
DFAs

NFAs Regular
Expressions

PDAs Context-Free
Grammars

Machines Syntactic Rules

Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F)
deterministic DFA

Let w1, ... , wn ∈ Σ and w = w1... wn ∈ Σ*
Then M accepts w if there are r0, r1, ..., rn ∈ Q, s.t.
1. r0=q0
2. δ(ri, wi+1) = ri+1, for i = 0, ..., n-1, and
3. rn ∈ F

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (ε = empty string)

Then N accepts w if there are r0, r1, ..., rn ∈ Q
such that

1. r0 ∈ Q0
2. ri+1 ∈ δ(ri, wi+1) for i = 0, ..., n-1, and
3. rn ∈ F

A language L is recognized by an NFA N
if L = L(N).

L(N) = the language recognized by N
 = set of all strings machine N accepts

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (recall Σε = Σ ∪ {ε})

Then P accepts w if there are
 r0, r1, ..., rn ∈ Q and
 s0, s1, ..., sn ∈ Γ* (sequence of stacks) such that

1. r0 = q0 and s0 = ε (P starts in q0 with empty stack)

2. For i = 0, ..., n-1:
(ri+1 , b)∈ δ(ri, wi+1, a), where si =at and si+1 = bt for

some a, b ∈ Γε and t ∈ Γ*
(P moves correctly according to state, stack and symbol read)

3. rn ∈ F (P is in an accept state at the end of its input)

THEOREM
For every regular language L, there exists
a UNIQUE (up to re-labeling of the states)

minimal DFA M such that L = L(M)

EXTENDING δ
Given DFA M = (Q, Σ, δ, q0, F), extend δ

to δ : Q × Σ* → Q as follows:

δ(q, ε) =

δ(q, σ) =
δ(q, w1 …wk+1) = δ(δ(q, w1 …wk), wk+1)

^

^
^
^ ^

q

δ(q, σ)

Note: δ(q0, w) ∈ F ⇔ M accepts w

String w ∈ Σ* distinguishes states q1 and q2 iff

exactly ONE of δ(q1, w), δ(q2, w) is a final state^ ^

Fix M = (Q, Σ, δ, q0, F) and let p, q, r ∈ Q

Definition:
p ~ q iff p is indistinguishable from q
p ~ q iff p is distinguishable from q /

Proposition: ~ is an equivalence relation
p ~ p (reflexive)
p ~ q ⇒ q ~ p (symmetric)
p ~ q and q ~ r ⇒ p ~ r (transitive)

q

[q] = { p | p ~ q }

so ~ partitions the set of states of M into
disjoint equivalence classes

Proposition: ~ is an equivalence relation

TABLE-FILLING ALGORITHM
Input: DFA M = (Q, Σ, δ, q0, F)
Output:

(2) EM = { [q] | q ∈ Q }

(1) DM = { (p,q) | p,q ∈ Q and p ~ q }/

q0
q1

qi

qn
q0 q1 qi qn

Recursion: if there is σ ∈ Σ
and states pʹ′, qʹ′ satisfying D D

D
δ (p, σ) =

pʹ′

δ (q, σ) = qʹ′
~/ ⇒ p ~ q/

Base Case: p accepts
 and q rejects ⇒ p ~ q/

Repeat until no more new D’s

Qʹ′ = 2Q

δʹ′ : Qʹ′ × Σ → Qʹ′
δʹ′(R,σ) = ∪ ε(δ(r,σ))

r∈R

q0ʹ′ = ε(Q0)

Fʹ′ = { R ∈ Qʹ′ | f ∈ R for some f ∈ F }

CONVERTING NFAs TO DFAs
Input: NFA N = (Q, Σ, δ, Q0, F)

Output: DFA M = (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

*

 For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached
from some r ∈ R by traveling along zero or more ε arrows}

*

THE REGULAR OPERATIONS

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w ∈ Σ* | w ∉ A }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A }

REGULAR EXPRESSIONS
 σ is a regexp representing {σ}

ε is a regexp representing {ε}

∅ is a regexp representing ∅

If R1 and R2 are regular expressions
representing L1 and L2 then:

(R1R2) represents L1 ⋅ L2
(R1 ∪ R2) represents L1 ∪ L2
(R1)* represents L1*

L can be represented by a regexp
⇔

L is a regular language

EQUIVALENCE

q1
b

a

ε q2

a,b

ε

a*b

(a*b)(a∪b)*

q0 q3

R(q0,q3) = (a*b)(a∪b)*

How can we test if two regular
expressions are the same?

R1

N1

M1

M1 MIN

R2

N2

M2

M2 MIN

Length n

O(n) states

O(2n) states

?=

CONTEXT-FREE LANGUAGES
A context-free grammar (CFG) is a tuple
G = (V, Σ, R, S), where:

V is a finite set of variables

R is set of production rules of the form A → W,
where A ∈ V and W ∈ (V∪Σ)*

S ∈ V is the start variable

Σ is a finite set of terminals (disjoint from V)

L(G) = {w ∈ Σ* | S ⇒* w} Strings Generated by G

 A Language L is context-free if there is a CFG that
generates precisely the strings in L

CHOMSKY NORMAL FORM
A context-free grammar is in Chomsky normal
form if every rule is of the form:

A → BC
A → a

S → ε

B and C aren’t start variables

a is a terminal

S is the start variable

Any variable A that is not the start variable
can only generate strings of length > 0

Theorem: Any context-free language
can be generated by a context-free
grammar in Chomsky normal form

Theorem: There is an O(n^3 + size G)
membership algorithm (CYK) any
Chomsky normal form G.

Theorem: If G is in CNF, w ∈ L(G) and |w| > 0,
then any derivation of w in G has length 2|w| - 1

Theorem: The set of PDAS that accept
all strings is not r.e.

Definition: A (non-deterministic) PDA is a
tuple P = (Q, Σ, Γ, δ, q0, F), where:

Q is a finite set of states

Γ is the stack alphabet

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

Σ is the input alphabet

δ : Q × Σε × Γε → 2 Q × Γε

2Q is the set of subsets of Q and Σε = Σ ∪ {ε}

A Language L is generated by a CFG
⇔

L is recognized by a PDA

THE PUMPING LEMMA
(for Context Free Grammars)

Let L be a context-free language with |L| = ∞
Then there is an integer P such that
if w ∈ L and |w| ≥ P

1. |vy| > 0
then can write w = uvxyz, where:

3. uvixyiz ∈ L, 
 for any i ≥ 0

2. |vxy| ≤ P
T
R
R

u v x zy

T

u z

R
R

v y

R
R

v x y

TURING MACHINE

FINITE
STATE

CONTROL

INFINITE TAPE

I N P U T

q0 q1

A

Definition: A Turing Machine is a 7-tuple
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:

Q is a finite set of states

Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where ∉ Σ

δ : Q × Γ → Q × Γ × {L, R}

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept

CONFIGURATIONS

11010q700110

q7

1 0 0 0 0 01 1 1 1

corresponds to:

A Turing Machine M accepts input w if there is a
sequence of configurations C1, … , Ck such that

1. C1 is a start configuration of M on input w, ie

C1 is q0w

2. each Ci yields Ci+1, ie M can legally go from Ci

to Ci+1 in a single step

ua qi bv yields u qj acv if δ (qi, b) = (qj, c, L)
ua qi bv yields uac qj v if δ (qi, b) = (qj, c, R)

A Turing Machine M accepts input w if there is a
sequence of configurations C1, … , Ck such that

1. C1 is a start configuration of M on input w, ie

C1 is q0w

2. each Ci yields Ci+1, ie M can legally go from Ci

to Ci+1 in a single step

3. Ck is an accepting configuration, ie the state

of the configuration is qaccept

A Turing Machine M rejects input w if there is a
sequence of configurations C1, … , Ck such that

1. C1 is a start configuration of M on input w, ie

C1 is q0w

2. each Ci yields Ci+1, ie M can legally go from Ci

to Ci+1 in a single step

3. Ck is a rejecting configuration, ie the state of

the configuration is qreject

A TM decides a language if it accepts all
strings in the language and rejects all strings
not in the language

A language is called decidable or recursive if
some TM decides it

Theorem: L decidable <-> ¬L decidable
Proof: L has a machine M that accepts or rejects on
all inputs. Define M’ to be M with accept and reject
states swapped. M’ decides ¬L.

A TM recognizes a language if it accepts all
and only those strings in the language

A TM decides a language if it accepts all
strings in the language and rejects all strings
not in the language

A language is called Turing-recognizable or
recursively enumerable, (or r.e. or semi-
decidable) if some TM recognizes it

A language is called decidable or recursive if
some TM decides it

A TM recognizes a language if it accepts all
and only those strings in the language

A language is called Turing-recognizable or
recursively enumerable, (or r.e. or semi-
decidable) if some TM recognizes it

FALSE: L r.e. <-> ¬L r.e.
Proof: L has a machine M that accepts or rejects on
all inputs. Define M’ to be M with accept and reject
states swapped. M’ decides ¬L.

A language is called Turing-recognizable or
recursively enumerable (r.e.) or semi-
decidable if some TM recognizes it

A language is called decidable or recursive if
some TM decides it

recursive
languages

r.e.
languages

Theorem: If A and ¬A are r.e. then A is recursive

Theorem: If A and ¬A are r.e. then A is recursive

Suppose M accepts A. M’ accepts ¬A decidable
Use Odd squares/ Even squares simulation of M and
M’. If x is accepted by the even squares reject it/
accepted by the odd squares then accept x.

TURING MACHINE with WRITE ONLY
output tape.

FINITE
STATE

CONTROL

Outputs a sequence of strings separated
by hash marks. Allows for a well defined
infinite sequence of strings in the limit.
The machine is said to enumerate the
sequence of strings occurring on the

tape.

TURING MACHINE with WRITE ONLY
output tape.

FINITE
STATE

CONTROL

Outputs a sequence of strings separated
by hash marks. Allows for a well defined
infinite sequence of strings in the limit.

The machine is said to enumerate the set
of strings occurring on the tape.

From every TM M accepting A.
there is a TM M’ outputting A.

For n = 0 to forever do
{ {Do n parallel simulations of M for
n steps for the first n inputs}
M(0). M(1), M(2), M(3)..
}

From every TM M outputting A.
there is a TM M’ accepting A.

M”(X) run M, accept if X output on tape.

Let Z+ = {1,2,3,4…}. There exists a bijection
between Z+ and Z+ × Z+

(1,1) (1,2) (1,3) (1,4) (1,5) …

(2,1) (2,2) (2,3) (2,4) (2,5) …

(3,1) (3,2) (3,3) (3,4) (3,5) …

(4,1) (4,2) (4,3) (4,4) (4,5) …

(5,1) (5,2) (5,3) (5,4) (5,5) …

(or Q+)

Lex-order has an enumerator
strings of length 1, the length 2, ….

Pairs of binary strings have a lex-order enumerator

for each n>0 list all pairs of strings a,b as #a#b#
where total length of a and b is n.

Let BINARY(w) = pair of binary strings be any fixed
way of encoding a pair of binary strings with a single
binary string

ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable
ATM is r.e. :
Define a TM U as follows:
On input (M, w), U runs M on w. If M ever accepts,
accept. If M ever rejects, reject.

NB. When we write “input (M, w)” we really mean
“input code for (code for M, w)”

MULTITAPE TURING MACHINES

δ : Q × Γk
 → Q × Γk × {L,R}k

FINITE
STATE

CONTROL

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE

CONTROL

0 01

FINITE
STATE

CONTROL 0 01 # # #. . .

We can encode a TM as a string of 0s and 1s

0n10m10k10s10t10r10u1…

n states

m tape symbols
(first k are input

symbols)

start
state

accept
state

reject
state

blank
symbol

((p, a), (q, b, L)) = 0p10a10q10b10

((p, a), (q, b, R)) = 0p10a10q10b11

UNDECIDABLE PROBLEMS
THURSDAY Feb 13

There are languages over {0,1}
that are not decidable

Turing
Machines

Languages
over {0,1}

Let L be any set and 2L be the power set of L
Theorem: There is no onto map from L to 2L

Proof: Assume, for a contradiction, that
there is an onto map f : L → 2L

Let S = { x ∈ L | x ∉ f(x) }

If S = f(y) then y ∈ S if and only if y ∉ S

Can give a more constructive argument!

Theorem: There is no onto function from the
positive integers to the real numbers in (0, 1)

1
2
3
4
5
:

0.28347279…
0.88388384…
0.77635284…
0.11111111…
0.12345678…

:

Proof:

[n-th digit of r] =

2
8
6
1
5

1 if [n-th digit of f(n)] ≠ 1

 2 otherwise

f(n) ≠ r for all n (Here, r = 11121...)

Suppose f is any function mapping the
positive integers to the real numbers in (0, 1:

THE MORAL:
No matter what L is,

2L always has more elements than L

Not all languages over {0,1} are decidable, in fact:
not all languages over {0,1} are semi-decidable

{Turing Machines}

{Strings of 0s and 1s} {Sets of strings of
0s and 1s}

{Languages over {0,1}}

Set L Set of all subsets of L: 2L

{decidable languages over {0,1}}

{semi-decidable languages over {0,1}}

ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable
ATM is r.e. :
Define a TM U as follows:
On input (M, w), U runs M on w. If M ever accepts,
accept. If M ever rejects, reject.

NB. When we write “input (M, w)” we really mean
“input code for (code for M, w)”

ATM = { (M, w) | M is a TM that accepts string w }
THE ACCEPTANCE PROBLEM

Theorem: ATM is semi-decidable (r.e.)  
but NOT decidable
ATM is r.e. :
Define a TM U as follows:
On input (M, w), U runs M on w. If M ever accepts,
accept. If M ever rejects, reject.

Therefore,
U accepts (M,w) ⇔ M accepts w ⇔ (M,w) ∈ ATM
Therefore, U recognizes ATM

U is a universal TM

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable: (proof by contradiction)

Assume machine H decides ATM

H((M,w)) =
Accept if M accepts w

Reject if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output the opposite of H

D(M) =
Reject if M accepts M

Accept if M does not accept M
D

D D

D D

M1

M2

M3

M4

:

M1 M2 M3 M4 …

accept accept

accept

accept

accept

accept

accept

reject

reject

reject

reject

reject

reject

reject

reject

reject

OUTPUT OF H

accept

accept

reject

reject

D

D

reject

accept

accept

accept

acceptreject

reject

accept ?

Theorem: ATM is r.e. but NOT decidable

Cor: ¬ATM is not even r.e.!

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable:

Let machine H semi-decides ATM (Such ∃ , why?)

H((M,w)) =
Accept if M accepts w
Reject or
No output if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output

D(M) =
Reject if H (M, M) Accepts
Accept if H (M , M) Rejects
No output if H (M, M) has No output

D
D, D

D, D
DD,

A constructive proof:

H((D,D)) = No output No Contradictions !

We have shown:
Given any machine H for semi-deciding ATM, 
we can effectively construct a TM D such that
(D,D) ∉ ATM but H fails to tell us that.

That is, H fails to be a decider on instance
(D,D).

In other words,
Given any “good” candidate for deciding the
Acceptance Problem, we can effectively
construct an instance where the candidate
fails.

HALTTM = { (M,w) | M is a TM that halts on string w }

Theorem: HALTTM is undecidable

THE classical HALTING PROBLEM

Proof: Assume, for a contradiction, that TM H
decides HALTTM

We use H to construct a TM D that decides ATM

On input (M,w), D runs H on (M,w):
If H rejects then reject
If H accepts, run M on w until it halts:

Accept if M accepts, ie halts in an accept
state
Otherwise reject

MAPPING REDUCIBILITY
f : Σ* → Σ* is a computable function if some
Turing machine M, on every input w, halts with
just f(w) on its tape

A language A is mapping reducible to language B,
written A ≤m B, if there is a computable function
 f : Σ* → Σ*, where for every w,

w ∈ A ⇔ f(w) ∈ B
f is called a reduction from A to B

Think of f as a “computable coding”

A Bf

f

A is mapping reducible to B, A ≤m B,

Σ* Σ*

Also, ¬ A ≤m ¬ B, why?

if there is a computable f : Σ* → Σ*
such that w ∈ A ⇔ f(w) ∈ B

Theorem: If A ≤m B and B is decidable,
then A is decidable

Proof: Let M decide B and let f be a
reduction from A to B

We build a machine N that decides A as follows:

On input w:

1. Compute f(w)

2. Run M on f(w)

Theorem: If A ≤m B and B is (semi) decidable,
then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a
reduction from A to B

We build a machine N that (semi) decides A as
follows:

On input w:

1. Compute f(w)

2. Run M on f(w)

RICE’S THEOREM

Then L is undecidable  
 

Let L be a language over Turing machines.
Assume that L satisfies the following properties:

1. For TMs M1 and M2, if M1 ≡ M2 then
M1 ∈ L ⇔ M2 ∈ L

2. There are TMs M1 and M2,  
such that M1 ∈ L and M2 ∉ L

THE PCP GAME

ba

a

a

ab

b

bcb

b

a

ba

a

a

ab

THE ARITHMETIC HIERARCHY

FINITE
STATE

CONTROL

INFINITE TAPE

I N P U T

q?

ORACLE TMs

Is (M,w) in
ATM?

YES

Oracle for ATM

ORACLE MACHINES

An ORACLE is a set B to which the TM may pose
membership questions “Is w in B?”  
(formally: TM enters state q?)  
and the TM always receives a correct answer in
one step 
(formally: if the string on the “oracle tape” is in B,  
state q? is changed to qYES, otherwise qNO)

This makes sense even if B is not decidable!
(We do not assume that the oracle B is a

computable set!)

We say A is semi-decidable in B  
if there is an oracle TM M with oracle B that
semi-decides A

We say A is decidable in B  
if there is an oracle TM M with oracle B that
decides A

if A is decidable in B, ie if there is an
oracle TM M with oracle B that decides A

Language A “Turing Reduces” to  
Language B

A ≤T B

≤T VERSUS ≤m
Theorem: If A ≤m B then A ≤T B
Proof:
If A ≤m B then there is a computable function
f : Σ* → Σ*, where for every w,

w ∈ A ⇔ f(w) ∈ B
We can thus use an oracle for B to decide A

Theorem: ¬ATTM ≤T ATTM

Theorem: ¬ATTM ≤m ATTM

Δ
1
0

THE ARITHMETIC HIERARCHY

∑
1
0

Π
n
0

Δ
n+1
0

= { semi-decidable sets }

= { decidable sets } (sets = languages)

= { sets semi-decidable in some B ∈ }

= { sets decidable in some B ∈ }

= { complements of sets in }

∑
n+1
0 ∑

n
0

∑
n
0

∑
n
0

Δ
1
0

∑
1
0 Δ

2
0

∑
2
0 Δ

3
0

Δ
1
0

∑
1
0 Π

1
0

Decidable Languages

Semi-
decidable
Languages

Co-semi-
decidable
Languages

∑
1
0 Π

1
0∩=

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Semi-
decidable
Languages

Co-semi-
decidable
Languages

Δ
1
0

Decidable Languages

∑
1
0 Π

1
0∩=

∑
1
0

= languages of the form { x | ∃y R(x,y) }

= languages of the form { x | ∀y R(x,y) }

Π
1
0

Δ
1
0

∑
1
0 Π

1
0∩=

= { semi-decidable sets }

= { complements of semi-decidable sets }

= { decidable sets }

Where R is a decidable predicate

Theorem

∑
2
0

= languages of the form { x | ∃y1∀y2 R(x,y1,y2) }

= languages of the form { x | ∀y1∃y2 R(x,y1,y2) }
Π

2
0

Δ
2
0 ∑

2
0 Π

2
0∩=

= { sets semi-decidable in some semi-dec. B }

= { complements of sets}∑
2
0

Theorem

Where R is a decidable predicate

∑
n
0 = languages { x | ∃y1∀y2∃y3…Qyn R(x,y1,…,yn) }

= languages { x | ∀y1∃y2∀y3…Qyn R(x,y1,…,yn) } Π
n
0

Δ
n
0 ∑

n
0 Π

n
0∩=

Where R is a decidable predicate

Theorem

∑
1
0 = languages of the form { x | ∃y R(x,y) }

We know that ATM is in ∑
1
0

ATM = { <(M,w)> | ∃t [M accepts w in t steps] }

decidable predicate

Decidable predicate

ATM = { <(M,w)> | ∃t T (<M>, w, t }

Why?

Show it can be described in this form:

ATM = { <(M,w)> | ∃v (v is an accepting
 computation history of M on w}

Example

Definition: A decidable predicate R(x,y) is some
proposition about x and y1, where there is a TM M
 such that

for all x, y, R(x,y) is TRUE ⇒ M(x,y) accepts
 R(x,y) is FALSE ⇒ M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:  
R(x,y) = “x + y is less than 100”
R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.

1. x, y are positive integers or elements of ∑*

Definition: A decidable predicate R(x,y) is some
proposition about x and y1, where there is a TM M
 such that

for all x, y, R(x,y) is TRUE ⇒ M(x,y) accepts
 R(x,y) is FALSE ⇒ M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:  
R(x,y) = “x + y is less than 100”
R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.

Note: A is decidable ⇔ A = {x | R(x,ε)}, 
 for some decidable predicate R.

∑
n
0 = languages { x | ∃y1∀y2∃y3…Qyn R(x,y1,…,yn) }

= languages { x | ∀y1∃y2∀y3…Qyn R(x,y1,…,yn) } Π
n
0

Δ
n
0 ∑

n
0 Π

n
0∩=

Where R is a decidable predicate

Theorem

Theorem: A language A is semi-decidable
if and only if there is a decidable predicate R(x, y)
such that: A = { x | ∃y R(x,y) }
Proof:
(1) If A = { x | ∃y R(x,y) } then A is semi-decidable

Because we can enumerate over all y’s

(2) If A is semi-decidable, then A = { x | ∃y R(x,y) }

Let M semi-decide A
Then, A = { x | ∃y T(<M>, x, y) }
where
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.

(Here M is fixed.)

Theorem. There is a 1-1 and onto computable
function < , >: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that

 z = <w, t> ⇒ π1 (z) = w and π2(z) = t

THE PAIRING FUNCTION

Proof: Let w = w1…wn ∈ Σ*, t ∈ Σ*.  
Let a, b ∈ Σ, a ≠ b.

<w, t> := a w1… a wn b t  
 π1 (z) := “if z has the form a w1… a wn b t,

then output w1… wn, else output ε”
 π2(z) := “if z has the form a w1… a wn b t,

then output t, else output ε”

∑
1
0

= languages of the form { x | ∃y R(x,y) }

= languages of the form { x | ∀y R(x,y) }

Π
1
0

Δ
1
0

∑
1
0 Π

1
0∩=

= { semi-decidable sets }

= { complements of semi-decidable sets }

= { decidable sets }

Where R is a decidable predicate

Theorem

∑
2
0

= languages of the form { x | ∃y1∀y2 R(x,y1,y2) }

= languages of the form { x | ∀y1∃y2 R(x,y1,y2) }
Π

2
0

Δ
2
0 ∑

2
0 Π

2
0∩=

= { sets semi-decidable in some semi-dec. B }

= { complements of sets}∑
2
0

Theorem

Where R is a decidable predicate

∑
1
0 = languages of the form { x | ∃y R(x,y) }

We know that ATM is in ∑
1
0

ATM = { <(M,w)> | ∃t [M accepts w in t steps] }

decidable predicate

Decidable predicate

ATM = { <(M,w)> | ∃t T (<M>, w, t }

Why?

Show it can be described in this form:

ATM = { <(M,w)> | ∃v (v is an accepting
 computation history of M on w}

Example

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

Π
1
0 = languages of the form { x | ∀y R(x,y) }

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in

EMPTY = { M | ∀w∀t [M doesn’t accept w in t steps] }

Π
1
0

two quantifiers?? decidable predicate

Π
1
0 = languages of the form { x | ∀y R(x,y) }

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in Π
1
0

two quantifiers?? decidable predicate

EMPTY = { M | ∀w∀t [¬T(<M>, w, t)] }

Theorem. There is a 1-1 and onto computable
function < , >: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that

 z = <w, t> ⇒ π1 (z) = w and π2(z) = t

EMPTY = { M | ∀w∀t [M doesn’t accept w in t steps] }

EMPTY = { M | ∀z [M doesn’t accept π1 (z) in π2(z) steps]}

THE PAIRING FUNCTION

EMPTY = { M | ∀z [¬T(<M>, π1 (z) , π2(z))] }

Theorem. There is a 1-1 and onto computable
function < , >: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that

 z = <w, t> ⇒ π1 (z) = w and π2(z) = t

THE PAIRING FUNCTION

Proof: Let w = w1…wn ∈ Σ*, t ∈ Σ*.  
Let a, b ∈ Σ, a ≠ b.

<w, t> := a w1… a wn b t  

 π1 (z) := “if z has the form a w1… a wn b t,
then output w1… wn, else output ε”

 π2(z) := “if z has the form a w1… a wn b t,
then output t, else output ε”

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM EMPTY

Π
2
0 = languages of the form { x | ∀y∃z R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
is in

TOTAL = { M | ∀w ∃t [M halts on w in t steps] }

Π
2
0

decidable predicate

Π
2
0 = languages of the form { x | ∀y∃z R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
is in

TOTAL = { M | ∀w ∃t [T(<M>, w, t)] }

Π
2
0

decidable predicate

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

∑
2
0 = languages of the form { x | ∃y∀z R(x,y,z) }

Show that FIN = { M | L(M) is finite } is in

FIN = { M | ∃n∀w∀t [Either |w| < n, or
 M doesn’t accept w in t steps] }

∑
2
0

FIN = { M | ∃n∀w∀t (|w| < n ∨¬ T(<M>,w, t))}

decidable predicate

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

FIN

∑
3
0 = languages of the form { x | ∃y∀z∃u R(x,y,z,u) }

Show that COF = { M | L(M) is cofinite } is in

COF = { M | ∃n∀w∃ t [|w| > n ⇒ M accept w in t steps] }

∑
2
0

COF = { M | ∃n∀w∃ t (|w| ≤ n ∨T(<M>,w, t))}

decidable predicate

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

FIN

COF

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

FIN

REG

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

FIN

DEC

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

FIN

CFL

Each is m-complete for its level in
hierarchy and cannot go lower (by next
Theorem, which shows the hierarchy
does not collapse).

L is m-complete for class C if
i) L ∈ C and
ii) L is m-hard for C,

 ie, for all L’ ∈ C , L’ ≤m L

ATM is m-complete for class C =

i) ATM ∈ C

ii) ATM is m-hard for C,

Suppose L ∈ C . Show: L ≤m ATM

Let M semi-decide L. Then Map
 !
 where w ! (M, w).

Then, w ∈ L ⇔ (M,w) ∈ ATM QED

∑
1
0

∑* ∑*

FIN is m-complete for class C =

i) FIN ∈ C
ii) FIN is m-hard for C,

Suppose L ∈ C . Show: L ≤m FIN

Suppose L= { w | ∃y∀z R(w,y,z) }
where R is decided by some TM D

Map !
where w ! ND,w

∑
2
0

∑* ∑*

Supose L ∈ ie L= { w | ∃y∀z R(w,y,z) }
where R is decided by some TM D
Show: L ≤m FIN

Map !
where w ! ND,w

Define ND,w On input s:

1. Write down all strings y of length |s|
2. For each y, try to find a z such that
¬ R(w, y, z) and accept if all are successful
(here use D and w)

So, w ∈ L ⇔ ND,w ∈ FIN

∑* ∑*

∑
2
0

ORACLES not all powerful
The following problem cannot be decided, even by
a TM with an oracle for the Halting Problem:

SUPERHALT = { (M,x) | M, with an oracle for the
 Halting Problem, halts on x}

Can use diagonalization here!
Suppose H decides SUPERHALT (with oracle)
Define D(X) = “if H(X,X) accepts (with oracle)  
 then LOOP, else ACCEPT.”
D(D) halts ⇔ H(D,D) accepts ⇔ D(D) loops…

SUPERHALT0 = HALT = { (M,x) | M halts on x}.

Theorem: The arithmetic hierarchy is strict. 
That is, the nth level contains a language  
that isn’t in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

SUPERHALT1 = { (M,x) | M, with an oracle for the
 Halting Problem, halts on x}

 SUPERHALTn = { (M,x) | M, with an oracle for
 SUPERHALTn-1, halts on x}

ORACLES not all powerful

KOLMOGOROV COMPLEXITY

Definition: The Kolmogorov complexity of x,
denoted as K(x), is |d(x)|.

Definition: Let x in {0,1}*. The shortest description
of x, denoted as d(x), is the lexicographically
shortest string <M,w> s.t. M(w) halts with x on tape.

How to code <M,w>?
Assume w in {0,1}* and we have a binary

encoding of M

KOLMOGOROV COMPLEXITY

Theorem: There is a fixed c so that for all x in {0,1}*,
K(x) ≤ |x| + c

Proof: Define M = “On input w, halt.”
On any string x, M(x) halts with x on its tape!
This implies

K(x) ≤ |<M,x>| ≤ 2|M| + |x| + 1 ≤ |x| + c
(Note: M is fixed for all x. So |M| is constant)

 “The amount of information in x isn’t much more than |
x|”

INCOMPRESSIBLE STRINGS

“There are incompressible strings of every length”

Theorem: For all n, there is an x ∈ {0,1}n such that
K(x) ≥ n

Proof: (Number of binary strings of length n) = 2n
 (Number of descriptions of length < n)
 ≤ (Number of binary strings of length < n)
 = 2n – 1.

Therefore: there’s at least one n-bit string that
doesn’t have a description of length < n

INCOMPRESSIBLE STRINGS

“Most strings are fairly incompressible”

Theorem: For all n and c,
Prx ∈ {0,1}^n[K(x) ≥ n-c] ≥ 1 – 1/2c

Proof: (Number of binary strings of length n) = 2n
 (Number of descriptions of length < n-c)
 ≤ (Number of binary strings of length < n-c)
 = 2n-c – 1.

So the probability that a random x has K(x) < n-c
is at most (2n-c – 1)/2n < 1/2c.

DETERMINING COMPRESSIBILITY

Theorem: COMPRESS is undecidable!
COMPRESS = {(x,n) | K(x) ≤ n}

Proof:
M = “On input x ∈ {0,1}*, let x’ = 1x
 Interpret x’ as integer n. (|x’| ≤ log n)
 Find first y ∈ {0,1}* in lexicographical order,
 s.t. (y,n) ∉ COMPRESS, then print y and halt.”

M(x) prints the first string y* with K(y*) > n.
Thus <M,x> describes y*, and |<M,x>| ≤ c + log n
So n < K(y*) ≤ c + log n. CONTRADICTION!

DETERMINING COMPRESSIBILITY

Theorem: K is not computable

Proof:
M = “On input x ∈ {0,1}*, let x’ = 1x
 Interpret x’ as integer n. (|x’| ≤ log n)
 Find first y ∈ {0,1}* in lexicographical order,
 s. t. K(y) > n , then print y and halt.”

M(x) prints the first string y* with K(y*) > n.
Thus <M,x> describes y*, and |<M,x>| ≤ c + log n
So n < K(y*) ≤ c + log n. CONTRADICTION!

TIME COMPLEXITY AND
POLYNOMIAL TIME;

NON DETERMINISTIC TURING
MACHINES AND NP

 THURSDAY Mar 20

COMPLEXITY THEORY
Studies what can and can’t be computed under

limited resources such as time, space, etc

Today: Time complexity

MEASURING TIME COMPLEXITY
We measure time complexity by counting the
elementary steps required for a machine to halt

Consider the language A = { 0k1k | k ≥ 0 }

1. Scan across the tape and reject if the
string is not of the form 0i1j

2. Repeat the following if both 0s and 1s
remain on the tape:
 Scan across the tape, crossing off a
 single 0 and a single 1

3. If 0s remain after all 1s have been crossed
off, or vice-versa, reject. Otherwise accept.~n

~n2

~n

On input of length n:

Definition:

Suppose M is a TM that halts on all inputs.

The running time or time-complexity of M is
the function f : N → N, where f(n) is the
maximum number of steps that M uses on
any input of length n.

ASYMPTOTIC ANALYSIS
5n3 + 2n2 + 22n + 6 = O(n3)

Let f and g be two functions f, g : N → R+. We say
that f(n) = O(g(n)) if there exist positive integers c
and n0 so that for every integer n ≥ n0

f(n) ≤ cg(n)
When f(n) = O(g(n)), we say that g(n) is an
asymptotic upper bound for f(n)

BIG-O

5n3 + 2n2 + 22n + 6 = O(n3)
If c = 6 and n0 = 10, then 5n3 + 2n2 + 22n + 6 ≤ cn3

f asymptotically NO MORE THAN g

3nlog2 n + 5n log2log2 n

2n4.1 + 200283n4 + 2

nlog10 n78

= O(n4.1)

= O(nlog2 n)

= O(nlog10 n)

log10 n = log2 n / log2 10
O(nlog10 n) = O(nlog2 n) = O(nlog n)

Definition: TIME(t(n)) = { L | L is a language
decided by a O(t(n)) time Turing Machine }

A = { 0k1k | k ≥ 0 } ∈ TIME(n2)

A = { 0k1k | k ≥ 0 } ∈ TIME(nlog n)
Cross off every other 0 and every other 1. If the #
of 0s and 1s left on the tape is odd, reject

00000000000001111111111111
x0x0x0x0x0x0xx1x1x1x1x1x1x
xxx0xxx0xxx0xxxx1xxx1xxx1x
xxxxxxx0xxxxxxxxxxxx1xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

We can prove that a TM cannot decide
A in less time than O(nlog n)

*7.49 Extra Credit. Let f(n) = o(nlogn). Then
Time(f(n)) contains only regular languages.

where f(n) = o(g(n)) iff limn->∞ f(n)/g(n) = 0

ie, for all c >0, ∃ n0 such that f(n) < cg(n) for all n ≥n0

f asymptotically LESS THAN g

Can A = { 0k1k | k ≥ 0 } be decided in time
O(n) with a two-tape TM?

Scan all 0s and copy them to the second
tape. Scan all 1s, crossing off a 0 from
the second tape for each 1.

Different models of computation
yield different running times for

the same language!

Theorem: Let t(n) be a function such that t(n) ≥ n.
Then every t(n)-time multi-tape TM has an
equivalent O(t(n)2) single tape TM

Claim: Simulating each step in the multi-
tape machine uses at most O(t(n)) steps
on a single-tape machine.
Hence total time of simulation is O(t(n)2) .

MULTITAPE TURING MACHINES

δ : Q × Γk
 → Q × Γk × {L,R}k

FINITE
STATE
CONTROL

δ : Q × Γk
 → Q × Γk × {L,R}k

FINITE
STATE
CONTROL

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE
CONTROL

0 01

FINITE
STATE
CONTROL 0 01 # # #. . .

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE
CONTROL

0 01

FINITE
STATE
CONTROL 0 01 # # #. . .

Analysis: (Note, k, the # of tapes, is fixed.)

Let S be simulator
• Put S’s tape in proper format: O(n) steps
• Two scans to simulate one step,
 1. to obtain info for next move O(t(n)) steps, why?
 2. to simulate it (may need to shift everything
 over to right possibly k times): O(t(n)) steps, why?

P = TIME(nk)∪
k ∈ N

NON-DETERMINISTIC
TURING MACHINES AND NP

0 → 0, R

read write move

 → , R

qaccept

qreject

0 → 0, R

 → , R

0 → 0, R

Definition: A Non-Deterministic TM is a 7-tuple
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:

Q is a finite set of states

Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where ∉ Σ

δ : Q × Γ → 2(Q × Γ × {L,R})

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept

NON-DETERMINISTIC TMs
…are just like standard TMs, except:

1. The machine may proceed according to
several possibilities

2. The machine accepts a string if there
exists a path from start configuration to an
accepting configuration

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Definition: Let M be a NTM that is a decider (Ie all branches halt
on all inputs).
The running time or time-complexity of M is the function f : N → N,
where f(n) is the maximum number of steps that M uses on any
branch of its computation on any input of length n.

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Theorem: Let t(n) be a function such that t(n) ≥ n. Then
every t(n)-time nondeterministic single-tape TM has an
equivalent 2O(t(n)) deterministic single tape TM

 { L | L is decided by a
O(t(n))-time non-deterministic Turing machine }
Definition: NTIME(t(n)) =

TIME(t(n)) ⊆ NTIME(t(n))

BOOLEAN FORMULAS

(¬x ∧ y) ∨ zφ =

logical
operations

variables

parentheses
A satisfying assignment is a setting of the
variables that makes the formula true

x = 1, y = 1, z = 1 is a satisfying assignment for φ

¬(x ∨ y) ∧ (z ∧ ¬x)
0 0 1 0

SAT = { φ | φ is a satisfiable Boolean formula }

A Boolean formula is satisfiable if there
exists a satisfying assignment for it

¬(x ∨ y) ∧ x

a ∧ b ∧ c ∧ ¬dYES

NO

A 3cnf-formula is of the form:
(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

clauses

(x1 ∨ ¬x2 ∨ x1)

(x3 ∨ x1) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

(x1 ∨ x2 ∨ x3) ∧ (¬x4 ∨ x2 ∨ x1) ∨ (x3 ∨ x1 ∨ ¬x1)

(x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∧ ¬x2 ∧ ¬x1)

YES

NO

NO

NO

3SAT = { φ | φ is a satisfiable 3cnf-formula }

literals

Theorem: 3SAT ∈ NTIME(n2)
3SAT = { φ | φ is a satisfiable 3cnf-formula }

1. Check if the formula is in 3cnf
On input φ:

2. For each variable, non-deterministically
substitute it with 0 or 1

3. Test if the assignment satisfies φ

(x ∨ y¬ ∨ x)

(∨ y¬ ∨)0 0 (∨ y¬ ∨)1 1

(∨ ¬ ∨)0 00 (∨ ¬ ∨)0 1 0

NP = NTIME(nk)∪
k ∈ N

Theorem: L ∈ NP ⇔ if there exists a poly-time
Turing machine V(erifier) with

L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts }

Proof:

(1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }
 then L ∈ NP

Because we can guess y and then run V

(2) If L ∈ NP then
 L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }

Let N be a non-deterministic poly-time TM that
decides L and define V(x,y) to accept if y is an
accepting computation history of N on x

3SAT = { φ | ∃y such that y is a satisfying
assignment to φ and φ is in 3cnf }

SAT = { φ | ∃y such that y is a satisfying
assignment to φ }

A language is in NP if and only if there
exist polynomial-length certificates*

for membership to the language

SAT is in NP because a satisfying
assignment is a polynomial-length

certificate that a formula is satisfiable

* that can be verified in poly-time

HAMILTONIAN PATHS

b

a

e

c

d

f

hi

g

HAMPATH = { (G,s,t) | G is a directed graph
with a Hamiltonian path from s to t }

Theorem: HAMPATH ∈ NP

The Hamilton path itself is a certificate

K-CLIQUES

b

a

e

c

d f

g

CLIQUE = { (G,k) | G is an undirected graph
with a k-clique }

Theorem: CLIQUE ∈ NP

The k-clique itself is a certificate

NP = all the problems for which once
you have the answer it is easy (i.e.
efficient) to verify

P = NP?
$$$
$$$

POLY-TIME REDUCIBILITY
f : Σ* → Σ* is a polynomial time computable
function

Language A is polynomial time reducible to
language B, written A ≤P B, if there is a poly-
time computable function f : Σ* → Σ* such that:

w ∈ A ⇔ f(w) ∈ B

f is called a polynomial time reduction of A to B

 if some poly-time Turing machine M, on
every input w, halts with just f(w) on its tape

A B
f

f

Theorem: If A ≤P B and B ∈ P, then A ∈ P

Proof: Let MB be a poly-time (deterministic)
TM that decides B and let f be a poly-time
reduction from A to B

We build a machine MA that decides A as follows:

On input w:

1. Compute f(w)

2. Run MB on f(w)

Definition: A language B is NP-complete if:

1. B ∈ NP
2. Every A in NP is poly-time reducible to B
(i.e. B is NP-hard)

Suppose B is NP-Complete

P
NP

B

So, if B is NP-Complete and B ∈ P then NP = P. Why?

Theorem (Cook-Levin): SAT is NP-complete
Corollary: SAT ∈ P if and only if P = NP

WWW.FLAC.WS
Read Chapter 7.3 of the book for next time

NP-COMPLETENESS:
THE COOK-LEVIN THEOREM

Theorem (Cook-Levin.’71): SAT is NP-
complete

Corollary: SAT ∈ P if and only if P = NP

Steve CookLeonid Levin

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(1) SAT ∈ NP

(2) Every language A in NP is polynomial time
reducible to SAT

We build a poly-time reduction from A to SAT

Let N be a non-deterministic TM that decides
A in time nk How do we know N exists?

The reduction turns a string w into a 3-cnf
formula φ such that w ∈ A iff φ ∈ 3-SAT.
φ will simulate the NP machine N for A on w.

So proof will also show:
3-SAT is NP-Complete

P
NP

3-SAT

A 3SAT
f

f

The reduction f turns a string w into a 3-cnf formula φ
such that: w ∈ A ⇔ φ ∈ 3SAT.

φ will “simulate” the NP machine N for A on w.

w φ

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

nk

exp(nk)

Suppose A ∈ NTIME(nk) and let N be an NP machine for A.
A tableau for N on w is an nk × nk table whose rows are the
configurations of some possible computation of N on input
w.

q0 w1 wnw2# #… …

#

#

nk

nk

A tableau is accepting if any row of the tableau
is an accepting configuration

Determining whether N accepts w is equivalent
to determining whether there is an accepting
tableau for N on w

Given w, our 3cnf-formula φ will describe a
generic tableau for N on w (in fact, essentially
generic for N on any string w of length n).

The 3cnf formula φ will be satisfiable if and only
if there is an accepting tableau for N on w.

Let C = Q ∪ Γ ∪ { # }

For each i and j (1 ≤ i, j ≤ nk) and for each s ∈ C
we have a variable xi,j,s

VARIABLES of φ

Each of the (nk)2 entries of a tableau is a cell

cell[i,j] = the cell at row i and column j

These are the variables of φ and represent the
contents of the cells

We will have: xi,j,s = 1 ⬄ cell[i,j] = s

variables = |C|n2k, ie O(n2k), since |C| only depends on N

xi,j,s = 1

means

cell[i, j] = s

φaccept ensures* that an accepting configuration
occurs somewhere in the table

We now design φ so that a satisfying assignment
to the variables xi,j,s corresponds to an accepting
tableau for N on w
The formula φ will be the AND of four parts:
φ = φcell ∧ φstart ∧ φaccept ∧ φmove

φcell ensures that for each i,j, exactly one xi,j,s = 1
φstart ensures that the first row of the table is the
starting (initial) configuration of N on w

φmove ensures* that every row is a configuration
that legally follows from the previous config
*if the other components of φ hold

∧

1 ≤ i, j ≤ nk s ∈ C
xi,j,s (¬xi,j,s ∨ ¬xi,j,t)φcell =

s,t ∈ C
s ≠ t

at least one
variable is
turned on

at most one
variable is
turned on

φcell ensures that for each i,j, exactly one xi,j,s =
1

φstart = x1,1,# ∧ x1,2,q ∧

 x1,3,w ∧ x1,4,w ∧ … ∧ x1,n+2,w ∧

 x1,n+3, ∧ … ∧ x1,n -1, ∧ x1,n ,#

0

1 2 n

k k

q0 w1 wnw2# #… …

#

#

φaccept =
1 ≤ i, j ≤ nk

xi,j,qaccept

φaccept ensures that an accepting
configuration occurs somewhere in the table

φmove ensures that every row is a configuration
that legally follows from the previous
It works by ensuring that each 2 × 3 “window”
of cells is legal (does not violate N’s rules)

q0 w1 wnw2# #… …

#

#

If δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2,c,L), (q2,a,R)}
Which of the following windows are legal:

a q1 b

q2 a c

b a

b a

a b a

a a a

a q1 b

a a q2

a b a

a b q2

a a q1

a a b

b b b

c b b

a q1 b

q1 a a

b q1 b

q2 b 2

If δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2,c,L), (q2,a,R)}
Which of the following windows are legal:

a q1 b

q2 a c

b a

b a

a b a

a a a

a q1 b

a a q2

a b a

a b q2

a a q1

a a b

b b b

c b b

a q1 b

q1 a a

b q1 b

q2 b q2

CLAIM:
If

• the top row of the tableau is the start configuration,
and
• and every window is legal,

Then  
each row of the tableau is a configuration that legally
follows the preceding one.

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not
adjacent to a state symbol
Case 2. center cell of window is a state symbol

s

CLAIM:
If

• the top row of the tableau is the start configuration,
and
• and every window is legal,

Then  
each row of the tableau is a configuration that legally
follows the preceding one.

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not
adjacent to a state symbol

a
a

CLAIM:
If

• the top row of the tableau is the start configuration,
and
• and every window is legal,

Then  
each row of the tableau is a configuration that legally
follows the preceding one.

CLAIM:
If

• the top row of the tableau is the start configuration,
and
• and every window is legal,

Then  
each row of the tableau is a configuration that legally
follows the preceding one.

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not
adjacent to a state symbol
Case 2. center cell of window is a state symbol

a q
a ok ok ok

q0 w1 wnw2# #… …

#

#

ok

o
k
k

ok

w3 w4

w2 w3 w4

q0 w1 wnw2# #… …

#

#

ok

o
k
k

ok

w3 w4

w2 w3 w4

q0 w1 wnw2# #… …

#

#

ok

o
k
k

ok

w3 w4

w2 w3 w4

a1 q ana2# #… …

#

#

ok

o
k
k

ok

a3 a4

a3 a4ok

a5

a5

a1 q ana2# #… …

#

#

ok

o
k
k

ok

a3 a4

a3 a4ok

a5

a5

a1 q ana2# #… …

#

#

ok

o
k
k

ok

a3 a4

a3 a4ok

a5

a5

So the lower configuration follows from the
upper!!!

(i,j-1)
a1

(i,j)
a2

(i,j+1)
a3

(i+1,j-1)
a4

(i+1,j)
a5

(i+1,j+ 1)
a6

row i

row i+1

col. j-1 col. j col. j+1

The (i,j) Window

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6) legal sequences (a1, …,
a6).

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6) legal sequences (a1, …,
a6). This disjunct is satisfiable
⬄
There is some assignment to the cells (ie variables) in
the window (i,j) that makes the window legal

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6) legal sequences (a1, …,
a6). So φmove is satisfiable
⬄
There is some assignment to each of the variables that
makes every window legal.

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

a1, …, a6
ISN’T a legal window

1 2 3 4 5 6
≡ (i,j-1,a ∨ i,j,a ∨ i,j,+1,a ∨ i+1,j-1,a ∨ i+1,j,a ∨ +1,j

+1,a)

This is a conjunct over all (≤ |C|6) illegal sequences (a1, …, a6).

This is a disjunct over all (≤ |C|6) legal sequences (a1, …,
a6).

Can re-write as equivalent conjunct:

φ is satisfiable (ie, there is some assignment to each of
the varialbes s.t. φ evaluates to 1)
⬄
there is some assignment to each of the variables s.t.
 φcell and φstart and φaccept and φmove each evaluates to 1
⬄
There is some assignment of symbols to cells in the
tableau such that:
• The first row of the tableau is a start configuration and
• Every row of the tableau is a configuration that follows

from the preceding by the rules of N and
• One row is an accepting configuration
 ⬄
There is some accepting computation for N with input w

φ = φcell ∧ φstart ∧ φaccept ∧ φmove

3-SAT?
How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3
literals

3-SAT?
How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3
literals

 a ≡ (a ∨ a ∨ a), (a ∨ b) ≡ (a ∨ b ∨ b)
If a clause has less than three variables:

3-SAT?
How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3
literals

 a ≡ (a ∨ a ∨ a), (a ∨ b) ≡ (a ∨ b ∨ b)
If a clause has less than three variables:

(a ∨ b ∨ c ∨ d) ≡(a ∨ b ∨ z) ∧ (¬z ∨ c ∨ d)
If a clause has more than three variables:

(a1 ∨ a2 ∨ … ∨ at) ≡
(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧ (¬z2 ∨ a4 ∨ z3) …

WHAT’S THE LENGTH OF φ?

φ = φcell ∧ φstart ∧ φaccept ∧ φmove

∧

1 ≤ i, j ≤ nk s ∈ C
xi,j,s (¬xi,j,s ∨ ¬xi,j,t)φcell =

s,t ∈ C
s ≠ t

(a ∨ b) = (a ∨ b ∨ b)
If a clause has less than three variables:

∧

1 ≤ i, j ≤ nk s ∈ C
xi,j,s (¬xi,j,s ∨ ¬xi,j,t)φcell =

s,t ∈ C
s ≠ t

O(n2k) clauses
Length(φcell) = O(n2k) O(log (n)) = O(n2k log n)

length(indices)

φstart = x1,1,# ∧ x1,2,q ∧

 x1,3,w ∧ x1,4,w ∧ … ∧ x1,n+2,w ∧

 x1,n+3, ∧ … ∧ x1,n -1, ∧ x1,n ,#

0

1 2 n

k k

k k k

0 0 0

 = (x1,1,# ∨ x1,1,# ∨ x1,1,#) ∧

 (x1,2,q ∨ x1,2,q ∨ x1,2,q)

∧ … ∧

 (x1,n ,# ∨ x1,n ,# ∨ x1,n ,#)

O(nk)

k

φstart = x1,1,# ∧ x1,2,q ∧

 x1,3,w ∧ x1,4,w ∧ … ∧ x1,n+2,w ∧

 x1,n+3, ∧ … ∧ x1,n -1, ∧ x1,n ,#

0

1 2 n

k k

φaccept =
1 ≤ i, j ≤ nk

xi,j,qaccept

(a1 ∨ a2 ∨ … ∨ at) =
(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧ (¬z2 ∨ a4 ∨ z3) …

φaccept =
1 ≤ i, j ≤ nk

xi,j,qaccept

O(n2k)

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

O(n2k)

a1, …, a6
ISN’T a legal window

 (xi,j-1,a ∨ xi,j,a ∨ xi,j,+1,a ∨ xi+1,j-1,a ∨ xi+1,j,a ∨ xi+1,j+1,a) 1 2 3 4 5 6
- - - - - -

the (i, j) window is legal =

This is a conjunct over all (≤ |C|6) illegal sequences (a1, …,
a6).

Theorem (Cook-Levin): 3-SAT is NP-
complete

Corollary: 3-SAT ∈ P if and only if P = NP

