
DFA NFA

Regular

Language
Regular

Expression

 DEFINITION

How can we prove that two regular
expressions are equivalent?

How can we prove that two DFAs
(or two NFAs) are equivalent?

How can we prove that two regular
languages are equivalent?

(Does this question make sense?)

How can we prove that two DFAs
(or two NFAs) are equivalent?

MINIMIZING DFAs

IS THIS MINIMAL?

11
1

1

0

0

00

NO

IS THIS MINIMAL?

0

1

01

THEOREM
For every regular language L, there exists
a UNIQUE (up to re-labeling of the states)

minimal DFA M such that L = L(M)

Given a specification for L, via DFA, NFA or
regex,this theorem is constructive.

Minimal means wrt number of states

NOT TRUE FOR NFAs

0

0

0

0

0

0

0

0

NOT TRUE FOR RegExp

EXTENDING δ
Given DFA M = (Q, Σ, δ, q0, F) extend δ to

δ : Q × Σ* → Q as follows:

δ(q, ε) =

δ(q, σ) =
δ(q, σ1 …σk+1) = δ(δ(q, σ1 …σk), σk+1)

^

^
^
^ ^

String w ∈ Σ* distinguishes states p and q iff
δ(p, w) ∈ F ⇔ δ(q, w) ∉ F ^ ^

q

δ(q, σ)

^Note: δ(q0, w) ∈ F ⇔ M accepts w

EXTENDING δ
Given DFA M = (Q, Σ, δ, q0, F) extend δ to

δ : Q × Σ* → Q as follows:

δ(q, ε) =

δ(q, σ) =
δ(q, σ1 …σk+1) = δ(δ(q, σ1 …σk), σk+1)

^

^
^
^ ^

q

δ(q, σ)

^Note: δ(q0, w) ∈ F ⇔ M accepts w

String w ∈ Σ* distinguishes states p and q iff
exactly ONE of δ(p, w), δ(q, w) is a final state^ ^

Fix M = (Q, Σ, δ, q0, F) and let p, q ∈ Q

DEFINITION:

p is distinguishable from q
 iff
there is a w ∈ Σ* that distinguishes p and q

p is indistinguishable from q
 iff
p is not distinguishable from q
 iff
for all w ∈ Σ*, δ(p, w) ∈ F ⇔ δ(q, w) ∈ F

Fix M = (Q, Σ, δ, q0, F) and let p, q ∈ Q

DEFINITION:

p is distinguishable from q
 iff
there is a w ∈ Σ* that distinguishes p and q

p is indistinguishable from q
 iff
p is not distinguishable from q
 iff
for all w ∈ Σ*, δ(p, w) ∈ F ⇔ δ(q, w) ∈ F^ ^

0
0,1

00

1

1

1

q0

q1

q2

q3

ε distinguishes accept from non-accept states

Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q

Define relation ~ :
p ~ q iff p is indistinguishable from q
p ~ q iff p is distinguishable from q /

p ~ p (reflexive)
p ~ q ⇒ q ~ p (symmetric)
p ~ q and q ~ r ⇒ p ~ r (transitive)

Proof (of transitivity): for all w, we have:
 δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ⇔ δ(r, w) ∈ F

^ ^ ^

Proposition: ~ is an equivalence relation

Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q

p ~ p (reflexive)
p ~ q ⇒ q ~ p (symmetric)
p ~ q and q ~ r ⇒ p ~ r (transitive)

Proof (of transitivity): for all w, we have:
 δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ⇔ δ(r, w) ∈ F

^ ^ ^

Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into
disjoint equivalence classes

Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q

q0

Q

q

[q] = { p | p ~ q }
Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into
disjoint equivalence classes

11
1

1

0

0

00

Algorithm MINIMIZE

Input: DFA M

Output: DFA MMIN such that:

M ≡ MMIN (that is, L(M) = L(MMIN))

MMIN has no inaccessible states

MMIN is irreducible

all states of MMIN are pairwise distinguishable
||

Theorem: MMIN is the unique* minimum DFA
equivalent to M

*up to relabelling

NOTE: Theorem not true for NFAs

0

0

0

0

What does this say about Regexs?

Intuition for Algorithm:
States of MMIN will be

blocks of equivalent states of M

We’ll find these equivalent states with
a “Table-Filling” Algorithm

TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F)

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/

• We know how to find those pairs of
states that ε distinguishes…

• Use this and recursion to find those
pairs distinguishable with longer strings

• Pairs left over will be indistinguishable

IDEA:

Output:

TABLE-FILLING ALGORITHM

(2) EM = { [q] | q ∈ Q }
q0
q1

qi

qn
q0 q1 qi qn

Base Case: p accepts
 and q “rejects” ⇒ p ~ q/

Input: DFA M = (Q, Σ, δ, q0, F)

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/Output:

TABLE-FILLING ALGORITHM

(2) EM = { [q] | q ∈ Q }
q0
q1

qi

qn
q0 q1 qi qn

D D

D

Repeat until no more new D’s

p pʹ′

q qʹ′
~/

σ

σ
⇒ p ~ q/

Recursion:

(2) EM = { [q] | q ∈ Q }

Input: DFA M = (Q, Σ, δ, q0, F)

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/Output:

Base Case: p accepts
 and q “rejects” ⇒ p ~ q/

1 0

1

0 1

0,1

0

q0

q0 q1

q1

q2

q2 q3

q3

q0 q1 q2 q3

D D D

D

D

D

11
1

1

0

0

00

q0

q0 q1

q1

q2

q2 q3

q3 D D

D

D

q0 q1

q2q3

11
1

1

0

0

00

q0

q0 q1

q1

q2

q2 q3

q3 D D

D

D

q0 q1

q2q3

0
1

01

Claim: If p, q are distinguished by Table-Filling
algorithm (ie pair labelled by D), then p ~ q

Proof: By induction on the stage of the algorithm

/

Claim: If p, q are not distinguished by Table-Filling
algorithm, then p ~ q

Proof (by contradiction):

If (p, q) is marked D at the start, then one’s in F
and one isn’t, so ε distinguishes p and q

Then there are states pʹ′, qʹ′, string w ∈ Σ*
and σ ∈ Σ such that:

δ(pʹ′, w) ∈ F and δ(qʹ′, w) ∉ F ^ ^
2. pʹ′ = δ(p,σ) and qʹ′ = δ(q,σ)

The string σw distinguishes p and q!

Suppose (p, q) is marked D at stage n+1

1. (pʹ′, qʹ′) are marked D ⇒ pʹ′ ~ qʹ′ (by induction)
⇒

/

Claim: If p, q are distinguished by Table-Filling
algorithm (ie pair labelled by D), then p ~ q/

Proof: By induction on the stage of the algorithm

Claim: If p, q are not distinguished by Table-Filling
algorithm, then p ~ q

Proof (by contradiction):
Suppose the pair (p, q) is not marked D by the
algorithm, yet p ~ q (a “bad pair”) /

δ(p, w) ∈ F and δ(q, w) ∉ F ^ ^

So, w = σwʹ′, where σ ∈ Σ
Let pʹ′ = δ(p,σ) and qʹ′ = δ(q,σ)

Then (pʹ′, qʹ′) cannnot be marked D (Why?)
But (pʹ′, qʹ′) is distinguished by wʹ′ !
So (pʹ′, qʹ′) is also a bad pair, but with a SHORTER wʹ′ !

(Why is |w| >0 ?)

Suppose (p,q) is a bad pair with the shortest w.

Contradiction!

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
EM = { [q] | q is an accessible state of M }

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q], σ) = [δ(q, σ)]

Must show δMIN is well defined!

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

Algorithm MINIMIZE

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
EM = { [q] | q is an accessible state of M }

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q], σ) = [δ(q, σ)]

Algorithm MINIMIZE

Claim: δMIN([q], w) = [δ(q, w)], w ∈ Σ*^ ^

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
EM = { [q] | q is an accessible state of M }

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q], σ) = [δ(q, σ)]

Algorithm MINIMIZE

So: δMIN([q0], w) = [δ(q0, w)], w ∈ Σ*^ ^

Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:
EM = { [q] | q is an accessible state of M }

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM, q0 MIN = [q0], FMIN = { [q] | q ∈ F }

δMIN([q], σ) = [δ(q, σ)]

Follows: MMIN ≡ M

Algorithm MINIMIZE

1

0

1010
1

0

1

0q0 q1

q2

MINIMIZE

1 0

1

0

1

0,1

0

q0 q1

q3

q5

q4

0

1

q2

0,1q0

q0 q1

q1

q3

q3 q4

q4

D

DD

D

D D
q5

q5

D

D

D

1 0

1

0
0,1

0

q0 q1

q3

q5

q4

0

1

q0

q0 q1

q1

q3

q3 q4

q4

D

DD

D

D D
q5

q5

D

D

D

PROPOSITION. Suppose Mʹ′≡ M and Mʹ′ has no
inaccessible states and is irreducible

 Then, there exists a 1-1 onto correspondence
between MMIN and M’ (preserving transitions)

COR: MMIN is unique minimal DFA ≡ M

 i.e., MMIN and M’ are“Isomorphic”

PROPOSITION. Suppose Mʹ′≡ M and Mʹ′ has no
inaccessible states and is irreducible

Proof of Prop: We will construct a map recursively
Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

q

σ σ

qʹ′
Then q → qʹ′

 Then, there exists a 1-1 onto correspondence
between MMIN and M’ (preserving transitions)

 i.e., MMIN and M’ are“Isomorphic”

COR: MMIN is unique minimal DFA ≡ M

PROPOSITION. Suppose Mʹ′≡ M and Mʹ′ has no
inaccessible states and is irreducible

Proof of Prop: We will construct a map recursively
Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

Then q → qʹ′

 Then, there exists a 1-1 onto correspondence
between MMIN and M’ (preserving transitions)

 i.e., MMIN and M’ are“Isomorphic”

COR: MMIN is unique minimal DFA ≡ M

and δ(p, σ) = q and δ(p’,σ) = q’

We need to show:

• The map is everywhere defined

• The map is well defined

• The map is a bijection (1-1 and onto)

• The map preserves transitions

Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

q

σ σ

qʹ′
Then q → qʹ′

The map is everywhere defined:
That is, for all q ∈ MMIN
there is a qʹ′ ∈ Mʹ′ such that q → qʹ′

If q ∈ MMIN, there is a string w such that
 δMIN(q0 MIN,w) = q (WHY?)^

Let qʹ′ = δʹ′(q0ʹ′,w). q will map to qʹ′ (by induction) ^

Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

q

σ σ

qʹ′
Then q → qʹ′

The map is well defined

Suppose there exist qʹ′ and qʹ′ʹ′ such that
q → qʹ′ and q → qʹ′ʹ′

We show that qʹ′ and qʹ′ʹ′ are indistinguishable,
so it must be that qʹ′ = qʹ′ʹ′ (Why?)

That is, for all q ∈ MMIN
there is at most one qʹ′ ∈ Mʹ′ such that q → qʹ′

MMIN Mʹ′

Suppose there exist qʹ′ and qʹ′ʹ′ such that
q → qʹ′ and q → qʹ′ʹ′

qʹ′
u

q0ʹ′

qʹ′ʹ′
v

q0ʹ′

q
u

q0 MIN

q
v

q0 MIN

Suppose qʹ′ and qʹ′ʹ′ are distinguishable

w

A
ccept

w R
eject

w R
eject

w

A
ccept

Contradiction!

MMIN Mʹ′

Suppose there are distinct p and q such that
p → qʹ′ and q → qʹ′

qʹ′
u

q0ʹ′

qʹ′
v

q0ʹ′

p
u

q0 MIN

q
v

q0 MIN

p and q are distinguishable (why?)

w

A
ccept

w R
eject

w R
eject

w

A
ccept

The map is 1-1

Contradiction!

Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

q

σ σ

qʹ′
Then q → qʹ′

The map is onto
That is, for all qʹ′ ∈ Mʹ′ there is a q ∈ MMIN
such that q → qʹ′

If qʹ′ ∈ Mʹ′, there is w such that
 δʹ′(q0ʹ′,w) = qʹ′^

Let q = δMIN(q0 MIN,w). ^ q will map to qʹ′ (why?)

Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

q

σ σ

qʹ′
Then q → qʹ′

The map preserves transitions

That is, if p → pʹ′ and q → qʹ′ and δ(p, σ) = q

then, δ’(p’, σ) = q’

(Why?)

How can we prove that two
regular expressions are

equivalent?

WWW.FLAC.WS
Read Chapters 2.1 & 2.2 for next time

