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Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σε → 2Q  is the transition function *

Q0 ⊆ Q is the set of start states

F ⊆ Q is the set of accept states

A non-deterministic finite automaton (NFA) 
is a 5-tuple N = (Q, Σ, δ, Q0, F) 

*  2Q is the set of subsets of Q and Σε = Σ ∪ {ε}



Let w∈ Σ* and  suppose w can be written as 
 w1... wn  where wi ∈ Σε (ε is viewed as representing 

the empty string) 
Then N accepts w if there are r0, r1, ..., rn ∈ Q 

such that 

1. r0 ∈ Q0  
2. ri+1 ∈ δ(ri, wi+1 ) for i = 0, ..., n-1, and  
3. rn ∈ F

A language L is recognized by an NFA N 
if L = L (N).

L(N)  = the language of machine N 
 = set of all strings machine N accepts



Qʹ′ = 2Q

δʹ′ : Qʹ′ × Σ → Qʹ′
δʹ′(R,σ) =  ∪ ε( δ(r,σ) )

r∈R

q0ʹ′ = ε(Q0)

Fʹ′ = { R ∈ Qʹ′ | f ∈ R for some f ∈ F }

FROM NFA TO DFA
Input: NFA N = (Q, Σ, δ, Q0, F) 

Output: DFA M = (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′) 

*

  For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached 
from some r ∈ R by traveling along zero or more ε arrows} 

*



RLs ARE CLOSED UNDER STAR

Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*
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Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A }



REGULAR LANGUAGES ARE CLOSED  
UNDER  THE REGULAR OPERATIONS

Union: A ∪ B = { w | w ∈ A or w ∈ B } 

Intersection: A ∩ B = { w | w ∈ A and w ∈ B } 

Negation: ¬A = { w ∈ Σ* | w ∉ A } 

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }



THE PUMPING LEMMA FOR 
REGULAR LANGUAGES 

and 

REGULAR EXPRESSIONS



WHICH OF THESE  ARE REGULAR ?

D  =  { w | w has equal number of 1s and 0s}

C  =  { w | w has equal number of  
                  occurrences of 01 and 10 }

B = {0n1n | n ≥ 0}



THE PUMPING LEMMA
Let L be a regular language with |L| = ∞

Then there is a positive integer P s.t.

1.  |y| > 0 (y isn’t ε) 
2.  |xy| ≤ P 
3.  For every i ≥ 0, xyiz ∈ L

if  w ∈ L and |w| ≥ P 
 then can write w = xyz, where:

Why is it called the pumping lemma? The word w 
gets PUMPED into something longer…



z

Let P be the number of states in M

Assume w ∈ L is such that |w| ≥ P

r0 rj rk r|w|

…

Proof: Let M be a DFA that recognizes L

1.  |y| > 0 
2.  |xy| ≤ P 
3.  xyiz ∈ L for all i ≥ 0

We show: w = xyz

x

y

There must be j and k such that  
j < k ≤ P, and rj = rk  (why?) (Note: k - j > 0)



USING THE PUMPING LEMMA
Let’s prove that  

B = {0n1n | n ≥ 0} is not regular 

Assume B is regular. Let w = 0P1P

If B is regular, can write w = xyz, |y| > 0,  
|xy| ≤ P, and for any i ≥ 0, xyiz is also in B

y must be all 0s:

xyyz has more 0s than 1s

|xy| ≤ P

Contradiction!

Why?



USING THE PUMPING LEMMA
D  =  { w | w has equal 
              number of 1s and 0s}  
    is not regular
Assume D is regular. Let w = 0P1P (w is in D!)

If D is regular, can write w = xyz, |y| > 0,  
|xy| ≤ P, where for any i ≥ 0, xyiz is also in D

y must be all 0s:

xyyz has more 0s than 1s

|xy| ≤ P

Contradiction!

Why?



WHAT DOES C LOOK LIKE?

1 ∪ 0 ∪ ε ∪ 0(0∪1)*0 ∪ 1(0∪1)*1

C  =  { w | w has equal number of  
                  occurrences of 01 and 10}

=  { w | w = 1, w = 0, w = ε  or  
 w starts with a 0 and ends with a 0 or 
 w starts with a 1 and ends with a 1 }



REGULAR EXPRESSIONS 
(expressions representing languages)

 σ  is a regexp representing {σ}

ε  is a regexp representing {ε}

∅  is a regexp representing ∅

If R1 and R2 are regular expressions 
representing L1 and L2 then:

(R1R2) represents L1 ⋅ L2 
(R1 ∪ R2) represents L1 ∪ L2 
(R1)* represents L1*



PRECEDENCE

*  ⋅  ∪



R2R1*(

EXAMPLE

R1*R2 ∪ R3 = ( ) )∪R3



{ w | w has exactly a single 1 } 

0*10*



 What language does ∅* represent?

{ε}



{ w | w has length ≥ 3 and its 3rd symbol is 0 } 

(0∪1)(0∪1)0(0∪1)*



{ w | every odd position of w is a 1 } 

(1(0 ∪ 1))*(1 ∪ ε)



L can be represented by a regexp 
⇔   L is regular

EQUIVALENCE

L can be represented by a regexp 
⇒   L is regular

1.

L can be represented by a regexp 

L is a regular language
⇐

2.



Base Cases (R has length 1):

R = σ
σ

R = ε

R = ∅

Given regular expression R, we show there 
exists NFA N such that R represents L(N)

Induction on the length of R:

1.



Inductive Step:

Assume R has length k > 1,  
and that every regular expression of length < k 
represents a regular language 

Three possibilities for R:

R = R1 ∪ R2

R = R1 R2

R = (R1)*

(Union Theorem!)
(Concatenation)

(Star)

Therefore:  L can be represented by a regexp 
⇒ L is regular



Give an NFA that accepts the 
language represented by (1(0 ∪ 1))*

1ε 1,0

ε



L can be represented by a regexp 
⇒ 

L is a regular language
⇐

Proof idea: Transform an NFA for L into a 
regular expression by removing states and  
re-labeling arrows with regular expressions 

2.



NFA
ε
ε

ε

ε

ε

Add unique and distinct start and accept statesWhile machine has more than 2 states:
Pick an internal state, rip it out and  
re-label the arrows with regexps,  
to account for the missing state

0

1

001*0



NFA
ε
ε

ε

ε

ε

While machine has more than 2 states:

More generally:

R(q1,q2)

R(q2,q2)

R(q2,q3)R(q1,q2)R(q2,q2)*R(q2,q3) 

∪ R(q1,q3)
q1 q2 q3

G

R(q1,q3)



q1
b

a

ε q2

a,b

εa*b(a*b)(a∪b)*q0 q3

R(q0,q3) = (a*b)(a∪b)* 
represents L(N)



Formally:

Run CONVERT(G):    (Outputs a regexp)
If #states = 2

return the expression on the arrow 
going from qstart to qaccept 

Add qstart and qaccept to create G (GNFA) 

If #states > 2



Formally: Add qstart and qaccept to create G (GNFA)

If #states > 2
select qrip∈Q different from qstart and qaccept

define Qʹ′ = Q – {qrip}

define Rʹ′ as: 

Rʹ′(qi,qj) = R(qi,qrip)R(qrip,qrip)*R(qrip,qj) ∪ R(qi,qj) 

return CONVERT(Gʹ′)

Run CONVERT(G):    (Outputs a regexp)

} Defines: Gʹ′ (GNFA)

(Rʹ′ = the regexps for edges in Gʹ′)
We note that G and Gʹ′ are equivalent



Claim: CONVERT(G) is equivalent to G
Proof by induction on k (number of states in G)

Base Case:
k = 2

Inductive Step:
Assume claim is true for k-1 state GNFAs

Recall that G and Gʹ′ are equivalent

✓

But, by the induction hypothesis, Gʹ′ is 
equivalent to CONVERT(Gʹ′)

Thus: CONVERT(Gʹ′) equivalent to CONVERT(G) 

QED
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bb ∪ (a ∪ ba)b*a

a ∪ ba
q2

b

q1

a

ε

ε

bb

bb ∪ (a ∪ ba)b*

(bb ∪ (a ∪ ba)b*a)* (b ∪ (a ∪ ba)b*)



Convert the NFA to a regular expression

q3

q2

b

bq1

a

a, b

ε

ε

ε
b

(a ∪ b)b*b

bb*b

(a ∪ b)b*b(bb*b)*

(a ∪ b)b*b(bb*b)*a



((a ∪ b)b*b(bb*b)*a)* ∪  
((a ∪ b)b*b(bb*b)*a)*(a ∪ b)b*b(bb*b)* 



DFA NFA

Regular 

Language
Regular 

Expression

 DEFINITION



WWW.FLAC.WS
Finish Chapter 1 for next time.  


