- Given: polynomial p(x₁, x₂, ..., x_n) as arithmetic formula (fan-out 1):
 - multiplication (fan-in 2)
 - addition (fan-in 2)
 - negation (fan-in 1)

- Question: Is p identically zero?
 - i.e., is $p(\mathbf{x}) = 0$ for all $\mathbf{x} \in \mathbf{F}^n$
 - (assume |**F**| larger than degree...)
- "polynomial identity testing" because given two polynomials p, q, we can check the identity p ≡ q by checking if (p – q) ≡ 0

try all |F|ⁿ inputs?

- may be exponentially many

 multiply out symbolically, check that all coefficients are zero?

may be exponentially many coefficients

- can randomness help?
 - i.e., flip coins, allow small probability of wrong answer

<u>Lemma</u> (Schwartz-Zippel): Let $p(x_1, x_2, ..., x_n)$

be a total degree d polynomial over a field **F** and let **S** be any subset of **F**. Then if p is not identically 0,

 $\Pr_{r_1, r_2, \dots, r_n \in S}[p(r_1, r_2, \dots, r_n) = 0] \le d/|S|.$

- Proof:
 - induction on number of variables n
 - base case: n = 1, p is univariate polynomial of degree at most d
 - at most d roots, so

 $\Pr[p(\mathbf{r}_1) = 0] \le d/|S|$

- write $p(x_1, x_2, ..., x_n)$ as $p(x_1, x_2, ..., x_n) = \sum_i (x_1)^i p_i(x_2, ..., x_n)$ -k = max. i for which $p_i(x_2, ..., x_n)$ not id. zero - by induction hypothesis: $\Pr[p_{k}(r_{2}, ..., r_{n}) = 0] \le (d-k)/|S|$ - whenever $p_k(r_2, ..., r_n) \neq 0$, $p(x_1, r_2, ..., r_n)$ is a univariate polynomial of degree k $\Pr[p(r_1, r_2, ..., r_n) = 0 | p_k(r_2, ..., r_n) \neq 0] \leq k/|S|$

- $\Pr[p_{k}(r_{2}, ..., r_{n}) = 0] \le (d-k)/|S|$ $\Pr[p(r_{1}, r_{2}, ..., r_{n}) = 0 | p_{k}(r_{2}, ..., r_{n}) \ne 0] \le k/|S|$
- conclude:

 $\Pr[p(r_1, ..., r_n) = 0] \le (d-k)/|S| + k/|S| = d/|S|$

- Note: can add these probabilities because $Pr[E_1] = Pr[E_1|E_2]Pr[E_2] + Pr[E_1|\neg E_2]Pr[\neg E_2]$ $\leq Pr[E_2] + Pr[E_1|\neg E_2]$

• Given: polynomial $p(x_1, x_2, ..., x_n)$

Note: degree d is at most the size of input

- randomized algorithm: field **F**, pick a subset $S \subset F$ of size 2d
 - pick $r_1, r_2, ..., r_n$ from S uniformly at random
 - $-if p(r_1, r_2, ..., r_n) = 0$, answer "yes"
 - if p($r_1, r_2, ..., r_n$) ≠ 0, answer "no"
- if p identically zero, never wrong
- if not, Schwartz-Zippel ensures probability of error at most ¹/₂