15 - 453FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

A non-deterministic finite automaton (NFA) is a 5-tuple N = (Q, Σ , δ , Q₀, F)

Q is the set of states (finite)

- **\Sigma** is the alphabet (finite)
- $\delta: Q \times \Sigma_{\epsilon} \to 2^Q \,$ is the transition function *
- $\mathbf{Q}_{\mathbf{0}} \subseteq \mathbf{Q}$ is the set of start states
- $F \subseteq Q$ is the set of accept states

* 2^{Q} is the set of subsets of Q and $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

Let $w \in \Sigma^*$ and suppose w can be written as $w_1 \dots w_n$ where $w_i \in \Sigma_{\epsilon}$ (ϵ is viewed as representing the empty string)

Then N accepts w if there are r_0 , r_1 , ..., $r_n \in Q$ such that

1. $r_0 \in Q_0$ 2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for i = 0, ..., n-1, and 3. $r_n \in F$

L(N) = the language of machine N = set of all strings machine N accepts

A language L is recognized by an NFA N if L = L (N). **FROM NFA** TO DFA Input: NFA N = (Q, Σ , δ , Q₀, F) Output: DFA M = (Q', Σ , δ' , q₀', F')

> $Q' = 2^{Q}$ $\delta' : Q' \times \Sigma \rightarrow Q'$ $\delta'(R,\sigma) = \bigcup \varepsilon (\delta(r,\sigma)) *$ $r \in R$ $q_{0}' = \varepsilon(Q_{0})$ $F' = \{ R \in Q' \mid f \in R \text{ for some } f \in F \}$

For $\mathbf{R} \subseteq \mathbf{Q}$, the $\boldsymbol{\epsilon}$ -closure of \mathbf{R} , $\boldsymbol{\epsilon}(\mathbf{R}) = \{\mathbf{q} \text{ that can be reached from some r } \in \mathbf{R} \text{ by traveling along zero or more } \boldsymbol{\epsilon} \text{ arrows} \}$

RLs ARE CLOSED UNDER **STAR** Star: $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$ Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*

REGULAR LANGUAGES ARE CLOSED UNDER **THE REGULAR OPERATIONS** \rightarrow Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

 \blacksquare Intersection: A \cap B = { w | w \in A and w \in B }

- $\blacktriangleright Negation: \neg A = \{ w \in \Sigma^* \mid w \notin A \}$
- → Reverse: $A^{R} = \{ w_{1} ... w_{k} | w_{k} ... w_{1} \in A \}$

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

→ Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

THE PUMPING LEMMA FOR REGULAR LANGUAGES and REGULAR EXPRESSIONS

WHICH OF THESE ARE REGULAR ?

 $B = \{0^{n}1^{n} \mid n \ge 0\}$

C = { w | w has equal number of occurrences of 01 and 10 }

D = { w | w has equal number of 1s and 0s}

THE PUMPING LEMMA Let L be a regular language with $|L| = \infty$ Then there is a positive integer **P** s.t. if $w \in L$ and $|w| \ge P$ then can write w = xyz, where: 1. |y| > 0 (y isn't ϵ) 2. |xy| ≤ P 3. For every $i \ge 0$, $xy^i z \in L$

Why is it called the pumping lemma? The word w gets PUMPED into something longer...

USING THE PUMPING LEMMA

Let's prove that $B = \{0^n1^n \mid n \ge 0\}$ is not regular

Assume B is regular. Let w = 0P1P

If B is regular, can write w = xyz, |y| > 0, $|xy| \le P$, and for any $i \ge 0$, xy^iz is *also* in B

y must be all 0s: Why? |xy|≤P

xyyz has more 0s than 1s

Contradiction!

USING THE PUMPING LEMMA

D = { w | w has equal number of 1s and 0s} is not regular

Assume D is regular. Let w = 0^P1^P (w is in D!)

If D is regular, can write w = xyz, |y| > 0, $|xy| \le P$, where for any $i \ge 0$, xy^iz is *also* in D

y must be all 0s: Why? |xy|≤P

xyyz has more 0s than 1s

Contradiction!

WHAT DOES C LOOK LIKE?

C = { w | w has equal number of occurrences of 01 and 10}

= { w | w = 1, w = 0, w = ε or w starts with a 0 and ends with a 0 or w starts with a 1 and ends with a 1 }

 $1 \cup 0 \cup \varepsilon \cup 0(0 \cup 1)^* 0 \cup 1(0 \cup 1)^* 1$

REGULAR **EXPRESSIONS** (expressions representing languages)

- **σ** is a regexp representing {σ}
- ε is a regexp representing {ε}
- \varnothing is a regexp representing \varnothing
- If R_1 and R_2 are regular expressions representing L_1 and L_2 then: (R_1R_2) represents $L_1 \cdot L_2$ $(R_1 \cup R_2)$ represents $L_1 \cup L_2$ $(R_1)^*$ represents L_1^*

PRECEDENCE

EXAMPLE

$R_1^*R_2 \cup R_3 = ((R_1^*)R_2) \cup R_3$

{ w | w has exactly a single 1 }

0*10*

What language does *Ø** represent?

{3}

$\{ w \mid w \text{ has length} \geq 3 \text{ and its } 3 \text{ rd symbol is } 0 \}$

(0∪1)(0∪1)0(0∪1)*

{ w | every odd position of w is a 1 }

(1(0 ∪ 1))*(1 ∪ ε)

EQUIVALENCE

L can be represented by a regexp ⇔ L is regular

1. L can be represented by a regexp \Rightarrow L is regular

L can be represented by a regexp
L is a regular language

Given regular expression R, we show there 1. exists NFA N such that R represents L(N) Induction on the length of R: Base Cases (R has length 1): \rightarrow \rightarrow () $\mathbf{R} = \sigma$ \rightarrow (O) **R** = ε $R = \emptyset$

Inductive Step:

Assume R has length k > 1, and that every regular expression of length < k represents a regular language

Three possibilities for R:

 $R = R_1 \cup R_2$ (Union Theorem!) $R = R_1 R_2$ (Concatenation) $R = (R_1)^*$ (Star)

Therefore: L can be represented by a regexp \Rightarrow L is regular

Give an NFA that accepts the language represented by $(1(0 \cup 1))^*$

Proof idea: Transform an NFA for L into a regular expression by removing states and re-labeling arrows with regular expressions

Add White enauch idies finast ratant atmacha2 staples tates Pick an internal state, rip it out and re-label the arrows with regexps, to account for the missing state

While machine has more than 2 states:

More generally:

R(q₀,q₃) = (a*b)(a∪b)* represents L(N)

Formally: Add q_{start} and q_{accept} to create G (GNFA) Run CONVERT(G): (Outputs a regexp) If #states = 2

If #states the expression on the arrow going from q_{start} to q_{accept} Formally: Add q_{start} and q_{accept} to create G (GNFA) Run CONVERT(G): (Outputs a regexp)

If #states > 2 select q_{rip} Q different from q_{start} and q_{accept} define Q' = Q - {q_{rip}} Defines: G' (GNFA) $\mathsf{R}'(\mathsf{q}_{\mathsf{i}},\mathsf{q}_{\mathsf{j}}) = \mathsf{R}(\mathsf{q}_{\mathsf{i}},\mathsf{q}_{\mathsf{rip}})\mathsf{R}(\mathsf{q}_{\mathsf{rip}},\mathsf{q}_{\mathsf{rip}})^{*}\mathsf{R}(\mathsf{q}_{\mathsf{rip}},\mathsf{q}_{\mathsf{j}}) \cup \mathsf{R}(\mathsf{q}_{\mathsf{i}},\mathsf{q}_{\mathsf{j}})$ $(\mathbf{R}' = \text{the regexps for edges in } \mathbf{G}')$ We note that G and G' are equivalent return CONVERT(G')

Claim: CONVERT(G) is *equivalent* to G Proof by induction on k (number of states in G) Base Case:

✓ k = 2

Inductive Step:

Assume claim is true for k-1 state GNFAs

Recall that G and G' are equivalent

But, by the induction hypothesis, G' is equivalent to CONVERT(G')

Thus: CONVERT(G') equivalent to CONVERT(G)

$(bb \cup (a \cup ba)b^*a)^* (b \cup (a \cup ba)b^*)$

Convert the NFA to a regular expression

((a ∪ b)b*b(bb*b)*a)* ∪ ((a ∪ b)b*b(bb*b)*a)*(a ∪ b)b*b(bb*b)*

WWW.FLAC.WS

Finish Chapter 1 for next time.