enough, then any parse tree for w must have a path that contains a variable more than once

Formal Proof:

Let b be the maximum number of symbols (length) on the right-hand side of any rule If the height of a parse tree is h, the length of the string generated by that tree is at most: b^h

Let |V| be the number of variables in G Define P = $b^{|V|+1}$

Let w be a string of length at least P

Let T be a parse tree for w with a *minimum* number of nodes. $b^{|V|+1} = P \le |w| \le b^h$ T must have height h at least |V|+1

The longest path in T must have ≥ |V|+1 variables Select R to be a variable that repeats among the lowest |V|+1 variables (in the path)

The longest path in T must have $\geq |V|+1$ variables

Select R to be a variable in T that repeats, among the lowest V+1 variables in the tree

- 1. vy > 0 since T has minimun # nodes
- 2. $|\mathbf{vxy}| \le \mathbf{P}$ since $|\mathbf{vxy}| \le \mathbf{b}^{|\mathbf{V}|+1} = \mathbf{P}$

