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Definition: Language B is PSPACE-complete if:

1. B ∈ PSPACE
2. Every A in PSPACE is poly-time reducible to B 

(i.e. B is PSPACE-hard)



QUANTIFIED BOOLEAN FORMULAS 
(in prenex normal form)

x ∨ ¬y∃x∃y [ ]

∀x [ x ∨ ¬x ]

∀x [ x ]

∀x∃y [ (x ∨ y) ∧ (¬x ∨ ¬y) ]

Allow constants, 0 and 1, eg. ∀x [ 0 ∨ ¬x ]

Wlog can assume we have  = and => (why?)



x ∨ ¬y∃x∃y [ ]

∀x [ x ∨ ¬x ]

∀x [ x ]

∀x∃y [ (x ∨ y) ∧ (¬x ∨ ¬y) ]

Definition:  
A fully quantified Boolean formula is a Boolean 
formula where every variable is quantified

∀x∃y [ (x ∨ 0) ∧ (¬x ∨ ¬y) ]



TQBF = { φ | φ is a true fully quantified 
Boolean formula}

Theorem: TQBF is PSPACE-complete



TQBF ∈ PSPACE
T(φ):
1. If φ has no quantifiers, then it is an 
expression with only constants. Evaluate φ. 
Accept iff φ evaluates to 1.

2. If φ = ∃x ψ, recursively call T on ψ, first with x = 
0 and then with x = 1.  
Accept iff either one of the calls accepts.   

3. If φ = ∀x ψ, recursively call T on ψ, first 
with x = 0 and then with x = 1.  
Accept iff both of the calls accept.   



Claim: Every language A in PSPACE is  
polynomial time reducible to TQBF

We build a poly-time reduction from A to TQBF

The reduction turns a string w into a fully 
quantified Boolean formula φ that simulates 
the PSPACE machine for A on w

Let M be a deterministic TM that decides A in 
space nk How do we know M exists?



A tableau for M on w is an table whose rows are the 
configurations of the computation of M on input w

q0 w1 wnw2# #… …

# #

# #

nk

2
O(nk)



We design φ to encode a simulation of M on w   
φ will be true if and only if M accepts w

Given two collections of variables denoted c and 
d representing two configurations and t > 0,  
we construct a formula φc,d,t

If we assign c and d to actual configurations,  
φc,d,t will be true if and only if  
M can go from c to d in t steps

We let φ = φc         ,  c           , h, where h = 2e s(n) for a  

constant e chosen so that M has less than 2e s(n) 
possible configurations on an input of length n 

start accept

Here s(n) = nk



We design φ to encode a simulation of M on w   
φ will be true if and only if M accepts w

Given two collections of variables denoted c and 
d representing two configurations and t > 0,  
we construct a formula φc,d,t

If we assign c and d to actual configurations,  
φc,d,t will say:  

 “there exists a configuration m such that  
φc,m,t/2 is true and φm,d,t/2 is true”

We let φ = φc         ,  c           , h, where h = 2e s(n) for a  

constant e chosen so that M has less than 2e s(n) 
possible configurations on an input of length n 

start accept

Here s(n) = nk



HIGH-LEVEL IDEA: 
Encode the Algorithm of Savitch’s Theorem with a 

Quantified Boolean Formula 

If M uses nk space,  
then the QBF φ will have size O(n2k)

If we assign c and d to actual configurations,  
φc,d,t will say:  

 “there exists a configuration m such that  
φc,m,t/2 is true and φm,d,t/2 is true”

We let φ = φc         ,  c           , h, where h = 2e s(n) for a  

constant e chosen so that M has less than 2e s(n) 
possible configurations on an input of length n 

start accept

Here s(n) = nk



To construct φc,d,t    
use ideas of Cook-Levin plus Savitch: 

Each cell in a configuration is associated 
with variables representing possible tape 

symbols and states.  

Each config has nk cells so and is 
encoded  by O(nk) variables. 

We will not have distinct variables for all cells 
(Why?)



If t = 0 or 1, we can easily construct φc,d,t:

φc,d,t = “c equals d” OR “d follows 
      from c in a single step of M” 

How do we express “c equals d”? 
Write a Boolean formula saying that each of the 

variables representing c is equal to the 
corresponding one in d

“d follows from c in a single step of M”?



If t = 0 or 1, we can easily construct φc,d,t:

φc,d,t = “c equals d” OR “d follows 
      from c in a single step of M” 

How do we express “c equals d”? 
Write a Boolean formula saying that each of the 

variables representing c is equal to the 
corresponding one in d

“d follows from c in a single step of M”? 
Use 2 x 3 windows as in the Cook-Levin theorem, and 
write a CNF formula that expresses that:  
the contents of each triple  of c’s cells correctly yieds the 
contents of thr corresponding triple of d’s cells.



If t > 1, we construct φc,d,t recursively:

φc,d,t = ∃m [φc,m,t/2 ∧ φm,d,t/2 ]

∃x1 ∃x2 …∃xL      L= O(nk)

But how long is this formula?

φc,d,t = ∃m∀a,b[ [(a,b)=(c,m) ∨ (a,b)=(m,d)] 
    => [ φa,b,t/2 ] ]

Every level of the recursion cuts t in half but roughly 
doubles the size of the formula (so back to length O(t)) 

So, we modify the formula to be:

This folds the 2 recursive sub-formulas into 1



φc,d,t = ∃m∀a,b[ [(a,b)=(c,m) ∨ (a,b)=(m,d)] 
    =>[ φa,b,t/2 ] ]

  Set    φ = φc         , c            , h   where h = 2d s(n)
start accept

•  Each recursive step adds a portion that is linear in 
the size of the configurations, so has size O(s(n)) 

•  Number of levels of recursion is log h = O(s(n)) 

•  Hence, the size of φ is O(s(n)2)



PSPACE is often called  
the class of games 

Formalizations of many popular 
games are PSPACE-Complete



THE FORMULA GAME (FG)
…is played between two players, E and A

Given a fully quantified Boolean formula 

E chooses values for variables quantified by ∃

A chooses values for variables quantified by ∀

Start at the leftmost quantifier

E wins if the resulting formula is true

A wins otherwise

∃y∀x [ (x ∨ y) ∧ (¬x ∨ ¬y) ]



FG = { φ | Player E has a winning strategy in φ }

Theorem: FG is PSPACE-Complete

Proof: 

FG = TQBF

∀x∃y [ (x ∨ y) ∧ (¬x ∨ ¬y) ]

x ∨ ¬y∃x∃y [ ]



GEOGRAPHY
Two players take turns naming cities from 

anywhere in the world

Each city chosen must begin with the same 
letter that the previous city ended with

Austin → Nashua → Albany → York

Cities cannot be repeated

Whoever cannot name any more cities loses



GENERALIZED GEOGRAPHY
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GG = { (G, a) | Player 1 has a winning strategy 
for generalized geography played on graph G 

starting at node a }

Theorem: GG is PSPACE-Complete



GG ∈ PSPACE

M(G, a): If a has no outgoing edges, reject.

1. Remove node a and all edges touching it 
to get to a new graph G1

2. For each of the nodes a1, a2, …, ak that a 
originally pointed at, recursively call M(G1, ai)

3. If all of these accept, Player 2 has a 
winning strategy, so reject.  

Otherwise, accept.  

WANT: Machine M that accepts (G,a)   
       ⬄  Player 1 has a winning strategy on (G, a)



We show that FG ≤P GG 

GG IS PSPACE-HARD

We convert a formula φ into (G, a) such that:

Player E has winning strategy in φ  
if and only if  

Player 1 has winning strategy in (G, a)

For simplicity we assume φ is of the form:
φ = ∃x1∀x2∃x3…∃xk [ψ]

where ψ is in cnf. 
(Quantifiers alternate, and the last move is E’s)



a

c

TRUE FALSE

x1

x2

xk

c1

c2

cn

¬x1

     ∃x1∀x2…∃xk(x1 ∨ x1 ∨ x2)  
      ∧ (¬x1 ∨ ¬x2 ∨ ¬x2)  

    ∧ …

¬x2

¬x2
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T

T F

T F

F



aTRUE FALSE

x1
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x1
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c

∃x1 [ (x1 ∨ x1 ∨ x1) ]

FT
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¬x1
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      ∧ (¬x1 ∨ ¬x2 ∨ ¬x2)  

    ∧ …
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GG = { (G, a) | Player 1 has a winning strategy 
for generalized geography played on graph G 

starting at node a }

Theorem: GG is PSPACE-Complete



But n x n GO, Chess and Checkers 
can be shown to be PSPACE-hard

Question:  
Is Chess a PSPACE complete problem?

No, because determining whether a player 
has a winning strategy takes CONSTANT 

time and space (OK, the constant is large…)


