15-453

FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

A non-deterministic finite automaton (NFA)
is a 5-tuple N = (Q, 2, 6, Q,, F)

Q is the set of states (finite)
2 is the alphabet (finite)
0:Q@QxZ — 29 js the transition function *

Q, C Q is the set of start states

F C Qis the set of accept states

* 2Qis the set of subsets of Qand Z_ =2 U {¢}

Let we 2* and suppose w can be written as
W,... W, where w; € Z_ (¢ is viewed as representing

the empty string)

Then N w if there arery, r,, ..., r, € Q
such that

2. r,,€9(r;, w;q) fori=0, ..., n-1, and
3. r,€F

L(N) = the language of machine N
= set of all strings machine N accepts

A language L is by an NFA N
if L=L (N).

FROM NFA TOD
Input: NFAN = (Q, £, §, Q,, F)

Output: DFAM =(Q, %, ¥, q,, F')

-

FA

Q' =20
0:QxZ—Q
8'(R,0) = U g(§(r,0))
reR
do = €(Qy)
FF={ReQ'|fcRforsomefcF}

For RC Q, the e-closure of R, €¢(R) = {q that can be reached
from some r & R by traveling along zero or more € arrows}

RLs ARE CLOSED UNDER STAR
Star: A*={s,...s | k20and eachs, €A}

Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*

4O

REGULAR LANGUAGES ARE CLOSED
UNDER THE REGULAR OPERATIONS
=> UniontAUB={w|w&cAorwecB}

—»> |Intersection:ANB={w|w&eAandwcB}
=> Negation: —-A={wcX*|wZA}

=> Reverse: AR={w,..w, |w,..w, EA}

=—> Concatenation: A-B={vw|vEAandwcB}

=> Star: A*={w,...w, | k20and eachw, €A}

THE PUMPING LEMMA FOR
REGULAR LANGUAGES

and
REGULAR EXPRESSIONS

WHICH OF THESE ARE REGULAR ?

B={0M"|nz20}

C = {w|w has equal number of
occurrences of 01 and 10 }

D = {w| w has equal number of 1s and 0s}

THE PUMPING LEMMA

Let L be a regular language with |L| =

Then there is a positive integer I s.t.

if weland|w|2
then can write w = xyz, where:
1. ly| > 0 (y isn’t €)
2. |xy| s
3. For i20,xyzelL

Why is it called the pumping lemma®? The word w
gets PUMPED into something longer...

Let M be a DFA that recognizes L
Let © be the number of states in M

Assume w €L is such that |w| 2

We show: w = xyz 1. ly| >0
2. |xy| s
y 3. xyizeLforalliZ0

X ,
6.—».—}»0—».—».—.@ K N

> .—».—». []
o Fiw

There must be j and k such that é’g

j<ks=Fandr,=r () (Note: k -j > 0)

Assume B is regular. Letw=0"1

If B is regular, can write w = xyz, |y| > 0,
Ixy| £ 7, and for any i 2 0, xy'z is also in B

y must be all 0s: \Why? Ixy| <

xyyz has more 0s than 1s

D = {w]|w has equal
number of 1s and 0s}
Is not regular

Assume D is reqular. Letw=0"1" (wis in D!)

If D is regular, can write w = xyz, |y| > 0,
Ixy| £ ¥, where forany i 2 0, xy'zis alsoin D

y must be all 0s: Why? Ixy| <

xyyz has more 0s than 1s

WHAT DOES C LOOK LIKE?

C = {w]|whas equal number of
occurrences of 01 and 10}

={w|lw=1,w=0,w=¢ or

w starts with a 0 and ends with a 0 or
w starts with a 1 and ends witha 1}

1 U0 U & U 0(0U1)*0 U 1(0U1)*1

REGULAR EXPRESSIONS
(expressions representing languages)

o Is a regexp representing {c}
£ is a regexp representing {&}
& is a regexp representing &

If R, and R, are regular expressions
representing L, and L, then:

(R4R,) represents L, - L,
(R{UR,) represents L, U L,

(R{)* represents L,*

PRECEDENCE

* . U

EXAMPLE

R*R, UR; = ((Ry*)R;) YR,

{ w| w has exactly a single 1}

0*10*

What language does J* represent?

{€}

{w | w has length 2 3 and its 3rd symbol is 0 }

(0U1)(0U1)0(0U1)*

{w | every odd positionof wis a1}

(1(0 U 1))*(1 U g)

EQUIVALENCE

L can be represented by a regexp
< L Is regular

1. L can be represented by a regexp
= L is regular

2. L can be represented by a regexp
<

L is a regular language

1 Given regular expression R, we show there

exists NFA N such that R represents L(N)
Induction on the length of R:

Base Cases (R has length 1):

R=o0 »Oi@

- 0

Inductive Step:

Assume R has length k > 1,

and that every regular expression of length < k
represents a regular language

Three possibilities for R:

R=R;UR; (Union Theorem!)
R=R;R; (Concatenation)
R = (R,)* (Star)

Therefore: L can be represented by a regexp
= L is regular

Give an NFA that accepts the
language represented by (1(0 U 1))*

-0-0-0-0
7

&

2. L can be represented by a regexp
—

L is a regular language

Proof idea: Transform an NFA for L into a
regular expression by removing states and
re-labeling arrows with regular expressions

&
&
~— el
&

Add Vinde ensacdh chies fnastatand nahdz sépliestates

Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for the missing state

O‘ﬁ*’@

&
&
~~ el
&

While machine has more than 2 states:

More generally:

R(q,,9,)

O A f
R(q,,T3)

R(q,,9;) = (a*b)(aUb)*
represents L(N)

Formally: Add g, and q,..., to create G (GNFA)

Run CONVERT(G): (Outputs a regexp)
If #states = 2

If Hestites the expression on the arrow
going from g, to AQaccept

Formally: Add g, and q,..., to create G (GNFA)
Run CONVERT(G): (Outputs a regexp)

If #states > 2
select q,;,=Q different from g, ; and g,

define @' = Q - {qr.p}}
define R’ as:

R,(qi!qj) = R(qiaqrip)R(qrip!qrip)*R(qrip!qj) U R(qi!qj)
(R" = the regexps for edges in G')

Defines: G’ (GNFA)

return CONVERT(G')

Claim: CONVERT(G) is equivalent to G
Proof by induction on k (number of states in G)
Base Case:

v k=2
Inductive Step:
Assume claim is true for k-1 state GNFAs
Recall that G and G’ are equivalent

But, by the induction hypothesis, G' is
equivalent to CONVERT(G’)

Thus: CONVERT(G’) equivalent to CONVERT(G)
QED

b
bb U (abb ba)b*a

‘ a
==
a U ba
O b U (a U ba)iye
|
T A©

(bb U (a U ba)b*a)* (b U (a U ba)b*)

Convert the NFA to a regular expression

((a U b)b*b(bb*b)*a)* U
((a U b)b*b(bb*b)*a)*(a U b)b*b(bb*b)*

DFA pr—] .

DEFINITION

v v
Regular Regular

Language Expression

WWW.FLAC.WS

Finish Chapter 1 for next time.

