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How can we prove that two regular 
expressions are equivalent?

How can we prove that two DFAs 
(or two NFAs) are equivalent?

How can we prove that two regular 
languages are equivalent? 

(Does this question make sense?)



How can we prove that two DFAs 
(or two NFAs) are equivalent?



MINIMIZING DFAs



IS THIS MINIMAL?
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IS THIS MINIMAL?
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THEOREM
For every regular language L, there exists 
a UNIQUE (up to re-labeling of the states) 

minimal DFA M such that L = L(M)

Given a specification for L, via DFA, NFA  or 
regex,this theorem is constructive.

Minimal means wrt number of states



NOT TRUE FOR NFAs
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NOT TRUE FOR RegExp



EXTENDING δ
Given DFA M = (Q, Σ, δ, q0, F) extend δ to 

δ : Q × Σ* → Q as follows: 

δ(q, ε) = 

δ(q, σ) =
δ(q, σ1 …σk+1 ) = δ( δ(q, σ1 …σk ), σk+1 ) 

^

^
^
^ ^

String w ∈ Σ* distinguishes  states p and q  iff 
δ(p, w) ∈ F  ⇔  δ(q, w) ∉ F ^ ^

q

δ(q, σ)

^Note: δ(q0, w) ∈ F  ⇔  M accepts w



EXTENDING δ
Given DFA M = (Q, Σ, δ, q0, F) extend δ to 

δ : Q × Σ* → Q as follows: 

δ(q, ε) = 

δ(q, σ) =
δ(q, σ1 …σk+1 ) = δ( δ(q, σ1 …σk ), σk+1 ) 

^

^
^
^ ^

q

δ(q, σ)

^Note: δ(q0, w) ∈ F  ⇔  M accepts w

String w ∈ Σ* distinguishes  states p and q  iff 
exactly ONE of δ(p, w), δ(q, w) is a final state^ ^



Fix M = (Q, Σ, δ, q0, F) and let p, q ∈ Q 

DEFINITION:

p is distinguishable from q   
  iff  
there is a w ∈ Σ*  that distinguishes p and q  

p is indistinguishable from q   
  iff  
p is not distinguishable from q 
  iff 
for all w ∈ Σ*, δ(p, w) ∈ F ⇔ δ(q, w) ∈ F



Fix M = (Q, Σ, δ, q0, F) and let p, q ∈ Q 

DEFINITION:

p is distinguishable from q   
  iff  
there is a w ∈ Σ*  that distinguishes p and q  

p is indistinguishable from q   
  iff  
p is not distinguishable from q 
  iff 
for all w ∈ Σ*, δ(p, w) ∈ F ⇔ δ(q, w) ∈ F^ ^
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ε distinguishes accept from non-accept states



Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q 

Define relation ~ :
p ~ q  iff  p is indistinguishable from q 
p ~ q  iff  p is distinguishable from q /

p ~ p   (reflexive)
p ~ q  ⇒  q ~ p   (symmetric)
p ~ q  and  q ~ r  ⇒  p ~ r   (transitive)

Proof (of transitivity): for all w, we have: 
            δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ⇔  δ(r, w) ∈ F 
 

^ ^ ^

Proposition: ~ is an equivalence relation



Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q 

p ~ p   (reflexive)
p ~ q  ⇒  q ~ p   (symmetric)
p ~ q  and  q ~ r  ⇒  p ~ r   (transitive)

Proof (of transitivity): for all w, we have: 
            δ(p, w) ∈ F ⇔ δ(q, w) ∈ F ⇔  δ(r, w) ∈ F 
 

^ ^ ^

Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into 
disjoint equivalence classes



Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q 

q0

Q

q

[q] = { p | p ~ q }
Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into 
disjoint equivalence classes
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Algorithm MINIMIZE

Input: DFA M

Output: DFA MMIN such that:

M ≡ MMIN  (that is, L(M) = L(MMIN))

MMIN has no inaccessible states

MMIN is irreducible

all states of MMIN are pairwise distinguishable
||

Theorem:  MMIN is the unique* minimum DFA  
equivalent to M

*up to relabelling



NOTE: Theorem not true for NFAs
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What does this say about Regexs?



Intuition for Algorithm:  
States of MMIN will be  

blocks of equivalent states of M

We’ll find these equivalent states with 
a “Table-Filling” Algorithm



TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F) 

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/

• We know how to find those pairs of 
states that ε distinguishes… 

• Use this and recursion to find those 
pairs distinguishable with longer strings 

• Pairs left over will be indistinguishable

IDEA:

Output:



TABLE-FILLING ALGORITHM

(2) EM = { [q] | q ∈ Q }
q0
q1

qi

qn
q0 q1 qi qn

Base Case: p accepts 
   and q “rejects” ⇒ p ~ q/

Input: DFA M = (Q, Σ, δ, q0, F) 

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/Output:



TABLE-FILLING ALGORITHM

(2) EM = { [q] | q ∈ Q }
q0
q1

qi

qn
q0 q1 qi qn

D D

D

Repeat until no more new D’s

p pʹ′

q qʹ′
~/

σ

σ
⇒ p ~ q/

Recursion:

(2) EM = { [q] | q ∈ Q }

Input: DFA M = (Q, Σ, δ, q0, F) 

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/Output:

Base Case: p accepts 
   and q “rejects” ⇒ p ~ q/
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Claim: If p, q are distinguished by Table-Filling 
algorithm (ie pair labelled by D), then p ~ q

Proof: By induction on the stage of the algorithm 

/

Claim: If p, q are not distinguished by Table-Filling 
algorithm, then p ~ q

Proof (by contradiction):



If (p, q) is marked D at the start, then one’s in F 
and one isn’t, so ε distinguishes p and q

Then there are states pʹ′, qʹ′, string w ∈ Σ*     
and σ ∈ Σ such that:

δ(pʹ′, w) ∈ F  and  δ(qʹ′, w) ∉ F ^ ^
2. pʹ′ = δ(p,σ) and qʹ′ = δ(q,σ)

The string σw distinguishes p and q!

Suppose (p, q) is marked D at stage n+1

1. (pʹ′, qʹ′) are marked D  ⇒  pʹ′ ~ qʹ′ (by induction)
⇒

/

Claim: If p, q are distinguished by Table-Filling 
algorithm (ie pair labelled by D), then p ~ q/

Proof: By induction on the stage of the algorithm 



Claim: If p, q are not distinguished by Table-Filling 
algorithm, then p ~ q

Proof (by contradiction):
Suppose the pair (p, q) is not marked D by the 
algorithm, yet p ~ q (a “bad pair”) /

δ(p, w) ∈ F  and  δ(q, w) ∉ F ^ ^

So, w = σwʹ′, where  σ ∈ Σ
Let pʹ′ = δ(p,σ) and qʹ′ = δ(q,σ)

Then (pʹ′, qʹ′) cannnot be marked D  (Why?) 
But  (pʹ′, qʹ′) is distinguished by wʹ′ ! 
So (pʹ′, qʹ′) is also a bad pair, but with a SHORTER wʹ′ !

(Why is |w| >0 ?)

Suppose (p,q) is a bad pair with the shortest w.

Contradiction!



Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get: 
EM = { [q] | q is an accessible state of M }

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F }

δMIN( [q], σ ) = [ δ( q, σ ) ]

Must show δMIN  is well defined!

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

Algorithm MINIMIZE



Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:  
EM = { [q] | q is an accessible state of M }

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F }

δMIN( [q], σ ) = [ δ( q, σ ) ]

Algorithm MINIMIZE

Claim: δMIN( [q], w ) = [ δ( q, w) ], w ∈ Σ*^ ^



Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:  
EM = { [q] | q is an accessible state of M }

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F }

δMIN( [q], σ ) = [ δ( q, σ ) ]

Algorithm MINIMIZE

So:   δMIN( [q0], w ) = [ δ( q0, w) ], w ∈ Σ*^ ^



Input: DFA M

Output: DFA MMIN

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get:  
EM = { [q] | q is an accessible state of M }

Define: MMIN = (QMIN, Σ, δMIN, q0 MIN, FMIN)

QMIN = EM,  q0 MIN = [q0],  FMIN = { [q] | q ∈ F }

δMIN( [q], σ ) = [ δ( q, σ ) ]

Follows:  MMIN ≡ M

Algorithm MINIMIZE
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PROPOSITION. Suppose Mʹ′≡ M and Mʹ′ has no 
inaccessible states and is irreducible 

 Then, there exists a 1-1 onto correspondence 
between MMIN and M’ (preserving transitions) 

COR: MMIN  is unique minimal DFA  ≡  M 
  

 i.e., MMIN and M’  are“Isomorphic”



PROPOSITION. Suppose Mʹ′≡ M and Mʹ′ has no 
inaccessible states and is irreducible 

Proof of Prop: We will construct a map recursively
Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

q

σ σ

qʹ′
Then q → qʹ′

 Then, there exists a 1-1 onto correspondence 
between MMIN and M’ (preserving transitions) 

 i.e., MMIN and M’  are“Isomorphic”

COR: MMIN  is unique minimal DFA  ≡  M 
  



PROPOSITION. Suppose Mʹ′≡ M and Mʹ′ has no 
inaccessible states and is irreducible 

Proof of Prop: We will construct a map recursively
Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

Then q → qʹ′

 Then, there exists a 1-1 onto correspondence 
between MMIN and M’ (preserving transitions) 

 i.e., MMIN and M’  are“Isomorphic”

COR: MMIN  is unique minimal DFA  ≡  M 
  

and  δ(p, σ) = q and δ(p’,σ) = q’ 



We need to show:

• The map is everywhere defined

• The map is well defined

• The map is a bijection ( 1-1 and onto)

• The map preserves transitions



Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

q

σ σ

qʹ′
Then q → qʹ′

The map is everywhere defined:
That is, for all q ∈ MMIN  
there is a qʹ′ ∈ Mʹ′ such that q → qʹ′

If q ∈ MMIN, there is a string w such that 
 δMIN(q0 MIN,w) = q  (WHY?)^

Let qʹ′ = δʹ′(q0ʹ′,w).  q will map to qʹ′ (by induction) ^



Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

q

σ σ

qʹ′
Then q → qʹ′

The map is well defined

Suppose there exist qʹ′ and qʹ′ʹ′ such that  
q → qʹ′ and q → qʹ′ʹ′

We show that qʹ′ and qʹ′ʹ′ are indistinguishable,  
so it must be that qʹ′ = qʹ′ʹ′  (Why?)

That is, for all q ∈ MMIN  
there is at most one qʹ′ ∈ Mʹ′ such that q → qʹ′



MMIN Mʹ′

Suppose there exist qʹ′ and qʹ′ʹ′ such that  
q → qʹ′ and q → qʹ′ʹ′

qʹ′
u

q0ʹ′

qʹ′ʹ′
v

q0ʹ′

q
u

q0 MIN

q
v

q0 MIN

Suppose qʹ′ and qʹ′ʹ′ are distinguishable

w

A
ccept

w R
eject

w R
eject

w

A
ccept

Contradiction!



MMIN Mʹ′

Suppose there are distinct p and q such that  
p → qʹ′ and q → qʹ′

qʹ′
u

q0ʹ′

qʹ′
v

q0ʹ′

p
u

q0 MIN

q
v

q0 MIN

p and q are distinguishable  (why?)

w

A
ccept

w R
eject

w R
eject

w

A
ccept

The map is 1-1

Contradiction!



Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

q

σ σ

qʹ′
Then q → qʹ′

The map is onto
That is, for all qʹ′ ∈ Mʹ′ there is a q ∈ MMIN  
such that q → qʹ′

If qʹ′ ∈ Mʹ′, there is w such that 
 δʹ′(q0ʹ′,w) = qʹ′^

Let q = δMIN(q0 MIN,w). ^ q will map to qʹ′ (why?) 



Base Case: q0 MIN → q0ʹ′

Recursive Step: If p → pʹ′

q

σ σ

qʹ′
Then q → qʹ′

The map preserves transitions

That is, if p → pʹ′ and q → qʹ′  and δ(p, σ) = q

then, δ’(p’, σ) = q’

(Why?)



How can we prove that two 
regular expressions are 

equivalent?
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Read Chapters 2.1 & 2.2 for next time


