NON-DETERMINISM and
REGULAR OPERATIONS

UNION THEOREM

The union of two regular languages
Is also a regular language

“Regular Languages Are Closed Under Union”

INTERSECTION THEOREM

The intersection of two regular
languages is also a regular language

Complement THEOREM

The complement of a regular
language Is also a regular language

In other words,

if L is regular than so is —L,

where -L={wecX*|w&L}

Proof ?

0,1

A
>O>

0
Co*
L(M) ={w | w begins with 1}

-L(M) = {w|wdoes not begin with 1}
Is -L(M) regular?

-L(M) = {w|wdoes not begin with 1}
Is -L(M) regular?

0,1

A
>O>

0

oD

L(M) ={w | w begins with 1}

Suppose our machine reads strings from right to left...
What language would be recognized then?

LR= {w|wends with1} IsLRregular?

N
S()—
(D

LR= {w|wends with1} IsLRregular?

0,1

A
@g(}_
e

LR= {w|wends with1} IsLRregular?

0 1

APEA
-0=0

LR= {w|wends with1} IsLRregular?

THE REVERSE OF A LANGUAGE

Reverse: LR={w,..w, |w,..w, EL, w, €2}

If L is recognized by a normal DFA,
Then LR is recognized by a DFA reading from right to left!

Can every “Right-to-Left DFA” be replaced
by a normal DFA??

REVERSE THEOREM

The reverse of a regular language is
also a regular language

“"Regular Languages Are Closed Under Reverse”

If a language can be recognized by a DFA that
reads strings from right to lefft,
then there is an “normal” DFA that accepts the
same language

REVERSING DFAs

Assume L is a regular language.
Let M be a DFA that recognizes L

Task: Build a DFA MR that accepts LR

If M accepts w, then w describes a directed
path in M from start to an accept state.

First Attempt:
Try to define MR as M with the arrows reversed.

Turn start state into a final state.
Turn final states into start states.

MR IS NOT ALWAYS A DFA!

It could have many start states
Some states may have too many outgoing
edges,

or none at all!

NONDETERMINISM is BORN!
1 0,1
0

N N 0O
QO+0+0O-

What happens with 100?

We will say that this machine accepts a string if
there is that reaches an accept state
from a start state.

AT iV AT TR L L L L L NS A Y Wi a LA RLE A Al IICIP

| Create PDF ~ IJ_;‘LQ Combine Files v .0; Export v & | Start Meeting v [ﬁ Secure v / Sign v @ Forms v) Review & Comment v

1B DN O € e - iE 3 -

M. O. Rabin*

‘ IBM JOURNAL APRIL 1959 o st <
Turing Award winning paper

Finite Automata and Their Decision Problems

Abstract: Finite automata are considered in this paper as instruments for classifying finite tapes. Each one-
tape automaton defines a set of tapes, a two-tape automaton defines a set of pairs of tapes, et cetera. The
structure of the defined sets is studied. Various generalizations of the notion of an automaton are introduced
and their relation to the classical automata is determined. Some decision problems concerning automata are

start

shown to be solvable by effective algorithms; others turn out to be unsolvable by algorithms.

Introduction

Turing machines are widely considered to be the abstract
prototype of digital computers; workers in the field, how-
ever, have felt more and more that the notion of a Turing
machine is too general to serve as an accurate model of
actual computers. Tt is well known that even for simple
calculations it is impossible to give an a priori upper
bound on the amount of tape a Turing machine will need
for any given computation. It is precisely this feature that
renders Turing’s concept unrealistic.

In the last few years the idea of a finite automaton has
appeared in the literature. These are machines having

a method of viewing automata but have retained through-
out a machine-like formalism that permits direct com-
parison with Turing machines. A neat form of the defini-
tion of automata has been used by Burks and Wang!
and by E. F. Moore,* and our point of view is closer to
theirs than it is to the formalism of nerve-nets. However,
we have adopted an even simpler form of the definition
by doing away with a complicated output function and
having our machines simply give “yes” or “no” answers.
This was also used by Myhill, but our generalizations to
the ‘“nondeterministic,” “two-way,” and “many-tape”

% €/ B |&Inboxfor.. | “zlectures ... |~ 2Intern.. v ®ibmrd030... Q/C”’f*’ﬁé A 11:22 F

NFA EXAMPLES

L(M)={w | w contains a 0}

At each state, we can have any number of
out arrows for each letterc €2, =2 U {g}

NFA EXAMPLES

— O L(M)={0"1!]|ic{0,1}, =2 0}

Possibly many start states

NFA EXAMPLES

°/

_ O L(M)={1,00}

A non-deterministic finite automaton (NFA)
is a 5-tuple N = (Q, 2, 6, Q,, F)

Q is the set of states
2 is the alphabet
0:QxZ, — 29 js the transition function

Q, C Q is the set of start states

F C Qis the set of accept states

2Q is the set of all possible subsets of Q
2. =2 U {g}

Let we 2* and suppose w can be written as
W,... W, Where w; € 2_ (& = empty string)

Then N w if there arer, r,, ..., r, €Q
such that

1. 1, € Q
2. r,,€0(r;,w,,,) fori=0,...,, n-1, and
3. r,eF

L(N) = the language recognized by N
= set of all strings machine N accepts

A language L is by an NFAN
if L =L(N).

Deterministic
Computation

accept or reject

Non-Deterministic
Computation

0‘/ . \AQ
/NN
}

AN
/

o {— @

e
/

Deterministic
Computation

accept or reject

Non-Deterministic
Computation

N\

AN
/

N\

N
/

S
/

N=(Q, 2,0, QF)

1
— ’ > Q = {q1! 42, g3, C|4}

2 ={0,1}
Q, ={d,, 9,5}
F ={q,}<Q

o(q,,1) = {q,}
0(ds,1) =9 §(qs, €) = { dy}
5(q,,0) = {493}

F)
Q,,

5

2
— (Q

’ “@ }
| ’ q4
| ;Iza q;
| _= :::1}CI2}
: = {qd,, ol
;0 ={CI4} =
F =
1> ﬂﬂ
| \
) &
°/
:

(N; []
(

L

=

1

0

{0,1}Olzzl
= {qa4, i
;0 ={CI4} =

F =

F)
0 :
) :35 44
(Q, Z;IZ!
_ 1,
@ N_= {9
Q
1 >
4

uu
0 O/
() .

(N; []
(

L

=

1

0

1 N=(Q, Z, 5, Qp F)
—> > Q ={q,, d,, 93, d,}
0 7 z ={0,1}
Q, ={q4, 9}
0 IO/ F ={q,}CQ
o o 1
—() e Jnaslo

gm
00 = L(N)? 4, Had |D
(N) o0 0 0

01 € L(N)?

MULTIPLE START STATES

We allow multiple start states for NFAs,
and Sipser allows only one

Can easily convert NFA with many start
states into one with a single start state:

cee ™

UNION THEOREM FOR NFAs?

NFAs ARE SIMPLER THAN DFAs
An NFA that recognizes the language {1}:

-0 @

A DFA that recognizes
the language {1}: 0,1

BUT DFAs CAN SIMULATE NFAsS!

Theorem: Every NFA has an equivalent”
DFA

Corollary: A language is regular iff
it is recognized by an NFA

Corollary: L is regular iff LR is regular

*N is equivalent to M if L(N) = L (M)

-

FROM NFA TOD
Input: NFAN = (Q, £, §, Q,, F)

Output: DFAM =(Q, %, ¥, q,, F')

FA

/'\ To see if NFA accepts, we
. . could do the computation
.}/!\A. 1\. in parallel, maintaining the
[/'\ set of all possible states
° @ i ° that can be reached
v reject
.»/g\‘ Idea:
| Q' =29
®

accept

FROM NFA TOD
Input: NFAN = (Q, £, §, Q,, F)

Output: DFAM =(Q, %, ¥, q,, F')

-

FA

Q' =20
0:QxZ—Q
8'(R,0) = U g(§(r,0))
reR
do = €(Qy)
FF={ReQ'|fcRforsomefcF}

For RC Q, the e-closure of R, €¢(R) = {q that can be reached
from some r & R by traveling along zero or more € arrows}

EXAMPLE OF e-CLOSURE

0,1

O,a O,E
—p> —p —>

5({%}) ={q0 y q1! q2}
£({a.}) = {q,, 9,}
£({a,}) = {q,}

0,1

Given: NFA N = ({1,2,3}, {a,b}, 5, {1}, {1})

Construct: Equivalent DFA M
M = (21123}, {a,b}, &', {1,3}, { {1},..- })

Qe ,

—p {1, }l— 33— 9

e({1}) ={1,3}

N=(Q, 2, 0, Qp F)

Given: NFA N =({1,2,3}, {a,b}, 6, {1}, {1})
Construct: equivalent DFA M =(Q’, Z, 9, q,, F')

o la |b
@
{1}
\
a, b

>

N\
Yoo

e({1}) ={1,3}

N=(Q5 Z, 6, QO’F)

Given: NFA N =({1,2,3}, {a,b}, 6, {1}, {1})
Construct: equivalent DFA M =(Q’, Z, 9, q,, F')

NONE =
NONE:
a {1}
) b/ £ \ {2}
O {3}
@ a, b @ {1,2}
g L [11.3)

dy =€({1}) = {1,3}/ (2,3}

{1,2,3}

N=(Q, 2, o, Qp F)

Given: NFA N =({1,2,3}, {a,b}, 5, {1}, {1})
Construct: equivalent DFA M =(Q’, Z,9, q,, F')

o la |b
:
\ @
£
\ (3}
a,b

N
—-
d
a(xb/
(D22 i3
> L 1,3}

o =&({1}) ={1,3} / 2

{1,2,3} >

N=(Q, 2, o, Qp F)

Given: NFA N = ({1,2,3}, {a,b}, 5, {1}, {1})

Construct: equivalent DFA M =(Q’, Z,9’, q,, F')

d

%)

b
%)

5
%
\ o
\
{3}
a,b

N
—-
d
a(xb/
(D22 i3
> L 1,3}

o =&({1}) ={1,3} / 2

{1,2,3}

)

N=(Q, 2, o, Qp F)

Given: NFA N =({1,2,3}, {a,b}, 5, {1}, {1})
Construct: equivalent DFA M =(Q’, Z,9’, q,, F')

o la |b
%) D D
DI
£
{3}
a,b

N
—-
d
a(xb/
(D22 i3
> L 1,3}

o =&({1}) ={1,3} / 2

{1,2,3} >

N=(Q, 2, o, Qp F)

Given: NFA N =({1,2,3}, {a,b}, 5, {1}, {1})
Construct: equivalent DFA M =(Q’, Z, 9, q,, F')

o la |b
%) D D
DI
£
{3}
a,b

N
m—p
d
a O ° / 21 e [3)
(=) s
> L 1,3}

o =&({1}) ={1,3} / 2

{1,2,3} >

N=(Q’ Zs 65 Qo, F)

Given: NFA N =({1,2,3}, {a,b}, 5, {1}, {1})
Construct: equivalent DFA M =(Q’, Z,9’, q,, F')

N o' a |b
—> g |0 |
b a () 2 |2
) 3 {2} |23{3}
O (3y |03 |0
a b {2,3} (2,3}
— 1,303 {2y

do =€({1}) = {1,3}/ {2,3} """ {3}

(1,23}]2 |23}

N=(Q’ Zs 65 Qo, F)

Given: NFA N = ({1,2,3}, {a,b}, 5, {1}, {1})

Construct: equivalent DFA M =(Q’, Z, 9, q,, F')
N
—_—
a
) ’ {2} |23 {3}
O 3y |13 |2
@ '@ 30 2)
do =€({1}) = {1,3}/ {2,3} """ {3}

6’ a b
-{{1}-}-@---{2.}.
\
a b 2023 []..
{1!2’3} ,1’2’3} {2,3}

NFAs CAN MAKE
PROOFS MUCH
EASIER!

Remember this on your Homework!

REGULAR LANGUAGES CLOSED

UNDER CONCATENATION
Concatenation: A-B={vw|vceAandw&B}

Given DFAs M, and M,,, connect accept states

in M, to start states in M,

REGULAR LANGUAGES CLOSED

UNDER CONCATENATION
Concatenation: A-B={vw|vceAandw&B}

Given DFAs M, and M,,, connect accept states

@\ O
@_* < A9
O L(N) = L(M,) - L(M,) O

RLs ARE CLOSED UNDER STAR
Star: A*={s,...s | k20and eachs, €A}

Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*

4O

Formally:
Input: M =(Q, £, §, q,, F)
Output: N = (Q/, Z, &, {q,}, F')

Q' =Q U {q,}
F'=F U {qo}
{6(q,a)} ifgeQanda#e
{q4} ifqgeFanda=¢
d'(g,a) = < {q4} ifq=q,anda=¢
% ifgq=q,anda#¢

%, else

Show: L(N) = L* where L =L(M)
L(N) 2 L*

L(N) C L*

1. L(N) © L* (where L = L(M))

Assume w = w,...w, is in L*, where w,,...,w, €L
We show N accepts w by induction on k

Base Cases:
V k=0 (w=g)
v k=1 (wel)

Inductive Step:

Assume N accepts all stringsv=v,...v. €EL*, v.,EL
and letu=u,...uu,,,€L",yeclL

Since N accepts u,...u, (by induction) and
M accepts u,,,, N must accept u

2. L(N) & L* (where L = L(M))

Assume w is accepted by N, we showw & L*
If w=¢g, thenw&L”

If w# ¢,
write w as w=uyv,
WHECRARRUE
substring read
after the last
e-transition

By induction

w=uveL*

REGULAR LANGUAGES ARE CLOSED
UNDER THE REGULAR OPERATIONS
=> UniontAUB={w|w&cAorwecB}

—»> |Intersection:ANB={w|w&eAandwcB}
=> Negation: —-A={wcX*|wZA}

=> Reverse: AR={w,..w, |w,..w, EA}

=—> Concatenation: A-B={vw|vEAandwcB}

=> Star: A*={w,...w, | k20and eachw, €A}

SOME LANGUAGES ARE
NOT REGULAR

B={0"1"|n20}is NOT regular!

WHICH OF THESE ARE REGULAR

C = {w| w has equal number of
occurrences of 01 and 10 }

REGULAR!!!

D= {w]|whas equal number of 1s and 0s}
NOT REGULAR

WWW.FLAC.WS

Read Chapters 1.3 and 1.4 of the book for next time

