
NON-DETERMINISM and
REGULAR OPERATIONS

UNION THEOREM
The union of two regular languages

is also a regular language

INTERSECTION THEOREM
The intersection of two regular

languages is also a regular language

“Regular Languages Are Closed Under Union”

Complement THEOREM

The complement of a regular
language is also a regular language

In other words,

 if L is regular than so is ¬L,

 where ¬L= { w ∈ Σ* | w ∉ L }

Proof ?

1

0

0,1

0,1

L(M) = { w | w begins with 1}

¬L(M) = { w | w does not begin with 1}

Is ¬L(M) regular?

1

0

0,1

0,1

¬L(M) = { w | w does not begin with 1}

Is ¬L(M) regular?

1

0

0,1

Suppose our machine reads strings from right to left…
What language would be recognized then?

0,1

L(M) = { w | w begins with 1}

LR = { w | w ends with 1} Is LR regular?

LR = { w | w ends with 1} Is LR regular?

1

0

0,1

0,1

LR = { w | w ends with 1} Is LR regular?

1

0

0,1

0,1

1

10

0

LR = { w | w ends with 1} Is LR regular?

THE REVERSE OF A LANGUAGE

Reverse: LR = { w1 …wk | wk …w1 ∈ L, wi ∈ Σ}

If L is recognized by a normal DFA,
Then LR is recognized by a DFA reading from right to left!

Can every “Right-to-Left DFA” be replaced
by a normal DFA??

REVERSE THEOREM
The reverse of a regular language is

also a regular language

``Regular Languages Are Closed Under Reverse”

If a language can be recognized by a DFA that
reads strings from right to left,

then there is an “normal” DFA that accepts the
same language

REVERSING DFAs
Assume L is a regular language.
Let M be a DFA that recognizes L

Task: Build a DFA MR that accepts LR

If M accepts w, then w describes a directed
path in M from start to an accept state.

First Attempt:
Try to define MR as M with the arrows reversed.
Turn start state into a final state.
Turn final states into start states.

MR IS NOT ALWAYS A DFA!
It could have many start states

Some states may have too many outgoing
edges,

or none at all!

1 0

1

0 1

0,1

0

NONDETERMINISM is BORN!
1 0

1

0 1

0,1

0

What happens with 100?

We will say that this machine accepts a string if
there is some path that reaches an accept state

from a start state.

IBM JOURNAL APRIL 1959
Turing Award winning paper

0,1

0, ε 0

0,1

At each state, we can have any number of
out arrows for each letter σ ∈ Σε = Σ ∪ {ε}

NFA EXAMPLES

L(M)={w | w contains a 0}

1

ε 0

0,11

0

Possibly many start states

NFA EXAMPLES

L(M) = {0i1j | i ∈ {0,1}, j ≥ 0}

1

0

0

L(M)={1,00}

NFA EXAMPLES

Q is the set of states

Σ is the alphabet

δ : Q × Σε → 2Q is the transition function

Q0 ⊆ Q is the set of start states

F ⊆ Q is the set of accept states

A non-deterministic finite automaton (NFA)
is a 5-tuple N = (Q, Σ, δ, Q0, F)

2Q is the set of all possible subsets of Q
Σε = Σ ∪ {ε}

Let w∈ Σ* and suppose w can be written as
 w1... wn where wi ∈ Σε (ε = empty string)

Then N accepts w if there are r0, r1, ..., rn ∈ Q
such that

1. r0 ∈ Q0
2. ri+1 ∈ δ(ri, wi+1) for i = 0, ..., n-1, and
3. rn ∈ F

A language L is recognized by an NFA N
if L = L(N).

L(N) = the language recognized by N
 = set of all strings machine N accepts

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

1

0

0

δ(q3,1) =
q1

q2

q3

q4

δ(q2,1) = {q4}
∅

ε

δ(q1,0) = { q3}

N = (Q, Σ, δ, Q0, F)

Q = {q1, q2, q3, q4}

Σ = {0,1}
Q0 = {q1, q2}

F = {q4} ⊆ Q

δ(q3, ε) = { q2}

1

0

0

q1

q2

q3

q4

δ 0 1 ε

q1 {q3} ∅ ∅
q2 ∅ {q4} ∅
q3 {q4} ∅ {q2}
q4 ∅ ∅ ∅

ε

N = (Q, Σ, δ, Q0, F)

Q = {q1, q2, q3, q4}

Q0 = {q1, q2}

F = {q4} ⊆ Q

Σ = {0,1}

00 ∈ L(N)?

01 ∈ L(N)?

1

0

0

q1

q2

q3

q4

N = (Q, Σ, δ, Q0, F)

Q = {q1, q2, q3, q4}

Q0 = {q1, q2}

F = {q4} ⊆ Q

δ 0 1 ε

q1 {q2,q3} ∅ ∅
q2 ∅ {q4} ∅
q3 {q4} ∅ ∅
q4 ∅ ∅ ∅

0

Σ = {0,1}

00 ∈ L(N)?

01 ∈ L(N)?

1

0

0

q1

q2

q3

q4

N = (Q, Σ, δ, Q0, F)

Q = {q1, q2, q3, q4}

Q0 = {q1, q2}

F = {q4} ⊆ Q

δ 0 1 ε

q1 {q2,q3} ∅ ∅
q2 ∅ {q4} ∅
q3 {q4} ∅ ∅
q4 ∅ ∅ ∅

0

Σ = {0,1}

00 ∈ L(N)?

01 ∈ L(N)?

MULTIPLE START STATES
We allow multiple start states for NFAs,

and Sipser allows only one

Can easily convert NFA with many start
states into one with a single start state:

ε
ε

ε

UNION THEOREM FOR NFAs?

0 0

1

1
0

NFAs ARE SIMPLER THAN DFAs
An NFA that recognizes the language {1}:

1

1 0,1

0,1
0

A DFA that recognizes
the language {1}:

Theorem: Every NFA has an equivalent*
DFA

Corollary: A language is regular iff
it is recognized by an NFA

Corollary: L is regular iff LR is regular

* N is equivalent to M if L(N) = L (M)

BUT DFAs CAN SIMULATE NFAs!

FROM NFA TO DFA

accept

reject

To see if NFA accepts, we
could do the computation
in parallel, maintaining the
set of all possible states

that can be reached

Qʹ′ = 2Q
Idea:

Input: NFA N = (Q, Σ, δ, Q0, F)

Output: DFA M = (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

Qʹ′ = 2Q

δʹ′ : Qʹ′ × Σ → Qʹ′
δʹ′(R,σ) = ∪ ε(δ(r,σ))

r∈R

q0ʹ′ = ε(Q0)

Fʹ′ = { R ∈ Qʹ′ | f ∈ R for some f ∈ F }

FROM NFA TO DFA
Input: NFA N = (Q, Σ, δ, Q0, F)

Output: DFA M = (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

*

 For R ⊆ Q, the ε-closure of R, ε(R) = {q that can be reached
from some r ∈ R by traveling along zero or more ε arrows}

*

0,1

0,ε 0,ε

0,1

EXAMPLE OF ε-CLOSURE

q0 q1 q2

ε({q0}) = {q0 , q1, q2}
ε({q1}) = {q1, q2}
ε({q2}) = {q2}

a

a , b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: Equivalent DFA M

ε({1}) = {1,3}

N
M = (2{1,2,3}, {a,b}, δʹ′, {1,3}, { {1},… })

{1,3}

a

b

{2} a {2,3}

b

{3}

a

{1,2,3}

ab

b

a
∅

a,b

{1}, {1,2} ?

b

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

δʹ′ a b
∅

{1}
{2}
{3}

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

δʹ′ a b
∅

{1}
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

q0ʹ′ =

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

δʹ′ a b
∅ ∅

{1}
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

q0ʹ′ =

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

δʹ′ a b
∅ ∅ ∅

{1}
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

q0ʹ′ =

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

δʹ′ a b
∅ ∅ ∅

{1} ∅ {2}
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

q0ʹ′ =

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

δʹ′ a b
∅ ∅ ∅

{1} ∅ {2}
{2} {2,3} {3}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

q0ʹ′ =

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

δʹ′ a b
∅ ∅ ∅

{1} ∅ {2}
{2} {2,3} {3}
{3} {1,3} ∅

{1,2} {2,3} {2,3}

{1,3} {1,3} {2}
{2,3} {1,2,3} {3}
{1,2,3} {1,2,3} {2,3}

q0ʹ′ =

a

a, b

a

2 3

1

b
ε

Given: NFA N = ({1,2,3}, {a,b}, δ , {1}, {1})

Construct: equivalent DFA M

ε({1}) = {1,3}

N

N = (Q, Σ, δ, Q0, F)

= (Qʹ′, Σ, δʹ′, q0ʹ′, Fʹ′)

δʹ′ a b
∅ ∅ ∅

{1} ∅ {2}
{2} {2,3} {3}
{3} {1,3} ∅

{1,2} {2,3} {2,3}

{1,3} {1,3} {2}
{2,3} {1,2,3} {3}
{1,2,3} {1,2,3} {2,3}

q0ʹ′ =

NFAs CAN MAKE
PROOFS MUCH

EASIER!

Remember this on your Homework!

REGULAR LANGUAGES CLOSED
UNDER CONCATENATION

Given DFAs M1 and M2, connect accept states
in M1 to start states in M2

0
0,1

00

1

1

1

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

0
0,1

00

1

1

1
ε

ε

REGULAR LANGUAGES CLOSED
UNDER CONCATENATION

Given DFAs M1 and M2, connect accept states
in M1 to start states in M2

0
0,1

00

1

1

1

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

0
0,1

00

1

1

1
ε

ε

L(N) = L(M1) ⋅ L(M2)

RLs ARE CLOSED UNDER STAR

Let M be a DFA, and let L = L(M)

Can construct an NFA N that recognizes L*

0
0,1

00

1

1

1

ε

ε

ε

Star: A* = { s1 … sk | k ≥ 0 and each si ∈ A }

Formally:
Input: M = (Q, Σ, δ, q1, F)

Output: N = (Qʹ′, Σ, δʹ′, {q0}, Fʹ′)

Qʹ′ = Q ∪ {q0}
Fʹ′ = F ∪ {q0}

δʹ′(q,a) =

{δ(q,a)}
{q1}
{q1}
∅

if q ∈ Q and a ≠ ε
if q ∈ F and a = ε
if q = q0 and a = ε
if q = q0 and a ≠ ε

∅ else

Show: L(N) = L* where L = L(M)

1. L(N) ⊇ L*

2. L(N) ⊆ L*

1. L(N) ⊇ L* (where L = L(M))

Assume w = w1…wk is in L*, where w1,…,wk ∈ L
We show N accepts w by induction on k
Base Cases:

k = 0
k = 1

Inductive Step:

Assume N accepts all strings v = v1…vk ∈ L*, vi ∈ L
and let u = u1…ukuk+1 ∈ L* , uj∈ L

Since N accepts u1…uk (by induction) and
 M accepts uk+1, N must accept u

✓
✓

(w = ε)
(w ∈ L)

Assume w is accepted by N, we show w ∈ L*
If w = ε, then w ∈ L*

If w ≠ ε,
write w as w=uv,

where v is the
substring read
after the last
ε-transition

accept

ε

ε

u ∈ L*

 v ∈ L

2. L(N) ⊆ L* (where L = L(M))

By induction
u

v
w = uv ∈ L*

REGULAR LANGUAGES ARE CLOSED
UNDER THE REGULAR OPERATIONS

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w ∈ Σ* | w ∉ A }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }

SOME LANGUAGES ARE
NOT REGULAR

B = {0n1n | n ≥ 0} is NOT regular!

WHICH OF THESE ARE REGULAR

D = { w | w has equal number of 1s and 0s}

C = { w | w has equal number of  
 occurrences of 01 and 10 }

NOT REGULAR

REGULAR!!!

WWW.FLAC.WS
Read Chapters 1.3 and 1.4 of the book for next time

