Machines Syntactic Rules

DFAs
A

» Regular
Expressions

, Context-Free
Grammars

deterministic DFA
A * finite automaton # is a 5-tuple M = (Q, Z, 9, q,, F)

Q is the set of states (finite)

2 is the alphabet (finite)

d0:Qx X — Q is the transition function
d, € Q is the start state

F C Qis the set of accept states

Letw,, ..., w,EZand w=w,...w, E2Z"
Then M w if there arery, ry, ..., r, € Q, s.t.
1. ry=d,

2. o(r,Wy,q)=r,q, fori=0,..,n-1,and
3. r,eF

Let we 2* and suppose w can be written as
W,... W, Where w; € 2_ (& = empty string)

Then N w if there arer, r,, ..., r, €Q
such that

1. 1, € Q
2. Iy 0(r;, Wy,) fori=0, ..., n-1, and
3. r,eF

L(N) = the language recognized by N
= set of all strings machine N accepts

A language L is by an NFAN
if L =L(N).

Let we 2* and suppose w can be written as
wW,... W, wherew, € Z_(recall Z_=2 U {g})

Then P w if there are
re; Iy, .-, I, € Q and

Sgs S1s -==» S, € ['* (sequence of stacks) such that

1. ry = q, and s, = € (P starts in q, with empty stack)

2. Fori=0,..,n-1:
(ri.q, b)E 6(r,, W.,,, @), Where s,=at and s, , = bt for

somea,bel, andterl™
(P moves correctly according to state, stack and symbol read)

3.r, € F (Pisin an accept state at the end of its input)

THEOREM

For every regular language L, there exists
a UNIQUE (up to re-labeling of the states)
minimal DFA M such that L = L(M)

EXTENDING o
Given DFA M =(Q, %, 9, q,, F), extend 6
to 5:Q x £* — Q as follows:
5(a, €) = g
39, 0) = 8(q, o)
57(q, Wy e Weq) = 0(Stq, Wy Wy), Wyyq)

Note: 5(q,, w) EF < M accepts w

String w € 2* distinguishes states q, and q, iff
exactly ONE of lé\(q1, w), /S(qz, w) is a final state

FixM=(Q, ,0,q, F)andletp, q,reQ

Definition:
p ~ q iff p is indistinguishable from q
p * q iff p is distinguishable from ¢

Proposition: ~ is an equivalence relation
p ~ p (reflexive)
Pp~q = q~p (symmetric)
p~qgq and q~r = p ~r (transitive)

Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into
disjoint equivalence classes

[al={pPlpP~q}

(@

TABLE-FILLING ALGORITHM
Input: DFAM = (Q, %, 6, q,, F)

Output: (1) Dy ={(p.9) | p,aEQandp+q}
(2) Ey={[dllacQ}

Base Case: p accepts
and g rejects =p v

Recursion: if thereisoc 2
and states p’, q' satisfying

6 (p, 0) =p’
+ T p*q
6(q,0)=q

Repeat until no more new D’s

CONVERTING NFAs TO DFAs
Input: NFAN = (Q, £, §, Q,, F)

Output: DFAM =(Q, %, ¥, q,, F')

Q' =20
0:QxZ—Q
8'(R,0) = U g(§(r,0))
reR
do = €(Qy)
FF={ReQ'|fcRforsomefcF}

For RC Q, the e-closure of R, €¢(R) = {q that can be reached
from some r & R by traveling along zero or more € arrows}

THE REGULAR OPERATIONS

UniontAuB={w|w&cAorwecB}
Intersectiont ANB={w|weAandw&cB}
Negation: —-A={wecX*|wEZA}

Reverse: AR={w,..w, |w,..w, EA}
Concatenation: A-B={vw|vEAandwcB}

Star: A*={s,...s, | k20and eachs, €A}

REGULAR EXPRESSIONS

o is a regexp representing {c}
£ is a regexp representing {€}
& is a regexp representing &

If R, and R, are regular expressions
representing L, and L, then:
(R{R,) represents L, - L,

(R{UR,) represents L, U L,

(R{)* represents L,*

EQUIVALENCE

L can be represented by a regexp
<

L is a regular language

_>

a a,b

AT A!
;.L.

a*b
>
(a*b)(aUb)*

R(d,95) = (a*b)(@aUb)*

How can we test if two regular
expressions are the same?

Lengthn R, R,
O(n) states N, N,
! !

!

O(2") states M, M,

\4

M1 MIN MZ MIN

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple
G=(V, 2R, S), where:

V is a finite set of variables
2 is a finite set of terminals (disjoint from V)

R is set of production rules of the form A - W,
where A€V and W & (VUZ)*

S €V is the start variable

L(G)={wec ¥*|S =*w} Strings Generated by G

A Language L is context-free if there is a CFG that
generates precisely the strings In L

CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal
form if every rule is of the form:

A — BC B and C aren’t start variables
A— a ais a terminal

S —>¢ S is the start variable

Any variable A that is not the start variable
can only generate strings of length > 0

Theorem: Any context-free language
can be generated by a context-free
grammar in Chomsky normal form

Theorem: If G is in CNF, w € L(G) and |w| > 0,
then any derivation of w in G has length 2|w| - 1

Theorem: There is an O(n*3 + size G)
membership algorithm (CYK) any
Chomsky normal form G.

Theorem: The set of PDAS that accept
all strings is not r.e.

Definition: A (non-deterministic) PDA is a
tuple P=(Q, 2, T, 0, q4 F), where:

Q is a finite set of states
2 is the input alphabet

I" is the stack alphabet
0:QAxZX xI,— 2xTg
do, € Q is the start state

F C Qis the set of accept states

29 js the set of subsets of Qand 2_ =2 U {g}

A Language L is generated by a CFG
<

L is recognized by a PDA

THE PUMPING LEMMA
(for Context Free Grammars)

Let L be a context-free language with |L| = «

Then there is an integer P such that
if welLand |w|2P

then can write w = uvxyz, where:

A | 1. >0

T T vyl

=] E 2. |lvxy| =P

R R 3. uvixyize L,
u v y z foranyiz20

vV X y

TURING MACHINE

[]

\4

Alnfefulr] [1) []

INFINITE TAPE

Definition: A Turing Machine is a 7-tuple
T = (Q! Z, r! 6! qO! qaccept! qreject)! Where:

Q is a finite set of states

2 is the input alphabet, where 0 ¢ %

I" is the tape alphabet, where D €lNand Z C T
0:QxIMN—->QxTI x{L, R}

d, € Q is the start state

Qaccept © Q is the accept state

Qreject € Q is the reject state, and Oreject * Daccept

CONFIGURATIONS

1101000110

corresponds to:

\4

A Turing Machine M accepts input w if there is a

sequence of configurations C,, ..., C, such that

1. C, is a start configuration of M on input w, ie
C,is quw

2. each C, yields C,,,, ie M can legally go from C.

to C.,,In a single step

uaq;bv yields uq;acv if 5(q;b)=(q;c,L)
uaqibv yields uacq;v if 6(q; b)=/(q; c,R)

A Turing Machine M accepts input w if there is a

sequence of configurations C,, ..., C, such that

1. C, is a start configuration of M on input w, ie
C,is qyw

2. each C,yields C,,,, ie M can legally go from C,
to C.,,In a single step

3. C, is an accepting configuration, ie the state

of the configuration is Qaccept

A Turing Machine M input w if there is a

sequence of configurations C,, ..., C, such that

1. C, is a start configuration of M on input w, ie
C,is qyw

2. each C,yields C,,,, ie M can legally go from C,
to C.,,In a single step

3. C.is a configuration, ie the state of

the configuration is

A TM decides a language if it accepts all
strings in the language and rejects all strings
not in the language

A language is called decidable or recursive if
some TM decides it

Theorem: L decidable <-> -L decidable

Proof: L has a machine M that accepts or rejects on
all inputs. Define M’ to be M with accept and reject
states swapped. M’ decides -L.

A TM recognizes a language if it accepts all
and only those strings in the language

A language is called Turing-recognizable or
recursively enumerable, (or r.e. or semi-
decidable) if some TM recognizes it

A TM decides a language if it accepts all
strings in the language and rejects all strings
not in the language

A language is called decidable or recursive if
some TM decides it

A TM recognizes a language if it accepts all
and only those strings in the language

A language is called Turing-recognizable or
recursively enumerable, (or r.e. or semi-
decidable) if some TM recognizes it

FALSE: L r.e. <-> =L r.e.

Proof: L has a machine M that accepts or rejects on
all inputs. Define M’ to be M with accept and reject
states swapped. M’ decides -L.

A language Is called Turing-recognizable or
recursively enumerable (r.e.) or semi-
decidable if some TM recognizes it

A language is called decidable or recursive if
some TM decides it

recursive

languages

Theorem: If A and —-A are r.e. then A is recursive

Theorem: If A and —-A are r.e. then A is recursive

Suppose M accepts A. M’ accepts - A decidable

Use Odd squares/ Even squares simulation of M and
M’. If x is accepted by the even squares reject it/
accepted by the odd squares then accept x.

TURING MACHINE with WRITE ONLY

output tape.
‘EEEEEE
[TTTTT]

Outputs a sequence of strings separated
by hash marks. Allows for a well defined
infinite sequence of strings in the limit.
The machine is said to enumerate the
sequence of strings occurring on the

FINITE
STATE
CONTROL

TURING MACHINE with WRITE ONLY

output tape.
‘EEEEEE
[TTTTT]

Outputs a sequence of strings separated
by hash marks. Allows for a well defined
infinite sequence of strings in the limit.

FINITE
STATE
CONTROL

The machine is said to enumerate the set

of strings occurring on the tape.

From every TM M accepting A.
there isa TM M’ outputting A.

For n = 0 to forever do

{ {Do n parallel simulations of M for
n steps for the first n inputs}

M(0). M(1), M(2), M(3)..
}

From every TM M outputting A.
there isa TM M’ accepting A.

M"(X) run M, accept if X output on tape.

Let Z* = {1,2,3,4...}. There exists a bijection
between Z* and Z* x Z* (or Q*)

(1,) 1,4 (15)...
((2,3 (24 (2,5) ...
(84) (331 (3,4) (3.,5)...
4/ (4,2 (4,3) (4,4) (4,5)...

(5,2) (5,3) (5.4) (5,9)...

Lex-order has an enumerator
strings of length 1, the length 2,

Pairs of binary strings have a lex-order enumerator

for each n>0 list all pairs of strings a,b as #a#b#
where total length of a and b is n.

Let BINARY(w) = pair of binary strings be any fixed
way of encoding a pair of binary strings with a single
binary string

THE ACCEPTANCE PROBLEM
Ay ={(M,w)| Mis aTM that accepts string w }

Theorem: A;, is semi-decidable (r.e.)

but decidable
A, isre.:

Define a TM U as follows:

On input (M, w), U runs M on w. If M ever accepts,
accept. If M ever rejects, reject.

When we write “input (M, w)” we really mean
“input code for (code for M, w)”

MULTITAPE TURING MACHINES

FINITE
STATE
CONTROL

0:QxIMk— Q x Nk x {L,R}x

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

Ltefel 1]
LI LT]]
LI LT]]

FINITE
STATE
CONTROL

FINITE

STATE
controL | | 1[ofof#] [#["[#

\4

We can encode a TM as a string of 0s and 1s

start reject
n states state state

\ /

0"1}"‘1 (}k1 0s10t10"1 O‘Q. ..
m tape symbols \ blank
(first k are input accept symbol

symbols) state

((p, a), (q, b, L)) = 01021091010
((p, @), (9, b, R)) = 0p10210910°11

UNDECIDABLE PROBLEMS
THURSDAY Feb 13

There are languages over {0,1}
that are not decidable

Languages
over {0,1}

Turing
Machines

Let L be any set and 2 be the power set of L
Theorem: There is no onto map from L to 2-

Proof:Assume, for a contradiction, that
thereisanontomapf: L — 2t

Let S = { x € LXK X))

If S=f(y)thenycSifund caly ify & S

Can give a more constructive argument!

Theorem: There is no onto function from the
positive integers to the real numbers in (0, 1)

Suppose f is any function mapping the
positive integers to the real numbers in (0,

1 —p 0.588347279...
—> 0.88388384...
—> 0.77§35284...
— 0.11141111...
—> 0.1234§678...

Proof:

- AR OWODN

1 if [n-th digit of f(n)] = 1

p. otherwise

[n-th digitofr] = {

f(n) = rforalln (Here,r=11121...)

THE MORAL.:
No matter what L is,
2- always has more elements than L

Not all languages over {0,1} are decidable, in fact:
not all languages over {0,1} are semi-decidable

{decidable languages over {0,1}}

{semi-decidable languages over {0,1}}

{Languages over {0,1}}

| |

{Strings of 0s and 1s} {Sets of strings of
, , 0s and 1s}

| |

Set L Set of all subsets of L.: 2L

{Turing Machines}

THE ACCEPTANCE PROBLEM
Ay ={(M,w)| Mis aTM that accepts string w }

Theorem: A}, is semi-decidable (r.e.)

but decidable
A, isre.:

Define a TM U as follows:

On input (M, w), U runs M on w. If M ever accepts,
accept. If M ever rejects, reject.

When we write “input (M, w)” we really mean
“input code for (code for M, w)”

THE ACCEPTANCE PROBLEM
Ay ={(M,w)| Mis aTM that accepts string w }

Theorem: A;, is semi-decidable (r.e.)

but decidable
A, isre.:

Define a TM U as follows: U is a universal TM

On input (M, w), U runs M on w. If M ever accepts,
accept. If M ever rejects, reject.

Therefore,
U accepts (M,w) = M accepts w < (M,w) € A,

Therefore, U recognizes A,

Ay ={(M,w)| Mis a TM that accepts string w }

A, is undecidable: (proof by contradiction)

Assume machine H decides A,

Accept if M accepts w
H(Mw))=<4 |
Reject if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output the opposite of H

Rejec. if D accepts D
D(D)= |
Accpt ¥ l/)does not accep D

= =S = =S
w BN

=N

M,

reject
accept

accept

reject

OUTPUT OF H

M, M, M, ..

accept accept reject

reject reject

reject accept

reject reject

reject accept accept

accept
reject
accept

accept

Theorem: A, is r.e. but NOT decidable

Cor: -Aqy, Is not even r.e.!

Ay ={(M,w)| Mis a TM that accepts string w }

A;y is undecidable: A constructive proof:

Let machine H semi-decides A, (Such 3, why?)

Accept if M accepts w
H((M,w)) = § Reject or
if M does not accept w

Construct a new TM D as follows: on input M,
run H on (M,M) and output

Reject if H(D, D) Accepts
D(D)= < Accept ifH(D, D)Rejects
ifH D,|. D) has
H((D,D))= " No Contradictions !

We have shown:

Given any machine H for semi-deciding Ay,

we can effectively constructa TM D such that
(D,D) & A4y butH to tell us that.

Thatis, H to be a decider on instance
(D,D).

In other words,

Given any “good” candidate for deciding the
Acceptance Problem, we can effectively
construct an instance where the candidate
fails.

THE classical HALTING PROBLEM
HALT;, ={(M,w) | Mis a TM that halts on string w }

Theorem: HALT;,, is undecidable

Proof: Assume, for a contradiction, that TM H
decides HALT

We use H to construct a TM D that decides Ay,

On input (M,w), D runs H on (M,w):
If H rejects then reject
If H accepts, run M on w until it halts:

Accept if M accepts, ie halts in an accept

state
Otherwise reject

MAPPING REDUCIBILITY

f:2* — 2% is a computable function if some

Turing machine M, on every input w, halts with
just f(w) on its tape

A language A is mapping reducible to language B,
written A <_ B, if there is a computable function

f:2* — 2% where for every w,

weEA<f(w)eB
f is called a reduction from Ato B

Think of f as a “computable coding”

A is mapping reducible to B, A <_ B,
if there is a computable f: 2* — 2*
suchthatwe A < f(w) B

Also, - A < - B, why?

Theorem: If A < B and B is decidable,
then A is decidable

Proof: Let M decide B and let f be a
reduction from A to B

We build a machine N that decides A as follows:

On input w:
1. Compute f(w)
2. Run M on f(w)

Theorem: If A < B and B is (semi) decidable,
then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a
reduction from Ato B

We build a machine N that (semi) decides A as

follows:
On input w:

1. Compute f(w)
2. Run M on f(w)

RICE’S THEOREM

Let L be a language over Turing machines.
Assume that L satisfies the following properties:

1. For TMs M, and M,, if M, =M, then
MeLM,eL

2. There are TMs M, and M,,
such that M,eLand M, &L

Then L is undecidable

THE PCP GAME

THE ARITHMETIC HIERARCHY

ORACLE TMs

Oracle for Ay
Is (M,w) in s,

| | Amn?

v
dNgefulTl J P

INFINITE TAPE

ORACLE MACHINES

An ORACLE is a set B to which the TM may pose
membership questions “Is w in B?”
(formally: TM enters state q.)

and the TM always receives a correct answer in
one step

(formally: if the string on the “oracle tape” is in B,
state q, is changed to gygg, otherwise q,()

This makes sense even if B is not decidable!
(We do not assume that the oracle B is a
computable set!)

We say A Is semi-decidable in B
if there is an oracle TM M with oracle B that
semi-decides A

We say A is decidable in B
if there is an oracle TM M with oracle B that
decides A

Language A “Turing Reduces” to
Language B

if A is decidable in B, ie if there is an
oracle TM M with oracle B that decides A

A=.B

< VERSUS <_
Theorem: IfA<_BthenA=<;B
Proof:

If A <, B then there is a computable function
f:2* — 2% where for every w,

weA<f(w)eB

We can thus use an oracle for B to decide A

Theorem: -AT;y =1 ATy,
Theorem: —ATy s/, ATy

THE ARITHMETIC HIERARCHY
A O
1

= { decidable sets } (sets = languages)

2 (1) = { semi-decidable sets }

0
2 2+1 = { sets semi-decidable in some B €) .

0
A +1 = { sets decidable in some B € Ez)

0
I n = { complements of sets in E g }

E 0
Semi- 1

decidable
Languages

0
L

EOmHO

1

1

Decidable Languages

I10
1

Co-semi-
decidable
Languages

E 0
Semi- 1

decidable
Languages

0

1

=>% NIIO
1 1

Decidable Languages

I10
1

Co-semi-
decidable
Languages

Theorem

2 (1) = { semi-decidable sets }

= languages of the form { x | 3y R(x,y) }

I1 (1) = { complements of semi-decidable sets }

= languages of the form { x | Yy R(x,y) }

Ag = { decidable sets }
-39 NI

Where R is a decidable predicate

Theorem

2 g = { sets semi-decidable in some semi-dec. B }

= languages of the form { x | 3y,Vy, R(x,y,,Y,) }

11 g = { complements of 2 g sets}
= languages of the form { x | Vy,3y, R(x,y.,y,) }

A0 _ N0 0
z'EzﬂHz

Where R is a decidable predicate

Theorem

0
E - languages { x | dy,Vy,3y,...Qy, R(X,y;;..-,¥,) }

0
[1 o= languages { x | Vy,dy,Vy....Qy, R(X,y4,...,¥,) }

AO=EO M T10
n

n n

Where R is a decidable predicate

Example Decidable predicate

E 2 = languages of the form { x | Ely

We know that Ay isin2 ¢ Why?

Show it can be described in this form:

Ay = {<(M,w)> | 3t [M accepts w in t steps] }

—

decidable predicate

Ay = { <(M,w)> | 3t T (<M>, w, t }

Ay = {<(M,w)>| dv (v Is an accepting
computation history of M on w}

Definition: A decidable predicate R(x,y) is some

proposition about x and y1, where thereisa TM M
such that

for all x, y, R(x,y) is TRUE = M(x,y) accepts
R(x,y) is FALSE = M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:
R(x,y) = “x + y is less than 100”

R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, X, y): M accepts X in y steps

1. X, y are positive integers or elements of >*

Definition: A decidable predicate R(x,y) is some

proposition about x and y1, where thereisa TM M
such that

for all x, y, R(x,y) is TRUE = M(x,y) accepts
R(x,y) is FALSE = M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:
R(x,y) = “x + y is less than 100”

R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, X, y): M accepts X in y steps

Note: A is decidable < A = {x | R(x,£)},
for some decidable predicate R.

Theorem

0
E - languages { x | dy,Vy,3y,...Qy, R(X,y;;..-,¥,) }

0
[1 o= languages { x | Vy,dy,Vy....Qy, R(X,y4,...,¥,) }

AO=EO M T10
n

n n

Where R is a decidable predicate

Theorem: A language A is semi-decidable
if and only if there is a decidable predicate R(x, y)

such that: A ={x]|3yR(x,y)}

Proof:

(1) If A={ x| dy R(x,y) } then A is semi-decidable
Because we can enumerate over all y’s

(2) If A is semi-decidable, then A ={ x| dy R(x,y) }

Let M semi-decide A

Then, A={x |3y T(KM>, X, ¥) } (Here M is fixed.)
where
, T(<M>, X, y): M accepts X in y steps.

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable
function <, >: 2*x2* — 2* and computable
functions n, and &, : £* — 2* such that

z=<w,t> = n, (z) =wand n,(z2) = t

Proof: Letw=w,..w, € 2*,t € 2%
Leta,b € 2,a = b.
<w,t>:=aw,..aw bt

n4 (z) := “if z has the formaw,...aw_ b t,
then output w,... w_, else output €”
n,(2) := “if z has the formaw,... aw_ b t,

then output t, else output €”

Theorem

2 (1) = { semi-decidable sets }

= languages of the form { x | 3y R(x,y) }

I1 (1) = { complements of semi-decidable sets }

= languages of the form { x | Yy R(x,y) }

Ag = { decidable sets }
-39 NI

Where R is a decidable predicate

Theorem

2 g = { sets semi-decidable in some semi-dec. B }

= languages of the form { x | 3y,Vy, R(x,y,,Y,) }

11 g = { complements of 2 g sets}
= languages of the form { x | Vy,3y, R(x,y.,y,) }

A0 _ N0 0
z'EzﬂHz

Where R is a decidable predicate

Example Decidable predicate

E 2 = languages of the form { x | Ely

We know that Ay isin2 ¢ Why?

Show it can be described in this form:

Ay = {<(M,w)> | 3t [M accepts w in t steps] }

—

decidable predicate

Ay = { <(M,w)> | 3t T (<M>, w, t }

Ay = {<(M,w)>| dv (v Is an accepting
computation history of M on w}

EO)& HO
3 AO 3
3
A0
2
- >0 NTIIo

3¢ v
2
= 0
> (1) 2 2 I1 ;
Semi- Arn Co-semi-
decidable decidable
languages AO languages

1
Decidable languages

Hg = languages of the form { x | Vy R(x,y) }

Show that EMPTY (ie, E,,) ={ M| L(M) =& }is in]] 0
1

EMPTY ={M | VwVt [M doesn’t accept w in t steps] }

S/

two quantifiers?? decidable predicate

Hg = languages of the form { x | Vy R(x,y) }

Show that EMPTY (ie, E,,) ={ M| L(M) =& }is in]] 0
1

EMPTY={M | VwVt[-T(<M>, w, t)] }

A

two quantifiers?? decidable predicate

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable
function <, >: 2*x2* — 2* and computable
functions n, and &, : £* — 2* such that

z=<w,t> = n, (z) =wand n,(z2) = t
EMPTY ={M | VYwVt [M doesn’t accept w in t steps] }

EMPTY = { M | Vz [M doesn’t accept x, () in n,(z) steps]}

EMPTY ={M | Vz[-T(<M>, w, (2), 7,(2))]}

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable
function <, >: 2*x2* — 2* and computable
functions n, and &, : £* — 2* such that

z=<w,t> = n, (z) =wand n,(z2) = t

Proof: Letw=w,..w, € 2*,t € 2%
Leta,b € 2,a = b.
<w,t>:=aw,..aw bt

4 (z) :="if z has the form a w,... aw_ b t,
then output w,... w_, else output €’
n,(z) := “if z has the form aw,... aw, b t,
then output t, else output €”

2" I10

3 3

3¢ v

2

I]0

20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

Hg = languages of the form { x | Vydz R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
isin 70
2

TOTAL={M | Vw dt [M halts on w in t steps] }

decidable predicate

Hg = languages of the form { x | Vydz R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
isin 70
2

TOTAL={M | Vw3t [T(<M>, w, t)] }

decidable predicate

2 TOTAL 2

I10
20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

E g = languages of the form { x | dyVz R(x,y,z) }
Show that FIN = { M | L(M) is finite } is inE 0
2

FIN={M | dnVwVt [Either |w| < n, or
M doesn’t accept w in t steps] }

FIN = { M| InVwVt (|w| < n v- T(<M>,w, t))}

Ve

decidable predicate

I]0
29| FIN TOTAL 2

I10
20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

Eg = languages of the form { x | dyVzdu R(x,y,z,u) }
Show that COF = { M | L(M) is cofinite } is in E 0
2

COF={M|3InVwat[|w]|>n = M accept win t steps]

COF ={M|3InvVwit(|w| = n vT(<M>,w, t))}

Ve

decidable predicate

3 AO 3
3

I]0

2 g FIN TOTAL 2

I]0

20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

E 0 REG H 0
3 AO 3
3

I]0

2 g FIN TOTAL 2

I]0

20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

E 0 DEC H 0
3 AO 3
3

I]0

2 g FIN TOTAL 2

I]0

20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

3 AO 3
3

I]0

2 g FIN TOTAL 2

I]0

20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

Each is m-complete for its level in
hierarchy and cannot go lower (by next
Theorem, which shows the hierarchy

does not collapse).

L is m-complete for class C if
i) L &C and
if) L is m-hard for C,

ie,foralll’ €C,L' < L

A;, is m-complete for class C = 2 (1’
i) ApeC

i) Ay is m-hard for C,

Suppose L € C.Show: L <A,

Let M semi-decide L. Then Map
D)

wherew -2 (M, w).

Then,w €L < (M,w) € Ay QED

FIN is m-complete for class C =) g

i) FINeC
if) FIN is m-hard for C,

Suppose L € C.Show: L <_FIN

Suppose L= {w | dyVz R(w,y,z) }
where R is decided by some TM D

Map 25 > 27
where w 2> Ny,

Supose LE 2 iel={w]|3yVzR(wy.z))
where R is decided by some TM D

Show: L < FIN

\ETe 2> 27
where w 2> Np,

Define Ny, On inputs:

1. Write down all strings y of length |s|

2. For each y, try to find a z such that

- R(w, y, z) and accept if all are successful
(here use D and w)

So,w €L < Np,, EFIN

ORACLES not all powerful

The following problem cannot be decided, even by
a TM with an oracle for the Halting Problem:

SUPERHALT = { (M,x) | M, with an oracle for the
Halting Problem, halts on x}

Can use diagonalization here!

Suppose H decides SUPERHALT (with oracle)

Define D(X) = “if H(X,X) accepts (with oracle)
then LOOP, else ACCEPT.”

D(D) halts &« H(D,D) accepts <« D(D) loops...

ORACLES not all powerful

Theorem: The arithmetic hierarchy is strict.
That is, the nth level contains a language
that isn’t in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

SUPERHALT? = HALT = { (M,x) | M halts on x}.

SUPERHALT' = { (M,x) | M, with an oracle for the
Halting Problem, halts on x}

SUPERHALT" = { (M,x) | M, with an oracle for
SUPERHALT"1, halts on x}

KOLMOGOROV COMPLEXITY

Definition: Let x in {0,1}*. The shortest description
of x, denoted as d(x), is the lexicographically
shortest string <M,w> s.t. M(w) halts with x on tape.

Definition: The Kolmogorov complexity of x,
denoted as K(x), is |d(x)|.

How to code <M,w>?

Assume w in {0,1}* and we have a binary
encoding of M

KOLMOGOROV COMPLEXITY

Theorem: There is a fixed ¢ so that for all x in {0,1}*,
K(x)< |x|]+c

“The amount of information in x isn’'t much more than |
X b))

Proof: Define M = “On input w, halt.”
On any string x, M(x) halts with x on its tape!
This implies

K(x) = |<M,x>| = 2|M|+|x|+1 < |x]+CcC

(Note: M is fixed for all x. So |M| is constant)

INCOMPRESSIBLE STRINGS

Theorem: For all n, there is an x € {0,1}" such that
K(x) = n

“There are incompressible strings of every length”

Proof: (Number of binary strings of length n) = 2n

(Number of descriptions of length < n)

< (Number of binary strings of length < n)
= 2"-1.

Therefore: there’s at least one n-bit string that
doesn’t have a description of length < n

INCOMPRESSIBLE STRINGS

Theorem: For all n and c,
Pry c 0.3anl K(X) 2 n-c]=1-1/2°

“Most strings are fairly incompressible”

Proof: (Number of binary strings of length n) = 2n

(Number of descriptions of length < n-c)
< (Number of binary strings of length < n-c)
= 2nc_—1,

So the probability that a random x has K(x) < n-c
is at most (2"c - 1)/2" < 1/2¢.

DETERMINING COMPRESSIBILITY
COMPRESS = {(x,n) | K(x) = n}

Theorem: COMPRESS is undecidable!

Proof:

M = “On input x € {0,1}*, let X’ = 1x
Interpret x’ as integer n. (|x’| =< log n)
Find first y € {0,1}" in lexicographical order,
s.t. (y,n) € COMPRESS, then print y and halt.”

M(x) prints the first string y* with K(y*) > n.
Thus <M,x> describes y*, and |[<M,x>| <c +log n
So n <K(y*)<c +logn.

DETERMINING COMPRESSIBILITY

Theorem: K is not computable

Proof:

M = “On input x € {0,1}*, let X’ = 1x
Interpret x’ as integer n. (|x’| =< log n)
Find first y € {0,1}" in lexicographical order,
s. t. K(y) > n, then print y and halt.”

M(x) prints the first string y* with K(y*) > n.
Thus <M,x> describes y*, and |[<M,x>| < c + log n
So n <K(y*)<c +logn.

TIME COMPLEXITY AND
POLYNOMIAL TIME;
NON DETERMINISTIC TURING
MACHINES AND NP

THURSDAY Mar 20

COMPLEXITY THEORY

Studies what can and can’t be computed under
limited resources such as time, space, etc

Today: Time complexity

MEASURING TIME COMPLEXITY

We measure time complexity by counting the
elementary steps required for a machine to halt

Consider the language A= {0k | k=0}

On input of length n:

1. Scan across the tape and reject if the

N string is not of the form 0i1)

2. Repeat the following if both 0s and 1s
~n2 remain on the tape:
Scan across the tape, crossing off a
single 0 and a single 1

3. If 0s remain after all 1s have been crossed

N off, or vice-versa, reject. Otherwise accept.

Definition:
Suppose M is a TM that halts on all inputs.

The running time or time-complexity of M is
the function f : N — N, where f(n) is the

maximum number of steps that M uses on
any input of length n.

ASYMPTOTIC ANALYSIS
5n3 + 2n? + 22n + 6 = O(n3)

BIG-O

Let f and g be two functions f, g : N — R*. We say

that f(n) = O(g(n)) if there exist positive integers ¢
and n, so that for every integer n = n,

H X [()

When f(n) = O(g(n)), we say that g(n) is an
asymptotic upper bound for f(n)

f asymptotically NO MORE THAN g
5n3 + 2n? + 22n + 6 = O(n3)

If c =6 and n, = 10, then 5n3 + 2n? + 22n + 6 < cn3

2n*1 +200283n% + 2 = O(n*1)
3nlog, n + 5n log,log, n = O(nlog, n)
nlog,,n’® = O(nlog,, n)

log,, n =log,n

O(nlog,, n) = O(nlog, n) = O(nlog n)

Definition: TIME(t(n)) ={ L | L is a language
decided by a O(t(n)) time Turing Machine }

A= {0k |k =0} € TIME(n2)

A ={0kk|k =0} € TIME(nlog n)

Cross off every other 0 and every other 1. If the #
of 0s and 1s left on the tape is odd, reject

00000000000001111111111111

X0x0x0x0x0x0xx1x1x1x1x1x1x
XXX 0XxXX0XxXX0xXXXTXXX1XXX1X
XXXXXXX0XXXXXXXXXXXXTXXXXX

XXX XXXXXXXXXXXXXXXXXXXXXXX

We can prove that a TM cannot decide
A In less time than O(nlog n)

*7.49 Extra Credit. Let f(n) = o(nlogn). Then
Time(f(n)) contains only regular languages.

where f(n) = o(g(n)) iff lim__,_ f(n)/g(n) =0

ie, for all ¢ >0, 3 n, such that f(n) < cg(n) for all n =n,

f asymptotically LESS THAN g

Can A={0k1k| k =0} be decided in time
O(n) with a two-tape TM?

Scan all 0s and copy them to the second
tape. Scan all 1s, crossing off a 0 from
the second tape for each 1.

Different models of computation
yield different running times for
the same language!

Theorem: Let t(n) be a function such that t(n) = n.

Then every t(n)-time multi-tape TM has an
equivalent O(t(n)?) single tape TM

Claim: Simulating each step in the multi-
tape machine uses at most O(t(n)) steps
on a single-tape machine.

Hence total time of simulation is O(t(n)?) .

MULTITAPE TURING MACHINES

FINITE
STATE
CONTROL

0:QxIMk— Q x Nk x {L,R}x

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE

CONTROL

0:QAxTMNk— Q x Nk x {L,R}¥

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

L fofel [1]
LI LT]]
LI LT]]

FINITE
STATE
CONTROL

FINITE

\4

STATE
contro | [t oo l# | f#]" |#

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

pofo] []
FINITE
CONTROL

FINITE 1

STATE
controL | [t 0o]# | #]" |#

Analysis: (Note, k, the # of tapes, is fixed.)

_et S be simulator

 Put S’s tape in proper format: O(n) steps

 Two scans to simulate one step,
1. to obtain info for next move O(t(n)) steps, why?
2. to simulate it (may need to shift everything
over to right possibly k times): O(t(n)) steps, why?

_U TIME(nk)

ke N

NON-DETERMINISTIC
TURING MACHINES AND NP

read write move 0—-0,R

~_ \ / T\
0—>0 0 — 0O,R
-0 =

|0—>0,R
\ 4

0 - O,R

Definition: A Non-Deterministic TM is a 7-tuple
L (Q! Z, r! 6! qO! qaccept! qreject)! where:

Q is a finite set of states

2 is the input alphabet, where 0 ¢ %

I" is the tape alphabet, where D €lNand Z C T
O Q x [— 2(QxT x{L,R})

d, € Q is the start state

Qaccept = Q is the accept state

Qreject S Q is the reject state, and Oreject * Daccept

NON-DETERMINISTIC TMs

...are just like standard TMs, except:

1. The machine may proceed according to
several possibilities

2. The machine accepts a string if there
exists a path from start configuration to an
accepting configuration

Deterministic Non-Deterministic

Computation Computation
I N
8 °
; NN
! L L N\
| /:\4 reject
i l

accept or reject accept

Deterministic
Computation

accept or reject

Non-Deterministic
Computation

N\
JIN I\

l N\

/ \4 reject

v
[
|
v
[

.4—.

accept

Definition: Let M be a NTM that is a decider (le all branches halt

on all inputs).

The running time or time-complexity of M is the function f: N — N,
where f(n) is the maximum number of steps that M uses on any
branch of its computation on any input of length n.

Deterministic Non-Deterministic

Computation Computation

I N
8 °
; SN\
! L L\
| / :\4 reject
1 1

accept or reject accept

Theorem: Let t(n) be a function such that t(n) = n. Then

every t(n)-time nondeterministic single-tape TM has an
equivalent 20(tn) deterministic single tape TM

Definition: NTIME(t(n)) = {L|L is decided by a
O(t(n))-time non-deterministic Turing machine }

TIME(t(n)) C NTIME(t(n))

BOOLEAN FORMULAS

logical parentheses

operatlons
A satisfying assign g of the
variables that mali uIa true
=X A y(} vV Z
=1,y=1,z=1is a é€t|7fy| assignment for ¢

variables
(X vy)A(z A -X)
0 0 1 0

A Boolean formula is satisfiable if there
exists a satisfying assignment for it

vyEs aarbaca-d
NOo ~—(XVVy)AX

SAT ={ ¢ | ¢ is a satisfiable Boolean formula }

A 3cnf-formula is of the form:

W\/ Xy V X5) A (X3 V =X5 V =Xy)

clauses

YES (X4 Vv =X,V X,)

3SAT ={ ¢ | ¢ is a satisfiable 3cnf-formula }

3SAT ={ ¢ | ¢ is a satisfiable 3cnf-formula }
Theorem: 3SAT € NTIME(n?)
On input ¢:

1. Check if the formula is in 3cnf

2. For each variable, non-deterministically
substitute it with 0 or 1

(MVHMX,%
‘%‘MVMW i1]

(OO MIoDT T ICIoM Tt MIoDT]

3. Test if the assignment satisfies ¢

NP = U NTIME(nk)
k&EeN

Theorem: L € NP < if there exists a poly-time
Turing machine V(erifier) with
L = { x | dy(witness) |y| = poly(|x|) and V(x,y) accepts }
Proof:
(1) If L ={x[3y ly| = poly(|x]) and V(x,y) accepts }
then L& NP
Because we can guess y and then run V

(2) If L& NP then
L ={x| 3y |yl = poly(|x]) and V(x,y) accepts }

Let N be a non-deterministic poly-time TM that
decides L and define V(x,y) to accept if y is an
accepting computation history of N on x

3SAT = {¢| dy such that y is a satisfying
assignment to ¢ and ¢ is in 3cnf }

SAT = {¢| dy such that y is a satisfying
assignment to ¢ }

A language is in NP if and only if there
exist polynomial-length certificates*®
for membership to the language

SAT is in NP because a satisfying
assignment is a polynomial-length
certificate that a formula is satisfiable

* that can be verified in poly-time

0, /@
1\ 27/
. [

@—»@ —0®

HAMPATH = { (G,s,t) | G is a directed graph
with a Hamiltonian path from s to t }

Theorem: HAMPATH € NP

The Hamilton path itself is a certificate

CLIQUE = { (G,k) | G is an undirected graph
with a k-clique }

Theorem: CLIQUE € NP

The k-clique itself is a certificate

NP = all the problems for which once
you have the answer it is easy (i.e.
efficient) to verify

POLY-TIME REDUCIBILITY

f:2* — 2% is a polynomial time computable
function if some poly-time Turing machine M, on
every input w, halts with just f(w) on its tape

Language A is polynomial time reducible to
language B, written A <; B, if there is a poly-

time computable function f : 2* — Z* such that:

wEA<= f(w)EB

f is called a polynomial time reduction of Ato B

Theorem: IfA<pBand B €P,thenAcP

Proof: Let Mg be a poly-time (deterministic)

TM that decides B and let f be a poly-time
reduction from A to B

We build a machine M, that decides A as follows:

On input w:
1. Compute f(w)
2. Run Mg on f(w)

Definition: A language B is NP-complete if:

1. BE NP

2. Every A in NP is poly-time reducible to B
(i.e. B is NP-hard)

Suppose B is NP-Complete

So, if B is NP-Complete and B € P then NP = P. Why?

Theorem (Cook-Levin): SAT is NP-complete
Corollary: SAT € P if and only if P = NP

WWW.FLAC.WS

Read Chapter 7.3 of the book for next time

NP-COMPLETENESS:
THE COOK-LEVIN THEOREM

Theorem (Cook-Levin.’71): SAT is NP-
complete

Corollary: SAT € P if and only if P = NP

’ h

Leonid Levin Steve Cook

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(1) SAT € NP

(2) Every language A in NP is polynomial time
reducible to SAT

We build a poly-time reduction from A to SAT

The reduction turns a string w into a 3-cnf
formula ¢ such that w € A iff § € 3-SAT.

¢ will simulate the NP machine N for A on w.

Let N be a non-deterministic TM that decides
Aintime nk How do we know N exists?

So proof will also show:
3-SAT is NP-Complete

The reduction f turns a string w into a 3-cnf formula ¢

such that: we A < ¢ € 3SAT.
¢ will “simulate” the NP machine N for A on w.

Deterministic
Computation

accept or reject

Non-Deterministic
Computation

0‘/ . \AQ
/NN
}

AN
/

o {— @

e
/

Suppose A & NTIME(nk) and let N be an NP machine for A.

A tableau for N on w is an nk x nk table whose rows are the
configurations of some possible computation of N on input
W.

A tableau is accepting if any row of the tableau
is an accepting configuration

Determining whether N accepts w is equivalent
to determining whether there is an accepting
tableau for N on w

Given w, our 3cnf-formula ¢ will describe a

generic tableau for N on w (in fact, essentially
generic for N on any string w of length n).

The 3cnf formula ¢ will be satisfiable if and only
if there is an accepting tableau for N on w.

VARIABLES of ¢
LetC=QUT U{#}

Each of the (nk)? entries of a tableau is a cell

cell[i,j] = the cell at row i and column j

Foreachiandj(1=<i,j<nX)and foreachs & C
we have a variable x..

1,),S
variables = |C|n?k ie O(n2k), since |C| only depends on N
These are the variables of ¢ and represent the
contents of the cells

We will have: x;;;=1 = cell[i,j]=s

Xijis = 1
UEERE

cellli,J]=s

We now design ¢ so that a satisfying assignment

to the variables x;; ; corresponds to an accepting

tableau for N onw
The formula ¢ will be the AND of four parts:

(I) = (I)cell A q)start A (I)accept A (I)move

d.o €Nsures that for each i,j, exactly one Xjjs= 1

dsiare €NSUres that the first row of the table is the
starting (initial) configuration of N on w
Gaccept ensures”* that an accepting configuration

occurs somewhere in the table
dmove €NSUres™ that every row is a configuration

that legally follows from the previous config

*if the other components of ¢ hold

Oce €NSUres that for each i,j, exactly one x;; ;=
1

Peert = /\ \/ ij,s /\(_'X,Jsv "Xt)

1<i,j<nk [\S€EC steC
‘ s¥t ‘
at least one at most one
variable is variable is

turned on turned on

q)start = x1,1,# A x1,2,q A
0

X13w, N Xraw, N os AXgpigw A

X1,n+3,|:| AT A X1,nk_1,|:| N\ X1,nk,#

(I)accept ensures that an accepting
configuration occurs somewhere in the table

(I)accept \/ XiJ L), Gecept

1=<i,j<nk

Pmove €Nsures that every row is a configuration

that legally follows from the previous

It works by ensuring that each 2 x 3 “window”
of cells is legal (does not violate N’s rules)

If 5(q,,a) = {(q4,b,R)} and d(q,,b) = {(d,,c,L), (g,,a,R)}
Which of the following windows are legal:

aChb aq1b a [a],

g,|a |c qg,|a |a alal|b

If 6(q1'xa) = {(q1!bsR)} and 6(c‘|1!b) = {(q25cs|—)a (q25a!R)}
Which of the following windows are legal:

CLAIM:
If
* the top row of the tableau is the start configuration,

and
* and every window is legal,

Then
each row of the tableau is a configuration that legally
follows the preceding one.

CLAIM:
If
* the top row of the tableau is the start configuration,

and
* and every window is legal,

Then
each row of the tableau is a configuration that legally
follows the preceding one.[[S

Proof:

In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

CLAIM:

If
* the top row of the tableau is the start configuration,

and
* and every window is legal,

Then
each row of the tableau is a configuration that legally

follows the preceding one.[[a

a

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not
adjacent to a state symbol

CLAIM:

If
* the top row of the tableau is the start configuration,
and
* and every window is legal,

Then

each row of the tableau is a configuration that legally

follows the preceding one.[[a q

Proof: d ok J ok o

In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not

adjacent to a state symbol
Case 2. center cell of window is a state symbol

So the lower configuration follows from the
upper!!!

row |

row i+1

col. J-1 col. | col. j+1
q, a; CE

(i+1!j'1) (|+1!J) (i+1!j+ 1)
d, ds dg

The (i,j) Window

dmove = /\ (the (i, j) window is legal

1<1i,j=nk

the (i, j) window is legal =

\/ (Xij1,a A Xija, A Xijrra A Xivtjga A Xisgja A Xisjrra)
a, ..., ag
is a legal window

This is a disjunct over all (< |C|°) legal sequences (a,, ...,
ag)-

dmove = /\ (the (i, j) window is legal)

1<1i,j=nk

the (i, j) window is legal =

\/ (Xij1,a A Xija, A Xijrra A Xivtjga A Xisgja A Xisjrra)
a, ..., ag
is a legal window

This is a disjunct over all (< |C|°) legal sequences (a,, ...,

Tis disjunct is satisfiable
=t

There is some assignment to the cells (ie variables) in
the window (i,j) that makes the window legal

dmove = /\ (the (i, j) window is legal)

1<1i,j=nk

the (i, j) window is legal =

\/ (Xij1,a A Xija, A Xijrra A Xivtjga A Xisgja A Xisjrra)
- P

is a legal window
This is a disjunct over all (< |C|°) legal sequences (a,, ...,

& dmove IS Satisfiable

=

There is some assignment to each of the variables that
makes every window legal.

(l)move

/\ (the (i, j) window is legal

1<1i,j=nk

the (i, j) window is legal =

\/ (Xij1,a A Xija, A Xijrra A Xivtjga A Xisgja A Xisjrra)

a, ..., ag

is a legal window

This is a disjunct over all (< |C|°) legal sequences (a,, ...,

ag)-

Can rg-write as equivalent conjunct:

= ([W

+1.a) a;5 ..., @g

ij-ha V

ISN’T a legal window

W

4,),a

\Y

W

i!'j!+1aa

\Y

j+1,j-1,a

i+1,j,a

+1,j

(l) = (I)cell A q)start A (I)accept A cl)move

¢ is satisfiable (ie, there is some assignment to each of

the varialbes s.t. ¢ evaluates to 1)
=

there is some assignment to each of the variables s.t.

bcen AN Ogiary AN Oy cepe AN ¢, €ach evaluates to 1

~

There is some assignment of symbols to cells in the

tableau such that:

* The first row of the tableau is a start configuration and

* Every row of the tableau is a configuration that follows
from the preceding by the rules of N and

 One row is an accepting configuration

=

There is some accepting computation for N with input w

3-SAT?

How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3
NETES

3-SAT?

How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3

NE LS
If a clause has less than three variables:

as(avava), (avb)=(avbvb)

3-SAT?

How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3

NE LS
If a clause has less than three variables:

as(avava), (avb)=(avbvb)

If a clause has more than three variables:
(@vbvecvd)Eavbvz)a(-zvecvd)

(a;va,v...va)=

(l) = (I)cell A q)start A (I)accept A cl)move

WHAT'S THE LENGTH OF ¢?

= /\ | \/xe M /\%ige v =xi50)

1<i,j<nk \s€C steC
s#t

If a clause has less than three variables:
(@avb)=(avbvb)

1<i,j<nk \s€C steC
s#t

(I)cell = /\ (\/xi,j,s)/\ (/\(_'xi,j,s v _'xi,j,t))

O(n?%k) clauses

Length(¢.,) = O(n?) O(log (n)) = O(n* log n)
|

length(indices)

X148 N X129 A
)

X13w, N X1aw, A wor A Xqpaaw A

(I)start

X1,n+3,|:| AN wan A X1,nk_1,|:| AN X1,nk,#

(Xq 18V Xq 98V X1 A

(x1,2,q0 4 x1,2,q0 \ x1,2,q0)

AN aaa A

(X1,nk JH v x1,nk H v x1,nk ,#)

Ostart = X918 N Xq2q9 A
)

X13w, N X1aw, A wor A Xqpaaw A

X1,n+3,|:| AN wan A X1,nk_1,|:| AN X1,nk,#

O(nk)

(I)accept \/ x 1), 'Yaccept

1<1i,j=nk

(@;va,v...va)=

(a;va,vzy)a(-z,vasvz)a(-z,va, v z,) ...

(I)accept \/ X

O(nZk)

dmove = /\ (the (i, j) window is legal

1<1i,j=nk

the (i, j) window is legal =

/\ (xlj 1 a1 Ij +1,% v xl+1j -1.2 v x|+1 j§ |+1,j+1,a)

a,, ..
ISN’T a Iegal wmdow

This is a conjunct over all (< |C|®¢) illegal sequences (a,, ...,

O(n2k)

Theorem (Cook-Levin): 3-SAT is NP-
complete

Corollary: 3-SAT € P if and only if P = NP

