Machines

DFAs

NFAs

Syntactic Rules

Regular Expressions

PDAs Context-Free Grammars

deterministic DFA A ^ finite automaton ^ is a 5-tuple M = (Q, Σ , δ , q_0 , F) **Q** is the set of states (finite) **\Sigma** is the alphabet (finite) $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ is the transition function $q_0 \in Q$ is the start state $F \subseteq Q$ is the set of accept states Let $w_1, \ldots, w_n \in \Sigma$ and $w = w_1 \ldots w_n \in \Sigma^*$ Then M accepts w if there are r_0 , r_1 , ..., $r_n \in Q$, s.t. 1. $r_0 = q_0$ 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and $\overline{3}$. $r_n \in F$

- Let $w \in \Sigma^*$ and suppose w can be written as $w_1 \dots w_n$ where $w_i \in \Sigma_{\epsilon}$ (ϵ = empty string)
- Then N accepts w if there are r₀, r₁, ..., r_n ∈ Q such that
- 1. $r_0 \in Q_0$ 2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for i = 0, ..., n-1, and 3. $r_n \in F$

L(N) = the language recognized by N = set of all strings machine N accepts

A language L is recognized by an NFA N if L = L(N). Let $w \in \Sigma^*$ and suppose w can be written as $w_1 \dots w_n$ where $w_i \in \Sigma_{\varepsilon}$ (recall $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$) Then P accepts w if there are $r_0, r_1, \dots, r_n \in Q$ and $s_0, s_1, \dots, s_n \in \Gamma^*$ (sequence of stacks) such that

1. $\mathbf{r_0} = \mathbf{q_0}$ and $\mathbf{s_0} = \boldsymbol{\epsilon}$ (P starts in $\mathbf{q_0}$ with empty stack)

2. For i = 0, ..., n-1: $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at and s_{i+1} = bt$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^*$

(P moves correctly according to state, stack and symbol read)

3. $\mathbf{r_n} \in \mathbf{F}$ (**P** is in an accept state at the end of its input)

THEOREM

For every regular language L, there exists a UNIQUE (up to re-labeling of the states) minimal DFA M such that L = L(M)

EXTENDING δ

Given DFA M = (Q, Σ , δ , q_0 , F), extend δ to $\stackrel{\wedge}{\delta}$: Q × $\Sigma^* \rightarrow$ Q as follows:

$$\begin{split} \delta(\mathbf{q}, \varepsilon) &= \mathbf{q} \\ \delta(\mathbf{q}, \sigma) &= \delta(\mathbf{q}, \sigma) \\ \delta(\mathbf{q}, \mathbf{w}_1 \dots \mathbf{w}_{k+1}) &= \delta(\delta(\mathbf{q}, \mathbf{w}_1 \dots \mathbf{w}_k), \mathbf{w}_{k+1}) \\ & \text{Note: } \delta(\mathbf{q}_0, \mathbf{w}) \in \mathbf{F} \iff \mathbf{M} \text{ accepts } \mathbf{w} \end{split}$$

String $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly ONE of $\hat{\delta}(q_1, w)$, $\hat{\delta}(q_2, w)$ is a final state

Fix M = (Q, Σ , δ , q_0 , F) and let p, q, r \in Q **Definition:** p ~ q iff p is indistinguishable from q p + q iff p is distinguishable from q **Proposition:** ~ is an equivalence relation $p \sim p$ (reflexive) $p \sim q \Rightarrow q \sim p$ (symmetric) $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into disjoint equivalence classes

[q] = { p | p ~ q }

TABLE-FILLING ALGORITHM Input: DFA M = (Q, Σ , δ , q_0 , F) Output: (1) D_M = { (p,q) | p,q \in Q and p \neq q } (2) E_M = { [q] | q \in Q }

q₀ **Base Case:** p accepts **q**₁ and q rejects \Rightarrow p γ q **Recursion:** if there is $\sigma \in \Sigma$ and states p', q' satisfying δ (p, σ) = p' $\star \Rightarrow p \star q$ q_n δ (q, σ) = q' q_n $q_0 q_1$

Repeat until no more new D's

CONVERTING NFAs TO DFAs Input: NFA N = (Q, Σ , δ , Q₀, F) Output: DFA M = (Q', Σ , δ' , q₀', F')

> $Q' = 2^{Q}$ $\delta' : Q' \times \Sigma \rightarrow Q'$ $\delta'(R,\sigma) = \bigcup \varepsilon (\delta(r,\sigma)) *$ $r \in R$ $q_{0}' = \varepsilon(Q_{0})$ $F' = \{ R \in Q' \mid f \in R \text{ for some } f \in F \}$

For $\mathbf{R} \subseteq \mathbf{Q}$, the $\boldsymbol{\epsilon}$ -closure of \mathbf{R} , $\boldsymbol{\epsilon}(\mathbf{R}) = \{\mathbf{q} \text{ that can be reached from some r } \in \mathbf{R} \text{ by traveling along zero or more } \boldsymbol{\epsilon} \text{ arrows} \}$

THE REGULAR OPERATIONS Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$ Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$ Negation: $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$ Reverse: $A^R = \{ w_1 \dots w_k \mid w_k \dots w_1 \in A \}$ **Concatenation:** $\mathbf{A} \cdot \mathbf{B} = \{ vw \mid v \in \mathbf{A} \text{ and } w \in \mathbf{B} \}$ Star: $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$

REGULAR EXPRESSIONS

σ is a regexp representing {σ}

ε is a regexp representing {ε}

 \varnothing is a regexp representing \varnothing

If R_1 and R_2 are regular expressions representing L_1 and L_2 then: (R_1R_2) represents $L_1 \cdot L_2$ $(R_1 \cup R_2)$ represents $L_1 \cup L_2$ $(R_1)^*$ represents L_1^*

EQUIVALENCE

L can be represented by a regexp ⇔ L is a regular language

$\mathsf{R}(\mathsf{q}_0,\mathsf{q}_3)=(\mathsf{a}^*\mathsf{b})(\mathsf{a}\cup\mathsf{b})^*$

How can we test if two regular expressions are the same?

CONTEXT-FREE LANGUAGES A context-free grammar (CFG) is a tuple

- **G** = (V, Σ, R, S), where:
 - V is a finite set of variables
 - **Σ** is a finite set of terminals (disjoint from V)
 - **R** is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$
 - $\mathbf{S} \in \mathbf{V}$ is the start variable

L(G) = {w $\in \Sigma^* | S \Rightarrow^* w$ } Strings Generated by G

A Language L is context-free if there is a CFG that generates precisely the strings in L

CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal form if every rule is of the form:

- $A \rightarrow BC$ B and C aren't start variables
- $A \rightarrow a$ a is a terminal
- $\mathbf{S} \rightarrow \mathbf{\epsilon}$ S is the start variable

Any variable A that is not the start variable can only generate strings of length > 0 Theorem: Any context-free language can be generated by a context-free grammar in Chomsky normal form

Theorem: If G is in CNF, $w \in L(G)$ and |w| > 0, then any derivation of w in G has length 2|w| - 1

Theorem: There is an O(n^3 + size G) membership algorithm (CYK) any Chomsky normal form G.

Theorem: The set of PDAS that accept all strings is not r.e.

Definition: A (non-deterministic) PDA is a tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where:

- **Q** is a finite set of states
- **\Sigma** is the input alphabet
- **I** is the stack alphabet
- $\delta: \mathbf{Q} \times \mathbf{\Sigma}_{\epsilon} \times \mathbf{\Gamma}_{\epsilon} \to \mathbf{2}^{\mathbf{Q} \times \mathbf{\Gamma}_{\epsilon}}$
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states
- 2^{Q} is the set of subsets of Q and $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$

A Language L is generated by a CFG ⇔ L is recognized by a PDA

THE PUMPING LEMMA (for Context Free Grammars) Let L be a context-free language with $|L| = \infty$ Then there is an integer P such that $f w \in L and |w| \geq P$ then can write w = uvxyz, where: 1. |vy| > 0 2. |vxy| ≤ P R 3. $uv^ixy^iz \in L$, D for any $i \ge 0$ Ζ Х

TURING MACHINE

INFINITE TAPE

Definition: A Turing Machine is a 7-tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:

Q is a finite set of states

- **Σ** is the input alphabet, where $\Box \notin \Sigma$
- Γ is the tape alphabet, where $\hfill \subseteq \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta: \mathbf{Q} \times \mathbf{\Gamma} \to \mathbf{Q} \times \mathbf{\Gamma} \times \{\mathbf{L}, \, \mathbf{R}\}$
- $q_0 \in Q$ is the start state
- $\mathbf{q}_{accept} \in \mathbf{Q}$ is the accept state

 $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$

configurations 11010q700110

corresponds to:

A Turing Machine M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that

1. C_1 is a *start* configuration of M on input w, ie

C_1 is $q_0 w$

 each C_i yields C_{i+1}, ie M can legally go from C_i to C_{i+1} in a single step

ua q_i bvyieldsu q_j acvif $\delta(q_i, b) = (q_j, c, L)$ ua qi bvyieldsuac q_j vif $\delta(q_i, b) = (q_j, c, R)$

A Turing Machine M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that

1. C_1 is a *start* configuration of M on input w, ie

C_1 is q_0 w

- 2. each C_i yields C_{i+1} , ie M can legally go from C_i to C_{i+1} in a single step
- 3. C_k is an accepting configuration, ie the state of the configuration is q_{accept}

A Turing Machine M *rejects* input w if there is a sequence of configurations C_1, \ldots, C_k such that

1. C_1 is a *start* configuration of M on input w, ie

C_1 is $q_0 w$

- 2. each C_i yields C_{i+1} , ie M can legally go from C_i to C_{i+1} in a single step
- 3. C_k is a *rejecting* configuration, ie the state of the configuration is q_{reject}

A TM decides a language if it accepts all strings in the language and rejects all strings not in the language

A language is called decidable or recursive if some TM decides it

Theorem: L decidable <-> ¬L decidable Proof: L has a machine M that accepts or rejects on all inputs. Define M' to be M with accept and reject states swapped. M' decides ¬L. A TM recognizes a language if it accepts all and only those strings in the language

A language is called Turing-recognizable or recursively enumerable, (or r.e. or semidecidable) if some TM recognizes it

A TM decides a language if it accepts all strings in the language and rejects all strings not in the language

A language is called decidable or recursive if some TM decides it

A TM recognizes a language if it accepts all and only those strings in the language

A language is called Turing-recognizable or recursively enumerable, (or r.e. or semidecidable) if some TM recognizes it

FALSE: L r.e. <-> ¬L r.e.

Proof: L has a machine M that accepts or rejects on all inputs. Define M' to be M with accept and reject states swapped. M' decides ¬L.

A language is called Turing-recognizable or recursively enumerable (r.e.) or semidecidable if some TM recognizes it

A language is called decidable or recursive if some TM decides it

r.e. recursive languages

Theorem: If A and ¬A are r.e. then A is recursive

Theorem: If A and ¬A are r.e. then A is recursive

Suppose M accepts A. M' accepts ¬A decidable Use Odd squares/ Even squares simulation of M and M'. If x is accepted by the even squares reject it/ accepted by the odd squares then accept x.

Outputs a sequence of strings separated by hash marks. Allows for a well defined infinite sequence of strings in the limit. The machine is said to enumerate the sequence of strings occurring on the

Outputs a sequence of strings separated by hash marks. Allows for a well defined infinite sequence of strings in the limit. The machine is said to enumerate the set of strings occurring on the tape. From every TM M accepting A. there is a TM M' outputting A.

For n = 0 to forever do { {Do n parallel simulations of M for n steps for the first n inputs} M(0). M(1), M(2), M(3).. }
From every TM M outputting A. there is a TM M' accepting A.

M"(X) run M, accept if X output on tape.

Let Z⁺ = {1,2,3,4...}. There exists a bijection between Z⁺ and Z⁺ × Z⁺ (or Q⁺)

Lex-order has an enumerator strings of length 1, the length 2,

Pairs of binary strings have a lex-order enumerator

for each n>0 list all pairs of strings a,b as #a#b# where total length of a and b is n.

Let BINARY(w) = pair of binary strings be any fixed way of encoding a pair of binary strings with a single binary string

THE ACCEPTANCE PROBLEM A_{TM} = { (M, w) | M is a TM that accepts string w }

- **Theorem:** A_{TM} is semi-decidable (r.e.)
- but **NOT** decidable
- A_{TM} is r.e. :
- Define a TM U as follows:
- On input (M, w), U runs M on w. If M ever accepts, accept. If M ever rejects, reject.

NB. When we write "input (M, w)" we really mean "input code for (code for M, w)"

MULTITAPE TURING MACHINES

$\delta : \mathbf{Q} \times \mathbf{\Gamma^{k}} \rightarrow \mathbf{Q} \times \mathbf{\Gamma^{k}} \times \{\mathbf{L},\mathbf{R}\}^{k}$

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

We can encode a TM as a string of 0s and 1s start reject n states state state 0ⁿ10^m10^k10^s10^t10^r10^u1... m tape symbols blank accept (first k are input symbol state symbols) $((p, a), (q, b, L)) = 0^{p}10^{a}10^{q}10^{b}10^{c}$

((p, a), (q, b, R)) = 0^p10^a10^q10^b11

UNDECIDABLE PROBLEMS THURSDAY Feb 13

There are languages over {0,1} that are not decidable

Let L be any set and 2^L be the power set of L Theorem: There is no onto map from L to 2^L

Proof:Assume, for a contradiction, that there is an onto map $f : L \rightarrow 2^{L}$

Let $S = \{x \in J \mid x \notin I(x)\}$ If S = f(y) then $y \in S$ if and only if $y \notin S$

Can give a more constructive argument!

Theorem: There is no onto function from the positive integers to the real numbers in (0, 1)

Proof: Suppose f is any function mapping the positive integers to the real numbers in (0,

──► 0.<u>2</u>8347279… **2** → 0.8<u>3</u>388384... **3 →** 0.77<u>6</u>35284... 4 **→** 0.11111111... **5 ___ 0.12345**678... $[n-\text{th digit of } r] = \begin{cases} 1\\2 \end{cases}$ if [n-th digit of f(n)] ≠ 1 otherwise $f(n) \neq r$ for all n (Here, r = 11121...)

THE MORAL: No matter what L is, 2^L always has more elements than L

Not all languages over {0,1} are decidable, in fact: not all languages over {0,1} are semi-decidable

THE ACCEPTANCE PROBLEM A_{TM} = { (M, w) | M is a TM that accepts string w }

- **Theorem:** A_{TM} is semi-decidable (r.e.)
- but **NOT** decidable
- A_{TM} is r.e. :
- Define a TM U as follows:

On input (M, w), U runs M on w. If M ever accepts, accept. If M ever rejects, reject.

NB. When we write "input (M, w)" we really mean "input code for (code for M, w)"

THE ACCEPTANCE PROBLEM A_{TM} = { (M, w) | M is a TM that accepts string w }

- **Theorem:** A_{TM} is semi-decidable (r.e.)
- but **NOT** decidable
- A_{TM} is r.e. :
- Define a TM U as follows:

U is a *universal TM*

On input (M, w), U runs M on w. If M ever accepts, accept. If M ever rejects, reject.

Therefore, U accepts (M,w) \Leftrightarrow M accepts w \Leftrightarrow (M,w) \in A_{TM} Therefore, U recognizes A_{TM} $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } W \}$ A_{TM} is undecidable: (proof by contradiction) Assume machine H decides A_{TM}

Construct a new TM D as follows: on input M, run H on (M,M) and output the opposite of H

OUTPUT OF H

M ₁	M ₂	M_3	M ₄	D
accept	accept	accept	reject	accept
reject	accept	reject	reject	reject
accept	reject	reject	accept	accept
accept	reject	reject	reject	accept
reject	reject	accept	accept	?
	M ₁ accept accept accept accept	M1M2acceptacceptrejectacceptacceptrejectacceptrejectrejectreject	M1M2M3acceptacceptacceptrejectacceptrejectacceptrejectrejectacceptrejectrejectacceptrejectaccept	M1M2M3M4acceptacceptacceptrejectrejectacceptrejectrejectacceptrejectrejectacceptacceptrejectrejectrejectrejectrejectrejectreject

Theorem: A_{TM} is r.e. but NOT decidable

Cor: ¬**A**_{TM} is not even r.e.!

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $A_{TM} \text{ is undecidable: A constructive proof:}$ Let machine H semi-decides A_{TM} (Such \exists , why?) $H((M,w)) = \begin{cases} Accept & \text{if } M \text{ accepts } w \\ Reject \text{ or } No \text{ output if } M \text{ does not accept } w \end{cases}$

Construct a new TM D as follows: on input M, run H on (M,M) and output

D(D) = Reject if H(D, D) Accepts Accept if H(D, D) Rejects No output if H D, D) has No output H((D,D)) = No output No Contradictions !

We have shown:

Given any machine H for semi-deciding A_{TM} , we can effectively construct a TM D such that $(D,D) \notin A_{TM}$ but H fails to tell us that.

That is, H fails to be a decider on instance (D,D).

In other words,

Given any "good" candidate for deciding the *Acceptance Problem*, we can effectively construct an instance where the candidate fails.

THE classical HALTING PROBLEM HALT_{TM} = { (M,w) | M is a TM that halts on string w }

- **Theorem:** $HALT_{TM}$ is undecidable
- **Proof:** Assume, for a contradiction, that TM H decides $HALT_{TM}$
- We use H to construct a TM D that decides A_{TM}
- On input (M,w), D runs H on (M,w):
 - If H rejects then reject
 - If H accepts, run M on w until it halts:

Accept if M accepts, ie halts in an accept state Otherwise reject

MAPPING REDUCIBILITY

f: $\Sigma^* \rightarrow \Sigma^*$ is a computable function if some Turing machine M, on every input w, halts with just f(w) on its tape

A language A is *mapping reducible* to language B, written A \leq_m B, if there is a computable function f: $\Sigma^* \rightarrow \Sigma^*$, where for every w,

 $w \in A \Leftrightarrow f(w) \in B$ f is called a *reduction* from A to B Think of f as a "computable coding" A is mapping reducible to B, $A \leq_m B$, if there is a computable $f : \Sigma^* \to \Sigma^*$ such that $w \in A \Leftrightarrow f(w) \in B$

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Proof: Let M decide B and let f be a reduction from A to B

We build a machine N that decides A as follows:

On input w:

Compute f(w)
Run M on f(w)

Theorem: If $A \leq_m B$ and B is (semi) decidable, then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a reduction from A to B

We build a machine N that (semi) decides A as follows: On input w:

> 1. Compute f(w) 2. Run M on f(w)

RICE'S THEOREM

Let L be a language over Turing machines. Assume that L satisfies the following properties:

- 1. For TMs M_1 and M_2 , if $M_1 \equiv M_2$ then $M_1 \in L \Leftrightarrow M_2 \in L$
- 2. There are TMs M_1 and M_2 , such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

THE PCP GAME

THE ARITHMETIC HIERARCHY

ORACLE TMs Oracle for A_{TM} Is (M,w) in A_{TM}? **q**_? YES Ν Ρ U Т

ORACLE MACHINES

An ORACLE is a set B to which the TM may pose membership questions "Is w in B?" (formally: TM enters state q_2) and the TM always receives a correct answer in one step (formally: if the string on the "oracle tape" is in B, state q_2 is changed to q_{YES} , otherwise q_{NO})

This makes sense even if B is not decidable! (We do not assume that the oracle B is a computable set!) We say A is semi-decidable in B if there is an oracle TM M with oracle B that semi-decides A

We say A is decidable in B if there is an oracle TM M with oracle B that decides A

Language A "Turing Reduces" to Language B

if A is decidable in B, ie if there is an oracle TM M with oracle B that decides A

\leq_T **VERSUS** \leq_m Theorem: If $A \leq_m B$ then $A \leq_T B$ Proof:

If $A \leq_m B$ then there is a computable function f : $\Sigma^* \rightarrow \Sigma^*$, where for every w, w $\in A \Leftrightarrow f(w) \in B$

We can thus use an oracle for B to decide A

Theorem: $\neg AT_{TM} \leq_T AT_{TM}$ Theorem: $\neg AT_{TM} \leq_m AT_{TM}$ THE ARITHMETIC **HIERARCHY** $\Delta^{0} = \{ decidable sets \}$ (sets = languages)

 $\frac{\Delta 0}{1} = \{ \text{decidable sets} \}$ (sets = languages)

 $\sum_{1}^{0} = \{ \text{ semi-decidable sets } \}$

 $\Sigma_{n+1}^{0} = \{ \text{ sets semi-decidable in some } B \in \Sigma_{n}^{0} \}$

 $\frac{\Delta 0}{n+1} = \{ \text{ sets decidable in some } B \in \sum_{n=1}^{0} \}$

 $\prod_{n=1}^{n} \{\text{ complements of sets in } \sum_{n=1}^{n} \}$

- ∑⁰₁ = { semi-decidable sets }
 = languages of the form { x | ∃y R(x,y) }
- I 0
 1 = { complements of semi-decidable sets }
 = languages of the form { x | ∀y R(x,y) }
 - $\frac{\Delta 0}{1} = \{ \text{ decidable sets } \}$ $= \sum_{1}^{0} \cap \prod_{1}^{0} \prod_{1}^{0}$ Where R is a decidable predicate

- $\sum_{2}^{0} = \{ \text{ sets semi-decidable in some semi-dec. B} \}$ = languages of the form { x | $\exists y_1 \forall y_2 R(x,y_1,y_2) \}$
- $\Pi_{2}^{0} = \{ \text{ complements of } \sum_{2}^{0} \text{ sets} \} \\ = \text{ languages of the form } \{ \mathbf{x} \mid \forall \mathbf{y}_{1} \exists \mathbf{y}_{2} \ \mathsf{R}(\mathbf{x}, \mathbf{y}_{1}, \mathbf{y}_{2}) \}$
- $\Delta_2^0 = \sum_2^0 \cap \Pi_2^0$

Where R is a decidable predicate

 $\sum_{n=1}^{0} = \text{languages} \{ \mathbf{x} \mid \exists \mathbf{y}_{1} \forall \mathbf{y}_{2} \exists \mathbf{y}_{3} ... \mathbf{Q} \mathbf{y}_{n} \mathbf{R}(\mathbf{x}, \mathbf{y}_{1}, ..., \mathbf{y}_{n}) \}$

- $\prod_{n=1}^{n} = \text{languages} \{ \mathbf{x} \mid \forall \mathbf{y}_1 \exists \mathbf{y}_2 \forall \mathbf{y}_3 ... \mathbf{Q} \mathbf{y}_n \mathbf{R}(\mathbf{x}, \mathbf{y}_1, ..., \mathbf{y}_n) \}$
- $\begin{array}{c} \Delta \mathbf{0} \\ \mathbf{n} \end{array} = \begin{array}{c} \sum \mathbf{0} \\ \mathbf{n} \end{array} \cap \begin{array}{c} \Pi \mathbf{0} \\ \mathbf{n} \end{array}$

Where R is a decidable predicate

Example **Decidable predicate** \sum_{1}^{0} = languages of the form { x | $\exists y R(x,y)$ } We know that A_{TM} is in $\sum_{n=1}^{\infty} a_{n}$ Why? Show it can be described in this form: $A_{TM} = \{ \langle (M, w) \rangle \mid \exists t [M accepts w in t steps] \}$ decidable predicate $A_{TM} = \{ \langle (M, w) \rangle \mid \exists t T (\langle M \rangle, w, t \} \}$ $A_{TM} = \{ \langle (M, w) \rangle \mid \exists v (v \text{ is an accepting}) \}$ computation history of M on w}

Definition: A decidable predicate R(x,y) is some proposition about x and y¹, where there is a TM M such that

for all x, y, R(x,y) is TRUE \Rightarrow M(x,y) accepts R(x,y) is FALSE \Rightarrow M(x,y) rejects

We say M "decides" the predicate R.

EXAMPLES: R(x,y) = "x + y is less than 100" R(<N>,y) = "N halts on y in at most 100 steps" Kleene's T predicate, T(<M>, x, y): M accepts x in y steps

1. x, y are positive integers or elements of \sum^*

Definition: A decidable predicate R(x,y) is some proposition about x and y¹, where there is a TM M such that

for all x, y, R(x,y) is TRUE \Rightarrow M(x,y) accepts R(x,y) is FALSE \Rightarrow M(x,y) rejects

We say M "decides" the predicate R.

EXAMPLES: R(x,y) = "x + y is less than 100" R(<N>,y) = "N halts on y in at most 100 steps" Kleene's T predicate, T(<M>, x, y): M accepts x in y steps

Note: A is decidable \Leftrightarrow A = {x | R(x, ϵ)}, for some decidable predicate R.

 $\sum_{n=1}^{0} = \text{languages} \{ \mathbf{x} \mid \exists \mathbf{y}_{1} \forall \mathbf{y}_{2} \exists \mathbf{y}_{3} ... \mathbf{Q} \mathbf{y}_{n} \mathbf{R}(\mathbf{x}, \mathbf{y}_{1}, ..., \mathbf{y}_{n}) \}$

- $\prod_{n=1}^{n} = \text{languages} \{ \mathbf{x} \mid \forall \mathbf{y}_1 \exists \mathbf{y}_2 \forall \mathbf{y}_3 ... \mathbf{Q} \mathbf{y}_n \mathbf{R}(\mathbf{x}, \mathbf{y}_1, ..., \mathbf{y}_n) \}$
- $\begin{array}{c} \Delta \mathbf{0} \\ \mathbf{n} \end{array} = \begin{array}{c} \sum \mathbf{0} \\ \mathbf{n} \end{array} \cap \begin{array}{c} \Pi \mathbf{0} \\ \mathbf{n} \end{array}$

Where R is a decidable predicate

Theorem: A language A is semi-decidable if and only if there is a decidable predicate R(x, y)such that: $A = \{x \mid \exists y R(x,y) \}$

Proof:

(1) If A = { x | ∃y R(x,y) } then A is semi-decidable Because we can enumerate over all y's

(2) If A is semi-decidable, then $A = \{ x \mid \exists y R(x,y) \}$ Let M semi-decide A Then, $A = \{ x \mid \exists y T(\langle M \rangle, x, y) \}$ (Here M is fixed.) where

Kleene's T predicate, T(<M>, x, y): M accepts x in y steps.

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable function < , >: $\Sigma^* \propto \Sigma^* \rightarrow \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \rightarrow \Sigma^*$ such that

 $z = \langle w, t \rangle \Rightarrow \pi_1(z) = w \text{ and } \pi_2(z) = t$

Proof: Let $w = w_1...w_n \in \Sigma^*$, $t \in \Sigma^*$. Let $a, b \in \Sigma$, $a \neq b$.

<w, t**>** := $a w_1 \dots a w_n b t$

 $\pi_{1} (z) := "if z has the form a w_{1}... a w_{n} b t,$ $then output w_{1}... w_{n}, else output ε"$ $<math display="block">\pi_{2}(z) := "if z has the form a w_{1}... a w_{n} b t,$ then output t, else output ε"

- ∑⁰₁ = { semi-decidable sets }
 = languages of the form { x | ∃y R(x,y) }
- I 0
 1 = { complements of semi-decidable sets }
 = languages of the form { x | ∀y R(x,y) }
 - $\frac{\Delta 0}{1} = \{ \text{ decidable sets } \}$ $= \sum_{1}^{0} \cap \prod_{1}^{0} \prod_{1}^{0}$ Where R is a decidable predicate

- $\sum_{2}^{0} = \{ \text{ sets semi-decidable in some semi-dec. B} \}$ = languages of the form { x | $\exists y_1 \forall y_2 R(x,y_1,y_2) \}$
- $\Pi_{2}^{0} = \{ \text{ complements of } \sum_{2}^{0} \text{ sets} \} \\ = \text{ languages of the form } \{ \mathbf{x} \mid \forall \mathbf{y}_{1} \exists \mathbf{y}_{2} \ \mathsf{R}(\mathbf{x}, \mathbf{y}_{1}, \mathbf{y}_{2}) \}$
- $\Delta_2^0 = \sum_2^0 \cap \Pi_2^0$

Where R is a decidable predicate

Example **Decidable predicate** \sum_{1}^{0} = languages of the form { x | $\exists y R(x,y)$ } We know that A_{TM} is in $\sum_{n=1}^{\infty} a_{n}$ Why? Show it can be described in this form: $A_{TM} = \{ \langle (M, w) \rangle \mid \exists t [M accepts w in t steps] \}$ decidable predicate $A_{TM} = \{ \langle (M, w) \rangle \mid \exists t T (\langle M \rangle, w, t \} \}$ $A_{TM} = \{ \langle (M, w) \rangle \mid \exists v (v \text{ is an accepting}) \}$ computation history of M on w}

$\Pi_{1}^{0} = \text{languages of the form } \{x \mid \forall y \ R(x,y) \}$ Show that EMPTY (ie, E_{TM}) = $\{M \mid L(M) = \emptyset\}$ is in Π_{1}^{0} 1 EMPTY = $\{M \mid \forall w \forall t \ [M \text{ doesn't accept w in t steps]} \}$

two quantifiers??

decidable predicate

$\prod_{1}^{0} = \text{languages of the form } \{ x \mid \forall y R(x,y) \}$ Show that EMPTY (ie, E_{TM}) = { M | L(M) = \emptyset } is in $\prod 0$ $\mathsf{EMPTY} = \{ \mathsf{M} \mid \forall \mathsf{w} \forall \mathsf{t} [\neg \mathsf{T}(\langle \mathsf{M} \rangle, \mathsf{w}, \mathsf{t})] \}$ two quantifiers?? decidable predicate

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable function < , >: $\Sigma^* \times \Sigma^* \to \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \to \Sigma^*$ such that

 $z = \langle w, t \rangle \Rightarrow \pi_1(z) = w \text{ and } \pi_2(z) = t$

 $EMPTY = \{ M \mid \forall w \forall t [M doesn't accept w in t steps] \}$

EMPTY = { M | $\forall z$ [M doesn't accept π_1 (z) in π_2 (z) steps]}

EMPTY = { M | $\forall z [\neg T(<M>, \pi_1 (z), \pi_2(z))] }$

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable function < , >: $\Sigma^* \propto \Sigma^* \rightarrow \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \rightarrow \Sigma^*$ such that

 $z = \langle w, t \rangle \Rightarrow \pi_1(z) = w \text{ and } \pi_2(z) = t$

Proof: Let $w = w_1...w_n \in \Sigma^*$, $t \in \Sigma^*$. Let $a, b \in \Sigma$, $a \neq b$. $\langle w, t \rangle := a w_1...a w_n b t$

> $\pi_{1} (z) := "if z has the form a w_{1}... a w_{n} b t,$ $then output w_{1}... w_{n}, else output ε"$ $<math display="block">\pi_{2}(z) := "if z has the form a w_{1}... a w_{n} b t,$ then output t, else output ε"

 $\Pi_{2}^{0} = \text{languages of the form } \{x \mid \forall y \exists z \ R(x,y,z) \}$ Show that TOTAL = { M | M halts on all inputs } is in Π_{2}^{0}

 $TOTAL = \{ M \mid \forall w \exists t [M halts on w in t steps] \}$

decidable predicate

 $\Pi_{2}^{0} = \text{languages of the form } \{ x \mid \forall y \exists z \ R(x,y,z) \}$ Show that TOTAL = { M | M halts on all inputs } is in Π_{2}^{0}

TOTAL = { M | ∀w ∃t [T(<M>, w, t)] } decidable predicate

 $\sum_{2}^{0} = \text{languages of the form } \{ x \mid \exists y \forall z \ R(x,y,z) \}$ Show that FIN = { M | L(M) is finite } is in \sum_{2}^{0}

FIN = { M | ∃n∀w∀t [Either |w| < n, or M doesn't accept w in t steps] }

 $FIN = \{ M \mid \exists n \forall w \forall t (|w| < n \lor \neg T(\langle M \rangle, w, t)) \}$

decidable predicate

 $\sum_{3}^{0} = \text{languages of the form } \{x \mid \exists y \forall z \exists u \ R(x,y,z,u) \}$ Show that COF = { M | L(M) is cofinite } is in \sum_{2}^{0}

 $COF = \{ M \mid \exists n \forall w \exists t [|w| > n \Rightarrow M \text{ accept } w \text{ in } t \text{ steps} \} \}$

COF = { M | ∃n∀w∃t (|w| ≤ n ∨T(<M>,w, t))} decidable predicate

Each is m-complete for its level in hierarchy and cannot go lower (by next Theorem, which shows the hierarchy does not collapse).

L is m-complete for class C if i) $L \in C$ and ii) L is m-hard for C, ie, for all $L' \in C$, $L' \leq_m L$

A_{TM} is m-complete for class C = \sum_{1}^{0}

i) $A_{TM} \in C$

ii) A_{TM} is m-hard for C, Suppose L \in C . Show: L $\leq_m A_{TM}$ Let M semi-decide L. Then Map $\sum_{x} \rightarrow \sum_{x} \sum_{y} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x}$

Then, $w \in L \Leftrightarrow (M,w) \in A_{TM}$

FIN is m-complete for class $C = \sum_{2}^{0} \frac{1}{2}$

i) $FIN \in C$ ii) FIN is m-hard for C,

Suppose L \in C . Show: L \leq_m FIN

Suppose L= { w | $\exists y \forall z R(w,y,z)$ } where R is decided by some TM D

Map $\Sigma^* \rightarrow \Sigma^*$ where $w \rightarrow N_{D,w}$ Supose $L \in \sum_{2}^{0}$ ie $L = \{ w \mid \exists y \forall z \ R(w,y,z) \}$ where R is decided by some TM D

- Show: $L \leq_m FIN$
- Define N_{D,w} On input s:
- Write down all strings y of length |s|
 For each y, try to find a z such that

 R(w, y, z) and accept if all are successful
 (here use D and w)

So, $w \in L \Leftrightarrow N_{D,w} \in FIN$

ORACLES not all powerful

The following problem cannot be decided, even by a TM with an oracle for the Halting Problem:

SUPERHALT = { (M,x) | M, with an oracle for the Halting Problem, halts on x}

Can use diagonalization here! Suppose H decides SUPERHALT (with oracle) Define D(X) = "if H(X,X) accepts (with oracle) then LOOP, else ACCEPT." D(D) halts ⇔ H(D,D) accepts ⇔ D(D) loops...

ORACLES not all powerful

Theorem: The arithmetic hierarchy is strict. That is, the nth level contains a language that isn't in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

SUPERHALT⁰ = HALT = { (M,x) | M halts on x}. SUPERHALT¹ = { (M,x) | M, with an oracle for the Halting Problem, halts on x}

SUPERHALTⁿ = { (M,x) | M, with an oracle for SUPERHALTⁿ⁻¹, halts on x}
KOLMOGOROV COMPLEXITY

Definition: Let x in {0,1}*. The shortest description of x, denoted as d(x), is the lexicographically shortest string <M,w> s.t. M(w) halts with x on tape.

Definition: The Kolmogorov complexity of x, denoted as K(x), is |d(x)|.

How to code <M,w>?

Assume w in {0,1}* and we have a binary encoding of M

KOLMOGOROV COMPLEXITY

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$, $K(x) \leq |x| + c$

"The amount of information in \mathbf{x} isn't much more than \mathbf{x} "

Proof: Define M = "On input w, halt."

On any string x, M(x) halts with x on its tape! This implies

 $K(x) \le |\langle M, x \rangle| \le 2|M| + |x| + 1 \le |x| + c$ (Note: M is fixed for all x. So |M| is constant)

INCOMPRESSIBLE STRINGS

Theorem: For all n, there is an $x \in \{0,1\}^n$ such that $K(x) \ge n$

"There are incompressible strings of every length"

Proof: (Number of binary strings of length n) = 2ⁿ (Number of descriptions of length < n) ≤ (Number of binary strings of length < n) = 2ⁿ - 1.

Therefore: there's at least one n-bit string that doesn't have a description of length < n

INCOMPRESSIBLE STRINGS

Theorem: For all n and c, $Pr_{x \in \{0,1\}^n}[K(x) \ge n-c] \ge 1 - 1/2^c$

"Most strings are fairly incompressible"

Proof: (Number of binary strings of length n) = 2ⁿ

(Number of descriptions of length < n-c)
≤ (Number of binary strings of length < n-c)</pre>

 $= 2^{n-c} - 1.$

So the probability that a random x has K(x) < n-c is at most $(2^{n-c} - 1)/2^n < 1/2^c$.

DETERMINING COMPRESSIBILITY COMPRESS = $\{(x,n) | K(x) \le n\}$

Theorem: COMPRESS is undecidable!

Proof: $M = "On input x \in \{0,1\}^*, let x' = 1x$ $Interpret x' as integer n. (|x'| \le log n)$ $Find first y \in \{0,1\}^* in lexicographical order,$ $s.t. (y,n) \notin COMPRESS, then print y and halt."$

M(x) prints the first string y* with K(y*) > n. Thus <M,x> describes y*, and $|<M,x>| \le c + \log n$ So n < K(y*) $\le c + \log n$. CONTRADICTION!

DETERMINING COMPRESSIBILITY

Theorem: K is not computable

Proof: M = "On input $x \in \{0,1\}^*$, let x' = 1xInterpret x' as integer n. $(|x'| \le \log n)$ Find first $y \in \{0,1\}^*$ in lexicographical order, s. t. K(y) > n, then print y and halt."

M(x) prints the first string y* with K(y*) > n. Thus <M,x> describes y*, and $|<M,x>| \le c + \log n$ So n < K(y*) $\le c + \log n$. CONTRADICTION!

TIME COMPLEXITY AND POLYNOMIAL TIME; NON DETERMINISTIC TURING MACHINES AND NP

THURSDAY Mar 20

COMPLEXITY THEORY

Studies what can and can't be computed under limited resources such as time, space, etc

Today: Time complexity

MEASURING TIME COMPLEXITY We measure time complexity by counting the elementary steps required for a machine to halt Consider the language $A = \{ 0^{k}1^{k} \mid k \ge 0 \}$ On input of length n: 1. Scan across the tape and reject if the ~n string is not of the form 0ⁱ1^j 2. Repeat the following if both 0s and 1s remain on the tape: ~n² Scan across the tape, crossing off a single 0 and a single 1 3. If 0s remain after all 1s have been crossed **~**∩ off, or vice-versa, reject. Otherwise accept.

Definition:

Suppose M is a TM that halts on all inputs.

The running time or time-complexity of M is the function $f: N \rightarrow N$, where f(n) is the maximum number of steps that M uses on any input of length n. **ASYMPTOTIC** ANALYSIS $5n^{3} + 2n^{2} + 22n + 6 = O(n^{3})$

BIG-O

Let f and g be two functions f, g : N \rightarrow R⁺. We say that f(n) = O(g(n)) if there exist positive integers c and n₀ so that for every integer n \ge n₀

$f(n) \leq cg(n)$

When f(n) = O(g(n)), we say that g(n) is an asymptotic upper bound for f(n)

f asymptotically NO MORE THAN g

 $5n^3 + 2n^2 + 22n + 6 = O(n^3)$

If c = 6 and n_0 = 10, then $5n^3 + 2n^2 + 22n + 6 \le cn^3$

$2n^{4.1} + 200283n^4 + 2 = O(n^{4.1})$

$3n\log_2 n + 5n\log_2 \log_2 n = O(n\log_2 n)$

$n\log_{10} n^{78} = O(n\log_{10} n)$

 $log_{10} n = log_{2} n (log_{2} 1)$ O(nlog_{10} n) = O(nlog_{2} n) = O(nlog n)

Definition: TIME(t(n)) = { L | L is a language decided by a O(t(n)) time Turing Machine }

$A = \{ 0^{k}1^{k} | k \ge 0 \} \in TIME(n^{2})$

$A = \{ 0^k 1^k \mid k \ge 0 \} \in TIME(nlog n)$

Cross off every other 0 and every other 1. If the # of 0s and 1s left on the tape is odd, reject

000000000000111111111111111 x0x0x0x0x0x0x1x1x1x1x1x1x1x1xxxx0xxx0xxx0xxxx1xxx1xxx1x xxxxxx0xxxxxxxxxxx1xxxxx

We can prove that a TM cannot decide A in less time than O(nlog n)

*7.49 Extra Credit. Let f(n) = o(nlogn). Then Time(f(n)) contains only regular languages.

where f(n) = o(g(n)) iff $\lim_{n\to\infty} f(n)/g(n) = 0$ ie, for all c >0, $\exists n_0$ such that f(n) < cg(n) for all $n \ge n_0$

f asymptotically LESS THAN g

Can A = { $0^{k}1^{k} | k \ge 0$ } be decided in time O(n) with a two-tape TM?

Scan all 0s and copy them to the second tape. Scan all 1s, crossing off a 0 from the second tape for each 1.

Different models of computation yield different running times for the same language! Theorem: Let t(n) be a function such that $t(n) \ge n$. Then every t(n)-time multi-tape TM has an equivalent $O(t(n)^2)$ single tape TM

Claim: Simulating each step in the multitape machine uses at most O(t(n)) steps on a single-tape machine. Hence total time of simulation is O(t(n)²).

MULTITAPE TURING MACHINES

$\delta: \mathbf{Q} \times \mathbf{\Gamma^{k}} \to \mathbf{Q} \times \mathbf{\Gamma^{k}} \times \{\mathbf{L}, \mathbf{R}\}^{k}$

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

$\delta: \mathbf{Q} \times \mathbf{\Gamma^{k}} \to \mathbf{Q} \times \mathbf{\Gamma^{k}} \times \{\mathbf{L}, \mathbf{R}\}^{k}$

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

Analysis: (Note, k, the # of tapes, is fixed.)

- Let S be simulator
- Put S's tape in proper format: O(n) steps
- Two scans to simulate one step,
 - 1. to obtain info for next move O(t(n)) steps, why?
 - 2. to simulate it (may need to shift everything over to right possibly k times): O(t(n)) steps, why?

$P = \bigcup_{k \in N} TIME(n^k)$

NON-DETERMINISTIC TURING MACHINES AND NP

Definition: A Non-Deterministic TM is a 7-tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:

Q is a finite set of states

- **\Sigma** is the input alphabet, where $\Box \notin \Sigma$
- Γ is the tape alphabet, where $\hdotines \subseteq \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta: \mathbf{Q} \times \mathbf{\Gamma} \to \mathbf{2}^{(\mathbf{Q} \times \mathbf{\Gamma} \times \{\mathbf{L}, \mathbf{R}\})}$
- $q_0 \in Q$ is the start state
- $\mathbf{q}_{accept} \in \mathbf{Q}$ is the accept state

 $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$

NON-DETERMINISTIC TMs

...are just like standard TMs, except:

1. The machine may proceed according to several possibilities

2. The machine accepts a string if there exists a path from start configuration to an accepting configuration

Deterministic Computation

Non-Deterministic Computation

accept or reject

Definition: Let M be a NTM that is a decider (le all branches halt on all inputs). The running time or time-complexity of M is the function $f : N \rightarrow N$, where f(n) is the maximum number of steps that M uses *on any branch of its computation on any input of length n*.

Theorem: Let t(n) be a function such that $t(n) \ge n$. Then every t(n)-time nondeterministic single-tape TM has an equivalent $2^{O(t(n))}$ deterministic single tape TM

Definition: NTIME(t(n)) = { L | L is decided by a O(t(n))-time non-deterministic Turing machine }

$TIME(t(n)) \subseteq NTIME(t(n))$

BOOLEAN FORMULAS

logical parentheses A satisfying assignment is a setting of the variables that makes the formula true $\phi = (\neg X \land y) \lor z$ x = 1, y = 1, z = 1 is a satisfying assignment for ϕ variables $\neg (x \lor y) \land (z \land \neg x)$ 0 1

A Boolean formula is satisfiable if there exists a satisfying assignment for it

YES $a \wedge b \wedge c \wedge \neg d$ NO $\neg (x \vee y) \wedge x$

SAT = { $\phi \mid \phi$ is a satisfiable Boolean formula }

A 3cnf-formula is of the form: $(x_1 \lor \neg x_2 \lor x_3) \land (x_4 \lor x_2 \lor x_5) \land (x_3 \lor \neg x_2 \lor \neg x_1)$

clauses

literals

YES $(x_1 \lor \neg x_2 \lor x_1)$ NO $(x_3 \lor x_1) \land (x_3 \lor \neg x_2 \lor \neg x_1)$ NO $(x_1 \lor x_2 \lor x_3) \land (\neg x_4 \lor x_2 \lor x_1) \lor (x_3 \lor x_1 \lor \neg x_1)$ NO $(x_1 \lor \neg x_2 \lor x_3) \land (x_3 \land \neg x_2 \land \neg x_1)$

3SAT = { ϕ | ϕ is a satisfiable 3cnf-formula }
3SAT = { ϕ | ϕ is a satisfiable 3cnf-formula } **Theorem: 3SAT** \in NTIME(n²)

On input ϕ :

- 1. Check if the formula is in 3cnf
- 2. For each variable, non-deterministically substitute it with 0 or 1

3. Test if the assignment satisfies $\boldsymbol{\varphi}$

$NP = \bigcup_{k \in N} NTIME(n^k)$

- **Theorem:** $L \in NP \Leftrightarrow$ if there exists a poly-time Turing machine V(erifier) with
- L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts } Proof:
- (1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts } then L ∈ NP

Because we can guess y and then run V

(2) If $L \in NP$ then

 $L = \{ x \mid \exists y \mid y \mid = poly(|x|) \text{ and } V(x,y) \text{ accepts } \}$

Let N be a non-deterministic poly-time TM that decides L and define V(x,y) to accept if y is an accepting computation history of N on x **3SAT =** { ϕ | \exists y such that y is a satisfying assignment to ϕ and ϕ is in 3cnf }

SAT = { ϕ | \exists y such that y is a satisfying assignment to ϕ }

A language is in NP if and only if there exist polynomial-length certificates* for membership to the language

> SAT is in NP because a satisfying assignment is a polynomial-length certificate that a formula is satisfiable

* that can be verified in poly-time

HAMILTONIAN PATHS

HAMPATH = { (G,s,t) | G is a directed graph with a Hamiltonian path from s to t }

Theorem: HAMPATH \in NP

The Hamilton path itself is a certificate

K-CLIQUES

CLIQUE = { (G,k) | G is an undirected graph with a k-clique }

Theorem: CLIQUE \in NP

The k-clique itself is a certificate

NP = all the problems for which once you have the answer it is easy (i.e. efficient) to verify

POLY-TIME REDUCIBILITY

f: $\Sigma^* \rightarrow \Sigma^*$ is a polynomial time computable function if some poly-time Turing machine M, on every input w, halts with just f(w) on its tape

Language A is polynomial time reducible to language B, written $A \leq_P B$, if there is a polytime computable function $f : \Sigma^* \to \Sigma^*$ such that:

 $\mathbf{w} \in \mathbf{A} \Leftrightarrow \mathbf{f}(\mathbf{w}) \in \mathbf{B}$

f is called a polynomial time reduction of A to B

Theorem: If $A \leq_P B$ and $B \in P$, then $A \in P$

Proof: Let M_B be a poly-time (deterministic) TM that decides B and let f be a poly-time reduction from A to B

We build a machine M_A that decides A as follows:

On input w:

1. Compute f(w)

2. Run M_B on f(w)

Definition: A language B is NP-complete if:

1. B ∈ NP

2. Every A in NP is poly-time reducible to B (i.e. B is NP-hard)

Suppose B is NP-Complete

So, if B is NP-Complete and $B \in P$ then NP = P. Why?

Theorem (Cook-Levin): SAT is NP-complete **Corollary:** SAT \in P if and only if P = NP

Read Chapter 7.3 of the book for next time

NP-COMPLETENESS: THE COOK-LEVIN THEOREM

Theorem (Cook-Levin.'71): SAT is NPcomplete

Corollary: SAT \in P if and only if P = NP

Leonid Levin

Steve Cook

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(1) SAT \in NP

(2) Every language A in NP is polynomial time reducible to SAT

We build a poly-time reduction from A to SAT

The reduction turns a string w into a 3-cnf formula ϕ such that w \in A iff $\phi \in$ 3-SAT.

• will *simulate* the NP machine N for A on w.

Let N be a non-deterministic TM that decides A in time n^k How do we know N exists?

So proof will also show: 3-SAT is NP-Complete

The reduction f turns a string w into a 3-cnf formula ϕ such that: w \in A $\Leftrightarrow \phi \in$ 3SAT. ϕ will "simulate" the NP machine N f<u>or A on w</u>.

Suppose $A \in NTIME(n^k)$ and let N be an NP machine for A.

A tableau for N on w is an $n^k \times n^k$ table whose rows are the configurations of *some* possible computation of N on input

W.

A tableau is accepting if any row of the tableau is an accepting configuration

Determining whether N accepts w is equivalent to determining whether there is an accepting tableau for N on w

Given w, our 3cnf-formula ϕ will describe a *generic* tableau for N on w (in fact, essentially *generic* for N on any string w of length n).

The 3cnf formula ϕ will be satisfiable *if and only if* there is an accepting tableau for N on w.

VARIABLES of ϕ Let C = Q $\cup \Gamma \cup \{\#\}$

- Each of the (n^k)² entries of a tableau is a cell
- cell[i,j] = the cell at row i and column j
- For each i and j (1 ≤ i, j ≤ n^k) and for each s \in C we have a variable $x_{i,j,s}$
- # variables = $|C|n^{2k}$, ie O(n^{2k}), since |C| only depends on N
 - These are the variables of ϕ and represent the contents of the cells
 - We will have: $x_{i,j,s} = 1 \Leftrightarrow cell[i,j] = s$

means

cell[i, j] = s

We now design ϕ so that a satisfying assignment to the variables $x_{i,j,s}$ corresponds to an accepting tableau for N on w

- The formula ϕ will be the AND of four parts:
- $\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$
 - ϕ_{cell} ensures that for each i,j, exactly one $x_{i,i,s} = 1$ ϕ_{start} ensures that the first row of the table is the starting (initial) configuration of N on w ϕ_{accept} ensures* that an accepting configuration occurs somewhere in the table ϕ_{move} ensures* that every row is a configuration that legally follows from the previous config *if the other components of **o** hold

$$\phi_{\text{start}} = \mathbf{X}_{1,1,\#} \wedge \mathbf{X}_{1,2,q} \wedge \\ \mathbf{X}_{1,3,w_1} \wedge \mathbf{X}_{1,4,w_2} \wedge \cdots \wedge \mathbf{X}_{1,n+2,w_n} \wedge \\ \mathbf{X}_{1,n+3,\Box} \wedge \cdots \wedge \mathbf{X}_{1,n^{k}-1,\Box} \wedge \mathbf{X}_{1,n^{k},\#}$$

				 	 	 	I.
#	\mathbf{q}_{0}	w ₁	w ₂	 w _n		#	
#						#	
							l

\$\overline{\overline{accept}} ensures that an accepting configuration occurs somewhere in the table

$$\phi_{\text{accept}} = \sqrt{X_{i,j,q_{\text{accept}}}}$$
$$1 \le i, j \le n^{k}$$

\$\phi_move\$ ensures that every row is a configuration that legally follows from the previous
 It works by ensuring that each 2 × 3 "window" of cells is legal (does not violate N's rules)

If $\delta(q_1,a) = \{(q_1,b,R)\}$ and $\delta(q_1,b) = \{(q_2,c,L), (q_2,a,R)\}$ Which of the following windows are legal:

If $\delta(q_1,a) = \{(q_1,b,R)\}$ and $\delta(q_1,b) = \{(q_2,c,L), (q_2,a,R)\}$ Which of the following windows are legal:

- the top row of the tableau is the start configuration, and
- and every window is legal,

Then

each row of the tableau is a configuration that legally follows the preceding one.

- the top row of the tableau is the start configuration, and
- and every window is legal,

Then

each row of the tableau is a configuration that legally follows the preceding one. S

Proof:

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

- the top row of the tableau is the start configuration, and
- and every window is legal,

Then

each row of the tableau is a configuration that legally follows the preceding one.

Proof:

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not adjacent to a state symbol

- the top row of the tableau is the start configuration, and
- and every window is legal,

Then

each row of the tableau is a configuration that legally follows the preceding one.

Proof:

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not adjacent to a state symbol Case 2. center cell of window is a state symbol

#	q ₀	w ₁	w ₂	w ₃	w ₄	 w _n		#
#	ok	ok	w ₂	w ₃	w ₄			#

#	q ₀	w ₁	w ₂	w ₃	w ₄	 w _n		#
#	ok	ok	w ₂	w ₃	w ₄			#

#	q ₀	w ₁	w ₂	w ₃	w ₄	 w _n		#
#	ok	ok	w ₂	W ₃	w ₄			#

#	a ₁	q	a ₂	a ₃	a ₄	a ₅	 a _n		#
#	ok	ok	ok	a ₃	a ₄	a ₅			#

So the lower configuration follows from the upper!!!

The (i,j) Window

the (i, j) window is legal =

 $\sqrt{(x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j,+1,a} \land x_{i+1,j-1,a} \land x_{i+1,j_5} \land x_{i+1,j+1,a}) }_{a_1, \dots, a_6}$ is a legal window

This is a disjunct over all ($\leq |C|^6$) legal sequences ($a_1, ..., a_6$).

the (i, j) window is legal =

 $\left(\begin{array}{c} x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j,+1,a} \wedge x_{i+1,j-1,a} \wedge x_{i+1,j_5} \wedge x_{i+1,j+1,a} \end{array} \right) \\ a_1, \ \ldots, \ a_6 \\ \text{is a legal window} \\ \end{array} \right.$

This is a disjunct over all (≤ |C|⁶) legal sequences (a₁, …,

This disjunct is satisfiable

There is **some** assignment to the cells (ie variables) in the window (i,j) that makes the window legal

the (i, j) window is legal =

 $\left(\begin{array}{c} x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j,+1,a} \wedge x_{i+1,j-1,a} \wedge x_{i+1,j_5a} \wedge x_{i+1,j+1,a} \end{array} \right) \\ a_1, \, \dots, \, a_6 \\ \text{is a legal window} \\ \end{array} \right.$

This is a disjunct over all ($\leq |C|^6$) legal sequences ($a_1, ...,$

 $\mathbf{So} \phi_{move}$ is satisfiable

 $\langle \Box \rangle$

There is *some* assignment to each of the variables that makes *every* window legal.

the (i, j) window is legal =

 $\sqrt{ (x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j,+1,a} \land x_{i+1,j-1,a} \land x_{i+1,j_5} \land x_{i+1,j+1,a}) }$ is a legal window

This is a disjunct over all ($\leq |C|^6$) legal sequences ($a_1, ..., a_6$).

Can re-write as equivalent conjunct:

 $= \sqrt{(\bigotimes_{i,j-1_{1}a} \vee \bigotimes_{j,j,a} \vee \bigotimes_{i,j,+1,a} \vee \bigotimes_{j+1,j-1,a} \vee \bigotimes_{i+1,j,a} \vee \bigotimes_{i$

$\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$

there is some assignment to each of the variables s.t. ϕ_{cell} and ϕ_{start} and ϕ_{accept} and ϕ_{move} each evaluates to 1

There is some assignment of symbols to cells in the tableau such that:

- The first row of the tableau is a start configuration and
- Every row of the tableau is a configuration that follows from the preceding by the rules of N and
- One row is an accepting configuration

 $\langle \Box \rangle$

There is some accepting computation for N with input w

3-SAT?

How do we convert the whole thing into a 3-cnf formula?

Everything was an AND of ORs We just need to make those ORs with 3 literals

3-SAT?

How do we convert the whole thing into a 3-cnf formula?

Everything was an AND of ORs We just need to make those ORs with 3 literals If a clause has less than three variables:

 $a \equiv (a \lor a \lor a), (a \lor b) \equiv (a \lor b \lor b)$

3-SAT?

How do we convert the whole thing into a 3-cnf formula?

Everything was an AND of ORs We just need to make those ORs with 3 literals

If a clause has less than three variables:

 $a \equiv (a \lor a \lor a), (a \lor b) \equiv (a \lor b \lor b)$

If a clause has more than three variables: $(a \lor b \lor c \lor d) \equiv (a \lor b \lor z) \land (\neg z \lor c \lor d)$

 $(a_1 \lor a_2 \lor \ldots \lor a_t) \equiv$ $(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land (\neg z_2 \lor a_4 \lor z_3) \ldots$

$\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$

WHAT'S THE LENGTH OF **\$**?

$$\begin{split} \varphi_{\text{cell}} &= \bigwedge_{1 \le i, j \le n^k} \left(\bigvee_{s \in C} x_{i,j,s} \right)^{\wedge} \left(\bigwedge_{s,t \in C} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \\ & s \ne t \end{split}$$

If a clause has less than three variables: $(a \lor b) = (a \lor b \lor b)$

$$\begin{split} \varphi_{\text{cell}} &= \bigwedge_{1 \le i, j \le n^k} \left(\bigvee_{s \in C} x_{i,j,s} \right)^{\wedge} \left(\bigwedge_{s,t \in C} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \\ & s \ne t \end{split}$$

O(n^{2k}) clauses

Length(ϕ_{cell}) = O(n^{2k}) O(log (n)) = O(n^{2k} log n)

length(indices)

 $\phi_{\text{start}} = \mathbf{X}_{1,1,\#} \wedge \mathbf{X}_{1,2,q} \wedge$ $\mathbf{X}_{1,3,w_1} \wedge \mathbf{X}_{1,4,w_2} \wedge \dots \wedge \mathbf{X}_{1,n+2,w_n} \wedge$ $\mathbf{X}_{1,n+3,\square} \land \dots \land \mathbf{X}_{1,n}^{k} \land \mathbf{X}_{1,n}^{k} \not$ $(\mathbf{X}_{1,1,\#} \vee \mathbf{X}_{1,1,\#} \vee \mathbf{X}_{1,1,\#}) \wedge$ $(\mathbf{X}_{1,2,q_0} \lor \mathbf{X}_{1,2,q_0} \lor \mathbf{X}_{1,2,q_0})$ \wedge ... \wedge $(\mathbf{X}_{1,n}^{k}, \# \vee \mathbf{X}_{1,n}^{k}, \# \vee \mathbf{X}_{1,n}^{k}, \#)$

$$\phi_{\text{start}} = \mathbf{X}_{1,1,\#} \wedge \mathbf{X}_{1,2,q} \wedge \\ \mathbf{X}_{1,3,w_1} \wedge \mathbf{X}_{1,4,w_2} \wedge \dots \wedge \mathbf{X}_{1,n+2,w_n} \wedge \\ \mathbf{X}_{1,n+3,\square} \wedge \dots \wedge \mathbf{X}_{1,n^{k}-1,\square} \wedge \mathbf{X}_{1,n^{k},\#}$$

O(n^k)

$$(a_1 \lor a_2 \lor \ldots \lor a_t) =$$

$$(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land (\neg z_2 \lor a_4 \lor z_3) \ldots$$

the (i, j) window is legal =

$$\bigwedge_{a_1, \dots, a_6} (\mathbf{x}_{i,j-1,a_1} \lor \mathbf{x}_{i,j,a_2} \lor \mathbf{x}_{i,j,+1,a_3} \lor \mathbf{x}_{i+1,j-1,a_1} \lor \mathbf{x}_{i+1,j,a_3} \lor \mathbf{x}_{i+1,j-1,a_1})$$

T a legal window

This is a conjunct over all ($\leq |C|^6$) illegal sequences ($a_1, ..., a_6$).

ISN'

Theorem (Cook-Levin): 3-SAT is NPcomplete

Corollary: 3-SAT \in P if and only if P = NP