
PSPACE COMPLETENESS TBQF

THURSDAY April 17

Definition: Language B is PSPACE-complete if:

1. B ∈ PSPACE
2. Every A in PSPACE is poly-time reducible to B

(i.e. B is PSPACE-hard)

QUANTIFIED BOOLEAN FORMULAS
(in prenex normal form)

x ∨ ¬y∃x∃y []

∀x [x ∨ ¬x]

∀x [x]

∀x∃y [(x ∨ y) ∧ (¬x ∨ ¬y)]

Allow constants, 0 and 1, eg. ∀x [0 ∨ ¬x]

Wlog can assume we have = and => (why?)

x ∨ ¬y∃x∃y []

∀x [x ∨ ¬x]

∀x [x]

∀x∃y [(x ∨ y) ∧ (¬x ∨ ¬y)]

Definition:
A fully quantified Boolean formula is a Boolean
formula where every variable is quantified

∀x∃y [(x ∨ 0) ∧ (¬x ∨ ¬y)]

TQBF = { φ | φ is a true fully quantified
Boolean formula}

Theorem: TQBF is PSPACE-complete

TQBF ∈ PSPACE
T(φ):
1. If φ has no quantifiers, then it is an
expression with only constants. Evaluate φ.
Accept iff φ evaluates to 1.

2. If φ = ∃x ψ, recursively call T on ψ, first with x =
0 and then with x = 1.
Accept iff either one of the calls accepts.

3. If φ = ∀x ψ, recursively call T on ψ, first
with x = 0 and then with x = 1.
Accept iff both of the calls accept.

Claim: Every language A in PSPACE is
polynomial time reducible to TQBF

We build a poly-time reduction from A to TQBF

The reduction turns a string w into a fully
quantified Boolean formula φ that simulates
the PSPACE machine for A on w

Let M be a deterministic TM that decides A in
space nk How do we know M exists?

A tableau for M on w is an table whose rows are the
configurations of the computation of M on input w

q0 w1 wnw2# #… …

#

#

nk

2
O(nk)

We design φ to encode a simulation of M on w
φ will be true if and only if M accepts w

Given two collections of variables denoted c and
d representing two configurations and t > 0,  
we construct a formula φc,d,t

If we assign c and d to actual configurations,
φc,d,t will be true if and only if
M can go from c to d in t steps

We let φ = φc , c , h, where h = 2e s(n) for a

constant e chosen so that M has less than 2e s(n)
possible configurations on an input of length n

start accept

Here s(n) = nk

We design φ to encode a simulation of M on w
φ will be true if and only if M accepts w

Given two collections of variables denoted c and
d representing two configurations and t > 0,  
we construct a formula φc,d,t

If we assign c and d to actual configurations,
φc,d,t will say:

 “there exists a configuration m such that  
φc,m,t/2 is true and φm,d,t/2 is true”

We let φ = φc , c , h, where h = 2e s(n) for a

constant e chosen so that M has less than 2e s(n)
possible configurations on an input of length n

start accept

Here s(n) = nk

HIGH-LEVEL IDEA:
Encode the Algorithm of Savitch’s Theorem with a

Quantified Boolean Formula

If M uses nk space,
then the QBF φ will have size O(n2k)

If we assign c and d to actual configurations,
φc,d,t will say:

 “there exists a configuration m such that  
φc,m,t/2 is true and φm,d,t/2 is true”

We let φ = φc , c , h, where h = 2e s(n) for a

constant e chosen so that M has less than 2e s(n)
possible configurations on an input of length n

start accept

Here s(n) = nk

To construct φc,d,t
use ideas of Cook-Levin plus Savitch:

Each cell in a configuration is associated
with variables representing possible tape

symbols and states.

Each config has nk cells so and is
encoded by O(nk) variables.

We will not have distinct variables for all cells
(Why?)

If t = 0 or 1, we can easily construct φc,d,t:

φc,d,t = “c equals d” OR “d follows
 from c in a single step of M”

How do we express “c equals d”?
Write a Boolean formula saying that each of the

variables representing c is equal to the
corresponding one in d

“d follows from c in a single step of M”?

If t = 0 or 1, we can easily construct φc,d,t:

φc,d,t = “c equals d” OR “d follows
 from c in a single step of M”

How do we express “c equals d”?
Write a Boolean formula saying that each of the

variables representing c is equal to the
corresponding one in d

“d follows from c in a single step of M”?
Use 2 x 3 windows as in the Cook-Levin theorem, and
write a CNF formula that expresses that:
the contents of each triple of c’s cells correctly yieds the
contents of thr corresponding triple of d’s cells.

If t > 1, we construct φc,d,t recursively:

φc,d,t = ∃m [φc,m,t/2 ∧ φm,d,t/2]

∃x1 ∃x2 …∃xL L= O(nk)

But how long is this formula?

φc,d,t = ∃m∀a,b[[(a,b)=(c,m) ∨ (a,b)=(m,d)]
 => [φa,b,t/2]]

Every level of the recursion cuts t in half but roughly
doubles the size of the formula (so back to length O(t))

So, we modify the formula to be:

This folds the 2 recursive sub-formulas into 1

φc,d,t = ∃m∀a,b[[(a,b)=(c,m) ∨ (a,b)=(m,d)]
 =>[φa,b,t/2]]

 Set φ = φc , c , h where h = 2d s(n)
start accept

• Each recursive step adds a portion that is linear in
the size of the configurations, so has size O(s(n))

• Number of levels of recursion is log h = O(s(n))

• Hence, the size of φ is O(s(n)2)

PSPACE is often called
the class of games

Formalizations of many popular
games are PSPACE-Complete

THE FORMULA GAME (FG)
…is played between two players, E and A

Given a fully quantified Boolean formula

E chooses values for variables quantified by ∃

A chooses values for variables quantified by ∀

Start at the leftmost quantifier

E wins if the resulting formula is true

A wins otherwise

∃y∀x [(x ∨ y) ∧ (¬x ∨ ¬y)]

FG = { φ | Player E has a winning strategy in φ }

Theorem: FG is PSPACE-Complete

Proof:

FG = TQBF

∀x∃y [(x ∨ y) ∧ (¬x ∨ ¬y)]

x ∨ ¬y∃x∃y []

GEOGRAPHY
Two players take turns naming cities from

anywhere in the world

Each city chosen must begin with the same
letter that the previous city ended with

Austin → Nashua → Albany → York

Cities cannot be repeated

Whoever cannot name any more cities loses

GENERALIZED GEOGRAPHY

b

a e

c

d

f

g

i

h

GG = { (G, a) | Player 1 has a winning strategy
for generalized geography played on graph G

starting at node a }

Theorem: GG is PSPACE-Complete

GG ∈ PSPACE

M(G, a): If a has no outgoing edges, reject.

1. Remove node a and all edges touching it
to get to a new graph G1

2. For each of the nodes a1, a2, …, ak that a
originally pointed at, recursively call M(G1, ai)

3. If all of these accept, Player 2 has a
winning strategy, so reject.

Otherwise, accept.

WANT: Machine M that accepts (G,a)
 ⬄ Player 1 has a winning strategy on (G, a)

We show that FG ≤P GG

GG IS PSPACE-HARD

We convert a formula φ into (G, a) such that:

Player E has winning strategy in φ
if and only if

Player 1 has winning strategy in (G, a)

For simplicity we assume φ is of the form:
φ = ∃x1∀x2∃x3…∃xk [ψ]

where ψ is in cnf.
(Quantifiers alternate, and the last move is E’s)

a

c

TRUE FALSE

x1

x2

xk

c1

c2

cn

¬x1

 ∃x1∀x2…∃xk(x1 ∨ x1 ∨ x2)  
 ∧ (¬x1 ∨ ¬x2 ∨ ¬x2)

 ∧ …

¬x2

¬x2

x1

x1

x2

T

T F

T F

F

aTRUE FALSE

x1

c1

x1

x1

x1

c

∃x1 [(x1 ∨ x1 ∨ x1)]

FT

a

c

TRUE FALSE

x1

x2

xk

c1

c2

cn

¬x1

 ∃x1∀x2…∃xk(x1 ∨ x1 ∨ x2)  
 ∧ (¬x1 ∨ ¬x2 ∨ ¬x2)

 ∧ …

¬x2

¬x2

x1

x1

x2

T

T F

T F

F

GG = { (G, a) | Player 1 has a winning strategy
for generalized geography played on graph G

starting at node a }

Theorem: GG is PSPACE-Complete

But n x n GO, Chess and Checkers
can be shown to be PSPACE-hard

Question:  
Is Chess a PSPACE complete problem?

No, because determining whether a player
has a winning strategy takes CONSTANT

time and space (OK, the constant is large…)

