
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σε → 2Q is the transition function *

Q0 ⊆ Q is the set of start states

F ⊆ Q is the set of accept states

A non-deterministic finite automaton (NFA)
is a 5-tuple N = (Q, Σ, δ, Q0, F)

* 2Q is the set of subsets of Q and Σε = Σ ∪ {ε}

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (ε is viewed as representing

the empty string)
Then N accepts w if there are r0, r1, ..., rn ∈ Q

such that

1. r0 ∈ Q0
2. ri+1 ∈ δ(ri, wi+1) for i = 0, ..., n-1, and
3. rn ∈ F

A language L is recognized by an NFA N
if L = L (N).

L(N) = the language of machine N
 = set of all strings machine N accepts

Qʹ′ = 2Q

δʹ′ : Qʹ′ × Σ → Qʹ′
δʹ′(R,σ) = ∪ ε(δ(r,σ))

r∈R

q0ʹ′ = ε(Q0)

Fʹ′ = { R ∈ Qʹ′ | f ∈ R for some f ∈ F }

FROM NFA TO DFA
Input: NFA N = (Q, Σ, δ, Q0, F)

Output: DFA M = (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

*

 For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached
from some r ∈ R by traveling along zero or more ε arrows}

*

RLs ARE CLOSED UNDER STAR

Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*

0
0,1

00

1

1

1

ε

ε

ε

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A }

REGULAR LANGUAGES ARE CLOSED
UNDER THE REGULAR OPERATIONS

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w ∈ Σ* | w ∉ A }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }

THE PUMPING LEMMA FOR
REGULAR LANGUAGES

and

REGULAR EXPRESSIONS

WHICH OF THESE ARE REGULAR ?

D = { w | w has equal number of 1s and 0s}

C = { w | w has equal number of  
 occurrences of 01 and 10 }

B = {0n1n | n ≥ 0}

THE PUMPING LEMMA
Let L be a regular language with |L| = ∞

Then there is a positive integer P s.t.

1. |y| > 0 (y isn’t ε)
2. |xy| ≤ P
3. For every i ≥ 0, xyiz ∈ L

if w ∈ L and |w| ≥ P
 then can write w = xyz, where:

Why is it called the pumping lemma? The word w
gets PUMPED into something longer…

z

Let P be the number of states in M

Assume w ∈ L is such that |w| ≥ P

r0 rj rk r|w|

…

Proof: Let M be a DFA that recognizes L

1. |y| > 0
2. |xy| ≤ P
3. xyiz ∈ L for all i ≥ 0

We show: w = xyz

x

y

There must be j and k such that
j < k ≤ P, and rj = rk (why?) (Note: k - j > 0)

USING THE PUMPING LEMMA
Let’s prove that

B = {0n1n | n ≥ 0} is not regular

Assume B is regular. Let w = 0P1P

If B is regular, can write w = xyz, |y| > 0,  
|xy| ≤ P, and for any i ≥ 0, xyiz is also in B

y must be all 0s:

xyyz has more 0s than 1s

|xy| ≤ P

Contradiction!

Why?

USING THE PUMPING LEMMA
D = { w | w has equal
 number of 1s and 0s}  
 is not regular
Assume D is regular. Let w = 0P1P (w is in D!)

If D is regular, can write w = xyz, |y| > 0,  
|xy| ≤ P, where for any i ≥ 0, xyiz is also in D

y must be all 0s:

xyyz has more 0s than 1s

|xy| ≤ P

Contradiction!

Why?

WHAT DOES C LOOK LIKE?

1 ∪ 0 ∪ ε ∪ 0(0∪1)*0 ∪ 1(0∪1)*1

C = { w | w has equal number of  
 occurrences of 01 and 10}

= { w | w = 1, w = 0, w = ε or
 w starts with a 0 and ends with a 0 or
 w starts with a 1 and ends with a 1 }

REGULAR EXPRESSIONS
(expressions representing languages)

 σ is a regexp representing {σ}

ε is a regexp representing {ε}

∅ is a regexp representing ∅

If R1 and R2 are regular expressions
representing L1 and L2 then:

(R1R2) represents L1 ⋅ L2
(R1 ∪ R2) represents L1 ∪ L2
(R1)* represents L1*

PRECEDENCE

* ⋅ ∪

R2R1*(

EXAMPLE

R1*R2 ∪ R3 = ())∪R3

{ w | w has exactly a single 1 }

0*10*

 What language does ∅* represent?

{ε}

{ w | w has length ≥ 3 and its 3rd symbol is 0 }

(0∪1)(0∪1)0(0∪1)*

{ w | every odd position of w is a 1 }

(1(0 ∪ 1))*(1 ∪ ε)

L can be represented by a regexp
⇔ L is regular

EQUIVALENCE

L can be represented by a regexp
⇒ L is regular

1.

L can be represented by a regexp

L is a regular language
⇐

2.

Base Cases (R has length 1):

R = σ
σ

R = ε

R = ∅

Given regular expression R, we show there
exists NFA N such that R represents L(N)

Induction on the length of R:

1.

Inductive Step:

Assume R has length k > 1,
and that every regular expression of length < k
represents a regular language

Three possibilities for R:

R = R1 ∪ R2

R = R1 R2

R = (R1)*

(Union Theorem!)
(Concatenation)

(Star)

Therefore: L can be represented by a regexp
⇒ L is regular

Give an NFA that accepts the
language represented by (1(0 ∪ 1))*

1ε 1,0

ε

L can be represented by a regexp
⇒

L is a regular language
⇐

Proof idea: Transform an NFA for L into a
regular expression by removing states and
re-labeling arrows with regular expressions

2.

NFA
ε
ε

ε

ε

ε

Add unique and distinct start and accept statesWhile machine has more than 2 states:
Pick an internal state, rip it out and
re-label the arrows with regexps,
to account for the missing state

0

1

001*0

NFA
ε
ε

ε

ε

ε

While machine has more than 2 states:

More generally:

R(q1,q2)

R(q2,q2)

R(q2,q3)R(q1,q2)R(q2,q2)*R(q2,q3)

∪ R(q1,q3)
q1 q2 q3

G

R(q1,q3)

q1
b

a

ε q2

a,b

εa*b(a*b)(a∪b)*q0 q3

R(q0,q3) = (a*b)(a∪b)*
represents L(N)

Formally:

Run CONVERT(G): (Outputs a regexp)
If #states = 2

return the expression on the arrow
going from qstart to qaccept

Add qstart and qaccept to create G (GNFA)

If #states > 2

Formally: Add qstart and qaccept to create G (GNFA)

If #states > 2
select qrip∈Q different from qstart and qaccept

define Qʹ′ = Q – {qrip}

define Rʹ′ as:

Rʹ′(qi,qj) = R(qi,qrip)R(qrip,qrip)*R(qrip,qj) ∪ R(qi,qj)

return CONVERT(Gʹ′)

Run CONVERT(G): (Outputs a regexp)

} Defines: Gʹ′ (GNFA)

(Rʹ′ = the regexps for edges in Gʹ′)
We note that G and Gʹ′ are equivalent

Claim: CONVERT(G) is equivalent to G
Proof by induction on k (number of states in G)

Base Case:
k = 2

Inductive Step:
Assume claim is true for k-1 state GNFAs

Recall that G and Gʹ′ are equivalent

✓

But, by the induction hypothesis, Gʹ′ is
equivalent to CONVERT(Gʹ′)

Thus: CONVERT(Gʹ′) equivalent to CONVERT(G)

QED

q3

q2

b

a

b

q1

b

a

a

ε

ε

ε

bb

q2

b

a

b

q1
a

a

ε

ε

ε

bb

a ∪ ba

b

bb ∪ (a ∪ ba)b*a

a ∪ ba
q2

b

q1

a

ε

ε

bb

bb ∪ (a ∪ ba)b*

(bb ∪ (a ∪ ba)b*a)* (b ∪ (a ∪ ba)b*)

Convert the NFA to a regular expression

q3

q2

b

bq1

a

a, b

ε

ε

ε
b

(a ∪ b)b*b

bb*b

(a ∪ b)b*b(bb*b)*

(a ∪ b)b*b(bb*b)*a

((a ∪ b)b*b(bb*b)*a)* ∪
((a ∪ b)b*b(bb*b)*a)*(a ∪ b)b*b(bb*b)*

DFA NFA

Regular

Language
Regular

Expression

 DEFINITION

WWW.FLAC.WS
Finish Chapter 1 for next time.

